Sample records for temperature measuring instruments

  1. Development of a coolant channel helium and nitrogen gas ratio sensor for a high temperature gas reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadell, S. R.; Woods, B. G.

    2012-07-01

    To measure the changing gas composition of the coolant during a postulated High Temperature Gas Reactor (HTGR) accident, an instrument is needed. This instrument must be compact enough to measure the ratio of the coolant versus the break gas in an individual coolant channel. This instrument must minimally impact the fluid flow and provide for non-direct signal routing to allow minimal disturbance to adjacent channels. The instrument must have a flexible geometry to allow for the measurement of larger volumes such as in the upper or lower plenum of a HTGR. The instrument must be capable of accurately functioning throughmore » the full operating temperature and pressure of a HTGR. This instrument is not commercially available, but a literature survey has shown that building off of the present work on Capacitance Sensors and Cross-Capacitors will provide a basis for the development of the desired instrument. One difficulty in developing and instrument to operate at HTGR temperatures is acquiring an electrical conductor that will not melt at 1600 deg. C. This requirement limits the material selection to high temperature ceramics, graphite, and exotic metals. An additional concern for the instrument is properly accounting for the thermal expansion of both the sensing components and the gas being measured. This work covers the basic instrument overview with a thorough discussion of the associated uncertainty in making these measurements. (authors)« less

  2. Scanning system, infrared noise equivalent temperature difference: Measurement procedure

    NASA Technical Reports Server (NTRS)

    Cannon, J. B., Jr.

    1975-01-01

    A procedure is described for determining the noise equivalent difference temperature for infrared electro-optical instruments. The instrumentation required, proper measurements, and methods of calculation are included.

  3. Advanced high temperature instrument for hot section research applications

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Seasholtz, R. G.

    1989-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.

  4. An intelligent instrument for measuring exhaust temperature of marine engine

    NASA Astrophysics Data System (ADS)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  5. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buskirk, Caleb Griffith

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore,more » in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.« less

  6. Simulation of Thermal Behavior in High-Precision Measurement Instruments

    NASA Astrophysics Data System (ADS)

    Weis, Hanna Sophie; Augustin, Silke

    2008-06-01

    In this paper, a way to modularize complex finite-element models is described. The modularization is done with temperature fields that appear in high-precision measurement instruments. There, the temperature negatively impacts the achievable uncertainty of measurement. To correct for this uncertainty, the temperature must be known at every point. This cannot be achieved just by measuring temperatures at specific locations. Therefore, a numerical treatment is necessary. As the system of interest is very complex, modularization is unavoidable to obtain good numerical results.

  7. Temperature measurement in PV facilities on a per-panel scale.

    PubMed

    Martínez, Miguel A; Andújar, José M; Enrique, Juan M

    2014-07-24

    This paper presents the design, construction and testing of an instrumentation system for temperature measurement in PV facilities on a per-panel scale (i.e., one or more temperature measurements per panel). Its main characteristics are: precision, ease of connection, immunity to noise, remote operation, easy scaling; and all of this at a very low cost. The paper discusses the advantages of temperature measurements in PV facilities on a per-panel scale. The paper presents the whole development to implementation of a real system that is being tested in an actual facility. This has enabled the authors to provide the readers with practical guidelines, which would be very difficult to achieve if the developments were implemented by just simulation or in a theoretical way. The instrumentation system is fully developed, from the temperature sensing to its presentation in a virtual instrument. The developed instrumentation system is able to work both locally and remotely connected to both wired and wireless network.

  8. Temperature Measurement in PV Facilities on a Per-Panel Scale

    PubMed Central

    Martínez, Miguel A.; Andújar, José M.; Enrique, Juan M.

    2014-01-01

    This paper presents the design, construction and testing of an instrumentation system for temperature measurement in PV facilities on a per-panel scale (i.e., one or more temperature measurements per panel). Its main characteristics are: precision, ease of connection, immunity to noise, remote operation, easy scaling; and all of this at a very low cost. The paper discusses the advantages of temperature measurements in PV facilities on a per-panel scale. The paper presents the whole development to implementation of a real system that is being tested in an actual facility. This has enabled the authors to provide the readers with practical guidelines, which would be very difficult to achieve if the developments were implemented by just simulation or in a theoretical way. The instrumentation system is fully developed, from the temperature sensing to its presentation in a virtual instrument. The developed instrumentation system is able to work both locally and remotely connected to both wired and wireless network. PMID:25061834

  9. Measurements of the Ice Water Content of Cirrus in the Tropics and Subtropics. I; Instrument Details and Validation

    NASA Technical Reports Server (NTRS)

    Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.

    2003-01-01

    We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.

  10. A millimeter-wave radiometer for detecting microbursts

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert

    1992-01-01

    This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.

  11. Critical Review of Industrial Techniques for Thermal-Conductivity Measurements of Thermal Insulation Materials

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Ulf; Hameury, Jacques; Strnad, Radek; Turzó-Andras, Emese; Wu, Jiyu

    2015-07-01

    This paper presents a critical review of current industrial techniques and instruments to measure the thermal conductivity of thermal insulation materials, especially those insulations that can operate at temperatures above and up to . These materials generally are of a porous nature. The measuring instruments dealt with here are selected based on their maximum working temperature that should be higher than at least . These instruments are special types of the guarded hot-plate apparatus, the guarded heat-flow meter, the transient hot-wire and hot-plane instruments as well as the laser/xenon flash devices. All technical characteristics listed are quoted from the generally accessible information of the relevant manufacturers. The paper includes rankings of the instruments according to their standard retail price, the maximum sample size, and maximum working temperature, as well as the minimum in their measurement range.

  12. Research instrumentation for hot section components of turbine engines

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.

  13. Improving solar ultraviolet irradiance measurements by applying a temperature correction method for Teflon diffusers.

    PubMed

    Jäkel, Evelyn; den Outer, Peter N; Tax, Rick B; Görts, Peter C; Reinen, Henk A J M

    2007-07-10

    To establish trends in surface ultraviolet radiation levels, accurate and stable long-term measurements are required. The accuracy level of today's measurements has become high enough to notice even smaller effects that influence instrument sensitivity. Laboratory measurements of the sensitivity of the entrance optics have shown a decrease of as much as 0.07-0.1%/deg temperature increase. Since the entrance optics can heat to greater than 45 degrees C in Dutch summers, corrections are necessary. A method is developed to estimate the entrance optics temperatures from pyranometer measurements and meteorological data. The method enables us to correct historic data records for which temperature information is not available. The temperature retrieval method has an uncertainty of less than 2.5 degrees C, resulting in a 0.3% uncertainty in the correction to be performed. The temperature correction improves the agreement between modeled and measured doses and instrument intercomparison as performed within the Quality Assurance of Spectral Ultraviolet Measurements in Europe project. The retrieval method is easily transferable to other instruments.

  14. The effect of ultrasonic post instrumentation on root surface temperature.

    PubMed

    Huttula, Andrew S; Tordik, Patricia A; Imamura, Glen; Eichmiller, Frederick C; McClanahan, Scott B

    2006-11-01

    This study measured root surface temperature changes when ultrasonic vibration, with and without irrigation, was applied to cemented endodontic posts. Twenty-six, extracted, single-rooted premolars were randomly divided into two groups. Root lengths were standardized, canals instrumented, obturated, and posts cemented into prepared spaces. Thermocouples were positioned at two locations on the proximal root surfaces. Samples were embedded in plaster and brought to 37 degrees C in a water bath. Posts were ultrasonically vibrated for 4 minutes while continuously measuring temperature. Two-way ANOVA compared effects of water coolant and thermocouple location on temperature change. Root surface temperatures were significantly higher (p < 0.001) when posts were instrumented dry. A trend for higher temperatures was observed at coronal thermocouples of nonirrigated teeth and at apical thermocouples of irrigated teeth (p = 0.057). Irrigation during post removal with ultrasonics had a significant impact on the temperature measured at the external root surface.

  15. Hydrazine engine plume contamination mapping. [measuring instruments for rocket exhaust from liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1975-01-01

    Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.

  16. High Spectral Resolution Lidar for atmospheric temperature profiling.

    NASA Astrophysics Data System (ADS)

    Razenkov, I.; Eloranta, E. W.

    2017-12-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.

  17. Measurement of the Coolant Channel Temperatures and Pressures of a Cooled Radial-Inflow Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1994-01-01

    Instrumentation has been installed on the surface of a cooled radial-inflow turbine. Thermocouples and miniature integrated sensor pressure transducers were installed to measure steady state coolant temperatures, blade wall temperatures, and coolant pressures. These measurements will eventually be used to determine the heat transfer characteristics of the rotor. This paper will describe the procedures used to install and calibrate the instrumentation and the testing methods followed. A limited amount of data will compare the measured values to the predicted values.

  18. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    NASA Astrophysics Data System (ADS)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  19. Material Testing Device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.

  20. FHR Process Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.« less

  1. N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Iwagami, N.; Oyama, K.-I.

    2013-11-01

    The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.

  2. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  3. Experimental aspects of buoyancy correction in measuring reliable highpressure excess adsorption isotherms using the gravimetric method.

    PubMed

    Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  4. An Automatic Instrument to Study the Spatial Scaling Behavior of Emissivity

    PubMed Central

    Tian, Jing; Zhang, Renhua; Su, Hongbo; Sun, Xiaomin; Chen, Shaohui; Xia, Jun

    2008-01-01

    In this paper, the design of an automatic instrument for measuring the spatial distribution of land surface emissivity is presented, which makes the direct in situ measurement of the spatial distribution of emissivity possible. The significance of this new instrument lies in two aspects. One is that it helps to investigate the spatial scaling behavior of emissivity and temperature; the other is that, the design of the instrument provides theoretical and practical foundations for the implement of measuring distribution of surface emissivity on airborne or spaceborne. To improve the accuracy of the measurements, the emissivity measurement and its uncertainty are examined in a series of carefully designed experiments. The impact of the variation of target temperature and the environmental irradiance on the measurement of emissivity is analyzed as well. In addition, the ideal temperature difference between hot environment and cool environment is obtained based on numerical simulations. Finally, the scaling behavior of surface emissivity caused by the heterogeneity of target is discussed. PMID:27879735

  5. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Infrared Instrument mounting struts

    NASA Astrophysics Data System (ADS)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.; Canfer, S. J.; Nørgaard-Nielsen, H. U.; Jessen, N. C.

    2007-05-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K.

  6. Measurement of strains at high temperatures by means of electro-optics holography

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  7. Measurement of strains at high temperatures by means of electro-optics holography

    NASA Technical Reports Server (NTRS)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    1991-01-01

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  8. Development of an instrumentation system for measurement of degradation of lubricating oil using optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Laskar, S.; Bordoloi, S.

    2016-01-01

    This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.

  9. Experience with advanced instrumentation in a hot section cascade

    NASA Technical Reports Server (NTRS)

    Yeh, Frederick C.; Gladden, Herbert J.

    1989-01-01

    The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.

  10. Experience with advanced instrumentation in a hot section cascade

    NASA Astrophysics Data System (ADS)

    Yeh, Frederick C.; Gladden, Herbert J.

    The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.

  11. Flight set 360L003 instrumentation final test report, volume 9

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Post-flight instrumentation hardware and data evaluation for 360L003 is summarized. The 360L003 motors were equipped with Developmental Flight Instrumentation (DFI), Operational Flight Instrumentation (OFI), and Ground Environmental Instrumentation (GEI). The DFI was designed to measure strain, temperature, pressure, and vibration at various locations on the motor during flight. The DFI is used to validate engineering models in a flight environment. The OFI consists of six Operational Pressure Tranducers which monitor chamber pressure during flight. These pressure transducers are used in the SRB separation cue. GEI measures the motor case, igniter flange, and nozzle temperature prior to launch.

  12. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottingham, Patrick, E-mail: pcotting@usc.edu; Morey, Jennifer R.; Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218

    2016-10-15

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe amore » rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.« less

  13. Ambient temperature effects on broadband UV-B measurements using fluorescent phosphor (MgWO4)-based detectors

    NASA Technical Reports Server (NTRS)

    Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.

    1994-01-01

    Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.

  14. Electron temperature and density probe for small aeronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, K.-I.; Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Space Weather Study and education, Kyushu University, Fukuoka

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites whichmore » do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.« less

  15. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  16. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  17. Investigation of potential factors affecting the measurement of dew point temperature in oil-soaked transformers

    NASA Astrophysics Data System (ADS)

    Kraus, Adam H.

    Moisture within a transformer's insulation system has been proven to degrade its dielectric strength. When installing a transformer in situ, one method used to calculate the moisture content of the transformer insulation is to measure the dew point temperature of the internal gas volume of the transformer tank. There are two instruments commercially available that are designed for dew point temperature measurement: the Alnor Model 7000 Dewpointer and the Vaisala DRYCAPRTM Hand-Held Dewpoint Meter DM70. Although these instruments perform an identical task, the design technology behind each instrument is vastly different. When the Alnor Dewpointer and Vaisala DM70 instruments are used to measure the dew point of the internal gas volume simultaneously from a pressurized transformer, their differences in dew point measurement have been observed to vary as much as 30 °F. There is minimal scientific research available that focuses on the process of measuring dew point of a gas inside a pressurized transformer, let alone this observed phenomenon. The primary objective of this work was to determine what effect certain factors potentially have on dew point measurements of a transformer's internal gas volume, in hopes of understanding the root cause of this phenomenon. Three factors that were studied include (1) human error, (2) the use of calibrated and out-of-calibration instruments, and (3) the presence of oil vapor gases in the dry air sample, and their subsequent effects on the Q-value of the sampled gas. After completing this portion of testing, none of the selected variables proved to be a direct cause of the observed discrepancies between the two instruments. The secondary objective was to validate the accuracy of each instrument as compared to its respective published range by testing against a known dew point temperature produced by a humidity generator. In a select operating range of -22 °F to -4 °F, both instruments were found to be accurate and within their specified tolerances. This temperature range is frequently encountered in oil-soaked transformers, and demonstrates that both instruments can measure accurately over a limited, yet common, range despite their different design methodologies. It is clear that there is another unknown factor present in oil-soaked transformers that is causing the observed discrepancy between these instruments. Future work will include testing on newly manufactured or rewound transformers in order to investigate other variables that could be causing this discrepancy.

  18. PITCON 2002: New Product Forum

    NASA Technical Reports Server (NTRS)

    Bailey, John

    2002-01-01

    The Radiant Temperature Nulling Radiometer and the Polarization Enhanced Thermal Radiometer, which can measure water body temperatures, are potentially useful for the calibration of remote sensing instruments. The design and operation of both instruments are described in this viewgraph presentation.

  19. Recent lidar measurements of stratospheric ozone and temperature within the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Ferrare, Richard; Butler, James J.; Frost, Robert L.; Gross, Michael; Margitan, James

    1991-01-01

    The Goddard mobile lidar was deployed at Cannon Air Force Base near Clovis, New Mexico during the Spring of 1990. Measurements of stratospheric ozone and temperature were made over a period of six weeks. Data from the lidar system is compared with data from a balloon-borne, ultraviolet instrument launched from nearby Ft. Sumner, New Mexico. Along with several improvements to this instrument which are now underway, a second lidar dedicated to temperature and aerosol measurements is now being developed.

  20. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  1. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  2. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  3. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  4. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  5. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  6. Gearbox Instrumentation for the Investigation of Bearing Axial Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jonathan A; Lambert, Scott R

    Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, andmore » stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.« less

  7. Generally objective measurement of human temperature and reading ability: some corollaries.

    PubMed

    Stenner, A Jackson; Stone, Mark

    2010-01-01

    We argue that a goal of measurement is general objectivity: point estimates of a person's measure (height, temperature, and reader ability) should be independent of the instrument and independent of the sample in which the person happens to find herself. In contrast, Rasch's concept of specific objectivity requires only differences (i.e., comparisons) between person measures to be independent of the instrument. We present a canonical case in which there is no overlap between instruments and persons: each person is measured by a unique instrument. We then show what is required to estimate measures in this degenerate case. The canonical case encourages a simplification and reconceptualization of validity and reliability. Not surprisingly, this reconceptualization looks a lot like the way physicists and chemometricians think about validity and measurement error. We animate this presentation with a technology that blurs the distinction between instruction, assessment, and generally objective measurement of reader ability. We encourage adaptation of this model to health outcomes measurement.

  8. Field Evaluation of Polymer Capacitive Humidity Sensors for Bowen Ratio Energy Balance Flux Measurements

    PubMed Central

    Savage, Michael J.

    2010-01-01

    The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile difference measurements were less than the minimum of 0.01 kPa required for BREB measurements when averaged over 20 min. Furthermore, the longer-term capacitive humidity measurements are more reliable and not dependent on a sensor bias adjustment as is the case for the dewpoint hygrometer. A field comparison of CS500 and HMP45C profile water vapour pressure differences yielded a slope of close to unity. However, the CS500 exhibited more variable water vapour pressure measurements mainly due to its increased variation in temperature measurements compared to the HMP45C. Comparisons between 20-min BREB sensible heat fluxes obtained using a HMP45C and a dewpoint hygrometer yielded a slope of almost unity. BREB sensible heat fluxes measured using a HMP45C were reasonably well correlated with those obtained using a surface-layer scintillometer and eddy covariance (slope of 0.9629 and 0.9198 respectively). This reasonable agreement showed that a combination capacitive humidity instrument, with similar relative humidity (RH) and temperature error magnitudes of at most 2% RH and 0.3 °C respectively, and similar measurement time response, would be an adequate and less expensive substitute for a dewpoint hygrometer. Furthermore, a combination capacitive humidity instrument requires no servicing compared to a dewpoint hygrometer which requires a bias adjustment and mirror cleaning each week. These findings make unattended BREB measurements of sensible heat flux and evaporation cheaper and more reliable with the system easier to assemble and service and with reduced instrument power. PMID:22163625

  9. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  11. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  12. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.

  13. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  14. Comparison of Temperature and Ozone Measured by the AROTEL Instrument on DC8 Overflights of Ny Aalesund during the SOLVE Mission

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; McGee, Thomas J.; Burris, John F.; Heaps, William; Silbert, Donald; Sumnicht, Grant; Twigg, Laurence; Neuber, Roland

    2000-01-01

    The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.

  15. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    NASA Astrophysics Data System (ADS)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  16. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  17. An ultra-high temperature testing instrument under oxidation environment up to 1800 °C.

    PubMed

    Cheng, Xiangmeng; Qu, Zhaoliang; He, Rujie; Ai, Shigang; Zhang, Rubing; Pei, Yongmao; Fang, Daining

    2016-04-01

    A new testing instrument was developed to measure the high-temperature constitutive relation and strength of materials under an oxidative environment up to 1800 °C. A high temperature electric resistance furnace was designed to provide a uniform temperature environment for the mechanical testing, and the temperature could vary from room temperature (RT) to 1800 °C. A set of semi-connected grips was designed to reduce the stress. The deformation of the specimen gauge section was measured by a high temperature extensometer. The measured results were acceptable compared with the results from the strain gauge method. Meanwhile, tensile testing of alumina was carried out at RT and 800 °C, and the specimens showed brittle fracture as expected. The obtained Young's modulus was in agreement with the reported value. In addition, tensile experiment of ZrB2-20%SiC ceramic was conducted at 1700 °C and the high-temperature tensile stress-strain curve was first obtained. Large plastic deformation up to 0.46% and the necking phenomenon were observed before the fracture of specimen. This instrument will provide a powerful research tool to study the high temperature mechanical property of materials under oxidation and is benefit for the engineering application of materials in aerospace field.

  18. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  19. OMNY PIN—A versatile sample holder for tomographic measurements at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Holler, M.; Raabe, J.; Wepf, R.; Shahmoradian, S. H.; Diaz, A.; Sarafimov, B.; Lachat, T.; Walther, H.; Vitins, M.

    2017-11-01

    Nowadays ptychographic tomography in the hard x-ray regime, i.e., at energies above about 2 keV, is a well-established measurement technique. At the Paul Scherrer Institut, currently two instruments are available: one is measuring at room temperature and atmospheric pressure, and the other, the so-called OMNY (tOMography Nano crYo) instrument, is operating at ultra-high vacuum and offering cryogenic sample temperatures down to 10 K. In this manuscript, we present the sample mounts that were developed for these instruments. Aside from excellent mechanical stability and thermal conductivity, they also offer highly reproducible mounting. Various types were developed for different kinds of samples and are presented in detail, including examples of how specimens can be mounted on these holders. We also show the first hard x-ray ptychographic tomography measurements of high-pressure frozen biological samples, in the present case Chlamydomonas cells, the related sample pins and preparation steps. For completeness, we present accessories such as transportation containers for both room temperature and cryogenic samples and a gripper mechanism for automatic sample changing. The sample mounts are not limited to x-ray tomography or hard x-ray energies, and we believe that they can be very useful for other instrumentation projects.

  20. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with unattended buoy measurements, and satellite retrievals). We will also show how these data may be used to improve our record of temperature over polar environments.

  1. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  2. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    DOE PAGES

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; ...

    2017-09-14

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  3. The Process of Developing a Multi-Cell KEMS Instrument

    NASA Technical Reports Server (NTRS)

    Copland, E. H.; Auping, J. V.; Jacobson, N. S.

    2012-01-01

    Multi-cell KEMS offers many advantages over single cell instruments in regard to in-situ temperature calibration and studies on high temperature alloys and oxides of interest to NASA. The instrument at NASA Glenn is a 90 deg magnetic sector instrument originally designed for single cell operation. The conversion of this instrument to a multi-cell instrument with restricted collimation is discussed. For restricted collimation, the 'field aperture' is in the copper plate separating the Knudsen Cell region and the ionizer and the 'source aperture' is adjacent to the ionizer box. A computer controlled x-y table allows positioning of one of the three cells into the sampling region. Heating is accomplished via a Ta sheet element and temperature is measured via an automatic pyrometer from the bottom of the cells. The computer control and data system have been custom developed for this instrument and are discussed. Future improvements are also discussed.

  4. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  5. Fuel temperature counter

    Treesearch

    John R. Murray; Charles W. Philpot

    1963-01-01

    Fuel temperature is and has always been difficult to measure. To understand better the problem of fire and fire weather behavior, it is important to measure this variable. We have developed for field use a new fuel temperature counter which can be used to obtain such measurements quickly and easily. This electronic recording instrument is easy to construct and operate...

  6. Improved Stratospheric Temperature Retrievals for Climate Reanalysis

    NASA Technical Reports Server (NTRS)

    Rokke, L.; Joiner, J.

    1999-01-01

    The Data Assimilation Office (DAO) is embarking on plans to generate a twenty year reanalysis data set of climatic atmospheric variables. One of the focus points will be in the evaluation of the dynamics of the stratosphere. The Stratospheric Sounding Unit (SSU), flown as part of the TIROS Operational Vertical Sounder (TOVS), is one of the primary stratospheric temperature sensors flown consistently throughout the reanalysis period. Seven unique sensors made the measurements over time, with individual instrument characteristics that need to be addressed. The stratospheric temperatures being assimilated across satellite platforms will profoundly impact the reanalysis dynamical fields. To attempt to quantify aspects of instrument and retrieval bias we are carefully collecting and analyzing all available information on the sensors, their instrument anomalies, forward model errors and retrieval biases. For the retrieval of stratospheric temperatures, we adapted the minimum variance approach of Jazwinski (1970) and Rodgers (1976) and applied it to the SSU soundings. In our algorithm, the state vector contains an initial guess of temperature from a model six hour forecast provided by the Goddard EOS Data Assimilation System (GEOS/DAS). This is combined with an a priori covariance matrix, a forward model parameterization, and specifications of instrument noise characteristics. A quasi-Newtonian iteration is used to obtain convergence of the retrieved state to the measurement vector. This algorithm also enables us to analyze and address the systematic errors associated with the unique characteristics of the cell pressures on the individual SSU instruments and the resolving power of the instruments to vertical gradients in the stratosphere. The preliminary results of the improved retrievals and their assimilation as well as baseline calculations of bias and rms error between the NESDIS operational product and col-located ground measurements will be presented.

  7. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  8. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  9. New type of measuring and intelligent instrument for curing tobacco

    NASA Astrophysics Data System (ADS)

    Yi, Chui-Jie; Huang, Xieqing; Chen, Tianning; Xia, Hong

    1993-09-01

    A new type of measuring intelligent instrument for cured tobacco is presented in this paper. Based on fuzzy linguistic control principles the instrument is used to controlling the temperature and humidity during cured tobacco taking 803 1 singlechip computer as a center controller. By using methods of fuzzy weighted factors the cross coupling in curing procedures is decoupled. Results that the instrument has producted indicate the fuzzy controller in the instrument has perfect performance for process of cured tobacco as shown in figure

  10. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    NASA Technical Reports Server (NTRS)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  11. Temperature and heat flux measurements: Challenges for high temperature aerospace application

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.

    1992-01-01

    The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.

  12. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  13. Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.

    2009-01-01

    We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.

  14. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30 dates examined, 23 fell under the category of having good accuracy.

  15. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  16. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  17. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  18. Design and first plasma measurements of the ITER-ECE prototype radiometer.

    PubMed

    Austin, M E; Brookman, M W; Rowan, W L; Danani, S; Bryerton, E W; Dougherty, P

    2016-11-01

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T e ). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T e plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  19. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (Nmore » 2, O 2, H 2O, CO 2, CO, H 2, DME) and major combustion intermediates (CH 4, CH 2O, C 2H 2, C 2H 4 and C 2H 6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.« less

  20. Infrared radiometer for the Pioneer Venus orbiter. I - Instrument description

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Vescelus, F. E.; Locke, J. R.; Beer, R.; Foster, G. T.; Forney, P. B.; Houghton, J. T.; Delderfield, J.; Schofield, J. T.

    1979-01-01

    A ten-channel IR radiometer for the Pioneer Venus orbiter is described. The experimental techniques used and the design of the instrumentation by which they were implemented are considered. Emphasis is placed on temperature sounding, limb sounding, limb darkening, zenith scanning, cloud top temperature, spectral albedo and water vapor measurements. Instrumentation description is also given including optics, detectors, and electronics. Attention is given to data acquisition and handling, calibration, and in-flight performance.

  1. Temperature and slant path effects in Dobson and Brewer total ozone measurements

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Peter, T.; GröBner, J.; Stübi, R.

    2009-12-01

    There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these data sets is of utmost importance if changes in TOZ of a few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of a few percent between midlatitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments have been colocated since 1998, providing a unique data set of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross section is calculated for each operational Brewer spectrophotometers at Arosa by using different high- and low-resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information on the primary standard instruments is used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely, these differences increase when using the spectral data of Burrows et al. (1999). This finding illustrates that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross sections measured by different internationally leading laboratories.

  2. Temperature and Slant Path Effects in Dobson and Brewer Total Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Peter, T.; Groebner, J.; Stuebi, R.

    2009-12-01

    There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these datasets is of utmost importance if changes in TOZ of few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percent between mid-latitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments are co-located since 1998, providing a unique dataset of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross-section are calculated for each operational Brewer spectrophotometers at Arosa by using different high and low resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information of the primary standard instruments are used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely these differences increase using the spectral data of Burrows (1999). This finding illustrates, that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross-sections measured by different internationally leading laboratories.

  3. High data density temperature measurement for quasi steady-state flows

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Rashidnia, Nasser; Creath, Katherine

    1995-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermocouple and the two data sets show excellent agreement This instrument maintains the compact, robust design of Linnik's point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction.

  4. High Data Density Temperature Measurement for Quasi Steady-State Flows

    NASA Technical Reports Server (NTRS)

    Mercer, C. R.; Rashidnia, N.; Creath, K.

    1996-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermo-couple and the two data sets show excellent agreement. This instrument maintains the compact, robust design of Linniks point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave-fronts with very high data density and with automated data reduction.

  5. Seasonal instrumentation of SHRP pavements, the Ohio State University : executive summary.

    DOT National Transportation Integrated Search

    1998-06-11

    Environmental instruments to measure temperature, soil moisture and frost depth were installed at five test sections of the SHRP pavement project on U.S. 23 north of Delaware, Ohio. At three of these locations tensiometers, which a designed to measur...

  6. Seasonal instrumentation of SHRP pavements, the Ohio State University : final report.

    DOT National Transportation Integrated Search

    1998-09-01

    Environmental instruments to measure temperature, soil moisture and frost depth were installed at five test sections of the SHRP pavement project on U.S. 23 north of Delaware, Ohio. At three of these locations tensiometers, which a designed to measur...

  7. Physical oceanographic data from the OTEC Punta Tuna, Puerto Rico Site, September 1979-June 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, D.; Davison, A.; Leavitt, K.

    1981-01-01

    The first results of an oceanographic measurement program being conducted off the southeast corner of Puerto Rico are presented. The study site is a proposed OTEC site and is located about 20 km off Punta Tuna. The objectives of the measurement program are to document the physical oceanography of the site as related to the engineering and environmental factors involved in OTEC design and operation. Oceanographic measurements include: (1) a subsurface mooring instrumented with five current, temperature, and pressure recorders; and (2) quarterly hydrographic cruises to measure salinity, temperature, and depth profiles on a grid of 33 stations in themore » vicinity of the mooring site. The first cruise, conducted between 16 and 21 June 1980, included the initial mooring deployment and a CTD (conductivity, temperature, and depth) and XBT (expendable bathythermograph) survey. The CTD/XBT measurements are presented. Also included are results of in situ current, temperature, and pressure measurements made during two previous programs. In September 1979, Coastal Marine Research (CMR) deployed a mooring at approximately the same site as the present mooring. Results from three of these instruments are included. The Naval Underwater Systems Center deployed a mooring at this site in February 1979 and partial results from one instrument on this mooring are also presented. (WHK)« less

  8. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  9. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  10. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    NASA Astrophysics Data System (ADS)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  11. Characterisation of spectrophotometers used for spectral solar ultraviolet radiation measurements.

    PubMed

    Gröbner, J

    2001-01-01

    Spectrophotometers used for spectral measurements of the solar ultraviolet radiation need to be well characterised to provide accurate and reliable data. Since the characterisation and calibration are usually performed in the laboratory under conditions very different from those encountered during solar measurements, it is essential to address all issues concerned with the representativity of the laboratory characterisation with respect to the solar measurements. These include among others the instrument stability, the instrument linearity, the instrument responsivity, the wavelength accuracy, the spectral resolution, stray light rejection and the instrument dependence on ambient temperature fluctuations. These instrument parameters need to be determined often enough so that the instrument changes only marginally in the period between successive characterisations and therefore provides reliable data for the intervening period.

  12. High-speed noncontacting instrumentation for jet engine testing

    NASA Astrophysics Data System (ADS)

    Scotto, M. J.; Eismeier, M. E.

    1980-03-01

    This paper discusses high-speed, noncontacting instrumentation systems for measuring the operating characteristics of jet engines. The discussion includes optical pyrometers for measuring blade surface temperatures, capacitance clearanceometers for measuring blade tip clearance and vibration, and optoelectronic systems for measuring blade flex and torsion. In addition, engine characteristics that mandate the use of such unique instrumentation are pointed out as well as the shortcomings of conventional noncontacting devices. Experimental data taken during engine testing are presented and recommendations for future development discussed.

  13. Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project

    PubMed Central

    Seoane, Fernando; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto

    2013-01-01

    Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC) aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the implemented garments and devices the full series of 12 sets have been functionally tested recording cardiogenic biopotential, thoracic impedance, galvanic skin response and temperature values. The experimental results indicate that the implemented wearable measurement systems operate according to the specifications and are ready to be used for mental stress experiments, which will be executed in the coming phases of the project with dozens of healthy volunteers. PMID:23857264

  14. Sensorized garments and textrode-enabled measurement instrumentation for ambulatory assessment of the autonomic nervous system response in the ATREC project.

    PubMed

    Seoane, Fernando; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto

    2013-07-12

    Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC) aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the implemented garments and devices the full series of 12 sets have been functionally tested recording cardiogenic biopotential, thoracic impedance, galvanic skin response and temperature values. The experimental results indicate that the implemented wearable measurement systems operate according to the specifications and are ready to be used for mental stress experiments, which will be executed in the coming phases of the project with dozens of healthy volunteers.

  15. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, Vanston R.; Miller, Donald R.

    1984-01-01

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

  16. Density and temperature structure over northern Europe

    NASA Technical Reports Server (NTRS)

    Philbrick, C. R.; Schmidlin, F. J.; Grossmann, K. U.; Lange, G.; Offermann, D.; Baker, K. D.; Krankowsky, D.; Von Zahn, U.

    1985-01-01

    During the Energy Budget Campaign, a number of profiles of the density and temperature were obtained to study the structure and variability of the atmosphere. The measurements were made using rocketborne instrumentation launched from Esrange, Sweden, and Andoya Rocket Range, Norway, during November and December 1980. The techniques included meteorological temperature sondes, passive falling sphere, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data covering the altitude range from 20 to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the wave features and variations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. However, the features in the profiles during one of the measurement periods are unusual and may be due to aurorally generated shock waves. The geomagnetic storm conditions caused temperature increases in the lower thermosphere which maximized in the 120-140 km region.

  17. The measurement of the ground wind structure at Wallops Island

    NASA Technical Reports Server (NTRS)

    Tielman, H. W.

    1981-01-01

    The mean and turbulence characteristics of the surface wind measured near the Atlantic coast were measured. The experimental data were acquired from a 76 meter tall instrumented micrometeorological tower. Mean wind and turbulence measurements were made with two types of instrumentation consisting of cup vane and temperature probes, primarily used for mean profile measurements of velocity and temperature respectively. The second system, a hot film and thermocouple system, was used for measurement of turbulence variances and covariances and spectra. The cup vane system was used to acquire data from all wind directions, while the hot film system was primarily used for turbulence measurements from the two prevailing wind directions, south and northwest. The micrometeorological tower is a self standing nonguyed tower with five working platforms at 15.2m (50 ft.) intervals, with cup vane and aspirated temperature probes mounted at each platform.

  18. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    NASA Technical Reports Server (NTRS)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  19. Instrument Control (iC) – An Open-Source Software to Automate Test Equipment

    PubMed Central

    Pernstich, K. P.

    2012-01-01

    It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming. PMID:26900522

  20. Instrument Control (iC) - An Open-Source Software to Automate Test Equipment.

    PubMed

    Pernstich, K P

    2012-01-01

    It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming.

  1. Evaluation and optimization of lidar temperature analysis algorithms using simulated data

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe

    1998-01-01

    The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.

  2. Design and first plasma measurements of the ITER-ECE prototype radiometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, M. E.; Brookman, M. W.; Rowan, W. L.

    2016-11-15

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T{sub e}). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T{sub e} plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of themore » ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.« less

  3. JAERI instrumented spool piece performance in two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, J.B.; Gilbert, J.V.

    1979-01-01

    Instrumented spool pieces to be installed in horizontal piping on the Cylindrical Core Test Facility (CCTF) at the Japanese Atomic Energy Institute (JAERI) have been designed and tested. The instrumented spool pieces will provide measurements from which mass flow rates can be computed. The primary instruments included in the spool pieces are a full-flow turbine, a full-flow perforated drag plate, and a low energy three-beam photon densitometer. Secondary instruments are provided to measured absolute pressure, fluid temperature, and differential pressure across the full-flow perforated drag plate.

  4. Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew

    2012-01-01

    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).

  5. Optimization of fiber-optic/infrared measurement system and spectral modeling for enhanced temperature acquisition from an aluminized polymer membrane

    NASA Astrophysics Data System (ADS)

    Smith, Christopher M.; Rowley, Matthew J.

    2004-04-01

    A fiber-optic/infrared (F-O/IR), non-contact temperature measurement system was characterized, and the existing technique for data collection improved, resulting in greater repeatability and precision of data collected. The F-O/IR system is a dual-waveband measurement apparatus that was recently enhanced by the installation of a tuning fork chopper directly into the fiber optical head. This permits a shortened distance between fiber and detector pair, and therefore a stronger signal can be collected. A simple closed box with the inside painted flat black was constructed and used to prevent stray radiation and convection, thus minimizing undesired effects on the measurement process. Analyses of the new data sets demonstrate that system improvements provide a cleaner and more reliable data collection capability. The exponential relationship between detector output voltage and object temperature indicates that the instrument is operating within its nominal range. The overall goal of this project was to develop a reliable technique to measure the temperature of Kapton HN, an aluminized polymer material being studied for potential future NASA missions. A spectral model that emulates the instrument was also developed in this study. Our measurements and characterization of KaptonÓ HN will be incorporated into the spectral model in order to determine the sensitivity of the instrument to background radiation, spectral emittance of Kapton HN, and other parameters that may affect thermal measurements.

  6. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  7. Should Tungsten Ribbon Lamps Be Replaced or Not?

    NASA Astrophysics Data System (ADS)

    Matveyev, M. S.; Pokhodun, A. I.; Sild, Yu. A.

    2003-09-01

    Tungsten ribbon lamps are the most frequently used means in the temperature range higher than 800 °C for reproduction and precise transfer of a temperature scale by non-contact methods. Lamps have many advantages: a very high reproducibility, stability and durability; use of a lamp over dozens of years with careful and correct operation; and relative simplicity of operation, storage and transportation. The direct correlation of temperature and current through a ribbon enables us to use the advantages of electrical measurements. At the same time lamps have also a number of negative features. Small deviations from the prescribed procedure can lead to unpredictable changes of the performance of a lamp and, even, to irreversible changes of its parameters. The important factor of the quality of transferring the temperature scale is the propinquity of the transferred temperature to the thermodynamic one. Only this factor guarantees the accuracy and unity of temperature measurements of temperature by instruments applying different principles of operation and various designs. However, this is the quality that the lamps do not possess. Their main drawback is selectivity of radiation stipulated by the spectral dependence of emissivity. That is why it is necessary to replace them with blackbodies, which let us rely completely on the definition of the ITS-90. Several years ago at our institute we started investigations on development of special measuring instruments, in which a sensor was located around a miniature blackbody. The aperture of this blackbody could be used as a standard emitter, which temperature was accurately determined by a resistance thermometer. Applying also a standard pyrometer, we refined the reference function of a platinum resistor in the range between the Ag and Cu fixed points. To extend the temperature range up to 1450 °C to 1500 °C we built an instrument in the form of a miniature blackbody made of Pd which was connected to three platinum wires forming Pt-Pd thermocouples. Then we built a similar device made of Pt-Rh alloy. It gave us an opportunity to reach the temperatures up to 1600 to 1700 °C. Having the maximal diameter 8 mm, about 35 mm length and a radiating aperture of diameter 1.8 mm, the device had emissivity about 0.9994, and it was suitable for transfer of the temperature scale, without using conditional temperatures. Its small dimensions allowed for applying it also as a temperature-measuring instrument using the well known and developed contact methods. We discuss in the paper whether such instrument equipped with a simple heater would compete with lamps.

  8. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  9. Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M

    Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.

  10. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures.

    PubMed

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.

  11. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures

    PubMed Central

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611

  12. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe

    USGS Publications Warehouse

    Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, Frank Don; Markham, B.L.; Richards, R.C.; Schladow, S.G.; Helder, D.L.

    2004-01-01

    The absolute radiometric accuracy of the thermal infrared band (B6) of the Thematic Mapper (TM) instrument on the Landsat-5 (L5) satellite was assessed over a period of approximately four years using data from the Lake Tahoe automated validation site (California-Nevada). The Lake Tahoe site was established in July 1999, and measurements of the skin and bulk temperature have been made approximately every 2 min from four permanently moored buoys since mid-1999. Assessment involved using a radiative transfer model to propagate surface skin temperature measurements made at the time of the L5 overpass to predict the at-sensor radiance. The predicted radiance was then convolved with the L5B6 system response function to obtain the predicted L5B6 radiance, which was then compared with the radiance measured by L5B6. Twenty-four cloud-free scenes acquired between 1999 and 2003 were used in the analysis with scene temperatures ranging between 4/spl deg/C and 22/spl deg/C. The results indicate L5B6 had a radiance bias of 2.5% (1.6/spl deg/C) in late 1999, which gradually decreased to 0.8% (0.5/spl deg/C) in mid-2002. Since that time, the bias has remained positive (predicted minus measured) and between 0.3% (0.2/spl deg/C) and 1.4% (0.9/spl deg/C). The cause for the cold bias (L5 radiances are lower than expected) is unresolved, but likely related to changes in instrument temperature associated with changes in instrument usage. The in situ data were then used to develop algorithms to recover the skin and bulk temperature of the water by regressing the L5B6 radiance and the National Center for Environmental Prediction (NCEP) total column water data to either the skin or bulk temperature. Use of the NCEP data provides an alternative approach to the split-window approach used with instruments that have two thermal infrared bands. The results indicate the surface skin and bulk temperature can be recovered with a standard error of 0.6/spl deg/C. This error is larger than errors obtained with other instruments due, in part, to the calibration bias. L5 provides the only long-duration high spatial resolution thermal infrared measurements of the land surface. If these data are to be used effectively in studies designed to monitor change, it is essential to continue to monitor instrument performance in-flight and develop quantitative algorithms for recovering surface temperature.

  13. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  14. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    NASA Astrophysics Data System (ADS)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  15. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  16. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    NASA Astrophysics Data System (ADS)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  17. The Meteorological Experiment on the Mars Surveyor '98 Polar Lander

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1999-01-01

    When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.

  18. A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation

    NASA Astrophysics Data System (ADS)

    Chen, Wenxiang; Hong, Baocai

    2005-02-01

    A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.

  19. Cavity-Enhanced Quantum-Cascade Laser-Based Instrument for Trace gas Measurements

    NASA Astrophysics Data System (ADS)

    Provencal, R.; Gupta, M.; Owano, T.; Baer, D.; Ricci, K.; O'Keefe, A.

    2005-12-01

    An autonomous instrument based on Off-Axis Integrated Cavity Output Spectroscopy has been successfully deployed for measurements of CO in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument consists of a measurement cell comprised of two high reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data acquisition electronics, and data analysis software. The instrument reports CO mixing ratio at a 1-Hz rate based on measured absorption, gas temperature and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41000 ft, the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. We will also present recent development efforts to extend the instrument's capabilities for the measurements of CH4, N2O and CO in real time.

  20. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their output frequency range and power.

  1. A novel approach to determine the effect of irrigation on temperature and failure of Ni-Ti endodontic rotary files

    PubMed Central

    Mousavi, Sayed Ali; Kargar-Dehnavi, Vida; Mousavi, Sayed Amir

    2012-01-01

    Background: Nickel-titanium (Ni-Ti) rotary instrument files are important devices in Endodontics in root canal preparation. Ni-Ti file breakage is a critical and problematic issue and irrigation techniques were applied to decrease risk of file failure root. The aim of the present study was to compare the temperature gradient change of different irrigation solutions with Ni-Ti rotary instrument system during root canal preparation and also to define their effects on the file failure. Materials and Methods: A novel computerized instrumentation was utilized and thirty standard (ProFile #25/.04) files were divided into three groups and subjected to a filing in the root canal test. Changes in temperature on teeth under constant instrumental conditions with custom-designed computerized experimental apparatus were measured by using a temperature sensor bonded to the apical hole. A rotary instrument for canal preparation in three series of solution was used and the changes in temperature after each solution were compared. Finally, the file failure results were mentored according to each step of test. Comparisons were performed between group status clinically by using ANOVA (t) test, once the sample showed up normal and differences of P<0.01 were considered significant. All data collected were computerized and analyzed for frequency, distribution, and statistical description. Results: There was a decrease in the temperature of the instruments, which were immersed in 5% NaOCl, when compared with the water group (P<0.01). There was also a decrease in the temperature of the instruments immersed in water, when compared with the no solution group (P<0.01). Test results showed that sodium hypochlorite, water, or air of root canals does alter the properties of gradual temperature change and contributes to the failure of the instruments. Conclusion: By immersing the file in 5% NaOCl, the temperature gradient decreased and instrument failure was reduced. PMID:23087732

  2. Design and first plasma measurements of the ITER-ECE prototype radiometer

    DOE PAGES

    Austin, M. E.; Brookman, M. W.; Rowan, W. L.; ...

    2016-08-09

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T e). In order to investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T e plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Inmore » our comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver we show that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.« less

  3. Progress report of FY 1998 activities: Continued development of an integrated sounding system in support of the DOE/ARM experimental program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgeworth R. Westwater; Yong Han; Vladimir Leuskiy

    1998-09-06

    Both during September 15-30, 1996 and September 15-October 5, 1997, the Environmental Technology Laboratory (ETL) participated in an experiment at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site that was designed to study many of the ways that ARM is measuring water vapor. These experiments, called the Water Vapor Intensive Operating Periods (WVIOPs), produced some results of significant importance to ARM water vapor measurements. We have spent the major portion of this years activities in analyzing results of these experiments, and improving algorithms for improving the measurement of precipitable water vapor (PWV) from instruments available at ARM.more » The most important ARM instrument for this measurement continues to be the Microwave Radiometer (MWR). Measurements of water vapor at the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) CART site in Barrow, Alaska, area potential problem because of the difficulty of radiosondes to measure low amounts of vapor during cold and extremely dry conditions. The applicability of MWR scaling to radiosondes is questionable because of the low sensitivity of these instrument during dry conditions. It has been suggested by the ARM Instantaneous Radiative Flux Working Group and others that measurements of brightness temperature around 183 GHz could be used to scale during the coldest and driest periods. However, the millimeter wavelengths are vulnerable to cloud effects from both liquid and ice. We have participated in the planning and will participate in the Millimeter wave Arctic Experiment that will evaluate microwave and millimeter wave radiometers during extremely cold conditions. ETL has tested, both in an experiment at the Boulder Atmospheric Observatory and during the two Water Vapor Intensive Operating Periods in 1996 and 1997, a 5-mm scanning radiometer that measures low-altitude temperature profiles; both profiles of lapse rate and absolute temperature can be measured with the instrument. The technique and algorithms were developed for continental conditions and produced excellent agreement with in situ data. Due ETL recommendations, an instrument of this type was purchased and will be deployed in the NSA. During this year, we have developed algorithms for this instrument in the NSA and to blend the data with other sources of temperature information, such as Radio Acoustic Sounding Systems (RASS). In addition, we conducted an extensive analysis of the data from this instrument, and compared the data with a variety of in situ ground truth.« less

  4. Is it feasible to estimate radiosonde biases from interlaced measurements?

    NASA Astrophysics Data System (ADS)

    Kremser, Stefanie; Tradowsky, Jordis S.; Rust, Henning W.; Bodeker, Greg E.

    2018-05-01

    Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate monitoring and climate change detection. Because of the internal variability of the climate system, many decades of measurements are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were primarily made for short-term weather forecasts and as such are seldom suitable for studying long-term climate change as they lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as temperature, pressure, and humidity, together with well-characterized and traceable estimates of the measurement uncertainty. To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strategy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However, this strategy can be prohibitively expensive at measurement sites operated by national weather services or research institutes. An alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore the applicability of this statistical approach to radiosonde change management.

  5. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    NASA Technical Reports Server (NTRS)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  6. Studying the MLT by a Combined Analysis of SABER/TIMED and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Zecha, M.; Gerding, M.; Luebken, F. J.; Fiedler, J.; vonZhan, U.; Russell, J. M., III

    2006-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The measurements have been performed continuously since January 25, 2002 to provide excellent coverage for both hemispheres. The Leibniz-Institute of Atmospheric Physics (LAP) at Kuehlungsborn, Germany (54N, 12E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges. The total altitude range of the lidar installation lies from 1 to 105 km. Another instrument used for intercomparison is the ALOMAR RMR lidar, located at Andoya, Norway (69N, 16E). We have searched the SABER and lidar datasets for coincidental common volume measurements within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude and approx. 1 hour in time for the sake of (a) comparison of measured temperatures; (b) validation of the models used in SABER data analysis; and (c) extracting new information about MLT parameters. In this work we applied the non-LTE ALI-ARMS code designed to calculate the nonequilibrium radiance in different viewing geometries to the analysis of measurements which satisfied these search criteria. The results of this analysis (a) support the application of higher value of CO2-O quenching rate (6e-12 cubic centimeters per second) by the non-LTE temperature retrievals from the SABER 15 micrometer limb radiance data, and (b) demonstrate the importance of accounting for the vibrational-vibrational energy exchange among the CO2 isotopes for accurate temperature retrievals. Using temperature profiles obtained in lidar measurements as inputs for the retrieval algorithm we also retrieved the nighttime CO2 densities from the SABER 15 micrometer limb radiances and compared them with the model and climatology CO2 data used in the SABER nighttime temperature retrievals.

  7. Looking Forward - A Next Generation of Thermal Infrared Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Hamilton, V. E.; Edwards, C. S.; Spencer, J. R.

    2017-12-01

    Thermal infrared measurements have provided important information about the physical properties of planetary surfaces beginning with the initial Mariner spacecraft in the early 1960's. These infrared measurements will continue into the future with a series of instruments that are now on their way or in development that will explore a suite of asteroids, Europa, and Mars. These instruments are being developed at Arizona State University, and are next-generation versions of the TES, Mini-TES, and THEMIS infrared spectrometers and imagers. The OTES instrument on OSIRIS-REx, which was launched in Sept. 2016, will map the surface of the asteroid Bennu down to a resolution of 40 m/pixel at seven times of day. This multiple time of day coverage will be used to produce global thermal inertia maps that will be used to determine the particle size distribution, which will in turn help select a safe and appropriate sample site. The EMIRS instrument, which is being built in partnership with the UAE's MBRSC for the Emirates Mars Mission, will measure martian surface temperatures at 200-300 km/pixel scales at over the full diurnal cycle - the first time the full diurnal temperature cycle has been observed since the Viking mission. The E-THEMIS instrument on the Europa Clipper mission will provide global mapping at 5-10 km/pixel scale at multiple times of day, and local observations down to resolutions of 50 m/pixel. These measurements will have a precision of 0.2 K for a 90 K scene, and will be used to map the thermal inertia and block abundances across Europa and to identify areas of localized endogenic heat. These observations will be used to investigate the physical processes of surface formation and evolution and to help select the landing site of a future Europa lander. Finally, the LTES instrument on the Lucy mission will measure temperatures on the day and night sides of the target Trojan asteroids, again providing insights into their surface properties and evolution processes.

  8. Field and Laboratory Measurements of Carbon Dioxide Mixing Ratios in Air Using the LI-COR LI-7000 CO2/H2O Analyzer

    NASA Astrophysics Data System (ADS)

    Murphy, P. C.; Lerner, B. M.; Williams, E. J.

    2003-12-01

    Air measurements of CO2 were made with a LI-COR LI-7000 CO2/H2O analyzer on the NOAA ship Ronald H. Brown during the New England Air Quality Study (NEAQS 2002) field campaign. This instrument is an improved version of the older model LI-6262 CO2/H2O analyzer, which uses a non-dispersive IR radiation absorption technique. During NEAQS, we operated the LI-7000 without temperature regulation, using a simple 2-point calibration scheme. An intercomparison between our measurements of atmospheric CO2 mixing ratios and those measured by a more sophisticated method, using temperature-regulation and a multipoint calibration with a LI-6252 CO2 analyzer (operated by AOML) shows generally good results ([CO2]AL = [CO2]AOML x 1.015 (0.010) - 5.7 (3.8) ppmv; R2 = 0.9889) in highly variable air masses. During subsequent laboratory studies, we evaluated the instrument for the manufacturer's claims of improvement in signal noise, sample gas temperature equilibration and zero drift with temperature. Further work examined the instrument's susceptibility to rapid temperature changes, which has been previously demonstrated to introduce error of several ppmv ° C-1 in the LI-6252. A change in the LI-7000 optical bench temperature of 12 ° C in 1 hour caused a sampling error of ˜3 ppmv CO2. Therefore, our lab investigations indicate that the LI-7000 would benefit from a temperature-controlled enclosure, as is used by the AOML group.

  9. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.

    2005-01-01

    The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.

  10. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    PubMed Central

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2017-01-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth’s surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent. PMID:29263765

  11. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring.

    PubMed

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F; Hall, Emrys G; Jordan, Allen F

    2016-01-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  12. How to apply the optimal estimation method to your lidar measurements for improved retrievals of temperature and composition

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Haefele, A.; Jalali, A.; Gamage, S.; Farhani, G.

    2018-04-01

    The optimal estimation method (OEM) has a long history of use in passive remote sensing, but has only recently been applied to active instruments like lidar. The OEM's advantage over traditional techniques includes obtaining a full systematic and random uncertainty budget plus the ability to work with the raw measurements without first applying instrument corrections. In our meeting presentation we will show you how to use the OEM for temperature and composition retrievals for Rayleigh-scatter, Ramanscatter and DIAL lidars.

  13. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  14. Progress on laser technology for proposed space-based sodium lidar

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Li, Steven X.; Bai, Yingxin; Numata, Kenji; Chen, Jeffrey R.; Fahey, Molly E.; Micalizzi, Frankie; Konoplev, Oleg A.; Janches, Diego; Gardner, Chester S.; Allan, Graham R.

    2018-02-01

    We propose a nadir-pointing space-based Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS). The science instrument goal is temperature and vertical wind measurements of the Earth Mesosphere Lower Thermosphere (MLT) 75-115 km region using atomic sodium as a tracer. Our instrument concept uses a high-energy laser transmitter at 589 nm and highly sensitive photon counting detectors that permit range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are pursuing high power laser architectures that permit limited day time sodium lidar observations with the help of a narrow bandpass etalon filter. We discuss technology, prototypes, risks and trades for two 589 nm wavelength laser architectures: 1) Raman laser 2) Sum Frequency Generation. Laser-induced saturation of atomic sodium in the MLT region affects both sodium density and temperature measurements. We discuss the saturation impact on the laser parameters, laser architecture and instrument trades. Off-nadir pointing from the ISS causes Doppler shifts that effect the sodium spectroscopy. We discuss laser wavelength locking, tuning and spectroscopic-line sampling strategy.

  15. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  16. Solution for Minimizing Surface Heating Effect for Fast Open-Path CO2 Flux Measurements in Cold Environments

    NASA Astrophysics Data System (ADS)

    Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.

    2010-12-01

    Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 fluxes and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface heating correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while heating effect does not pose a problem for CO2 flux in warm environments. Even in cold environments, the impact of heating on CO2 flux is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface heating effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated air temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path heating effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient air. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance flux measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during extremely cold conditions. Two regiments of the temperature control for internal electronics were examined across a wide range of temperatures: (i) the traditional control temperature of about 30oC, and (ii) new regiment controlling parts of internal electronics at 5oC. When new 5oC regiment was activated, the following changes were observed: heat dissipation from the surface reduced several folds, surface-to-air temperature gradients reduced 2-50 times; and the number of false uptake hours were reduced by 3.5 times, to the same level as a closed-path standard. Significant advantage of the new regiment was also observed in the magnitude of CO2 fluxes, especially in cold weather below -10oC. At such cold temperatures, CO2 fluxes from a 30oC controlled LI-7500 were 19% below those of the closed-path standard, while fluxes from a 5oC controlled LI-7500A were, on average, within 1% of the standard. These are strong experimental evidence that open-path instrument heating can be substantially reduced or eliminated via such simple hardware based solution. This allows continued and expanded use of this ultimately lowest-power remote solution for fast gas measurements.

  17. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a calibration campaign in a small chamber at GSFC. This paper provides a brief review of Q-meter design, and discusses the Q-meter calibration procedure including calibration chamber modifications and accommodations, handling of differing conditions between calibration and usage, the calibration process itself, and the results of the tests used to determine if the calibration is successful.

  18. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  19. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  20. Measurement of Sticky Point Temperature of Coffee Powder with a Rheometer

    USDA-ARS?s Scientific Manuscript database

    Sticky point temperature (Ts) measurement for hygroscopic food and biomaterial powders is traditionally performed with complex glass instruments. This property is used to characterize material stickiness, which substantially affects the flow and physical behavior of powders. In this research study w...

  1. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    NASA Astrophysics Data System (ADS)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  2. Characterization of a Low-Cost Multiparameter Sensor for Solar Resource Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M

    Low-cost, multiparameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electric grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs, Inc., deployed Arable Lab's Mark multiparameter sensor system. The device measures the downwelling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. The system is also equipped with six downward-and upward-facing narrowband spectrometer channels that measure spectral radiation and surface spectral reflectance. This study describes the shortwave calibration, characterization, and validation of measurement accuracy of this instrument bymore » comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.« less

  3. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  4. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    DOE PAGES

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; ...

    2014-09-19

    In this paper, we have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li + or Li 2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV formore » the 135 Å Li 2 + lines. Finally, recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.« less

  5. Measurement of the cosmic microwave background temperature and Galactic emission at 8.0 and 8.3 GHz with the ARCADE 2 experiment

    NASA Astrophysics Data System (ADS)

    Singal, Jack Edward

    2006-02-01

    This work presents a measurement of the radiometric temperature of the Cosmic Microwave Background (CMB) and of the intensity of Galactic emission at 8.1 and 8.3 GHz. These are the science results of the first flight of the ARCADE 2 instrument, on which the author's design, fabrication, and data analysis work forms the basis of this dissertation. ARCADE 2 (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission) is a balloon-borne instrument designed to perform measurements of the radiometric temperatures of the sky at six microwave frequency bands, from 3 to 90 GHz, to milliKelvin precision. ARCADE 2 features a novel cryogenic design and sophisticated radiometry as described herein. During the first flight of the instrument, a mechanical failure allowed for the accumulation of scientifically meaningful data in only one frequency band, and those results are not as well constrained as that from future flights will be. However, the measurement presented here of the radiometric temperature of the CMB is in fact the one of most well constrained below 10 GHz, and the measurement of Galactic free-free and synchrotron emission presented here is a potentially significant confirmation of existing results. The temperature of the CMB at 8.0 and 8.3 GHz is found to be 2.90 × .12 K and 2.77 × .16 K respectively. The level of Galactic synchrotron emission at these frequencies is found to be that which would be expected by naively interpolating the previously available data at other frequencies, and the level of Galactic free-free emission is found to be two-thirds as high, providing an independent confirmation of changes recently announced in the three year Galactic foreground results release from the WMAP satellite. The first section of this work is a comprehensive review of important topics in cosmology, the CMB, and deviations from a blackbody spectrum therein, as well as Galactic microwave emission. The second section describes the ARCADE 2 instrument and instrumental considerations, with some emphasis on design and fabrication contributions by the author. The third section presents the data obtained from the first flight of the instrument, the data analysis as carried out by the author, and the science results.

  6. DESIGN NOTE: Microcontroller-based multi-sensor apparatus for temperature control and thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Mukaro, R.; Gasseller, M.; Kufazvinei, C.; Olumekor, L.; Taele, B. M.

    2003-08-01

    A microcontroller-based multi-sensor temperature measurement and control system that uses a steady-state one-dimensional heat-flow technique for absolute determination of thermal conductivity of a rigid poor conductor using the guarded hot-plate method is described. The objective of this project was to utilize the latest powerful, yet inexpensive, technological developments, sensors, data acquisition and control system, computer and application software, for research and teaching by example. The system uses an ST6220 microcontroller and LM335 temperature sensors for temperature measurement and control. The instrument interfaces to a computer via the serial port using a Turbo C++ programme. LM335Z silicon semiconductor temperature sensors located at different axial locations in the heat source were calibrated and used to measure temperature in the range from room temperature (about 293 K) to 373 K. A zero and span circuit was used in conjunction with an eight-to-one-line data multiplexer to scale the LM335 output signals to fit the 0 5.0 V full-scale input of the microcontroller's on-chip ADC and to sequentially measure temperature at the different locations. Temperature control is achieved by using software-generated pulse-width-modulated signals that control power to the heater. This article emphasizes the apparatus's instrumentation, the computerized data acquisition design, operation and demonstration of the system as a purposeful measurement system that could be easily adopted for use in the undergraduate laboratory. Measurements on a 10 mm thick sample of polyurethane foam at different temperature gradients gave a thermal conductivity of 0.026 +/- 0.004 W m-1 K-1.

  7. Development of non-intrusive instrumentation for NASA-Ames Ballistic Range and Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Cavolowsky, J. A.

    1990-01-01

    The use of nonintrusive instrumentation in high-enthalpy facilities offers the opportunity to collect data that has previously been difficult or impossible to obtain. Three such instruments, now under development, are described: an OH absorption system which can measure OH species concentration and temperature, a holographic interferometer for flow visualization and density measurement at low density, and a telemetry system which allows the measurement of surface quantities on model in free-flight at hypervelocity. The challenges and opportunities encountered when employing these advanced diagnostics to high-enthalpy facilities are discussed.

  8. A portable instrument for measuring emissivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perinic, G.; Schulz, K.; Scherber, W.

    1995-12-01

    The quality control of surface emissivities is an important aspect in the manufacturing of cryopumps and other cryogenics equipment. It is particularly important in fusion reactor applications where standard coating techniques cannot be applied for the cryocondensation panels and for the thermal shielding baffles. The paper describes the working principle of a table top instrument developed by Dornier for measuring the mean emissivity in the spectral range 0.6-40 {mu}m at ambient temperature and the further development of the instrument to a portable version which can be used for on site measurements.

  9. Digital hand-held temperature monitor

    NASA Astrophysics Data System (ADS)

    Allin, L. V.; Ferrari, I.

    1980-09-01

    A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.

  10. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  11. Total Ozone Observations at Arosa (Switzerland) by Dobson and Brewer: Temperature and Ozone Slant Path Effect

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Groebner, J.

    2008-12-01

    Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.

  12. Microwave Investigation of the Mars Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Forget, F.; Janssen, M.; Riley, A. L.; Hartogh, P.; Clancy, T.; Allen, M.; Frerking, M.

    2000-01-01

    The Microwave Investigation of the Mars Atmosphere and Surface Experiment (MIMAS) is designed to address two major scientific goals: 1) To understand the three dimensional general circulation of the Martian atmosphere, and 2) To understand the hydrologic cycle of water on Mars, including the time-variable sources, sinks, and atmospheric transport of water vapor. The proposed instrument is a submillimeter wave, heterodyne receiver, with both continuum and very high spectral resolution capability. A small reflector antenna will be used to feed the receiver. Instrument heritage comes from the MIRO receiver, currently under design for the ESA Rosetta Mission, and from SWAS, a NASA astrophysics mission. The instrument will be able to measure atmospheric spectral lines from both water and carbon monoxide and use these lines as tracers of atmospheric winds. Measurement objectives of MIMAS are to measure surface temperature, atmospheric temperature from the surface up to an altitude of 60 km or more, the distribution of CO and H2O in the atmosphere, and certain wind fields (zonal and meridional). The global distribution of CO, as well as temperature distributions, will be used as input data for GCMs (general circulation models). Water vapor profiles will be used to understand the sources and sinks of water on Mars and to understand how it is transported globally by the general circulation. Zonal and meridional wind fields will provide further tests of the GCMs. An important aspect of this experiment is that the temperature and humidity measurements are insensitive to dust and ice condensates thereby making the measurement capability independent of the presence of dust clouds and ice particles. Temperature measurements derived from the data can be used in conjunction with infrared measurements to determine dust profiles.

  13. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal.

    PubMed

    Davis, Stephen; Gluskin, Alan H; Livingood, Philip M; Chambers, David W

    2010-11-01

    This study was designed to calculate probabilities for tissue injury and to measure effectiveness of various coolant strategies in countering heat buildup produced by dry ultrasonic vibration during post removal. A simulated biological model was used to evaluate the cooling efficacy of a common refrigerant spray, water spray, and air spray in the recovery of post temperatures deep within the root canal space. The data set consisted of cervical and apical measures of temperature increase at 1-second intervals from baseline during continuous ultrasonic instrumentation until a 10 °C increase in temperature at the cervical site was registered, wherein instrumentation ceased, and the teeth were allowed to cool under ambient conditions or with the assistance of 4 coolant methods. Data were analyzed with analysis of variance by using the independent variables of time of ultrasonic application (10, 15, 20 seconds) and cooling method. In addition to the customary means, standard deviations, and analysis of variance tests, analyses were conducted to determine probabilities that procedures would reach or exceed the 10 °C threshold. Both instrumentation time and cooling agent effects were significant at P <.0001. Under the conditions of this study, it was shown that injurious heat transfer occurs in less than 1 minute during dry ultrasonic instrumentation of metallic posts. Cycles of short instrumentation times with active coolants were effective in reducing the probability of tissue damage when teeth were instrumented dry. With as little as 20 seconds of continuous dry ultrasonic instrumentation, the consequences of thermal buildup to an individual tooth might contribute to an injurious clinical outcome. Copyright © 2010 American Association of Endodontists. All rights reserved.

  14. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  15. Field intercomparison of six different three-dimensional sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias

    2017-04-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty were derived from these results. We find that biases and regression intercepts are generally very small for all sensors and all computed variables, except for the temperature measurements of the two Gill sonic anemometers (HS and R3), which are known to suffer from a transducer-temperature dependence of the sonic temperature measurement. The comparability of the instruments is not always as good, which means that there is some scatter but the errors compensate at least partly. The best overall agreement between the different instruments was found for the variables "mean wind speed" and "buoyancy flux", which reflects that the sensors are optimized for measuring these quantities.

  16. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  17. Scanning Martian Atmospheric Temperatures Graphic

    NASA Image and Video Library

    2013-06-12

    This graphic depicts the Mars Climate Sounder instrument on NASA Mars Reconnaissance Orbiter measuring the temperature of a cross section of the Martian atmosphere as the orbiter passes above the south polar region.

  18. Cosmology with the cosmic microwave background temperature-polarization correlation

    NASA Astrophysics Data System (ADS)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-06-01

    We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.

  19. The MASCOT Radiometer MARA for the Hayabusa 2 Mission

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Borgs, B.; Hänschke, F.; Kessler, E.; Helbert, J.; Maturilli, A.; Müller, N.

    2017-07-01

    The MASCOT radiometer MARA is a multi-spectral instrument which measures net radiative flux in six wavelength bands. MARA uses thermopile sensors as sensing elements, and the net flux between the instrument and the surface in the 18° field of view is determined by evaluating the thermoelectric potential between the sensors' absorbing surface and the thermopile's cold-junction. MARA houses 4 bandpass channels in the spectral range of 5.5-7, 8-9.5, 9.5-11.5, and 13.5-15.5 μm, as well as one long-pass channel, which is sensitive in the >3 μm range. In addition, one channel is similar to that used by the Hayabusa 2 orbiter thermal mapper, which uses a wavelength range of 8-12 μm. The primary science objective of the MARA instrument it the determination of the target asteroid's surface brightness temperature, from which surface thermal inertia can be derived. In addition, the spectral bandpass channels will be used to estimate the spectral slope of the surface in the thermal infrared wavelength range. The instrument has been calibrated using a cavity blackbody, and the temperature uncertainty is 1 K in the long pass channel for target temperatures of >173 K. Measurement uncertainty in the spectral bandpasses is 1 K for target temperatures above 273 K.

  20. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  1. Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.

    DOT National Transportation Integrated Search

    1991-01-01

    The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...

  2. Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.

    DOT National Transportation Integrated Search

    1988-08-01

    The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...

  3. ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Kogut, A.; Levin, S.; Limon, M.; Mirel, P.; Seiffert, M.; Singal, J.; Wollack, E.; Villela, T.; Wuensche, C. A.

    2011-01-01

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, uSing an open-aperture cryogenic instrument observing al balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small correction. are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 +/- 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 +/- 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 +/- 2.1 (K)(v/v(sub o)(exp -2.599+/-0.036 from 22 MHz to 10 GHz (v(sub 0) = 310 MHz) in addition to a CMB temperature of 2.725 +/- 0.001 K.

  4. Additional Term in the Webb-Pearman-Leuning Correction due to Surface Heating From an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Anderson, D. J.; Xu, L.; McDermitt, D. K.

    2006-12-01

    One laboratory and two field experiments were conducted between September 2005 and September 2006 to investigate the impact of an added heat flux in the sample path of the LI-7500 CO2/H2O gas analyzer caused by the difference in temperatures between the ambient air and the surface of the instrument. Contribution of heat dissipated from the internal instrument electronics toward the instrument surface was substantial, especially in cold conditions. In the environmental chamber, surface heating ranged from about 0 °C above ambient, at air temperatures above +40 °C, to about 7 °C, at an air temperature of -25 °C. In the field, daytime temperature differences were overall smaller than in the chamber due to convective cooling by the wind and some long-wave cooling, despite the added sunlight contribution. However, considerable temperature gradients (up to 2 °C per 1mm) were still observed over the lower window of the LI-7500, suggesting strong sensible heat fluxes above the instrument surface. The nighttime situation was different due to strong long-wave cooling of some parts of the instrument, partially (and sometimes, fully) offsetting effects of the electronics heating in the other parts. The concept of an added heat flux term in the Web-Pearman-Leuning correction is revisited, and effect of the instrument surface heating on the CO2 flux measurements is examined. The proposed concept is presented in detail, along with resulted corrections to the originally computed flux. Field data are examined separately for daytime and nighttime cases, and on hourly and seasonal time scales. Significant reduction in the apparent CO2 uptake during off-season periods was observed as a result of applying correction due to the added heat, while fluxes during the growing season have not been noticeably affected. The correction also resulted in the elimination of most of the wrong signs from the off-season open- path CO2 fluxes, in considerable reduction in variability of the data, elimination of the difference between measurements made with the LI-6262 and the LI-7500, and in a significant improvement in off-season integrations of CO2 exchange. A framework was created to develop a site-specific practical correction due to instrument surface heating. The concept may provide a basis for further research in the area of instrument temperature affecting the measurement of the open-path fluxes. Proposed correction may be useful for future CO2 flux research, and it can also be applied to pre-existing data today.

  5. MGS Thermal Emission Spectrometer Image

    NASA Image and Video Library

    1997-09-24

    This image shows the temperature of the martian surface measured by the Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument. On September 15, 3 hours and 48 minutes after the spacecrafts third close approach to the planet, the TES instrument was commanded to point at Mars and measure the temperature of the surface during a four minute scan. At this time MGS was approximately 15,000 miles (~24,000 km) from the planet, with a view looking up from beneath the planet at the south polar region. The circular blue region (- 198 F) is the south polar cap of Mars that is composed of CO2 ice. The night side of the planet, shown with crosses, is generally cool (green). The sunlit side of the planet reaches temperatures near 15 F (yellow). Each square represents an individual observation acquired in 2 seconds with a ground resolution of ~125 miles (~200 km). The TES instrument will remain on and collect similar images every 100 minutes to monitor the temperature of the surface and atmosphere throughout the aerobraking phase of the MGS mission. http://photojournal.jpl.nasa.gov/catalog/PIA00937

  6. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.

    2015-03-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.

  7. A high spatial resolution optical pyrometer

    NASA Astrophysics Data System (ADS)

    Nason, D. O.; Yen, C. T.; Feigelson, R. S.; Tiller, W. A.

    1990-03-01

    An optical pyrometer has been developed which resolves 20 μm at a working distance of 24 in. and measures relative temperature differences of ±2 °C over the range 1000-2000 °C. The instrument is particularly suitable for measuring temperature or emissivity distributions in very small heated objects.

  8. Impact of storage on dark chocolate: texture and polymorphic changes.

    PubMed

    Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J

    2011-01-01

    Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating sensory and instrumental data provides published evidence available for application throughout the confectionery industry.

  9. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    PubMed

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P < .001); at that temperature, Hyflex CM and Vortex Blue had similar and higher fatigue resistance compared with TRUShape and ProTaper Universal. Under the conditions of this study, using a novel testing design, immersion in water at simulated body temperature was associated with a marked decrease in the fatigue life of all rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    PubMed

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in repeated temperature assessments at defined ROIs as well as substantial to perfect agreement in temperature assessment with the hand-held infrared thermometer. In addition to the reported non-inferior performance in temperature assessment, the thermal imaging device holds the potential to provide an instantaneous thermal image of all sites of the feet (plantar, dorsal, lateral and medial views). Diabetic Foot Ulcer Prevention System NCT02317835, registered December 10, 2014.

  11. Simulation studies of improved sounding systems

    NASA Technical Reports Server (NTRS)

    Yates, H.; Wark, D.; Aumann, H.; Evans, N.; Phillips, N.; Susskind, J.; Mcmillin, L.; Goldman, A.; Chahine, M.; Crone, L.

    1989-01-01

    Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown.

  12. Interferometer-Based Calorimetric Measurements of Absorbed Dose to Water in External Beam Radiotherapy

    NASA Astrophysics Data System (ADS)

    Flores-Martinez, Everardo

    Calorimetry is often used to establish high-energy photon absorbed dose to water (ADW) primary standards as calorimetry is a direct measurement of the energy imparted to the water by ionizing radiation. Current calorimeters use thermistors to establish national standards but there is the possibility of systematic errors in these instruments because thermistors overheat due to their low heat capacity. For this reason, there has been renewed interest in using alternative temperature measurement techniques, especially those that do not require a mechanical probe. Interferometer-based thermometry is a technique that exploits the temperature dependence of the refractive index of water and can be used as an alternative method for temperature measurement in radiation calorimetry. A distinctive advantage of the use of interferometry for radiation calorimetry is the capability of obtaining 2D or 3D temperature/dose distributions. Compared to thermistor-based measurements, the use of interferometer-based ADW measurements has been limited by the low measurement resolution. Optimized setups with higher accuracy and precision are necessary to perform measurements at clinically relevant dose rates. A calorimeter for thermistor-based ADW measurements was developed. The instrument was used to measure thermal drifts and noise were measured using the instrument in a water phantom. Residual thermal drifts were accounted for by using a three-step measurement protocol. Additionally, the instrument was used to measure ADW from a 6MV photon beam from a medical linear accelerator. A Michelson-type interferometer was built, characterized, and placed inside the calorimeter with the water phantom at the reference arm. Interferometer and phantom temperature fluctuations were minimized by means of the passive thermal control provide by the calorimeter enclosure, leading to increased fringe pattern stability. The interferometer characterization included phase shift measurements induced by displacing a piezoelectric transducer. Measurements were compared with calculations to estimate the accuracy of the technique. The interferometer-based system was used to measure ADW in a water-filled glass phantom, irradiated with a 6MV photon beam. The estimated Type-A, (k = 1) uncertainty in the associated doses was about 0.3Gy, which is an order of magnitude lower than previously published interferometer-based ADW measurements. Additionally a comparative analysis was performed with the thermistor-based measurements, results for both techniques agreed within the uncertainty. This work presents the first absolute ADW measurements performed using interferometry in the dose range of linac-based radiotherapy and represents a significant step towards standards-level measurements using this technique.

  13. First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.

    2014-01-01

    The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.

  14. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less

  15. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys

    NASA Astrophysics Data System (ADS)

    Mittal, Avirukt; de Bernardis, Francesco; Niemack, Michael D.

    2018-02-01

    Galaxy cluster velocity correlations and mass distributions are sensitive probes of cosmology and the growth of structure. Upcoming microwave surveys will enable extraction of velocities and temperatures from many individual clusters for the first time. We forecast constraints on peculiar velocities, electron temperatures, and optical depths of galaxy clusters obtainable with upcoming multi-frequency measurements of the kinematic, thermal, and relativistic Sunyaev-Zeldovich effects. The forecasted constraints are compared for different measurement configurations with frequency bands between 90 GHz and 1 THz, and for different survey strategies for the 6-meter CCAT-prime telescope. We study methods for improving cluster constraints by removing emission from dusty star forming galaxies, and by using X-ray temperature priors from eROSITA. Cluster constraints are forecast for several model cluster masses. A sensitivity optimization for seven frequency bands is presented for a CCAT-prime first light instrument and a next generation instrument that takes advantage of the large optical throughput of CCAT-prime. We find that CCAT-prime observations are expected to enable measurement and separation of the SZ effects to characterize the velocity, temperature, and optical depth of individual massive clusters (~1015 Msolar). Submillimeter measurements are shown to play an important role in separating these components from dusty galaxy contamination. Using a modular instrument configuration with similar optical throughput for each detector array, we develop a rule of thumb for the number of detector arrays desired at each frequency to optimize extraction of these signals. Our results are relevant for a future "Stage IV" cosmic microwave background survey, which could enable galaxy cluster measurements over a larger range of masses and redshifts than will be accessible by other experiments.

  16. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-10-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011) with the best currently available technique (Vacuum UV Fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.

  17. Instrumentation for sensing moisture content of material using a transient thermal pulse

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1981-01-01

    Instrumentation is developed for sensing moisture content of material using a transient thermal pulse and is comprised of a sensing probe having a sensing element in the form of a ribbon excited by a constant current pulse to increase the temperature, and therefore the resistance, of the ribbon linearly. Moisture in web material limits the increase of temperature during the pulse in proportion to the moisture content. This increase in temperature produces a proportional increase in resistivity which is measured with a Wheatsone bridge as a change in voltage displayed by a measurement display unit. The probe is glued in a shallow groove of a lucite bar and connected to copper pins embedded in the bar.

  18. The National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Holmes, H. K.

    1986-01-01

    The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.

  19. Temperature measuring device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  20. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  1. DC-8 MTP calibration for SOLVE-2

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.

    2003-01-01

    The Jet Propulsion Laboratory (JPL) Microwave Temperature Profiler (MTP) was the only instrument making temperature measurements at and below flight level on the DC-8 during the SOLVE-2 campaign. Many years of careful comparison of MTP measurements with radiosondes near the DC-8 flight track have shown that the flight level temperature can be determined to an accuracy of 0.2K relative to radiosondes.

  2. Full-Vector, Low-Temperature Magnetic Measurements of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Feinberg, J.; Sølheid, P.; Bowles, J. A.; Jackson, M. J.; Moskowitz, B. M.

    2010-12-01

    The magnetic properties of geologic materials offer insights into an enormous range of important geophysical phenomena ranging from core dynamics to paleoclimate. Low-temperature (<300 K) magnetic behavior can indicate the dominant magnetic mineral phases in a sample, determine the grain size distribution of the constituent magnetic minerals, and even reveal evidence of biogenic iron minerals. Low-temperature cycling across the magnetite Verwey transition is sometimes used to remove remanence associated with multi-domain grains, which is undesirable for paleointensity and other paleomagnetic experiments. Despite the utility of low-temperature magnetic data, probing these low-temperature phenomena from the perspective of understanding the underlying physical behavior has been hampered by instrumental limitations. Until now, nearly all measurements of low-temperature magnetization have been single-axis and are rarely done in true zero-field environments. Low-temperature remanence measurements at the Institute for Rock Magnetism (IRM) have been carried out almost exclusively on the Quantum Designs Magnetic Properties Measurement System (MPMS) where magnetization is measured only in the vertical direction, and “zero-fields” of up to 1 μT are common. The IRM - with funding from the Instrumentation and Facilities Program of the National Science Foundation, Earth Science Division, and in conjunction with ColdEdge Technologies (Allentown, Pennsylvania) - is developing a low-cost, cryogenic insert designed to work with a standard, horizontal-loading, 2G Enterprises magnetometer. Full three-axis measurements may now be made in ultra-low-field environments (nT) from ~17 K to room temperature. The design is compatible with both the large (7.6 cm) and small (4.2 cm) bore magnetometers, as well as many standard pulse magnetizers. Used in conjunction with the in-line degausser on the IRM’s pass-through magnetometer, it will ultimately be possible to acquire anhysteretic remanence (ARM) and/or AF demagnetize samples at cryogenic temperatures. The intent of this presentation is to advertise the capabilities of the cryogenic insert and to encourage members of the rock magnetic community to plan on using the instrument to further their own research.

  3. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  4. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  5. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  6. Development of a low-cost mini environment chamber for precision instruments

    NASA Astrophysics Data System (ADS)

    Feng, Jian; Li, Rui-Jun; He, Ya-Xiong; Fan, Kuang-Chao

    2016-01-01

    The wavelength of laser interferometer used widely in precision measurement instrument is affected by the refractive index of surrounding air, which depends on the temperature, relative humidity (RH) and air pressure. A low-cost mini chamber based on the natural convection principle with high-precision temperature-controlled and humidity-suppressed is proposed in this paper. The main chamber is built up by acrylic walls supported by aluminum beam column and are tailored according to the required space. A thin layer of vacuum insulation panel (VIP) with an ultralow thermal conductivity coefficient is adhered around the walls so as to prevent heat exchange with room air. A high-precision temperature sensor measuring the temperature near the instrument's measuring point provides a feedback signal to a proportional-integral-derivative (PID) controller. Several thermoelectric coolers uniformly arranged on the ceiling of the chamber to cool the air inside the chamber directly without any air supply system, yielding a vibration-free cooling system. A programmable power supply is used as the driver for the coolers to generate different cooling capacities. The down-flowing cool air and the up-flowing hot air form a natural convection, and the air temperature in the chamber gradually becomes stable and finally reaches the temperature set by the PID controller. Recycled desiccant contained silica gels that have high affinity for water is used as a drying agent. Experimental results show that in about two hours the system's steady state error is 0.003°C on average, and the variation range is less than ± 0.02°C when the set temperature is 20°C, the RH is reduced from 66% to about 48%. This innovative mini chamber has the advantages of low-cost, vibration-free, and low energy-consumption. It can be used for any micro/nanomeasurement instrument and its volume can be customer-designed.

  7. In-Situ F2-Region Plasma Density and Temperature Measurements from the International Space Station

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Wright, Kenneth; Minow, Joseph

    2008-01-01

    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006. is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). This instrument package provides a new opportunity lor collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shOWS examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes lor monitoring mid and low latitude plasma processes.

  8. Validation of a light-scattering PM2.5 sensor monitor based on the long-term gravimetric measurements in field tests.

    PubMed

    Shi, Jingjin; Chen, Fei'er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan; Zhao, Zhuohui

    2017-01-01

    Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4-95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2-315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT - 50 measurements) - 0.53 × RH - 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted.

  9. Validation of a light-scattering PM2.5 sensor monitor based on the long-term gravimetric measurements in field tests

    PubMed Central

    Shi, Jingjin; Chen, Fei’er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan

    2017-01-01

    Background Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. Methods An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. Results The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4–95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2–315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT – 50 measurements) – 0.53 × RH – 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Conclusion Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted. PMID:29121101

  10. A weighting lysimeter for a laboratory experiment on water and energy fluxes measurements and hydrological models verification

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; paleari, roberto; mantovani, federico; tarro, stefano; mancini, marco

    2017-04-01

    Weighting lysimeters allow a direct measurement of water loss from the soil, determining the soil water balance, and thus providing an interesting tool to validate hydrological models. Lysimeters, which world originates from the greek words "lysis" (movement) and "metron" (to measure) have been used to measure percolation of water through the soils for over 300 years. The aim of this study is twofold: 1) to perform water and energy flux measurements under different meteorological conditions, irrigation practice (surface flood, drip and groundwater capillary rise), and soil coverage (bare soil and basil crop), 2) to verify hydrological model FEST-EWB parameterization at the lysimeter scale. A weighting lysimeter has been constructed in the Hydraulic Laboratory of Politecnico di Milano. It consists of a steel box of 1.5 x 1.5 x 1 m containing reconstructed soil. The box is mounted on a scale with four load cells with a nominal weight of 6000 kg and a precision of 0,5 kg. The lysimeter is fully instrumented to measure all the main components of the hydrological cycle. Profiles of soil moisture and temperature are provided by 7 probes; ground heat flux is measured by a heat flux plate and two thermocouples; the drainage flux is measured by a tipping bucket rain gauge; the four components of radiation are provided by a net radiometer; air temperature and humidity are measured by a thermo-hygrometer. Data are collected every 10 minutes on a datalogger. A thermal camera is also installed to provide accurate maps of land surface temperature. The different instruments have been subjected to a rigorous calibration process. A low cost station is also installed based on an Arduino micro-controller measuring soil moisture and temperature, air humidity and temperature and solar radiation. The idea is to understand whether low cost instruments can be used to monitor the fundamental hydrological variables. The measured fluxes (e.g. evapotranspiration, soil moisture, land surface temperature) are then used to verify the correctness of the hydrological model FEST-EWB parameterization. A general good accuracy of 2-6 % between observed and modeled fluxes is obtained.

  11. MACS, An Instrument, and a Methodology for Simulations and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The determination of the radial and latitudinal temperature and wind profiles of the solar corona is of great importance in understanding the coronal heating mechanism and the dynamics of coronal expansion. Cram presented the theory for the formation of the K-coronal spectrum and identified two important observations. He observed the existence of temperature sensitive anti-nodes at certain wavelengths in the theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti-nodes are almost independent of altitude above the solar limb. Because of these features, Cram suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the electron temperature in the K-corona. Based on this temperature diagnostic technique prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et al. on the solar corona in conjunction with the total solar eclipse of 3 Nov 1994 in Putre, Chile to determine the temperature profile of the solar corona. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurement of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 Aug 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber optic tips were positioned in the focal plane of the telescope in such a way that we could observe conditions simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends of the fibers were vertically aligned and placed at the primary focus of the collimating lens of the spectrograph to obtain simultaneous and global spectra on the solar corona. By isolating the K-coronal spectrum from the spectrum recorded by each fiber the temperature and the wind sensitive intensity ratios were calculated to obtain simultaneous and global measurements of the thermal electron temperature and the solar wind velocity. We were successful in obtaining reliable estimates of the coronal temperature at many positions in the corona. This is the first time that simultaneous measurements of coronal temperatures have been obtained at so many points. However due to instrumental scattering encountered during observations, reliable estimates of the wind velocity turned out to be impossible to obtain. Although remedial measures were taken prior to observation, this task proved to be difficult owing to the inability to replicate the conditions expected during an eclipse in the laboratory. The full extent of the instrumental scattering was apparent only when we analyzed the observational sequence. Nevertheless the experience obtained from this very first attempt to simultaneously and globally measure both the wind velocity and the temperature on the solar corona have provided valuable information to conduct any future observations successfully.

  12. Advances in atmospheric temperature profile measurements using high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.

  13. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  14. Developing instrumentation to characterize thermoelectric generator modules.

    PubMed

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.

  15. New method of noncontact temperature measurement in on-line textile production

    NASA Astrophysics Data System (ADS)

    Cheng, Xianping; Song, Xing-Li; Deng, Xing-Zhong

    1993-09-01

    Based on the condition of textile production the method of infrared non-contact temperature measurement is adcpted in the heat-setting and drying heat-treatment process . This method is used to monitor the moving cloth. The temperature of the cloth is displayed rapidly and exactly. The principle of the temperature measurement is analysed theoretically in this paper. Mathematical analysis and calculation are used for introducing signal transmitting method. Adopted method of combining software with hardware the temperature is corrected and compensated with the aid of a single-chip microcomputer. The results of test indicate that the application of temperature measurement instrument provides reliable parameters in the quality control. And it is an important measure on improving the quality of products.

  16. The NBS scale of radiance temperature

    NASA Technical Reports Server (NTRS)

    Waters, William R.; Walker, James H.; Hattenburg, Albert T.

    1988-01-01

    The measurement methods and instrumentation used in the realization and transfer of the International Practical Temperature Scale (IPTS-68) above the temperature of freezing gold are described. The determination of the ratios of spectral radiance of tungsten-strip lamps to a gold-point blackbody at a wavelength of 654.6 nm is detailed. The response linearity, spectral responsivity, scattering error, and polarization properties of the instrumentation are described. The analysis of the sources of error and estimates of uncertainty are presented. The assigned uncertainties (three standard deviations) in radiance temperature range from + or - 2 K at 2573 K to + or - 0.5 K at 1073 K.

  17. Temperature And Bandwidth Effect in Brewer and Dobson Direct Sun Observations

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Stuebi, R.

    2007-12-01

    Dobson and Brewer spectrophotometer are the main instruments to monitor the ozone shield by ground based observations, and they have an important role for validation of ozone satellite data. Ground based total ozone observations from Brewer and Dobson spectrophotometers, operated at mid-latitudes stations, typically show a seasonal bias in the residual with a amplitude of a few percent. Mid-latitude total ozone trends caused by ozone depleting substances are on the order of few percents per decade. Therefore, only a maximum instrumental shift of 1% over the measured period can be tolerated for measurements to derive reliable trends. At Arosa two Dobson and three Brewers instruments have been co-located since 1992, producing a unique data set of quasi-simultaneous observations that is valuable for the study of systematic differences within the measurements. The differences can be at least partially attributed to the different sensitivities of the wavelengths used in the retrieval algorithms. This might explain different column ozone as a consequence of seasonal variability, mainly, in temperature in the lower stratosphere and in ozone slant path. The temperature dependence has been calculated using three different absorption spectra (Bass and Paur, Daumont and those used in the GOME satellite), weighing of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. The seasonal bias between Dobson and Brewer total ozone measurements is reduced from 3% to 1%, if one takes into account the temperature dependence of the Bass and Paur absorptions spectra and the ozone slant path effect. The accuracy and the resolution step of the experimental data of ozone cross sections have an important role. The ozone cross section must be convoluted for the slits functions that can vary from one instrument to an other, therefore the different spectra yield different results.

  18. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  19. Field intercomparison of prevailing sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  20. The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.

    2016-12-01

    The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.

  1. High precision silicon piezo resistive SMART pressure sensor

    NASA Astrophysics Data System (ADS)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.

  2. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  3. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, T.; Muller, E.; Federici, E.

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for fivemore » cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)« less

  4. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  5. Computer assisted screening, correction, and analysis of historical weather measurements

    NASA Astrophysics Data System (ADS)

    Burnette, Dorian J.; Stahle, David W.

    2013-04-01

    A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.

  6. A Pilot Study to Examine Maturation of Body Temperature Control in Preterm Infants

    PubMed Central

    Knobel, Robin B.; Levy, Janet; Katz, Laurence; Guenther, Bob; Holditch-Davis, Diane

    2013-01-01

    Objective To test instrumentation and develop analytic models to use in a larger study to examine developmental trajectories of body temperature and peripheral perfusion from birth in extremely low birth weight (EBLW) infants. Design A case study design. Setting The study took place in a level four neonatal intensive care unit (NICU) in North Carolina. Participants Four ELBW infants, less than 29 weeks gestational age at birth. Methods Physiologic data were measured every minute for the first 5 days of life: peripheral perfusion using perfusion index by Masimo and body temperature using thermistors. Body temperature was also measured using infrared thermal imaging. Stimulation and care events were recorded over the first 5 days using video which was coded with Noldus Observer software. Novel analytical models using the state space approach to time series analysis were developed to explore maturation of neural control over central and peripheral body temperature. Results/Conclusion Results from this pilot study confirmed the feasibility of using multiple instruments to measure temperature and perfusion in ELBW infants. This approach added rich data to our case study design and set a clinical context with which to interpret longitudinal physiological data. PMID:24004312

  7. High Precision NO2 and NO measurements with the ICAD instrument during s-b-s campaign Hohenpeißenberg 2016

    NASA Astrophysics Data System (ADS)

    Pöhler, Denis; Lutz, Erik; Horbanski, Martin; Lampel, Johannes; Platt, Ulrich

    2017-04-01

    Nitrogen Oxides (NOx = NO2 + NO) play a major role in air pollution and atmospheric chemistry. Beside health effects they influence e.g. acid rain, ozone and oxidation capacity. But precise NO2 and NO measurements are still difficult. State of the art NO2 / NO instruments show significant interferences e.g. to H2O and HONO, problems of zero point and calibration drifts, temperature and also vibration influences. Other systems, especially low cost sensors, feature significant problems in terms of measurement accuracy and reliability. To overcome these problems we developed a direct spectroscopic NO2 / NOx ICAD instrument (Iterative Cavity Enhanced DOAS). It feature high accuracy, is relatively small, mobile and requires only low power consumption. During a side by side (s-b-s) inter-comparison campaign at the Meteorological Observatory Hohenpeißenberg (DWD) 2016 the performance of different instruments for NO2, NO and NOx were investigated under natural and artificial conditions. The concentration ranged from few ppt up to 100ppb. The inter-comparison demonstrates excellent performance of our ICAD in terms of accuracy and drift. In comparison to other techniques it features no interferences to different humidity's, temperatures and interfering gases. Also the zero point and calibration is absolutely stable. As the instrument is also much simpler and easier to operate, it has many advantages in comparison to other instruments. The characteristics of the instruments and results of the campaign will be presented.

  8. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    NASA Astrophysics Data System (ADS)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  9. Thermal Conductances Of Metal Contacts

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Kittel, P.; Scherkenbach, F. E.; Spivak, A. L.

    1988-01-01

    Report presents results of measurements of thermal conductances of aluminum and stainless-steel contacts at temperatures from 1.6 to 6.0 K. Measurement apparatus includes gearmotor assembly connected to rocker arm by music wire to load sample pair with forces up to 670 N. Heater placed above upper sample. Germanium resistance thermometers in upper and lower samples measured temperature difference across interface over range of heater powers from 0.1 to 10.0 mW. The thermal conductance calculated from temperature difference. Measurements provide data for prediction of thermal conductances of bolted joints in cryogenic infrared instruments.

  10. Downward-deployed tethered satellite systems, measurement techniques, and instrumentation - A review

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Melfi, Leonard T., Jr.; Upchurch, Billy T.; Wood, George M., Jr.

    1992-01-01

    This paper describes a number of scheduled and proposed Shuttle-based downward-deployed tethered satellite systems (TSSs) the purpose of which is to determine the structure of the lower thermosphere and to measure the atmospheric and aerodynamic effects in the vicinity of the satellite, the aerothermodynamic effects on the satellite's surface, and the dynamics of the tether and its endmass, the satellite. The instruments for the downward-deployed tethered missions will include mass spectrometers and other density sensors, plasma instrumentation, optical spectrophotometers, magnetometers, and instrumentation to measure the effects on satellite surface (such as the surface temperature, heat transfer, and pressure; gas adsorption on surfaces, chemistry with other gas molecules and surface material, and desorption from the surface; and surface charging).

  11. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factorsmore » (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were tested/applied on the thermocouple cleaning according to the proposed approach. Different frequency, application time and power of the ultrasonic/subsonic output were tested. The results show that the ultrasonic approach is one of the best methods to clean the thermocouple tips during the routine operation of the gasifier. In addition, the real time data acquisition system was also designed and applied in the experiments. This advanced instrumentation provided the efficient and accurate data acquisition for this project. In summary, the accomplishment of the project provided useful information of the ultrasonic cleaning method applied in thermocouple tip cleaning. The temperature measurement could be much improved both in accuracy and duration provided that the proposed approach is widely used in the gasification facilities.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, P.

    The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood bymore » the non-specialist user.« less

  13. Arctic chemical Ozone Loss Observed by the AROTEL Instrument during the SOLVE Campaign, December 1999 - March 2000

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence

    2000-01-01

    During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.

  14. Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus

    NASA Astrophysics Data System (ADS)

    de Rubeis, T.; Nardi, I.; Muttillo, M.

    2017-11-01

    The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out in hot box, comparing the data measured by digital thermometers, Pt100 and T-type thermocouples. In this case also, the analyses show a good correlation between either digital thermometers and analog sensors. From these results, it is reasonable to foresee that this measuring instrument could help those willing to realize or refurbish a hot box apparatus, and those who want to undertake temperature monitoring.

  15. Long Awaited Fundamental Measurement of the Martian Upper Atmosphere from the Langmuir Probe and Waves Instrument on the MAVEN Mission.

    NASA Astrophysics Data System (ADS)

    Andersson, Laila; Andrews, David; Ergun, Bob; Delory, Greg; Morooka, Michiko; Fowler, Chris; McEnulty, Tess; Weber, Tristan; Eriksson, Anders; Malaspina, David; Crary, Frank; Mitchell, David; McFadden, Jim; Halekas, Jasper; Larson, Davin; Connerney, Jack; Espley, Jared; Eparvies, Frank

    2015-04-01

    Electron temperature and density are critical quantities in understanding an upper atmosphere. Approximately 40 years ago, the Viking landers reached the Martian surface, measuring the first (and only) two temperature profiles during it's descent. With the MAVEN mission arriving at Mars details of the Martian ionosphere can agin be studied by a complete plasma package. This paper investigates the first few months of data from the MAVEN mission when the orbit is below 500 km and around the northern hemisphere's terminator. The fo-cus of this presentation is on the different measure-ments that the Langmuir probe and Waves (LPW) in-strument is making on the MAVEN mission. Some of the LPW highlights that will be presented: (a) the long awaited new the electron temperature profiles; (b) the structures observed on the nightside ionosphere; (c) wave-particle insteractions observed below 500 km; and (d) the observed dusty environment at Mars. This presentation is supported by measurements from the other Particle and Fileds (PF) measurements on MAVEN.

  16. Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis

    NASA Technical Reports Server (NTRS)

    Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.

    2000-01-01

    Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.

  17. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  18. Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance

    PubMed Central

    Pacheco-Labrador, Javier; Martín, M. Pilar

    2015-01-01

    Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315

  19. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  20. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  1. Development of the coastal zone color scanner for NIMBUS 7. Volume 1: Mission objectives and instrument description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An Earth scanning six channel (detector) radiometer using a classical Cassegrain telescope and a Wadsworth type grating spectrometer was launched aboard Nimbus 7 in order to determine the abundance or density of chlorophyll at or near the sea surface in coastal waters. The instrument also measures the sediment or gelbstroffe (yellow stuff) in coastal waters, detects surface vegetation, and measures sea surface temperature. Block diagrams and schematics are presented, design features are discussed and each subsystem of the instrument is described. A mission overview is included.

  2. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    NASA Technical Reports Server (NTRS)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  3. Evaluation of thermograph data for California streams

    USGS Publications Warehouse

    Limerinos, J.T.

    1978-01-01

    Statistical analysis of water-temperature data from California streams indicates that, for most purposes, long-term operation of thermographs (automatic water-temperature recording instruments) does not provide a more useful record than either short-term operation of such instruments or periodic measurements. Harmonic analyses were made of thermograph records 5 to 14 years in length from 82 stations. More than 80 percent of the annual variation in water temperature is explained by the harmonic function for 77 of the 82 stations. Harmonic coefficients based on 8 years of thermograph record at 12 stations varied only slightly from coefficients computed using two equally split 4-year records. At five stations where both thermograph and periodic (10 to 23 measurements per year) data were collected concurrently, harmonic coefficients for periodic data were defined nearly as well as those for thermograph data. Results of this analysis indicate that, except where detailed surveillance of water temperatures is required or where there is a chance of temporal change, thermograph operations can be reduced substantially without affecting the usefulness of temperature records.

  4. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2007-01-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  5. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are sufficient for this purpose. Even with a ten-way beam split, instrument throughput generates acceptable signal-to-noise values. Accurate constraints on lava eruption temperature are also possible with a visible wavelength detector so long as data at different wavelengths are obtained simultaneously and integration time is very short. Fast integration times are important for examining the thermal emission from lava tube skylights due to rapidly changing viewing geometry during close flybys. The technology described here is applicable to instruments observing terrestrial volcanism and for investigating proposed volcanic activity on Venus, where lava composition is not known.

  6. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    NASA Astrophysics Data System (ADS)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  7. A Cost-Effective Optical Device for the Characterization of Liquid Crystals

    ERIC Educational Resources Information Center

    Millier, Brian; Aleman Milán, Gianna

    2014-01-01

    The design and construction of an apparatus to measure the optical birefringence of a liquid crystal is described. The instrument also includes temperature control and monitoring circuitry to allow for the measurement of the nematic-to-isotropic phase transition temperature. An important feature of this design is that the students are able to…

  8. Accounting For Nonlinearity In A Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Stelzried, Charles T.

    1991-01-01

    Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.

  9. Flexibility and torsional behaviour of rotary nickel-titanium PathFile, RaCe ISO 10, Scout RaCe and stainless steel K-File hand instruments.

    PubMed

    Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A

    2014-03-01

    To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Electrostatic Levitation for Studies of Additive Manufactured Materials

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL in supporting the development and modeling of the selective laser melting process for metals, and provide an overview of the results to date.

  11. PPI/HASI Pressure Measurements in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.

    2005-08-01

    The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.

  12. Method for high-accuracy reflectance measurements in the 2.5-microm region.

    PubMed

    Richter, Rudolf; Müller, Andreas

    2003-02-20

    Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C.

  13. NBC Contamination Survivability, Large Item Exteriors

    DTIC Science & Technology

    1998-04-17

    environment. Ability to control temperature , relative humidity (RH), and wind speed is required. The facility must be designed to ensure safe and...2.2 Instrumentation. Measuring Devices Permissible Error of Measurement Air temperature ±0.5°C Relative humidity (RH) ±5 % Wind speed ±0.1 rm/sec Still...process, excluding monitoring, should last no longer than 75 minutes. (3) The item surface temperature is 30’C and exterior wind speed is no greater

  14. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study

    NASA Astrophysics Data System (ADS)

    Preusse, Peter; Dörnbrack, Andreas; Eckermann, Stephen D.; Riese, Martin; Schaeler, Bernd; Bacmeister, Julio T.; Broutman, Dave; Grossmann, Klaus U.

    2002-09-01

    The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument measured stratospheric temperatures and trace species concentrations with high precision and spatial resolution during two missions. The measuring technique is infrared limb-sounding of optically thin emissions. In a general approach, we investigate the applicability of the technique to measure gravity waves (GWs) in the retrieved temperature data. It is shown that GWs with wavelengths of the order of 100-200 km horizontally can be detected. The results are applicable to any instrument using the same technique. We discuss additional constraints inherent to the CRISTA instrument. The vertical field of view and the influence of the sampling and retrieval imply that waves with vertical wavelengths ~3-5 km or larger can be retrieved. Global distributions of GW fluctuations were extracted from temperature data measured by CRISTA using Maximum Entropy Method (MEM) and Harmonic Analysis (HA), yielding height profiles of vertical wavelength and peak amplitude for fluctuations in each scanned profile. The method is discussed and compared to Fourier transform analyses and standard deviations. Analysis of data from the first mission reveals large GW amplitudes in the stratosphere over southernmost South America. These waves obey the dispersion relation for linear two-dimensional mountain waves (MWs). The horizontal structure on 6 November 1994 is compared to temperature fields calculated by the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) mesoscale model (MM5). It is demonstrated that precise knowledge of the instrument's sensitivity is essential. Particularly good agreement is found at the southern tip of South America where the MM5 accurately reproduces the amplitudes and phases of a large-scale wave with 400 km horizontal wavelength. Targeted ray-tracing simulations allow us to interpret some of the observed wave features. A companion paper will discuss MWs on a global scale and estimates the fraction that MWs contribute to the total GW energy (Preusse et al., in preparation, 2002).

  15. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    NASA Technical Reports Server (NTRS)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS) is provided as well.

  16. Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Lyakhovsky, V.; Marco, S.; Weinberger, R.

    2016-07-01

    This study examines the limitations of the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air and presents technical improvements that significantly reduce the instrumental drift and measurement errors. We analyzed the temperature profile of porous chalk core after cooling in liquid nitrogen and found that the average temperature of the sample during the LT-AMS measurement in air is higher than 77K and close to 92K. This analysis indicates that the susceptibility of the paramagnetic minerals are amplified by a factor ˜3.2 relative to that of room temperature AMS (RT-AMS). In addition, it was found that liquid nitrogen was absorbed in the samples during immersing and contributed diamagnetic component of ˜-9 × 10-6 SI to the total mean susceptibility. We showed that silicone sheet placed around and at the bottom of the measuring coil is an effective thermal protection, preventing instrument drift by the cold sample. In this way, the measuring errors of LT-AMS reduced to the level of RT-AMS, allowing accurate comparison with standard AMS measurements. We examined the applicability of the LT-AMS measurements on chalk samples that consist <5% (weight) of paramagnetic minerals and showed that it helps to efficiently enhance the paramagnetic fabric. The present study offers a practical approach, which can be applied to various types of rocks to better delineate the paramagnetic phase using conventional equipment.

  17. Highlights of the Zeno Results from the USMP-2 Mission

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen

    1995-01-01

    The Zeno instrument, a High-precision, light-scattering spectrometer, was built to measure the decay rates of density fluctuations in xenon near its liquid-vapor critical point in the low-gravity environment of the U.S. Space Shuttle. Eliminating the severe density gradients created in a critical fluid by Earth's gravity, we were able to make measurements to within 100 microKelvin of the critical point. The instrument flew for fourteen days in March, 1994 on the Space Shuttle Columbia, STS-62 flight, as part of the very successful USMP-2 payload. We describe the instrument and document its performance on orbit, showing that it comfortably reached the desired 3 microKelvin temperature control of the sample. Locating the critical temperature of the sample on orbit was a scientific challenge; we discuss the advantages and short-comings of the two techniques we used. Finally we discuss problems encountered with making measurements of the turbidity of the sample, and close with the results of the measurement of the decay rates of the critical-point fluctuations.

  18. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-07-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. However, the current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came on the market with promising properties for trace gas analytics. The current study compares three instruments that are recently commercially available (since 2011) with the up to now best available technique (vacuum UV fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques provide a considerably better performance compared to previous techniques, although some issues such as temperature influence and cross sensitivities need further attention.

  19. Laboratory Simulation and Measurement of Instrument Drift in Quartz-Resonant Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Sasagawa, G. S.; Zumberge, M. A.

    2017-12-01

    Marine geodesy uses ocean bottom pressure sensors to measure vertical deformation of the sea floor, including that due to volcanic inflation and subsidence, episodic tremor and slip, plate subduction, and deformation due to hydrocarbon extraction at offshore reservoirs. Instrumental drift is inherent in existing pressure sensors and introduce uncertainties in data interpretation. Different methods have been developed to control drift, using varying techniques and instrumentation. Laboratory measurements of sensor drift, under controlled conditions that simulate seafloor pressures and temperatures, would allow for evaluating pressure gauge drift and the efficacy of new drift control methods. We have constructed and operated a laboratory system to monitor the drift of 15 quartz resonant pressure gauges over a year. The temperature and pressure are maintained and controlled at approximately 5 °C and 1900 dbar. A deadweight tester was used to provide a reference signal at frequent intervals; the time series of reference pressure signals is a direct measure of each gauge's drift. Several other tests were conducted, including a) evaluation of a custom outgassing sensor used as proxy for instrument drift, b) determination of the oscillator drift in the pressure gauge signal conditioning electronics, and c) a test of ambient air pressure calibration, also known as the A-0-A method. First results will be presented.

  20. Development of a Novel Multispectral Instrument for Handheld and UAS Measurements of Surface Albedo; First Applications for Glaciers in the Peruvian Andes and for Nevada's Black Rock Desert

    NASA Astrophysics Data System (ADS)

    Boehmler, J. M.; Stevens, C.; Arnott, W. P.; Watts, A.; All, J.; Schmitt, C. G.

    2017-12-01

    Accurate atmospheric aerosol characteristics derived from satellite measurements are needed over a variety of land surfaces. Nonhomogeneous and bright surface reflectance across California and Nevada may be a contributing factor in the discrepancies observed between ground based and satellite-retrieved atmospheric aerosol optical depth (AOD). We developed and deployed a compact and portable instrument to measure albedo to evaluate a major factor that influences the accuracy of AOD retrievals. The instrument will be operated on an unmanned aircraft system (UAS) to control areal averaging for comparison with satellite derived albedo from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS). A handheld version of the instrument was mounted on a trekking pole and used for obtaining in situ glacier albedo measurements in the Cordillera Blanca of Peru during the summer of 2017. The instrument weighs approximately 433 g and consists of two parts, a mountable, payload portion (300 g) which houses the sensors, and a handheld screen (133 g) to display real-time data from the payload portion. Both parts are powered by a 9V battery and run on a Teensy 3.6/3.2 microcontroller. To retrieve albedo, two micro-spectrometers manufactured by Hamamatsu Photonics, each with a spectral range of 340 -780 nm, are utilized; one for obtaining the downwelling solar radiation and the other for measuring the solar radiation reflected from the surface. Additional components on the instrument include temperature, pressure and humidity sensors with a one second time response; a GPS for position and altitude; an infrared sensor to measure ground temperature; a digital level and compass for orienting the instrument; a camera for taking photos of the sky and surface; a radio for two-way communication between the screen display and sensor payload; and a micro SD card for recording data. We will present the instrument design along with surface albedo measurements for glaciers of the Peruvian Andes in hand held operation, and for the Black Rock Desert of Nevada in UAS operation.

  1. Multisensor Retrieval of Atmospheric Properties.

    NASA Astrophysics Data System (ADS)

    Boba Stankov, B.

    1998-09-01

    A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of -0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.

  2. A method for obtaining distributed surface flux measurements in complex terrain

    NASA Astrophysics Data System (ADS)

    Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.

    2011-12-01

    Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.

  3. Railroad Car Coupling Shock, Vertical Motion, and Roller Bearing Temperature

    DOT National Transportation Integrated Search

    1981-01-01

    Data were collected in a study of railroad car operating environment. Measurements were made on wheel bearing operating temperatures, coupling impact shock, and vertical motion of the car due to rail travel. Tests were conducted using an instrumented...

  4. Comparison of water gel desserts from fish skin and pork gelatins using instrumental measurements.

    PubMed

    Zhou, Peng; Regenstein, Joe M

    2007-05-01

    The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.

  5. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    NASA Astrophysics Data System (ADS)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  6. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  7. Rayleigh-scatter lidar measurements of the mesosphere and thermosphere and their connections to sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Sox, Leda

    The Earth's middle atmosphere (10-110 km) has long been a region in which measurement techniques are limited. Many ground-based and remote sensing satellite instruments have been developed over the past several decades, which strive to provide good coverage of this region. However, each of the different techniques has its own measurement limitations in the extent of its coverage in altitude, time, or global-scale. In order for researchers to trace geophysical dynamics and phenomena across the three regions in the middle atmosphere, measurements from many instruments often have to be spliced together. Rayleigh-scatter lidar is a ground-based remote sensing technique that has been used to acquire relative density and absolute temperature measurements throughout the 35-90 km region at several sites for the past four decades. Rayleigh lidars have a unique advantage over many other middle-atmosphere instruments in that their measurements do not have a theoretical limit to their altitude coverage. Their upper altitude limits are only constrained by technological advances in instrumentation and their lower limits are only constrained by the presence of aerosols (below about 35 km). However, Mie and Raman scatter detectors can be added to extend their measurements down to ground level. The Rayleigh lidar on the campus of Utah State University has recently been upgraded in such a way as to extend its upper altitude limit 25 km higher, into the lower thermosphere. The first year (2014-2015) of data acquired with this new system has been analyzed to obtain temperatures in the 70-115 km region. Numerical experiments were carried out that showed it was possible to compensate for changing atmospheric composition above 90 km with minimal effects on the derived Rayleigh temperatures. These new temperatures were in good agreement with temperatures from the previous version of the system and well-established results of the thermal structure in the mesosphere-lower thermosphere region. Subsequently, the first comparison between collocated Rayleigh and Na lidars, covering identical time periods and altitude ranges, was conducted. An example of the scientific results that can be mined from long-term Rayleigh lidar observations is also given. It establishes the behavior of the midlatitude mesosphere during sudden stratospheric warming events.

  8. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and water vapor in a few hours with somewhat better than a scale height resolution. If a bigger mirror is used (greater than 30 cm) limb sounding geometry can be employed and half scale height resolution achieved to altitudes up to at least 60 km. Again, the measurements are immune to dust and ice loads. Water vapor sensitivity of 0.1 micrometer can be achieved (even with a nadir instrument) and temperature profiles retrieved to an accuracy of better than 2 K from the surface to about 60 km. Winds can be measured from the doppler shifts of CO lines in the limb sounding mode.

  9. Results of hydrologic monitoring on landslide-prone coastal bluffs near Mukilteo, Washington

    USGS Publications Warehouse

    Smith, Joel B.; Baum, Rex L.; Mirus, Benjamin B.; Michel, Abigail R.; Stark, Ben

    2017-08-31

    A hydrologic monitoring network was installed to investigate landslide hazards affecting the railway corridor along the eastern shore of Puget Sound between Seattle and Everett, near Mukilteo, Washington. During the summer of 2015, the U.S. Geological Survey installed monitoring equipment at four sites equipped with instrumentation to measure rainfall and air temperature every 15 minutes. Two of the four sites are installed on contrasting coastal bluffs, one landslide scarred and one vegetated. At these two sites, in addition to rainfall and air temperature, volumetric water content, pore pressure, soil suction, soil temperature, and barometric pressure were measured every 15 minutes. The instrumentation was designed to supplement landslide-rainfall thresholds developed by the U.S. Geological Survey with a long-term goal of advancing the understanding of the relationship between landslide potential and hydrologic forcing along the coastal bluffs. Additionally, the system was designed to function as a prototype monitoring system to evaluate criteria for site selection, instrument selection, and placement of instruments. The purpose of this report is to describe the monitoring system, present the data collected since installation, and describe significant events represented within the dataset, which is published as a separate data release. The findings provide insight for building and configuring larger, modular monitoring networks.

  10. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    PubMed

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  11. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  12. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  13. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  14. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    NASA Technical Reports Server (NTRS)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  15. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  16. Experimental short-duration techniques. [gas turbine engine tests

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.

    1986-01-01

    Short-duration facilities used for gas turbine studies are described. Data recording techniques; and instruments (thin-film heat flux gages, high-frequency response pressure measurements, total temperature probes, measurement of rotor tip speed, active measurement of tip clearance) are presented.

  17. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  18. MODIS On-Orbit Thermal Emissive Bands Lifetime Performance

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Xiong, Xiaoxiong

    2016-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 micron 14.4 micron, of which wavelengths ranging from 3.7 micron 14. 4 micron cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  19. The role of fiberoptics in remote temperature measurement

    NASA Technical Reports Server (NTRS)

    Vanzetti, Riccardo

    1988-01-01

    The use of optical fibers in conjunction with infrared detectors and signal processing electronics represents the latest advance in the field of non-contact temperature measurement and control. The operating principles and design of fiber-optic radiometric systems are discussed and the advantages and disadvantages of using optical fibers are addressed. Signal processing requirements and various infrared detector types are also described. Several areas in which infrared fiber-optic instrumentation is used for temperature monitoring and control are discussed.

  20. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  1. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  2. In situ methods for measuring thermal properties and heat flux on planetary bodies.

    PubMed

    Kömle, Norbert I; Hütter, Erika S; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-06-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP(3) currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.

  3. Residual heat of laparoscopic energy devices: how long must the surgeon wait to touch additional tissue?

    PubMed

    Govekar, Henry R; Robinson, Thomas N; Stiegmann, Greg V; McGreevy, Francis T

    2011-11-01

    Energy devices are essential laparoscopic tools. Residual heat is defined as the increased instrument temperature after energy activation is completed. This study aimed to determine the length of time a surgeon needs to wait before touching other tissue using four common laparoscopic energy sources. Thermal imaging quantified instrument and tissue temperature ex vivo using monopolar coagulation, argon beam coagulation, ultrasonic dissection, and bipolar tissue fusion devices. To simulate realistic operative usage, each instrument was activated for 5 s four consecutive times with 5 s pauses between fires. Thermal conductivity to bovine liver tissue was measured 2.5, 5, 10, and 20 s after final activation. The maximum increase in instrument tip temperature was 172 ± 63°C for the ultrasonic dissection, 81 ± 18°C for the monopolar coagulation, 46 ± 19°C for the bipolar tissue fusion, and 1 ± 1°C for the argon beam coagulation (P < 0.05 for all comparisons). Touching the instrument tip to tissue at four intervals after the final activation (2.5, 5, 10, and 20 s) found that ultrasonic energy raised the tissue temperature higher (maximum change, 58°C) than the other three energy devices at all four time points (P < 0.05). Ultrasonic energy instruments have greater residual heat than monopolar electrosurgery, bipolar tissue fusion, and argon beam. The ultrasonic energy instrument tips heated tissue more than 20°C from baseline even 20 s after activation; whereas all the other energy sources raised the tissue temperature less than 20°C by 5 s. These practical findings may alter a surgeon's usage of these common energy devices.

  4. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  5. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques.more » Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s, to develop a representative n s( T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in n s. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s. In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the n s parameterization solely as a function of temperature. We also characterized the n s( T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in n s was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based n s( T) and geometric surface area-based n s( T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.« less

  6. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques

    DOE PAGES

    Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz; ...

    2015-03-06

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques.more » Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s, to develop a representative n s( T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in n s. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s. In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the n s parameterization solely as a function of temperature. We also characterized the n s( T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in n s was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based n s( T) and geometric surface area-based n s( T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.« less

  7. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and climate change, determining if the global water cycle is accelerating, and detecting the effects of increased greenhouse gases.

    The AIRS sounding suite is a tightly integrated remote sensing system that will be used to create global three-dimensional maps of temperature, humidity and clouds in the Earth's atmosphere with unprecedented accuracy. This will lead to better weather forecasts as well as a wealth of data that will be used to study and characterize and eventually predict the global climate. The AIRS system is made up of three of the six Aqua instruments - AIRS itself, which is an infrared sounder with an unprecedented 2378 spectral channels, complemented with a 4-channel visible/near-infrared imaging module; AMSU-A, which is a 15-channel microwave temperature sounder; and HSB, which is a 4-channel microwave humidity sounder. These instruments are carefully aligned with each other and scan the atmosphere in a synchronized way, giving us simultaneous multispectral views of a highly variable target.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  8. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  9. ASRDI oxygen technology survey. Volume 4: Low temperature measurement

    NASA Technical Reports Server (NTRS)

    Sparks, L. L.

    1974-01-01

    Information is presented on temperature measurement between the triple point and critical point of liquid oxygen. The criterion selected is that all transducers which may reasonably be employed in the liquid oxygen (LO2) temperature range are considered. The temperature range for each transducer is the appropriate full range for the particular thermometer. The discussion of each thermometer or type of thermometer includes the following information: (1) useful temperature range, (2) general and particular methods of construction and the advantages of each type, (3) specifications (accuracy, reproducibility, response time, etc.), (4) associated instrumentation, (5) calibrations and procedures, and (6) analytical representations.

  10. Measurements and Calculations of Microwave Radiance and Reflectivity for Storm-Associated Frozen Hydrometeors

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Sfokronick, Gail; Meneghini, Robert; Heymsfield, Gerald; Manning, Will

    2000-01-01

    During the TEFLUN-B (Texas-Florida under-flights for TRMM) field experiment of August-September, 1998, a number of ER-2 aircraft flights with a host of microwave instruments were conducted over many convective storms, including some hurricanes, in the coastal region of Florida and Texas. These instruments include MIR (Millimeter-wave Imaging Radiometer), AMPR (Advanced Microwave Precipitation Radiometer), and EDOP (ER-2 Doppler Radar). EDOP is operated at the frequency of 9.7 GHz, while the AMPR and the MIR together give eleven channels of radiometric measurements in the frequency range of 10-340 GHz. The concurrent measurements from these instruments provide unique data sets for studying the details of the microphysics of hydrometeors. Preliminary examination of these data sets shows features that are generally well understood; i.e., radiometric measurements at frequencies less than or equal to 37 GHz mainly respond to rain, while those at frequencies greater than or equal to 150 GHz, to ice particles above the freezing level. Model calculations of brightness temperature and radar reflectivity are performed and results compared with these measurements. For simplicity the analysis is limited to the anvil region of the storms where hydrometeors are predominantly frozen. Only one ice particle size distribution is examined in the calculations of brightness temperature and radar reflectivity in this initial study. Estimation of ice water path is made based on the best agreement between the measurements and calculations of brightness temperature and reflectivity. Problems associated with these analyses and measurement accuracy will be discussed.

  11. Calibration and temperature correction of a V-block refractometer

    NASA Astrophysics Data System (ADS)

    Le Menn, Marc

    2018-03-01

    V-block refractometers have been used since the 1940s to retrieve the refractive index values of substances or optical glasses. When used outside laboratories, they are submitted to temperature variations which degrade their accuracy by varying the refractive index of the glasses and the length of the prisms. This paper proposes a method to calibrate a double-prism V-block refractometer by retrieving the values of two coefficients at a constant temperature and by applying corrections to these coefficients when the instrument is used at different temperatures. This method is applied to calibrate in salinity a NOSS instrument which can be used at sea on drifting floats, and the results show that measurement errors can be reduced by a factor of 5.8.

  12. Preliminary Results of Altitude-Wind-Tunnel Investigation of X24C-4B Turbojet Engine. I - Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Prince, William R.; Hawkins, W. Kent

    1947-01-01

    Pressures and temperatures throughout the X24C-4B turbojet engine are presented in both tabular and graphical forms to show the effect of altitude, flight Mach number, and engine speed on the internal operation of the engine. These data were obtained in the NACA Cleveland altitude wind tunnel at simulated altitudes from 5000 to 45,000 feet, simulated flight Mach numbers from 0.25 to 1.08, and engine speeds from 4000 to 12,500 rpm. Location and detail drawings of the instrumentation installed at seven survey stations in the engine are shown. Application of generalization factors to pressures and temperatures at each measuring station for the range of altitudes investigated showed that the data did not generalize above an altitude of 25,000 feet. Total-pressure distribution at the compressor outlet varied only with change in engine speed. At altitudes above 35,000 feet and engine speeds above 11,000 rpm, the peak temperature at the turbine-outlet annulus moved inward toward the root of the blade, which is undesirable from blade-stress considerations. The temperature levels at the turbine outlet and the exhaust-nozzle outlet were lowered as the Mach number was increased. The static-pressure measurements obtained at each stator stage of the compressor showed a pressure drop through the inlet guide vanes and the first-stage rotor at high engine speeds. The average values measured by the manufacturer's instrumentation werein close agreement with the average values obtained with NACA instrumentation.

  13. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  14. Cryogenic thermal emittance measurements on small-diameter stainless steel tubing

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-12-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of ~2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  15. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  16. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Jahromi, A. E.; Tuttle, J. G.; Canavan, E. R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescoep includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of approximately 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by a running a warm gas through the lines to sublimate the water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the abosprtance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 300 K. This value leads to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  17. Assessing recent warming using instrumentally homogeneous sea surface temperature records.

    PubMed

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration's Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency's Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets.

  18. Should We Believe Atmospheric Temperatures Measured by Entry Accelerometers Traveling at "Slow" Near-Sonic Speeds?

    NASA Technical Reports Server (NTRS)

    Withers, Paul

    2005-01-01

    Mars Pathfinder's Accelerometer instrument measured an unexpected and large temperature inversion between 10 and 20 kilometer altitude. Other instruments have failed to detect similar temperature inversions. I test whether this inversion is real or not by examining what changes have to be made to the assumptions in the accelerometer data processing to obtain a more "expected" temperature profile. Changes in derived temperature of up to 30K, or 15%, are necessary, which correspond to changes in derived density of up to 25% and changes in derived pressure of up to 10%. If the drag coefficient is changed to satisfy this, then instead of decreasing from 1.6 to 1.4 from 20 kilometers to 10 kilometers, the drag coefficient must increase from 1.6 to 1.8 instead. If winds are invoked, then speeds of 60 meters per second are necessary, four times greater than those predicted. Refinements to the equation of hydrostatic equilibrium modify the temperature profile by an order of magnitude less than the desired amount. Unrealistically large instrument drifts of 0.5-1.0 meters per square second are needed to adjust the temperature profile as desired. However, rotational contributions to the accelerations may have the necessary magnitude and direction to make this correction. Determining whether this hypothesis is true will require further study of the rigid body equations of motion, with detailed knowledge of the positions of all six accelerometers. The paradox concerning this inversion is not yet resolved. It is important to resolve it because the paradox has some startling implications. At one extreme, are temperature profiles derived from accelerometers inherently inaccurate by 20K or more? At the other extreme, are RS temperature profiles inaccurate by this same amount?

  19. CONFERENCE NOTE: Sixth Symposium on Temperature Scheduled for March 1982

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The call for papers for the 6th Symposium on Temperature, Its Measurement and Control in Science and Industry has been issued. The Symposium is scheduled to take place in Washington, DC, USA during the week of March 14 18, 1982. Like its predecessors held in the years 1919, 1939, 1954, 1961, and 1971, the 6th Symposium will stress advances in the measurement of thermodynamic values of temperature, in temperature reference points, in temperature sensors and instruments for the control of temperature, and in the development and use of temperature scales. For the first time, an exhibit of thermometry will be a part of the Symposium. Manuscripts to be submitted for inclusion in the Symposium should be sent to the 6th Temperature Symposium Program Chairman, National Bureau of Standards, by September 15, 1981. Those papers accepted for the Symposium will be due in camera-ready form by February 15, 1982. Original papers on all of the topics listed above, as well as reviews of the past decade's progress in thermometry and temperature control, are solicited by the Symposium organizers. The Symposium arrangements and registration are in the care of the Instrument Society of America (represented on the Symposium General Committee by Mr C T Glazer, 67 Alexander Drive, PO Box 12277, Research Triangle Park, North Carolina, 27709, USA). Questions regarding the instrument exhibits should also be addressed to the ISA. The technical program for the Symposium is the responsibility of a committee headed by Dr J F Schooley, Room B-128 Physics Building, National Bureau of Standards, Washington, DC, 20234, USA. The Symposium proceedings will be published by the American Institute of Physics.

  20. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  1. Surface air temperature in a maritime metropolitan region

    Treesearch

    J. D. McTaggart-Cowen; J. W. S. Young

    1977-01-01

    In investigations of the micrometeorology of any area, one of the basic parameters required is the spatial and temporal distribution of the surface air temperature. A mobile instrument mounted on an automobile was used for measuring temperatures within the surface mixed layer. Details are presented of a case study at Saint John, New Brunswick, in a summer period. The...

  2. NCTM of liquids at high temperatures using polarization techniques

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.

  3. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  4. A chironomid-based reconstruction of summer temperatures in NW Iceland since AD 1650

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Caseldine, C. J.; Croudace, I. W.; Jarvis, S.; Wastegård, S.; Crowford, T. C.

    2011-05-01

    Few studies currently exist that aim to validate a proxy chironomid-temperature reconstruction with instrumental temperature measurements. We used a reconstruction from a chironomid percentage abundance data set to produce quantitative summer temperature estimates since AD 1650 for NW Iceland through a transfer function approach, and validated the record against instrumental temperature measurements from Stykkishólmur in western Iceland. The core was dated through Pb-210, Cs-137 and tephra analyses (Hekla 1693) which produced a well-constrained dating model across the whole study period. Little catchment disturbance, as shown through geochemical (Itrax) and loss-on-ignition data, throughout the period further reinforce the premise that the chironomids were responding to temperature and not other catchment or within-lake variables. Particularly cold phases were identified between AD 1683-1710, AD 1765-1780 and AD 1890-1917, with relative drops in summer temperatures in the order of 1.5-2°C. The timing of these cold phases agree well with other evidence of cooler temperatures, notably increased extent of Little Ice Age (LIA) glaciers. Our evidence suggests that the magnitude of summer temperature cooling (1.5-2°C) was enough to force LIA Icelandic glaciers into their maximum Holocene extent, which is in accordance with previous modelling experiments for an Icelandic ice cap (Langjökull).

  5. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  6. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-09-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  7. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  8. The 500-year temperature and precipitation fluctuations in the Czech Lands derived from documentary evidence and instrumental measurements

    NASA Astrophysics Data System (ADS)

    Dobrovolný, Petr; Brázdil, Rudolf; Kotyza, Oldřich; Valášek, Hubert

    2010-05-01

    Series of temperature and precipitation indices (in ordinal scale) based on interpretation of various sources of documentary evidence (e.g. narrative written reports, visual daily weather records, personal correspondence, special prints, official economic records, etc.) are used as predictors in the reconstruction of mean seasonal temperatures and seasonal precipitation totals for the Czech Lands from A.D. 1500. Long instrumental measurements from 1771 (temperatures) and 1805 (precipitation) are used as a target values to calibrate and verify documentary-based index series. Reconstruction is based on linear regression with variance and mean adjustments. Reconstructed series were compared with similar European documentary-based reconstructions as well as with reconstructions based on different natural proxies. Reconstructed series were analyzed with respect to trends on different time-scales and occurrence of extreme values. We discuss uncertainties typical for documentary evidence from historical archives. Besides the fact that reports on weather and climate in documentary archives cover all seasons, our reconstructions provide the best results for winter temperatures and summer precipitation. However, explained variance for these seasons is comparable to other existing reconstructions for Central Europe.

  9. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  10. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  11. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  12. Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.

    PubMed

    Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena

    2016-12-01

    The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.

  13. Development of early age shrinkage stresses in reinforced concrete bridge decks

    NASA Astrophysics Data System (ADS)

    William, Gergis W.; Shoukry, Samir N.; Riad, Mourad Y.

    2008-12-01

    This paper describes the instrumentation and data analysis of a reinforced concrete bridge deck constructed on 3-span continuous steel girders in Evansville, West Virginia. An instrumentation system consisting of 232 sensors is developed and implemented specifically to measure strains and temperature in concrete deck, strains in longitudinal and transverse rebars, the overall contraction and expansion of concrete deck, and crack openings. Data from all sensors are automatically collected every 30 minutes starting at the time of placing the concrete deck. Measured strain and temperature time-histories were used to calculate the stresses, which were processed to attenuate the thermal effects due to daily temperature changes and isolate the drying shrinkage component. The results indicated that most of concrete shrinkage occurs during the first three days. Under the constraining effects from stay-in-place forms and reinforcement, early age shrinkage leads to elevated longitudinal stress, which is the main factor responsible for crack initiation.

  14. FIRE_ACE_UWCV580_UWA

    Atmospheric Science Data Center

    2017-04-26

    ... of Washington CV-580 Instrument:  Platinum resistance Chilled mirror Particle Measuring Systems Electron ... Search Parameters:  Pressure Temperature Dew point Humidity Turbulence Liquid water content ...

  15. Thermo-electrochemical instrumentation of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit

    2018-03-01

    The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.

  16. Measuring Surface Bulk Elemental Composition on Venus

    NASA Technical Reports Server (NTRS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McCclanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    2017-01-01

    The extreme surface environment (462 C, 93 bars pressure) of Venus makes subsurface measurements of its bulk elemental composition extremely challenging. Instruments landed on the surface of Venus must be enclosed in a pressure vessel. The high surface temperatures also require a thermal control system to keep the instrumentation temperatures within their operational range for as long as possible. Since Venus surface probes can currently operate for only a few hours, it is crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x.9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays

  17. Measuring Surface Bulk Elemental Composition on Venus

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McClanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    Bulk elemental composition measurements of the subsurface of Venus are challenging because of the extreme surface environment (462 ˚C, 93 bars pressure). Instruments provided by landed probes on the surface of Venus must therefore be enclosed in a pressure vessel. The high surface temperatures require a thermal control system that keeps the instrumentation and electronics within their operating temperature range for as long as possible. Currently, Venus surface probes can operate for only a few hours. It is therefore crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner1 oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x .9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays.

  18. Program for an improved hypersonic temperature-sensing probe

    NASA Technical Reports Server (NTRS)

    Reilly, Richard J.

    1993-01-01

    Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.

  19. GISS Analysis of Surface Temperature Changes

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M.

    1999-01-01

    We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.

  20. AGARD Flight Test Instrumentation Series. Volume 8. Linear and Angular Position Measurement of Aircraft Components

    DTIC Science & Technology

    1977-01-01

    art=m The Netherlands 1.0 ] I This volwme concentrates on flight teat instrumentation for determining the position of movable air - craft components...form an integral part of a transducer. The discussion in this volume has been limited to measurements of the relative positions of two air - crft...often cause diffi ties. Special types, for instance, the brushless types, can be used at higher temperatures up to about 3000 C. Chaning the

  1. High-temperature, high-pressure optical port for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Delcher, Ray; Nemeth, ED; Powers, W. T.

    1993-01-01

    This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.

  2. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    DTIC Science & Technology

    2016-11-29

    travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents

  3. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    DTIC Science & Technology

    2016-11-29

    travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents

  4. 40 CFR 63.1350 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., operate, calibrate, and maintain an instrument for continuously measuring and recording the exhaust gas... continuous monitor to record the temperature of the exhaust gases from the kiln, in-line kiln/raw mill, and... Administrator. (iii) The calibration of all thermocouples and other temperature sensors must be verified at...

  5. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    PubMed Central

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes. PMID:28903231

  6. Thermal and heat flow instrumentation for the space shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Hartman, G. J.; Neuner, G. J.; Pavlosky, J.

    1974-01-01

    The 100 mission lifetime requirement for the space shuttle orbiter vehicle dictates a unique set of requirements for the Thermal Protection System (TPS) thermal and heat flow instrumentation. This paper describes the design and development of such instrumentation with emphasis on assessment of the accuracy of the measurements when the instrumentation is an integral part of the TPS. The temperature and heat flow sensors considered for this application are described and the optimum choices discussed. Installation techniques are explored and the resulting impact on the system error defined.

  7. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  8. Measurements and Calculations of Microwave Radiance and Reflectivity for Storm-Associated Frozen Hydrometeors

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Skofronick-Jackson, Gail; Meneghini, Robert; Heymsfield, Gerald; Manning, Will; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    During the TEFLUN-B (Texas-Florida under-flights for the Tropical Rainfall Measuring Mission (TRMM)) field experiment of August-September, 1998, a number of ER-2 aircraft flights with a host of microwave instruments were conducted over many convective storms, including some hurricanes, in the coastal region of Florida and Texas. These instruments include MIR (Millimeter-wave Imaging Radiometer), AMPR (Advanced Microwave Precipitation Radiometer), and EDOP (ER-2 Doppler Radar). EDOP is operated at the frequency of 9.7 GHz, while the AMPR and the MIR together give eleven channels of radiometric measurements in the frequency range of 10-340 GHz. The concurrent measurements from these instruments provide unique data sets for studying the details of the microphysics of hydrometeors. Preliminary examination of these data sets shows features that are generally well understood; i.e., radiometric measurements at frequencies <= 37 GHz mainly respond to rain, while those at frequencies >= 150 GHz, to snow and ice clouds above the freezing level. In this paper we present results of comparisons between these measurements and model calculations of brightness temperature and radar reflectivity. For simplicity the analysis is limited to the anvil region of the storms where only frozen hydrometeors are present. Various models of particle size distribution (e.g., Gunn-Marshall, Sekhon-Srivastava, and the Central Equatorial Pacific Experiment (CEPEX)) are examined in the calculations of brightness temperatures at the MIR frequencies and radar reflectivity at the EDOP frequency. Estimation of ice water path is made based on the best agreement between the measurements and calculations of brightness temperature and reflectivity. Problems associated with these analyses and measurement accuracy will be discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhroob, M.; Boyd, G.; Hasib, A.

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature andmore » pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)« less

  10. Testing and ground calibration of DREAMS-H relative humidity device

    NASA Astrophysics Data System (ADS)

    Genzer, Maria; Hieta, Maria; Nikkanen, Timo; Schmidt, Walter; Kemppinen, Osku; Harri, Ari-Matti; Haukka, Harri

    2015-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of the ESA ExoMars 2016/Schiaparelli lander. DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. The DREAMS instruments and scientific goals are described in [1]. Here we describe testing and ground calibration of the relative humidity device, DREAMS-H, provided to the DREAMS payload by the Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. The same kind of device is part of the REMS instrument package onboard MSL Curiosity Rover [2][3]. DREAMS-H is based on Vaisala Humicap® technology adapted for use in Martian environment by the Finnish Meteorological Institute. The device is very small and lightweighed, with total mass less than 20 g and consuming only 15 mW of power. The Humicap® sensor heads contain an active polymer film that changes its capacitance as function of relative humidity, with 0% to 100% RH measurement range. The dynamic range of the device gets smaller with sensor temperature, being in -70°C approximately 30% of the dynamic range in 0°C [3]. Good-quality relative humidity measurements require knowing the temperature of the environment in which relative humidity is measured. An important part of DREAMS-H calibration was temperature calibration of Vaisala Thermocap® temperature sensors used for housekeeping temperature measurements of the DREAMS-H device. For this, several temperature points in the desired operational range were measured with 0.1°C accuracy traceable to national standards. The main part of humidity calibration of DREAMS-H flight models was done in subzero temperatures in a humidity generator of the Finnish Center of Metrology and Accreditation (MIKES). Several relative humidity points ranging from almost dry to almost wet were measured at several temperature points between 0°C and -70°C. Dry baseline was established in vacuum measurements at the Finnish Meteorological Institute. In addition to stable relative humidity points, measurements in changing relative humidity and temperature were done in order to get information about the lag of the sensor. References: 1] Esposito, F. et al: The DREAMS Experiment on the ExoMars 2016 Mission for the Study of Martian Environment during the Dust Storm Season, The Fifth International Workshop on the Mars Atmosphere, 13-16 January 2014, Oxford, UK, 2014. [2] Gómez-Elvira, J. et al.: REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170, pp. 583-640, 2012. [3] Harri, A.-M. et al.: Mars Science Laboratory Relative Humidity Observations - Initial Results, JGR Planets, Vol 119 Issue 9, pp. 2132-2147, 2014.

  11. Development of techniques and associated instrumentation for high temperature emissivity measurements

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funaa, A. I.; Cassady, P. E.

    1973-01-01

    Studies were made to develop a test apparatus for the measurement of total emittance of materials under repeated exposure to simulated earth entry conditions. As no existing test facility met the emittance measurement and entry simulation goals, a new apparatus was designed, fabricated and checked out. This apparatus has the capability of performing total and spectral emittance measurements during cyclic temperature and pressure exposure under sonic and supersonic flow conditions. Emittance measurements were performed on a series of oxidized superalloys, silicide coated columbium alloys and ceramic coatings.

  12. Optical Bench Breadboard Of An Imaging Fourier Transform Spectrometer (iFTS) For Climate Observations.

    NASA Astrophysics Data System (ADS)

    Singh, G.; McElroy, C. T.; Vaziri, Z.; Barton, D.; Blair, G.; Grandmont, F. J.

    2017-12-01

    The fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states that the warming of zonal mean surface temperature at higher latitudes exceeds the global average temperature change. This poses a great problem as the warming leads to the thawing of the permafrost in the Arctic region that acts as an envelope to trap greenhouse gases such as carbon dioxide and methane. Therefore, there is an urgent need to develop scientific instruments that can be flown in space over the Arctic to provide atmospheric information to quantify the evolution and transport of these gases. The Laboratory for Atmospheric Remote Sounding from Space (LARSS) at York University is developing an imaging Fourier transform spectrometer (IFTS) for climate observations by atmospheric sounding. The spectrometer has two individual channels, one centred at 1650 nm to measure the atmospheric column of carbon dioxide and methane, and another centred at 762 nm to measure the temperature-pressure profile by making measurements of the O2A band. A Commercial-Off-The-Shelf (COTS) modulator has been purchased from ABB Inc. of Quebec City. Interferometers are widely used in many scientific laboratories to measure concentrations of different constituents in a given sample. The performance of these instruments is highly dependent on environmental effects and various properties of the input beam such as coherence, polarity, etc. Thus, the use of such instruments to measure atmospheric concentration is complicated and challenging. The immediate goal of this project is to develop an IFTS system which can measure backscattered radiation in a laboratory environment and develop design elements that will make it operable in the space environment. Progress on the project and information concerning some of the issues listed above will be discussed. The developments which flow from this research project will support efforts by Environment and Climate Change Canada, the Canadian Space Agency and ABB, Inc. in developing a satellite instrument.

  13. The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.

    2018-02-01

    The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

  14. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  15. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Astrophysics Data System (ADS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-06-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  16. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  17. STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA

    NASA Technical Reports Server (NTRS)

    McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.

    2010-01-01

    During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.

  18. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-01-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  19. [Color loss evaluation of a dietary formulation in function of temperature, storage time and packaging].

    PubMed

    Torres, A; Guerra, M

    1996-03-01

    Color loss of a dietetic formulae based on pumpkin (Cucurbita maxima), rice, hen and vegetable oils was evaluated. The product was under an accelerated test at temperatures of 40, 50 and 70 degrees C for a month. The kinetic reaction of color loss (quality loss indicator) was obtained with n = 1 and Ea = 11.5 Kcal/mol. The product was also stored for sixth months at temperatures of 25, 30, 35 and 40 degrees C using glass containers, laminated and composite cans (non metallic). The color was measured by a colorimetric method and by sensory evaluation under the defined conditions of time, temperature and package. The statistical analyses of the color loss measured by instrument was performed by a randomized block design with a significance level of p < 0.05. The results obtained both by the instrument and by the sensory evaluation method, showed that the temperature and storage time has significant effect (p < 0.05) on the other hand, the package does not have a significant effect. It was concluded from this study that the product could be stored for 6 months at temperatures below 35 degrees C without changes in color.

  20. Biomedical Interdisciplinary Curriculum Project: BIP (Biomedical Instrumentation Package) User's Manual.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described is the Biomedical Instrument Package (BIP) and its use. The BIP was developed for use in understanding colorimetry, sound, electricity, and bioelectric phenomena. It can also be used in a wide range of measurements such as current, voltage, resistance, temperature, and pH. Though it was developed primarily for use in biomedical science…

  1. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  2. Acquisition of Ice-Tethered Profilers with Velocity (ITP-V) Instruments for Future Arctic Studies

    DTIC Science & Technology

    2016-11-15

    instrument that measures sea water temperature and salinity versus depth, the ITP-V adds a multi-axis acoustic -travel-time current meter and...housing capped by an ultra-high-molecular-weight polyethylene dome. The electronics case sits within a foam body designed to provide buoyancy for...then transmits them by satellite to a logger computer at WHO I. The ITP-V instruments add a multi-axis acoustic -travel-time current meter and

  3. Vestibular Function Measurement Devices

    PubMed Central

    Miles, Richard D.; Zapala, David A.

    2015-01-01

    Vestibular function laboratories utilize a multitude of diagnostic instruments to evaluate a dizzy patient. Caloric irrigators, oculomotor stimuli, and rotational chairs produce a stimulus whose accuracy is required for the patient response to be accurate. Careful attention to everything from cleanliness of equipment to threshold adjustments determine on a daily basis if patient data are going to be correct and useful. Instrumentation specifications that change with time such as speed and temperature must periodically be checked using calibrated instruments. PMID:27516710

  4. Determination of the Thermal Offset of the Eppley Precision Spectral Pyranometer

    NASA Technical Reports Server (NTRS)

    Haeffelin, Martial; Kato, Seiji; Smith, Amie M.; Rutledge, C. Ken; Charlock, Thomas P.; Mahan, J. Robert

    2001-01-01

    Eppley's precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between + 5 and - 10 W/sq m. We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net-IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach - 15 W/sq m under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net-IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (+/- 1 W/sq m). The offset computed from net-IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

  5. Determination of the thermal offset of the Eppley precision spectral pyranometer.

    PubMed

    Haeffelin, M; Kato, S; Smith, A M; Rutledge, C K; Charlock, T P; Mahan, J R

    2001-02-01

    Eppley's precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between +5 and -10 W m(-2). We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net-IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach -15 W m(-2) under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net-IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (+/-1 W m(-2)). The offset computed from net-IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

  6. Thermo Scientific Ozone Analyzer Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springston, S. R.

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data ismore » being collected.« less

  7. A Field Assessment of a Prototype Meter for Measuring the Wet-Bulb Globe-Thermometer Index

    PubMed Central

    Walters, J. D.

    1968-01-01

    A prototype electronic instrument for the direct measurement of the wet-bulb globe-thermometer index is described. An assessment is made of its accuracy, as compared with W.B.G.T. indices calculated from conventional thermometric data, and a comparison is made between W.B.G.T. values read from the meter and effective or corrected effective temperatures derived from separate thermometric and air velocity recording instruments in the same climates. The instrument proved to be reliable and accurate over a wide range of climates and is a useful self-contained device for use in habitability surveys and similar investigations. Images PMID:5663429

  8. Homemade thermometry instruments in the field.

    PubMed

    Pasquier, Mathieu; Rousson, Valentin; Zen Ruffinen, Grégoire; Hugli, Olivier

    2012-03-01

    Esophageal temperature is the gold standard for in-the-field temperature monitoring in hypothermic victims with cardiac arrest. For practical reasons, some mountain rescue teams use homemade esophageal thermometers to measure esophageal temperature; these consist of nonmedical inside/outside temperature monitoring instruments that have been modified to allow for esophageal insertion. We planned a study to determine the accuracy of such thermometers. Two of the same model of digital cabled indoor/outdoor thermometer were modified and tested in comparison with a reference thermometer. The thermometers were tested in a water bath at different temperatures between 10°C and 35.2°C. Three hundred measurements were taken with each thermometer. Our experimental study showed that both homemade thermometers provided a good correlation and a clinically acceptable agreement in comparison with the reference thermometer. Measurements were within 0.5°C in comparison with the reference thermometer 97.5% of the time. The homemade thermometers performed well in vitro, in comparison with a reference thermometer. However, because these devices in their original form are not designed for clinical use, their use should be restricted to situations when the use of a conventional esophageal thermometer is impossible. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Measuring stream temperature with digital data loggers: a user's guide

    Treesearch

    Jason Dunham; Gwynne Chandler; Bruce Rieman; Don Martin

    2005-01-01

    Digital data loggers (thermographs) are among the most widespread instruments in use for monitoring physical conditions in aquatic ecosystems. The intent of this protocol is to provide guidelines for selecting and programming data loggers, sampling water temperatures in the field, data screening and analysis, and data archiving.

  10. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  11. Development of a Sodium Lidar for Space-Borne Missions

    NASA Astrophysics Data System (ADS)

    Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.

    2015-12-01

    We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the ISS as well as show current progress results.

  12. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  13. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  14. In situ methods for measuring thermal properties and heat flux on planetary bodies

    PubMed Central

    Kömle, Norbert I.; Hütter, Erika S.; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-01-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements. PMID:21760643

  15. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  16. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.

  17. Comparing tiltmeters for crustal deformation measurement--a preliminary report.

    PubMed

    Wyatt, F; Bilham, R; Beavan, J; Sylvester, A G; Owen, T; Harvey, A; Macdonald, C; Jackson, D D; Agnew, D C

    1984-10-01

    A collection of high-precision tiltmeters is being operated at Pinon Flat Observatory, southern California, both to compare instruments and to measure tectonic deformation. We report on 1.2 years of data from four of these: two Michelson-Gale long fluid tiltmeters, one long center-pressure tiltmeter, and a shallow borehole tiltmeter. The three long-base instruments are all located on the same baseline, with a precise leveling line running between their end-monuments. At nontidal frequencies, only the two Michelson-Gale instruments show some coherence (gamma 2 = .3 for periods of 2 to 4 days), while the center-pressure instrument is correlated with air temperature at periods from a few days to a few weeks. The most stable tilt record shows a secular rate of 0.28 mu rad/a, which may be real. Over much longer times, leveling to specially stabilized bench-marks should confirm this. Comparing instruments has identified more and less successful measurement techniques; it appears that low-noise data will most probably be produced only by relatively complex and expensive instruments, though even for these, the operating costs over any reasonable lifetime will exceed the capital cost. Even the best existing sensors must be improved to measure continuous tectonic motions.

  18. Measurement of frost characteristics on heat exchanger fins. Part 1: Test facility and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, L.; Chen, H.; Besant, R.W.

    1999-07-01

    A special test facility was developed to characterize frost growing on heat exchanger fins where the cold surfaces and the air supply conditions were similar to those experienced in freezers, i.e., cold surface temperatures ranging from {minus}35 C to {minus}40 C, air supply temperatures from {minus}10 C to {minus}20 C, and 80% to 100% relative humidity (RH). This test facility included a test section with removable fins to measure the frost height and mass concentration. Frost height on heat exchanger fins was measured using a new automated laser scanning system to measure the height of frost and its distribution onmore » selected fins. The increase in air pressure loss resulting from frost growth on the fins was measured directly in the test loop. The frost mass accumulation distribution was measured for each test using special pre-etched fins that could be easily subdivided and weighed. The total heat rate was measured using a heat flux meter. These frost-measuring instruments were calibrated and the uncertainty of each is stated.« less

  19. Installing scientific instruments into a cold LHe dewar - The Gravity Probe B approach

    NASA Technical Reports Server (NTRS)

    Parmley, Richard T.; Kusunic, Keith; Reynolds, Gary; Stephenson, Sam; Alexander, Keith

    1990-01-01

    Gravity Probe B is an orbital test of Einstein's general theory of relativity using gyroscopes. The precession of the gyroscopes will measure both the geodetic effect (6.6 arcsec/yr) through the curved space-time surrounding the earth and the motional effect (0.042 arcsec/yr) due to the rotating earth dragging space-time around with it. To achieve the extraordinary accuracies needed to measure these small precessions, it is necessary to have the gyroscopes operating in the following environments: a vacuum of less than 10 exp -10 torr; an acceleration level of less than 10 exp -10 g's; a magnetic field of less than 10 exp -7 gauss; and a temperature near 2 K. This paper discusses designs that allow scientific instruments to be installed into a dewar at 4.2 K. Methods for structurally supporting the instruments, transferring heat across joints at low temperature in vacuum, and excluding air during the insertion process are discussed. The structural support method is designed for Shuttle launch loads.

  20. High spectral resolution lidar at the university of wisconsin-madison

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper describes the modifications done on the University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) that improved the instrument's performance. The University of Wisconsin HSRL lidars designed by our group at the Space Science and Engineering Center were deployed in numerous field campaigns in various locations around the world. Over the years the instruments have undergone multiple modifications that improved the performance and added new measurement capabilities such as atmospheric temperature profile and extinction cross-section measurements.

  1. Validating a new device for measuring tear evaporation rates.

    PubMed

    Rohit, Athira; Ehrmann, Klaus; Naduvilath, Thomas; Willcox, Mark; Stapleton, Fiona

    2014-01-01

    To calibrate and validate a commercially available dermatology instrument to measure tear evaporation rate of contact lens wearers. A dermatology instrument was modified by attaching a swim goggle cup such that the cup sealed around the eye socket. Results for the unmodified instrument are dependent on probe area and enclosed volume. Calibration curves were established using a model eye, to account for individual variations in chamber volume and exposed area. Fifteen participants were recruited and the study included a contact lens wear and a no contact lens wear stage. Day and diurnal variation of the measurements were assessed by taking the measurement three times a day over 2 days. The coefficient of repeatability of the measurement was calculated and a linear mixed model assessed the influence of humidity, temperature, contact lens wear, day and diurnal variations on tear evaporation rate. The associations between variables were assessed using Pearson correlation coefficient. Absolute evaporation rates with and without contact lens wear were calculated based on the new calibration. The measurements were most repeatable during the evening with no lens wear (COR = 49 g m⁻² h) and least repeatable during the evening with contact lens wear (COR = 93 g m⁻² h). Humidity (p = 0.007), and contact lens wear (p < 0.01), significantly affected the tear evaporation rate. However, temperature (p = 0.54) diurnal variation (p = 0.85) and different days (p = 0.65) had no significant effect after controlling for humidity. Tear evaporation rates can be measured using a modified dermatology instrument. Measurements were higher and more variable with lens wear consistent with previous literature. Control of environmental conditions is important as a higher humidity results in a reduced evaporation rate. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  2. Validation of the BUV satellite ozone sensor using the rocket ozonesonde

    NASA Technical Reports Server (NTRS)

    Thomas, R. W. L.; Pearce, W. A.; Holland, A. C.; Wright, D. U.

    1982-01-01

    Satellite instruments such as the backscattered ultraviolet (BUV) apparatus, have been in operation for a number of years. One current difficulty is the validation of the ozone inferences obtained from the BUV measurements using independent instruments. For higher altitudes rocket instruments are necessary. Two instruments currently under development include a chemiluminescent detector described by Hilsenrath et al. (1969) and a filter photometer rocket ozonesonde (Rocoz) developed by Krueger and McBridge (1968). The present investigation is concerned with an analysis of the Rocoz system, the information content of the measurements, and the utility of the system for intercomparison with the BUV system. It is found that the sampling characteristics of the Rocoz and BUV systems exhibit some fundamental differences. However, their results can be related through knowledge of the relation between pressure and altitude. This is best obtained through the solution of the hypsometric equation using rocket temperature measurements.

  3. MTF measurement of IR optics in different temperature ranges

    NASA Astrophysics Data System (ADS)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  4. KiwiSpec: The Design and Performance of a High Resolution Echelle Spectrograph for Astronomy

    NASA Astrophysics Data System (ADS)

    Gibson, Steven Ross

    This document describes the design, analysis, construction and testing of KiwiSpec, a fibre-fed, high resolution astronomical spectrograph of an asymmetric white pupil design. The instrument employs an R4, 31.6 groove mm-1 échelle grating for primary dispersion and a 725 lines mm-1 volume phase holographic (VPH) based grism for cross-dispersion. Two versions of the prototype were designed and constructed: an 'in-air' prototype, and a prototype featuring a vacuum chamber (to increase the stability of the instrument). The KiwiSpec optical design is introduced, as well as a description of the theory behind a cross-dispersed échelle spectrograph. The results of tolerancing the optical design are reported for alignment, optical fabrication, and optical surface quality groups of parameters. The optical windows of an iodine cell are also toleranced. The opto-mechanical mounts of both prototypes are described in detail, as is the design of the vacuum chamber system. Given the goal of 1 m/s radial velocity stability, analyses were undertaken to determine the allowable amount of movement of the vacuum windows, and to determine the allowable changes in temperature and pressure within and outside of the vacuum chamber. The spectral efficiency of the instrument was estimated through a predictive model; this was calculated for the as-built instrument and also for an instrument with ideal, high-efficiency coatings. Measurements of the spectral efficiency of various components of the instrument are reported, as well as a description of the measurement system developed to test the efficiency of VPH gratings. On-sky efficiency measurements from use of KiwiSpec on the 1-m McLellan telescope at Mt John University Observatory are reported. Two possible exposure meter locations are explored via an efficiency model, and also through the measurement of the zero-order reflectivity of the échelle grating. Various stability aspects of the design are investigated. These include the stability of the optical mounts with temperature changes, and also the effect of the expansion and contraction of the supporting optical tables. As well, the stability of the in-air prototype was determined through measurement of the movement of thorium-argon emission lines within spectra as the temperature, atmospheric pressure and relative humidity (naturally) varied. Current and planned testing for determining the stability of the vacuum chamber prototype is discussed.

  5. Analysis of seasonal strain measurements in asphalt materials under accelerated pavement testing and comparing field performance and laboratory measured binder tension properties.

    DOT National Transportation Integrated Search

    2009-06-01

    Seasonal variation of measured pavement responses with temperature and its relationship to pavement performance has not been : thoroughly evaluated for ALF Experiments II and III. Such information may be used to improve instrumentation strategies in ...

  6. 40 CFR 92.105 - General equipment specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurements. Instruments used to measure engine power output shall comply with the requirements of § 92.106... they produce a permanent visual data record of a quality equal to or better than those required by this... calculating the engine intake humidity; (ii) The temperature of the fuel, in volume measuring flow rate...

  7. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic temperature control instruments. 77...

  8. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic temperature control instruments. 77...

  9. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic...

  10. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic...

  11. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic...

  12. Hot spot temperature measurements in DT layered implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Ma, T.; Macphee, A.; Callahan, D.; Chen, H.; Cerjan, C.; Clark, D.; Edgell, D.; Hurricane, O.; Izumi, N.; Khan, S.; Jarrott, L.; Kritcher, A.; Springer, P.

    2015-11-01

    The temperature of the burning DT hot spot in an ICF implosion is a crucial parameter in understanding the thermodynamic conditions of the fuel at stagnation and and the performance of the implosion in terms of alpha-particle self-heating and energy balance. The continuum radiation spectrum emitted from the hot spot provides an accurate measure of the emissivity-weighted electron temperature. Absolute measurements of the emitted radiation are made with several independent instruments including spatially-resolved broadband imagers, and space- and time-integrated monochromatic detectors. We present estimates of the electron temperature in DT layered implosions derived from the radiation spectrum most consistent with the available measurements. The emissivity-weighted electron temperatures are compared to the neutron-averaged apparent ion temperatures inferred from neutron time-of-flight detectors. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated in to the first scientific measurement campaign. This campaign consisted of a single flight over the Gulf of Finland simultaneously with R/V Aranda's (Finnish Marine Research Institute) ground truth collection. The vessel measured e.g. sea surface salinity and sea temperature along the test lines measured with the radiometer system. During the autumn of 2007 HUT-2D participated in the CoSMOS-2007 campaign, in which three datasets from the Finnish coastal area were measured in order to demonstrate sea salinity retrieval. The campaign consisted of two two-hour measurement flights over an expected salinity gradient with HUT-2D and the Danish conventional radiometer EMIRAD. For the reference data, sea surface temperature and salinity were measured along the gradient line from a vessel. The third flight included different maneuvers, such as wing-wags, circles, and clover leafs, over the Gulf of Finland. During the same autumn, HUT-2D was used to measure datasets in northern Finland for soil moisture retrieval purposes. The flight consisted of measurement flights over test areas in Sodankylä, and Pallas. These test sites were equipped with weather stations of Finnish Meteorological Institute. Also soil moisture samples were collected at the sites. During the transition flights (approx. 800 km) from southern Finland to these test sites HUT-2D measured continuously, however, ground reference data for soil moisture was not collected beyond a few weather stations overpassed. Land classification maps for the transit flights are available. The most significant measurement campaign of HUT-2D so far was carried out during the spring of 2008. This 6-week campaign consisted of measurements of soil moisture test sites in Germany (Danube Catchment Area, DCA) and Spain (Valencia Anchor Station, VAS). The campaign at the DCA site consisted of four two-hour flights over the selected test lines in the Danube river catchment area, which is actively used for soil moisture studies. The VAC site consisted of 10 x 10 kilometers area also used for soil moisture studies. This area was mapped with HUT-2D in four different days.

  14. Some advances in experimentation supporting development of viscoplastic constitutive models

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Robinson, D. N.

    1985-01-01

    The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments performed at room temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-placed calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.

  15. Some advances in experimentation supporting development of viscoplastic constitutive models

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Robinson, D. N.

    1985-01-01

    The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments conducted at room and elevated temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-place calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.

  16. A global database with parallel measurements to study non-climatic changes

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Auchmann, Renate; Aguilar, Enric

    2015-04-01

    n this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, under the umbrella of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., relocations and changes in instrumentation, instrument height or data collection and manipulation procedures. These so-called inhomogeneities distort the climate signal and can hamper the assessment of trends and variability. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. .The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens, efforts to reduce undercatchment of precipitation or the move to automatic weather stations. Thus a large global parallel dataset is highly desirable as it allows for the study of systematic biases in the global record. In the ISTI Parallel Observations Science Team (POST), we will gather parallel data in their native format (to avoid undetectable conversion errors we will convert it to a standard format ourselves). We are interested in data from all climate variables at all time scales; from annual to sub-daily. High-resolution data is important for understanding the physical causes for the differences between the parallel measurements. For the same reason, we are also interested in other climate variables measured at the same station. For example, in case of parallel temperature measurements, the influencing factors are expected to be insolation, wind and clouds cover; in case of parallel precipitation measurements, wind and temperature are potentially important. Metadata that describe the parallel measurements is as important as the data itself and will be collected as well. For example, the types of the instruments, their siting, height, maintenance, etc. Because they are widely used to study moderate extremes, we will compute the indices of the Expert Team on Climate Change Detection and Indices (ETCCDI). In case the daily data cannot be shared, we would appreciate these indices from parallel measurements. For more information: http://tinyurl.com/ISTI-Parallel

  17. A global database with parallel measurements to study non-climatic changes

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Auchmann, Renate; Aguilar, Enric; Auer, Ingeborg; Azorin-Molina, Cesar; Brandsma, Theo; Brunetti, Michele; Dienst, Manuel; Domonkos, Peter; Gilabert, Alba; Lindén, Jenny; Milewska, Ewa; Nordli, Øyvind; Prohom, Marc; Rennie, Jared; Stepanek, Petr; Trewin, Blair; Vincent, Lucie; Willett, Kate; Wolff, Mareile

    2016-04-01

    In this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, in the framework of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long-term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., (i) station relocations, (ii) instrument height changes, (iii) instrumentation changes, (iv) observing environment changes, (v) different sampling intervals or data collection procedures, among others. These so-called inhomogeneities distort the climate signal and can hamper the assessment of long-term trends and variability of climate. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location, different radiation shields, etc.). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of air temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens, relocations (to airports) efforts to reduce undercatchment of precipitation or the move to automatic weather stations. Thus a large global parallel dataset is highly desirable as it allows for the study of systematic biases in the global record. We are interested in data from all climate variables at all time scales; from annual to sub-daily. High-resolution data is important for understanding the physical causes for the differences between the parallel measurements. For the same reason, we are also interested in other climate variables measured at the same station. For example, in case of parallel air temperature measurements, the influencing factors are expected to be global radiation, wind, humidity and cloud cover; in case of parallel precipitation measurements, wind and wet-bulb temperature are potentially important. Metadata that describe the parallel measurements is as important as the data itself and will be collected as well. For example, the types of the instruments, their siting, height, maintenance, etc. Because they are widely used to study moderate extremes, we will compute the indices of the Expert Team on Climate Change Detection and Indices (ETCCDI). In case the daily data cannot be shared, we would appreciate contributions containing these indices from parallel measurements. For more information: http://tinyurl.com/ISTI-Parallel

  18. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  19. A global database with parallel measurements to study non-climatic changes

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Auchman, Renate; Aguilar, Enric

    2017-04-01

    In this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, in the framework of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long-term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., (i) station re- locations, (ii) instrument height changes, (iii) instrumentation changes, (iv) observing environment changes, (v) different sampling intervals or data collection procedures, among others. These so-called inhomogeneities distort the climate signal and can hamper the assessment of long-term trends and variability of climate. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location, different radiation shields, etc.). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of air temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens, relocations (to airports) efforts to reduce undercatchment of precipitation or the move to automatic weather stations. Thus a large global parallel dataset is highly desirable as it allows for the study of systematic biases in the global record. We are interested in data from all climate variables at all time scales; from annual to sub-daily. High-resolution data is important for understanding the physical causes for the differences between the parallel measurements. For the same reason, we are also interested in other climate variables measured at the same station. For example, in case of parallel air temperature measurements, the influencing factors are expected to be global radiation, wind, humidity and cloud cover; in case of parallel precipitation measurements, wind and wet-bulb temperature are potentially important.

  20. Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1999-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.

  1. The Infrared Sensor Suite for SnowEx 2017

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Chickadel, C. C.; Crawford, C. J.; DeMarco, E. L.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Lundquist, J. D.; Lunsford, A. W.

    2017-01-01

    SnowEx is a winter airborne and field campaign designed to measure snow-water equivalent in forested landscapes. A major focus of Year 1 (2016-17) of NASA's SnowEx campaign will be an extensive field program involving dozens of participants from U.S. government agencies and from many universities and institutions, both domestic and foreign. Along with other instruments, two infrared (IR) sensors will be flown on a Naval Research Laboratory P-3 aircraft. Surface temperature is a critical input to hydrologic models and will be measured during the SnowEx mission. A Quantum Well Infrared Photodetector (QWIP) IR imaging camera system will be flown along with a KT-15 remote thermometer to aid in the calibration of the IR image data. Together, these instruments will measure surface temperature of snow and ice targets to an expected accuracy of less than 1C.

  2. Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor

    NASA Astrophysics Data System (ADS)

    Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team

    2017-10-01

    Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.

  3. Optical Instrumentation for Temperature and Velocity Measurements in Rig Turbines

    NASA Technical Reports Server (NTRS)

    Ceyhan, I.; dHoop, E. M.; Guenette, G. R.; Epstein, A. H.; Bryanston-Cross, P. J.

    1998-01-01

    Non-intrusive optical measurement techniques have been examined in the context of developing robust instruments which can routinely yield data of engineering utility in high speed turbomachinery test rigs. The engineering requirements of such a measurement are presented. Of particular interest were approaches that provide both velocity and state-variable information in order to be able to completely characterize transonic flowfields. Consideration of all of the requirements lead to the selection of particle image velocimetry (PIV) for the approach to velocity measurement while laser induced fluorescence of oxygen (O2 LIF) appeared to offer the most promise for gas temperature measurement. A PIV system was developed and demonstrated on a transonic turbine stage in the MIT blowdown turbine facility. A comprehensive data set has been taken at one flow condition. Extensive calibration established the absolute accuracy of the velocity measurements to be 3-5 %. The O2 LIF proved less successful. Although accurate for low speed flows, vibrational freezing of O2 prevented useful measurements in the transonic, 300-600 K operating range of interest here.

  4. The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)

    1994-01-01

    The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.

  5. A field study of air flow and turbulent features of advection fog

    NASA Technical Reports Server (NTRS)

    Connell, J. D.

    1979-01-01

    The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.

  6. Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.

    DOT National Transportation Integrated Search

    2016-09-21

    This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...

  7. Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.

    2014-02-01

    The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson spectrophotometers in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process, a TOC value is produced. Inherent to the algorithm is the use of a laboratory-determined cross-section data set. We used five ozone cross-section data sets: three data sets that are based on measurements of Bass and Paur; one derived from Daumont, Brion and Malicet (DBM); and a new set determined by Institute of Experimental Physics (IUP), University of Bremen. The three Bass and Paur (1985) sets are as follows: quadratic temperature coefficients from the IGACO (a glossary is provided in Appendix A) web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005) in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson instruments are then calculated using the normal Brewer operative method, which is essentially the same as that used for Dobson instruments. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments, we find the IUP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculated TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used. We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. With the application of a common Langley calibration and the IUP cross section, the differences between Brewer and Dobson data sets vanish, whereas using those of Bass and Paur and DBM produces differences of 1.5 and 2%, respectively. A study of the temperature dependence of these cross-section data sets is presented using the Arosa, Switzerland, total ozone record of 2003-2006, obtained from two Brewer-type instruments and one Dobson-type instrument, combined with the stratospheric ozone and temperature profiles from the Payerne soundings in the same period. The seasonal dependence of the differences between the results from the various instruments is greatly reduced with the application of temperature-dependent absorption coefficients, with the greatest reduction obtained using the IUP data set.

  8. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    P. Pingree; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact radiometer instrument is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. This instrument is called the MWR (MicroWave Radiometer), and its purpose is to measure the thermal emission from Jupiter's atmosphere at selected frequencies from 0.6 to 22 GHz. The objective is to measure the distributions and abundances of water and ammonia in Jupiter's atmosphere, with the goal of understanding the previously unobserved dynamics of the subcloud atmosphere, and to discriminate among models for planetary formation in our solar system. The MWR instrument is currently being developed to address these science questions for the Juno mission. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The entire MWR instrument consists of six individual radiometer channels with approximately 4% bandwidth at 0.6, 1.25,2.6,5.2, 10,22 GHz operating in direct detection mode. Each radiometer channel has up to 80 dB of gain with a noise figure of several dB. The highest frequency channel uses a corrugated feedhorn and waveguide transmission lines, whereas all other channels use highly phase stable coaxial cables and either patch array or waveguide slot array antennas. Slot waveguide array antennas were chosen for the low loss at the next three highest frequencies and patch array antennas were implemented due to the mass constraint at the two lowest frequencies. The six radiometer channels receive their voltage supplies and control lines from an electronics unit that also provides the instrument communication interface to the Juno spacecraft. For calibration purposes each receiver has integrated noise diodes, a Dicke switch, and temperature sensors near each component that contributes to the noise figure. In addition, multiple sensors will be placed along the RF transmission lines and the antennas in order to measure temperature gradients. All antennas and RF transmission lines must withstand low temperatures and the harsh radiation environment surrounding Jupiter; the receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. This paper will focus on the concept of the MWR instrument and will present results of one breadboard receiver channel.

  9. Studies of the polar MLT region using SATI airglow measurements

    NASA Astrophysics Data System (ADS)

    Cho, Youngmin

    To investigate atmospheric dynamics of the MLT (Mesosphere and Lower Thermosphere) region, a ground-based instrument called SATI (Spectral Airglow Temperature Imager) was developed at York University. The rotational temperatures and emission rates of the OH (6-2) Meinel band and the O2 (0-1) Atmospheric band have been measured in the MLT region by the SATI instrument at Resolute Bay (74.68°N, 94.90°W) since November, 2001, and at the King Sejong station (62.22°S, 58.75°W) since February, 2002. The MLT measurements are examined for periodic oscillations in the ambient temperature and airglow emission rate. A dominant and coherent 4-hr oscillation is seen in both the OH and O2 temperature and emission rate at Resolute Bay in November, 2001. Tidal variation with a 12 hour period is shown in hourly averaged temperatures of the season 2001--2002 and the season 2003--2004. In addition, planetary waves with periods of 3 and 4.5 days are also seen in a longer interval. The observations at high latitudes have revealed that temperatures and emission rates are higher around the winter solstice. MLT cooling events were found at Resolute Bay in December, 2001 and February, 2002. They are compared with the UKMO (UK Meteorological Office) stratospheric assimilated data, and the MLT coolings coincide in time with the stratospheric warmings. A consistent inverse relationship of the OH temperatures and temperatures at 0.316 hPa is presented in the comparison. In previous studies of wave perturbations, the background (mean) values were normally subtracted from the instantaneous signal, but in the present investigation this was not done, allowing the long-term relationship to be examined. A positive relationship of the temperature and emission rate is seen from the SATI measurements for both short and long-term variations, suggesting that similar dynamical processes are responsible for both. This relationship is supported by satellite data from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument. The correlation is compared with the result of a simple atmospheric model based on the dynamical and chemical processes involved in the diurnal tide, and the model results are in good agreement with the observations.

  10. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  11. Passive Microwave Measurements of Salinity: The Gulf Stream Experiment

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Koblinsky, C.; Haken, M.; Howden, S.; Bingham, F.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (I psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approximately 0.2 psu) required of global maps to be scientifically viable. The development of a satellite microwave instrument to make global measurements of SSS (Sea Surface Salinity) is the focus of a joint JPL/GSFC/NASA ocean research program called Aquarius. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of airborne microwave instruments together with ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer (for surface temperature). These instruments were mounted on the NASA P-3 Orion aircraft. Sea surface measurements consisted of thermosalinograph data provided by the R/V Cape Henlopen and the MN Oleander, and data from salinity and temperature sensors on three surface drifters deployed from the R/V Cape Henlopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and on September 2 flights were made over the surface drifters to look for effects due to a change in surface roughness resulting from the passage of Hurricane Dennis. Results show a good agreement between the microwave measurements and ship measurements of salinity. The features of the brightness temperature maps correspond well with the features of the salinity field measured by the ship and drifters and a preliminary retrieval of salinity compares well with the ship data.

  12. The Spartan 1 Mission

    DTIC Science & Technology

    1989-07-11

    this dark matter to be mea- sured. The special feature of the Spartan 1 instrument has been its ability to measure the density and temperature of the...required to create the potential well, because it exceeds by a large margin the mass we can account for as galaxies and gas. Some invisible (" dark ...34) matter of unknown origin pervades the cluster. Measurements of the radial density and temperature gradients in the hot gas allow the distribution of

  13. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  14. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  15. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of seventeen ice nucleation measurement techniques

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.

    2014-08-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice nucleating particles (INPs). However, an inter-comparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nucleation research UnIT), we distributed an illite rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. Seventeen measurement methods were involved in the data inter-comparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while ten other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing dataset was evaluated using the ice nucleation active surface-site density (ns) to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers nine orders of magnitude in ns. Our inter-comparison results revealed a discrepancy between suspension and dry-dispersed particle measurements for this mineral dust. While the agreement was good below ~ -26 °C, the ice nucleation activity, expressed in ns, was smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples between about -26 and -18 °C. Only instruments making measurement techniques with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -26 and -18 °C is discussed. In general, the seventeen immersion freezing measurement techniques deviate, within the range of about 7 °C in terms of temperature, by three orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency (i.e., ns) of illite NX particles is relatively independent on droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature-dependence and weak time- and size-dependence of immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns (T) spectra, and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. A multiple exponential distribution fit is expressed as ns(T) = exp(23.82 × exp(-exp(0.16 × (T + 17.49))) + 1.39) based on the specific surface area and ns(T) = exp(25.75 × exp(-exp(0.13 × (T + 17.17))) + 3.34) based on the geometric area (ns and T in m-2 and °C, respectively). These new fits, constrained by using an identical reference samples, will help to compare IN measurement methods that are not included in the present study and, thereby, IN data from future IN instruments.

  16. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the hygienization for the food manufacture industry.

  17. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  18. Geophysica MTP observations during the EUPLEX campaign

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.; Gary, Bruce

    2003-01-01

    The Jet Propulsion Laboratory (JPL) Microwave Temperature Profiler (MTP) was the first United States instrument to fly on the Russian Geophysica high-altitude research aircraft. Careful comparison of MTP measurements with radiosondes launched near the Geophysica flight track has allowed us to establish the flight level temperature to an accuracy of 0.2K.

  19. Ultra Low Temperature Instrumentation for Measurements in Astrophysics : ULTIMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunkov, Yu. M.; Elbs, J.; Godfrin, H.

    2006-09-07

    This paper reviews recent advances in particle detection using superfluid 3He at ultra-low temperature about 100 {mu}K, for application in large detector project ULTIMA for the search of non-baryonic Dark Matter. The unique advantages of 3He, and in particular of its superfluid state, for Dark Matter search are highlighted.

  20. A new temperature profiling probe for investigating groundwater-surface water interaction

    USGS Publications Warehouse

    Naranjo, Ramon C.; Robert Turcotte,

    2015-01-01

    Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.

  1. A NuSTAR OBSERVATION OF THE CENTER OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastaldello, Fabio; Molendi, S.; Wik, Daniel R.

    2015-02-20

    We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10{sup –12} erg cm{sup –2} s{sup –1} in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observations ofmore » Coma will further address this issue. The temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less

  2. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    PubMed

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  3. A NuSTAR observation of the center of the Coma Cluster

    DOE PAGES

    Gastaldello, Fabio; Wik, Daniel R.; Molendi, S.; ...

    2015-02-20

    We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10 –12 erg cm –2 s –1 in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observationsmore » of Coma will further address this issue. In addition, the temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less

  4. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  5. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric temperature profiles retrieved from TEMPERA radiometer with the ones obtained from different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. Moreover, a statistical analysis of the stratospheric temperature from TEMPERA measurements for three years of data have been performed.The results evidence the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these continuous monitoring in order to measure and understand some important processes which could happen on a short time scale. References [1] D. W. Thompson, D. J. Seidel, W. J. Randel, C.-Z. Zou, A. H. Butler, C. Mears, A. Osso, C. Long, and R. Lin, "The mystery of recent stratospheric temperature trends," Nature, vol. 491, no. 7426, pp. 692-697, 2012. [2] O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson, "Microwave radiometer to retrieve temperature profiles from the surface to the stratopause," Atmospheric Measurement Techniques Discussions, vol. 6, no. 2, pp. 2857-2905, 2013.

  6. Development of a Sodium LIDAR for Spaceborne Missions

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2015-01-01

    We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earths mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) and their effects in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. We are developing a spaceborne remote sensing technique that will enable acquisition of global Na density, temperature and wind measurements in the MLT with the spatial and temporal resolution required to resolve issues associated with the structure, chemistry, dynamics, and energetics of this regionA nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the ISS will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with 5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving single detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the International Space Station (ISS).

  7. Temperature sensitivity of Eppley broadband radiometers

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Cox, Stephen K.

    1990-01-01

    Broadband radiometers manufactured by Eppley Laboratories Inc. are commonly used to measure irradiance from both ground-based and aircraft platforms. Namely, the pyranometer (Model PSP) measures irradiance in the .3 to 3.0 micron spectral region while the pyrgeometer (Model PIR) senses energy in the 4 to 50 micron region. The two instruments have a similar thermopile construction but different filters to achieve the appropriate spectral selection. During the fall of 1986, the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) commenced with the first cirrus Intensive Field Observation (IFO) conducted in Central Wisconsin. Due to the nature of this field project, pyranometers and pyrgeometers manufactured by Eppley were flown on NCAR's high altitude research aircraft, the Sabreliner. Inherent in the construction of these radiometers is temperature compensation circuitry designed to make the instrument sensitivity nominally constant over a temperature range from -20 to +40 C. Because the Sabreliner flew at high altitudes where temperatures were as cold as -70 C, it was necessary to determine the radiometers relative sensitivity to temperatures below -20 C and apply appropriate corrections to the FIRE radiation data set. A procedure to perform this calibration is outlined. It is meant to serve as a supplement to calibration procedures.

  8. Three-Dimensional Temperature and Wind Profiles Obtained Using UAV-Based Acoustic Atmospheric Tomography

    NASA Astrophysics Data System (ADS)

    Finn, A.

    2017-12-01

    The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense atmospheric temperature and wind profiles simultaneously. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into vertical cross-sections and 3D volumes of virtual temperature and wind vectors, which enables the atmosphere to be visualised and monitored over time up to altitudes of 1,200m and over baselines of up to 600m. This paper reports on results from two short campaigns during which 2D and 3D profiles of wind and temperature obtained in this way were compared to: measurements taken by co-located mid-range Doppler SODAR and LIDAR; and temperature measurements made by instruments carried by unmanned aircraft flying through the intervening atmosphere. Large eddy simulation of daytime atmospheric boundary layers were also used to examine the anticipated performance of the instruments and the nature of any errors. The observations obtained using all systems are shown to correspond closely.

  9. Comparison of post-tonsillectomy pain with two different types of bipolar forceps: low temperature quantum molecular resonance device versus high temperature conventional electrocautery.

    PubMed

    Chang, Hyun; Hah, J Hun

    2012-06-01

    The low temperature device did not show any advantages over the conventional high temperature electrocautery in terms of the postoperative pain, operation time, and complications in pediatric tonsillectomy. To compare post-tonsillectomy pain following the use of two different instruments with the same bipolar forceps techniques: low temperature quantum molecular resonance (QMR) device versus conventional high temperature electrocautery. Pediatric patients admitted from July 2008 through January 2009 were included. The participants underwent bilateral tonsillectomy; one side by the QMR device and the other by the bipolar electrocautery. The sides for each instrument were counterbalanced by the order of presentation. The postoperative pain was measured using the faces pain rating scale. In all, 33 patients with a mean age of 7.6 years were enrolled. The postoperative pain, operation time, and complications in 33 sides dissected by the electrocautery and 33 sides by the QMR device were compared. The average operation times with each device were not statistically different. The mean ratings of the perception of pain related to each instrument were not different on operation day and postoperative day 1, day 4, and day 7 (p = 0.133, 0.057, 0.625, and 1.0, respectively). There was no postoperative complication in any of the patients.

  10. Multipurpose instrumentation cable provides integral thermocouple circuit

    NASA Technical Reports Server (NTRS)

    Zellner, G.

    1967-01-01

    Multipurpose cable with an integral thermocouple circuit measures strain, vibration, pressure, throughout a wide temperature range. This cable reduces bulky and complex circuitry by eliminating separate thermocouples for each transducer.

  11. Microbalance accurately measures extremely small masses

    NASA Technical Reports Server (NTRS)

    Patashnick, H.

    1970-01-01

    Oscillating fiber microbalance has a vibrating quartz fiber as balance arm to hold the mass to be weighed. Increasing fiber weight decreases its resonant frequency. Scaler and timer measure magnitude of the shift. This instrument withstands considerable physical abuse and has calibration stability at normal room temperatures.

  12. Validation of UARS Microwave Limb Sounder Temperature and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; hide

    1996-01-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent- point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44 deg N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  13. Development of a Low Cost Microcontroller-Enabled Handheld Sunphotometer and Comparison with NASA AERONET and MODIS

    NASA Astrophysics Data System (ADS)

    Krintz, I. A.; Ruble, W.; Sherman, J. P.

    2017-12-01

    Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.

  14. A radiation hardened digital fluxgate magnetometer for space applications

    NASA Astrophysics Data System (ADS)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  15. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less

  16. Integration and Testing of Miniaturized Volcanic Gas-Sensing Instruments on UAS Platforms

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Kern, C.; Diaz, J. A.; Vanderwaal, S. J.; Levy, A.

    2015-12-01

    Volcanologists measure the concentrations and emission rates of gases emitted from active volcanoes to understand magmatic processes, which aids in eruption forecasting, and to evaluate air quality for human and environmental health. Both of these applications become particularly important during periods of unusually high volcanic unrest when it is typically hazardous to approach a given volcano. Unmanned aerial systems (UASs) represent a promising platform for continued gas measurements during unrest, while reducing the risk to volcanologists. Two miniature gas-sensing instruments have been developed specifically for integration onto small UAS platforms. Both instruments weigh 1 kg or less, including integrated power. The microDOAS instrument is an upward-looking UV/vis spectrometer that measures the spectral absorption signature of SO2 and certain halogen oxides in scattered solar radiation. By flying beneath a volcanic plume, the instrument can measure the SO2 content in the plume cross-section which can be used to determine the SO2 emission rate. The miniGas instrument is flown within the volcanic plume and records in situ concentrations of CO2, SO2 and H2S, as well as atmospheric temperature, pressure, relative humidity and GPS location. All data are telemetered back to the base station to immediately alert the operator of potentially hazardous conditions. Both instruments have been successfully tested at active volcanoes in Alaska and Costa Rica and were integrated onto small ACUASI Ptarmigan hexacopters. A test mission was conducted at the Poker Flat Research Range in Alaska. During this experiment both instruments were successfully flown in flight patterns typical of manned volcanic gas measurements and new UAV-specific measurement strategies were developed. Here we describe the instruments and platforms employed, our experimental results and observations, and make recommendations for application to volcanic settings.

  17. Measurement of Chlorine Dioxide in Water by DPD Colorimetric Method

    NASA Astrophysics Data System (ADS)

    Song, Min; Yan, Panping; Yao, Jun

    2018-01-01

    In order to solve the problems of chlorine dioxide in water by DPD colorimetric method, this paper discusses the effects of the formulation, temperature, color development time and amount of color reagent on the measurement process, improving the on-line instrument for domestic and drinking water in chlorine dioxide measurement precision and accuracy.

  18. Effects of Temperature and Humidity on Laser Diffraction Measurements to Jet Nebulizer and Comparison with NGI.

    PubMed

    Song, Xinghan; Hu, Junhua; Zhan, Shuyao; Zhang, Rui; Tan, Wen

    2016-04-01

    Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer particle size distribution (PSD) by LD was investigated, and the consistency between NGI and LD measurements was evaluated. There was an increase in particle size with higher temperature or lower humidity. The particle population with a diameter less than 1 μm was significant at a temperature of 5°C or at relative humidity >90%; however, the same particle population became undetectable when temperature increased to 39°C or at relative humidity of 30-45%. The results of the NGI and LD measurements of aerosol generated from three types of jet nebulizers were compared. A poor correlation between the NGI and LD measurements was observed for PARI LC (2.2 μm) (R (2) = 0.893) and PARI LC (2.9 μm) (R (2) = 0.878), while a relatively good correlation (R (2) = 0.977) was observed for the largest particle size nebulizer (PARI TIA (8.6 μm)). We conclude that the ambient environment and the nebulizer have significant impacts on the performance and consistency between these instruments. These factors should be controlled in the evaluation of inhaled aerosol drug formulations when these instruments are used individually or in combination.

  19. Radiometer Calibrations: Saving Time by Automating the Gathering and Analysis Procedures

    NASA Technical Reports Server (NTRS)

    Sadino, Jeffrey L.

    2005-01-01

    Mr. Abtahi custom-designs radiometers for Mr. Hook's research group. Inherently, when the radiometers report the temperature of arbitrary surfaces, the results are affected by errors in accuracy. This problem can be reduced if the errors can be accounted for in a polynomial. This is achieved by pointing the radiometer at a constant-temperature surface. We have been using a Hartford Scientific WaterBath. The measurements from the radiometer are collected at many different temperatures and compared to the measurements made by a Hartford Chubb thermometer with a four-decimal point resolution. The data is analyzed and fit to a fifth-order polynomial. This formula is then uploaded into the radiometer software, enabling accurate data gathering. Traditionally, Mr. Abtahi has done this by hand, spending several hours of his time setting the temperature, waiting for stabilization, taking measurements, and then repeating for other temperatures. My program, written in the Python language, has enabled the data gathering and analysis process to be handed off to a less-senior member of the team. Simply by entering several initial settings, the program will simultaneously control all three instruments and organize the data suitable for computer analyses, thus giving the desired fifth-order polynomial. This will save time, allow for a more complete calibration data set, and allow for base calibrations to be developed. The program is expandable to simultaneously take any type of measurement from up to nine distinct instruments.

  20. Improving High-Temperature Measurements in Nuclear Reactors with Mo/Nb Thermocouples

    NASA Astrophysics Data System (ADS)

    Villard, J.-F.; Fourrez, S.; Fourmentel, D.; Legrand, A.

    2008-10-01

    Many irradiation experiments performed in research reactors are used to assess the effects of nuclear radiations on material or fuel sample properties, and are therefore a crucial stage in most qualification and innovation studies regarding nuclear technologies. However, monitoring these experiments requires accurate and reliable instrumentation. Among all measurement systems implemented in irradiation devices, temperature—and more particularly high-temperature (above 1000°C)—is a major parameter for future experiments related, for example, to the Generation IV International Forum (GIF) Program or the International Thermonuclear Experimental Reactor (ITER) Project. In this context, the French Commissariat à l’Energie Atomique (CEA) develops and qualifies innovative in-pile instrumentation for its irradiation experiments in current and future research reactors. Logically, a significant part of these research and development programs concerns the improvement of in-pile high-temperature measurements. This article describes the development and qualification of innovative high-temperature thermocouples specifically designed for in-pile applications. This key study has been achieved with technical contributions from the Thermocoax Company. This new kind of thermocouple is based on molybdenum and niobium thermoelements, which remain nearly unchanged by thermal neutron flux even under harsh nuclear environments, whereas typical high-temperature thermocouples such as Type C or Type S are altered by significant drifts caused by material transmutations under the same conditions. This improvement has a significant impact on the temperature measurement capabilities for future irradiation experiments. Details of the successive stages of this development are given, including the results of prototype qualification tests and the manufacturing process.

  1. Investigation of Stability of Precise Geodetic Instruments Used in Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Odziemczyk, Waldemar

    2017-12-01

    Monitoring systems using automated electronic total stations are an important element of safety control of many engineering objects. In order to ensure the appropriate credibility of acquired data, it is necessary that instruments (total stations in most of the cases) used for measurements meet requirements of measurement accuracy, as well as the stability of instrument axis system geometry. With regards to the above, it is expedient to conduct quality control of data acquired using electronic total stations in the context of performed measurement procedures. This paper presents results of research conducted at the Faculty of Geodesy and Cartography at Warsaw University of Technology investigating the stability of "basic" error values (collimation, zero location for V circle, inclination), for two types of automatic total stations: TDA 5005 and TCRP 1201+. Research provided also information concerning the influence of temperature changes upon the stability of investigated instrument's optical parameters. Results are presented in graphical analytic technique. Final conclusions propose methods, which allow avoiding negative results of measuring tool-set geometry changes during conducting precise deformation monitoring measurements.

  2. NCTM workshop splinter session, IR thermal measurement instruments

    NASA Astrophysics Data System (ADS)

    Kaplan, Herbert

    1989-06-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  3. NCTM workshop splinter session, IR thermal measurement instruments

    NASA Technical Reports Server (NTRS)

    Kaplan, Herbert

    1989-01-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  4. Temperature corrections in routine spirometry.

    PubMed Central

    Cramer, D; Peacock, A; Denison, D

    1984-01-01

    Forced expiratory volume (FEV1) and forced vital capacity (FVC) were measured in nine normal subjects with three Vitalograph and three rolling seal spirometers at three different ambient temperatures (4 degrees C, 22 degrees C, 32 degrees C). When the results obtained with the rolling seal spirometer were converted to BTPS the agreement between measurements in the three environments improved, but when the Vitalograph measurements obtained in the hot and cold rooms were converted an error of up to 13% was introduced. The error was similar whether ambient or spirometer temperatures were used to make the conversion. In an attempt to explain the behaviour of the Vitalograph spirometers the compliance of their bellows was measured at the three temperatures. It was higher at the higher temperature (32 degrees C) and lower at the lower temperature (4 degrees C) than at the normal room temperature. These changes in instrument compliance could account for the differences in measured values between the two types of spirometer. It is concluded that the ATPS-BTPS conversion is valid and necessary for measurements made with rolling seal spirometers, but can cause substantial error if it is used for Vitalograph measurements made under conditions other than normal room temperature. PMID:6495245

  5. A High-Resolution Measurement of Ball IR Black Paint's Low-Temperature Emissivity

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Canavan, Ed; DiPirro, Mike; Li, Xiaoyi; Franck, Randy; Green, Dan

    2011-01-01

    High-emissivity paints are commonly used on thermal control system components. The total hemispheric emissivity values of such paints are typically high (nearly 1) at temperatures above about 100 Kelvin, but they drop off steeply at lower temperatures. A precise knowledge of this temperature-dependence is critical to designing passively-cooled components with low operating temperatures. Notable examples are the coatings on thermal radiators used to cool space-flight instruments to temperatures below 40 Kelvin. Past measurements of low-temperature paint emissivity have been challenging, often requiring large thermal chambers and typically producing data with high uncertainties below about 100 Kelvin. We describe a relatively inexpensive method of performing high-resolution emissivity measurements in a small cryostat. We present the results of such a measurement on Ball InfraRed BlackTM(BIRBTM), a proprietary surface coating produced by Ball Aerospace and Technologies Corp (BATC), which is used in spaceflight applications. We also describe a thermal model used in the error analysis.

  6. A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Wey, Chowen C.; Bianco, Jean

    1995-01-01

    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.

  7. AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey

    2004-01-01

    The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.

  8. A gas sampling system for withdrawing humid gases from deep boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.

    A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less

  9. Characterization of spatially resolved high resolution x-ray spectrometers for HEDP and light-source experiments

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-10-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for measurement of spatial profiles of Doppler ion temperature and plasma flow velocity, as well as electron temperature. Laboratory measurements demonstrate a resolving power, E/ ΔE of 10,000 and spatial resolution better than 10 μm. Good performance is obtained for Bragg angles ranging from 23 to 63 degrees. Initial tests of the instrument on HEDP plasmas are being performed with a goal of developing spatially resolved ion and electron temperature diagnostics. This work was performed under the auspices of the US DOE by PPPL under Contract DE-AC02-09CH11466 and by LLNL under Contract DE-AC52-07NA27344.

  10. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  11. MACS, An Instrument and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.

    2000-01-01

    In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.

  12. Coastal circulation and sediment dynamics in Hanalei Bay, Kauai. Part I: Measurements of waves, currents, temperature, salinity and turbidity : June - August, 2005

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.

    2006-01-01

    Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.

  13. Thermospheric temperature measurement technique.

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Fowler, P.

    1972-01-01

    A method for measurement of temperature in the earth's lower thermosphere from a high-velocity probes is described. An undisturbed atmospheric sample is admitted to the instrument by means of a free molecular flow inlet system of skimmers which avoids surface collisions of the molecules prior to detection. Measurement of the time-of-flight distribution of an initially well-localized group of nitrogen metastable molecular states produced in an open, crossed electron-molecular beam source, yields information on the atmospheric temperature. It is shown that for high vehicle velocities, the time-of-flight distribution of the metastable flux is a sensitive indicator of atmospheric temperature. The temperature measurement precision should be greater than 94% at the 99% confidence level over the range of altitudes from 120-170 km. These precision and altitude range estimates are based on the statistical consideration of the counting rates achieved with a multichannel analyzer using realistic values for system parameters.

  14. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    PubMed

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P < 0.001). By having an assistant surgeon hold the camera/telescope (rather than one surgeon holding both the active electrode and the camera/telescope), temperature change was reduced to 26 ± 7°C (P < 0.001). Alternative energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P < 0.001) and ultrasonic (0.6 ± 0.3°C; P < 0.001) devices. Stray energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of a new-generation active falling sphere

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.

    1997-01-01

    A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.

  16. Global ocean monitoring for the World Climate Research Programme.

    PubMed

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment-"Tropical Oceans and Global Atmosphere (TOGA)"-will be undertaken to sudy the sequence of events of air-sea interactions in the tropical oceans and their impact on climatic variations on land-for example, variations in the strength and location of the Indian Ocean monsoon, droughts in low latitudes, and climatic fluctuations in temperate latitudes.Experimental and continuing time series will be taken at fixed locations to obtain a better picture of the magnitude and causes of ocean climate variability. National and multinational systematic repeated measurements along selected ocean transects or in specific ocean areas will be taken to determine oceanic variability and teleconnections between oceanic and atmospheric processes. Examples are the long Japanese section along the meridian of 137° E and the 'Sections' program of the USSR and several other countries in Energy-Active zones.The results from this wide range of observations and experiments will be used to guide and define mathematical models of the ocean circulation and its interactions with the atmosphere.It can be shown that biogeochemical processes in the ocean play an important role in determining the carbon dioxide content of the atmosphere and thus in causing long-term climatic changes. Variations in the biological productivity of sub-surface waters cause variations in the effectveness of the biological pump which carries organic carbon down into deeper waters where it is oxidized. Studies of ice cores from 20 000 to 30 000 yr before the present indicate that atmospheric carbon dioxide varied by a factor of 2 within times of the order of 100 yr, and these variations were accompanied by large excursions in atmospheric temperature. Thus, ocean climatic monitoring must take into account measurements of both biological and physical variations in the ocean.

  17. Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider

    DTIC Science & Technology

    2012-09-30

    Ocean in September 2010 during the ITOP experiment. ADOS platforms are also deployed by the NOAA funded Global Drifter Program in the north Atlantic...class of instrument is termed ADOS (Autonomous Drifting Ocean Station) and several variants exist. The ADOS-A, which measures temperature and...during the hurricane season to measure the thermal structure of the ocean ahead of storms and in their wakes. Both the ADOS-A and the M- ADOS-A are

  18. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  19. Characterization and Evolution of the Swift X-ray Telescope Instrumental Background

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Pagani, C.; Morris, D. C.; Racusin, J.; Grupe, D.; Vetere, L.; Stroh, M.; Falcone, A.; Kennea, J.; Burrows, D. N.; hide

    2007-01-01

    The X-ray telescope (XRT) on board the Swift Gamma Ray Burst Explorer has successfully operated since the spacecraft launch on 20 November 2004, automatically locating GRB afterglows, measuring their spectra and lightcurves and performing observations of high-energy sources. In this work we investigate the properties of the instrumental background, focusing on its dynamic behavior on both long and short timescales. The operational temperature of the CCD is the main factor that influences the XRT background level. After the failure of the Swift active on-board temperature control system, the XRT detector now operates at a temperature range between -75C and -45C thanks to a passive cooling Heat Rejection System. We report on the long-term effects on the background caused by radiation, consisting mainly of proton irradiation in Swift's low Earth orbit and on the short-term effects of transits through the South Atlantic Anomaly (SAA), which expose the detector to periods of intense proton flux. We have determined the fraction of the detector background that is due to the internal, instrumental background and the part that is due to unresolved astrophysical sources (the cosmic X-ray background) by investigating the degree of vignetting of the measured background and comparing it to the expected value from calibration data.

  20. Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben; hide

    2016-01-01

    High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data for the validation of design tools and numerical flight simulation techniques. Collaborative opportunities and technology investments in support of planned observations of NASA's next Orion flight test in 2018 will be explored in the full manuscript.

  1. Errors in retarding potential analyzers caused by nonuniformity of the grid-plane potential.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Frame, D. R.; Midgley, J. E.

    1972-01-01

    One aspect of the degradation in performance of retarding potential analyzers caused by potential depressions in the retarding grid is quantitatively estimated from laboratory measurements and theoretical calculations. A simple expression is obtained that permits the use of laboratory measurements of grid properties to make first-order corrections to flight data. Systematic positive errors in ion temperature of approximately 16% for the Ogo 4 instrument and 3% for the Ogo 6 instrument are deduced. The effects of the transverse electric fields arising from the grid potential depressions are not treated.

  2. A high-sensitivity torsional pendulum for polymeric films and fibres

    NASA Technical Reports Server (NTRS)

    Aghili-Kermani, H.; Obrien, T.; Armeniades, C. D.; Roberts, J. M.

    1976-01-01

    A free oscillation torsion pendulum is described, which has been designed to measure accurately the dynamic shear modulus and logarithmic decrement of polymeric thin films and fibers, at frequencies of 0.1 to 10 Hz and a temperature range of 4.2 to 450 K. The instrument can also provide in situ tensile deformations of up to 5%. The specimen geometry necessary to obtain reliable modulus measurements with thin films is discussed, and typical data are presented which exhibit hitherto unreported relaxation processes, discernible by this instrument.

  3. Radiometric Measurement Comparison Using the Ocean Color Temperature Scanner (OCTS) Visible and Near Infrared Integrating Sphere

    PubMed Central

    Johnson, B. Carol; Sakuma, F.; Butler, J. J.; Biggar, S. F.; Cooper, J. W.; Ishida, J.; Suzuki, K.

    1997-01-01

    As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS). PMID:27805113

  4. Temperature lapse rate as an adjunct to wind shear detection

    NASA Technical Reports Server (NTRS)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  5. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less

  6. A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer

    NASA Technical Reports Server (NTRS)

    Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.

    1993-01-01

    A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.

  7. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  8. Methods of dark signal determination for CCD array spectroradiometers used in solar UVR measurements.

    PubMed

    Baczynska, K A; Khazova, M

    2015-02-01

    The methods of the dark signal determination by direct contemporaneous measurements using a light spectrum and modelling of the dark signal based on the dark signal characterisation data were discussed. These techniques were tested with two charge-couple detectors (CCD) array spectroradiometers used in solar UVR measurements. The sensitivity of both instruments was significantly reduced when shutters were used; the measured signal varied by up to 12% depending on the orientation of the shutter. The shutters should be permanently attached to the SSR, so that the orientation cannot be changed to prevent an increase in uncertainty. The method of using blind pixels from the optically inactive part of the CCD array in a light spectrum could be used to derive the dark signal with some limitations for integration times <10 s for the QE65000. An alternative method of deriving the dark signal from light measurements using out-of-range pixels has been proved impossible due to out-of-range stray light in both instruments. The dark signal was characterised for the range of integration times and ambient temperatures of 15-35°C. Based on these data, the model of the dark signal was developed so that a single value of the dark signal can be subtracted over the whole spectral range if the instrument temperature is known. © Crown copyright 2014.

  9. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment target

  10. Progress in speckle-shift strain measurement

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.; Oberle, Lawrence G.; Greer, Lawrence C., III

    1991-01-01

    The Instrumentation and Control Technology Division of the Lewis Research Center has been developing an in-house capability to make one dimensional and two dimensional optical strain measurements on high temperature test specimens. The measurements are based on a two-beam speckle-shift technique. The development of composite materials for use in high temperature applications is generating interest in using the speckle-shift technique to measure strains on small diameter fibers and wires of various compositions. The results of preliminary speckle correlation tests on wire and fiber specimens are covered, and the advanced system currently under development is described.

  11. Atmospheric simulator and calibration system for remote sensing radiometers

    NASA Technical Reports Server (NTRS)

    Holland, J. A.

    1983-01-01

    A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.

  12. Testing the Solar Probe Cup, An Instrument Designed to Touch The Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis; Case, Anthony; Kasper, Justin; Wright, Kenneth; Alterman, Benjamin; Cirtain, Jonathan; Bookbinder, Jay; Korreck, Kelly; Stevens, Michael; Schneider, Todd; hide

    2014-01-01

    Abstract: Solar Probe Plus will be the first, fastest, and closest mission to the Sun, providing the first direct sampling of the sub-Alfvénic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests are created for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight-like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  13. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  14. Tropospheric- Stratospheric Measurement Studies Summary

    NASA Technical Reports Server (NTRS)

    Browen, Stuart W.

    1998-01-01

    The two high altitude aircraft, ER-2 NASA #706 and 709 and the DC-8 NASA #717 are in active use in several programs of upper atmospheric research to study polar ozone changes, stratospheric-tropospheric exchange processes and atmospheric effects of aviation aircraft. The ER-2 has participated in seven major missions which mainly concentrated on vortex dynamics and the large losses of Ozone in the Polar regions (Ozone hole) observed in the spring. One mission verified the complex dynamical chemical and physical processes that occur during sunrise and sunset. Stratospheric Tracers of Atmospheric Transport (STRAT) obtained background measurements using the full ER-2 suite of instruments. Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) in 1997 assisted in understanding the mid-latitude and Arctic Ozone losses during the Northern Summer. The DC-8 with the Meteorological Measurement System (MMS) has participated in the Subsonic Aircraft: Cloud and Contrail Effects Special Study (SUCCESS), in 1996 and the Subsonic assessment Ozone and Nitrogen oxide experiment (SONEX) in 1997 missions. The MMS with its sophisticated software accurately measures ground speed and attitude, in-situ static and dynamic pressure total temperature, which are used to calculate the three dimensional wind fields, static pressure, temperature and turbulence values to meteorological accuracy. The meteorological data is not only of interest for its own sake in atmospheric dynamical processes such as mountain waves and flux measurements; but is also required by other ER-2 experiments that simultaneously measure water vapor, O3, aerosols, NO, HCl, CH4, N2O, ClO, BrO, CO2, NOy, HOx and temperature gradients. MMS products are extensively used to assist in the interpretation of their results in understanding the importance of convective effects relative to in-situ chemical changes, as may be noted by examining the list of references attached. The MMS consists of three subsystems: (a) aircraft instrumentation, inertial navigation system (INS), static and dynamic pressure taps, (b) additional dedicated instrumentation measuring angle of attack, yaw, total temperature, and a GPS which on the DC-8 measures position, velocity and attitude (c) an on board data, storage and computing acquisition system. This instrumentation and the associated software requires both an on-going laboratory ground calibration procedure for the total air temperature, static and total pressure inputs, verification of the INS dynamic response and also extensive air measurements and intercomparisons which ultimately verify and calibrate the complete system and its software. More than the usual accuracy is required because of the near cancellation occurring in the difference between the ground speed and true airspeed vectors used to give the wind vector. In the past year we have redesigned, recalibrated and used the MMS system on the NASA DC-8 that was previously used in the SUCCESS mission for the SONEX mission. Two papers were co-authored based on SUCCESS flights. Several reports and handouts were written for SONEX. Calibrations of the DC-8 pressure transducer temperature measuring thermistors was completed and an extensive analysis spanning several years of data files of the DC-8 Rosemount pressure transducer calibrations was done.

  15. Improvements to the Total Temperature Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Gonsalez, Jose C.

    2005-01-01

    The ability to accurately set repeatable total temperature conditions is critical for collecting quality icing condition data, particularly near freezing conditions. As part of efforts to continually improve data quality in the NASA Glenn Icing Research Tunnel (IRT), new facility instrumentation and new calibration hardware for total temperature measurement were installed and new operational techniques were developed and implemented. This paper focuses on the improvements made in the calibration of total temperature in the IRT.

  16. DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana

    2012-02-20

    Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitivemore » to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.« less

  17. Soil Water and Temperature System (SWATS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less

  18. Measuring Skin Temperatures with the IASI Hyperspectral Mission

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.

    2017-12-01

    Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence frommore » experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.« less

  20. Hydrologic data and instrumentation, and methods of collecting the data to small watersheds in the coal-mining region of west-central Indiana, October 1980 to June 1983

    USGS Publications Warehouse

    Renn, D.E.; Duwelius, R.F.; Keeton, C.R.; Tyler, J.W.

    1985-01-01

    Methods and instrumentation used in collecting samples and measuring concentrations and properties of the following types of data are described in the text: streamflow in seven watersheds; ground-water levels in 46 wells in unconsolidated material and 12 wells in bedrock in or near the watersheds; precipitation in seven watersheds; solar radiation, relative humidity, wind speed, and temperature of air and soil at one location; and pH, specific conductance, temperature of water, and concentrations of selected chemical constituents and suspended sediment in two watersheds.

  1. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  2. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  3. Research of metal solidification in zero-g state. [test apparatus and instrumentation

    NASA Technical Reports Server (NTRS)

    Aubin, W. M.; Larson, D., Jr.; Geschwind, G. I.

    1973-01-01

    An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented.

  4. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  5. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  6. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    DOE PAGES

    Grossman, John; Suslov, Alexey V.; Yong, Grace; ...

    2016-04-07

    Progress in microelectronic technology has allowed us to design and develop a simple but, professional quality instrument for ultrasonic pulse-echo probing of the elastic properties of materials. The heart of this interfer- ometer lies in the AD8302 microchip, a gain and phase detector from Analog Devices, Inc. The interferometer was tested by measuring the temperature dependences of the ultrasound speed and attenuation in a ferro- electric KTa 0.92 Nb 0.08O 3 (KTN) crystal at a frequency of about 40 MHz. These tests demonstrated that our instrument is capable of detecting the relative changes in the sound speed v on themore » level of Δv/v ~ 10 –7. In addition, the ultrasound attenuation revealed new features in the development of the low-temperature structure of the ferroelectric KTN crystal.« less

  7. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  8. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  9. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Connor J.

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm -1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm -1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm -1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141more » seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.« less

  10. Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos (in EN;SP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, B.R.; Lawton, R.G.; Kolar, J.D.

    The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.

  11. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-11-01

    The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  12. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-07-01

    The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  13. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    EPA Science Inventory

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  14. Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.; Borrás, E.; Daniels, M. J. S.; Goodall, I. C. A.; Henry, S. B.; Karl, T.; Keutsch, F. N.; Kim, S.; Mak, J.; Monks, P. S.; Muñoz, A.; Orlando, J.; Peppe, S.; Rickard, A. R.; Ródenas, M.; Sánchez, P.; Seco, R.; Su, L.; Tyndall, G.; Vázquez, M.; Vera, T.; Waxman, E.; Volkamer, R.

    2015-04-01

    The α-dicarbonyl compounds glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO) are produced in the atmosphere by the oxidation of hydrocarbons and emitted directly from pyrogenic sources. Measurements of ambient concentrations inform about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation. We present results from a comprehensive instrument comparison effort at two simulation chamber facilities in the US and Europe that included nine instruments, and seven different measurement techniques: broadband cavity enhanced absorption spectroscopy (BBCEAS), cavity-enhanced differential optical absorption spectroscopy (CE-DOAS), white-cell DOAS, Fourier transform infrared spectroscopy (FTIR, two separate instruments), laser-induced phosphorescence (LIP), solid-phase micro extraction (SPME), and proton transfer reaction mass spectrometry (PTR-ToF-MS, two separate instruments; for methyl glyoxal only because no significant response was observed for glyoxal). Experiments at the National Center for Atmospheric Research (NCAR) compare three independent sources of calibration as a function of temperature (293-330 K). Calibrations from absorption cross-section spectra at UV-visible and IR wavelengths are found to agree within 2% for glyoxal, and 4% for methyl glyoxal at all temperatures; further calibrations based on ion-molecule rate constant calculations agreed within 5% for methyl glyoxal at all temperatures. At the European Photoreactor (EUPHORE) all measurements are calibrated from the same UV-visible spectra (either directly or indirectly), thus minimizing potential systematic bias. We find excellent linearity under idealized conditions (pure glyoxal or methyl glyoxal, R2 > 0.96), and in complex gas mixtures characteristic of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0.95; R2 ∼ 0.65 for offline SPME measurements of methyl glyoxal). The correlations are more variable in humid ambient air mixtures (RH > 45%) for methyl glyoxal (0.58 < R2 < 0.68) than for glyoxal (0.79 < R2 < 0.99). The intercepts of correlations were insignificant for the most part (below the instruments' experimentally determined detection limits); slopes further varied by less than 5% for instruments that could also simultaneously measure NO2. For glyoxal and methyl glyoxal the slopes varied by less than 12 and 17% (both 3-σ) between direct absorption techniques (i.e., calibration from knowledge of the absorption cross section). We find a larger variability among in situ techniques that employ external calibration sources (75-90%, 3-σ), and/or techniques that employ offline analysis. Our intercomparison reveals existing differences in reports about precision and detection limits in the literature, and enables comparison on a common basis by observing a common air mass. Finally, we evaluate the influence of interfering species (e.g., NO2, O3 and H2O) of relevance in field and laboratory applications. Techniques now exist to conduct fast and accurate measurements of glyoxal at ambient concentrations, and methyl glyoxal under simulated conditions. However, techniques to measure methyl glyoxal at ambient concentrations remain a challenge, and would be desirable.

  15. Instrument inter-comparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.; Borrás, E.; Daniels, M. J. S.; Goodall, I. C. A.; Henry, S. B.; Karl, T.; Keutsch, F. N.; Kim, S.; Mak, J.; Monks, P. S.; Muñoz, A.; Orlando, J.; Peppe, S.; Rickard, A. R.; Ródenas, M.; Sánchez, P.; Seco, R.; Su, L.; Tyndall, G.; Vázquez, M.; Vera, T.; Waxman, E.; Volkamer, R.

    2014-08-01

    The α-dicarbonyl compounds glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO) are produced in the atmosphere by the oxidation of hydrocarbons, and emitted directly from pyrogenic sources. Measurements of ambient concentrations inform about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation. We present results from a comprehensive instrument comparison effort at 2 simulation chamber facilities in the US and Europe that included 9 instruments, and 7 different measurement techniques: Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS), Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS), White-cell DOAS, Fourier Transform Infra-Red Spectroscopy (FTIR, two separate instruments), Laser Induced Phosphoresence (LIP), Solid Phase Micro Extraction (SPME), and Proton Transfer Reaction Mass Spectrometry (PTR-ToF-MS, two separate instruments; only methyl glyoxal as no significant response was observed for glyoxal). Experiments at the National Center for Atmospheric Research (NCAR) compare 3 independent sources of calibration as a function of temperature (293 K to 330 K). Calibrations from absorption cross-section spectra at UV-visible and IR wavelengths are found to agree within 2% for glyoxal, and 4% for methyl glyoxal at all temperatures; further calibrations based on ion-molecule rate constant calculations agreed within 5% for methyl glyoxal at all temperatures. At the EUropean PHOtoREactor (EUPHORE) all measurements are calibrated from the same UV-visible spectra (either directly or indirectly), thus minimizing potential systematic bias. We find excellent linearity under idealized conditions (pure glyoxal or methyl glyoxal, R2 > 0.96), and in complex gas mixtures characteristic of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0.95; R2 ~ 0.65 for offline SPME measurements of methyl glyoxal). The correlations are more variable in humid ambient air mixtures (RH > 45%) for methyl glyoxal (0.58 < R2 < 0.68) than for glyoxal (0.79 < R2 < 0.99). The intercepts of correlations were insignificant for the most part; slopes varied by less than 5% for instruments that also measure NO2. For glyoxal and methyl glyoxal the slopes varied by less than 12% and 17% (both 3-sigma) between inherently calibrated instruments (i.e., calibration from knowledge of the absorption cross-section). We find a larger variability among in situ techniques that employ external calibration sources (75% to 90%, 3-sigma), and/or techniques that employ offline analysis. Our inter-comparison reveal existing differences in reports about precision and detection limits in the literature, and enables comparison on a common basis by observing a common airmass. Finally, we evaluate the influence of interfering species (e.g., NO2, O3 and H2O) of relevance in field and laboratory applications. Techniques now exist to conduct fast and accurate measurements of glyoxal at ambient concentrations, and methyl glyoxal under simulated conditions. However, techniques to measure methyl glyoxal at ambient concentrations remain a challenge, and would be desirable.

  16. The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.

    2013-09-01

    We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.

  17. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Yano, K.; Kuwahara, D.; Shinohara, S.

    2018-04-01

    A two-dimensional scanning probe instrument has been developed to survey spatial plasma characteristics in our electrodeless plasma acceleration schemes. In particular, diagnostics of plasma parameters, e.g., plasma density, temperature, velocity, and excited magnetic field, are essential for elucidating physical phenomena since we have been concentrating on next generation plasma propulsion methods, e.g., Rotating Magnetic Field plasma acceleration method, by characterizing the plasma performance. Moreover, in order to estimate the thrust performance in our experimental scheme, we have also mounted a thrust stand, which has a target type, on this movable instrument, and scanned the axial profile of the thrust performance in the presence of the external magnetic field generated by using permanent magnets, so as to investigate the plasma captured in a stand area, considering the divergent field lines in the downstream region of a generation antenna. In this paper, we will introduce the novel measurement instrument and describe how to measure these parameters.

  18. Validation of Ionospheric Measurements from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Minow, Joseph; Wright, Kenneth

    2009-01-01

    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006, is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-Sweep Langmuir Probe. This instrument package provides a new opportunity for collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shows examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes for monitoring mid and low latitude plasma processes.

  19. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  20. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  1. Summary of experimental heat-transfer results from the turbine hot section facility

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Yeh, Fredrick C.

    1993-01-01

    Experimental data from the turbine Hot Section Facility are presented and discussed. These data include full-coverage film-cooled airfoil results as well as special instrumentation results obtained at simulated real engine conditions. Local measurements of airfoil wall temperature, airfoil gas-path static-pressure distribution, and local heat-transfer coefficient distributions are presented and discussed. In addition, measured gas and coolant temperatures and pressures are presented. These data are also compared with analyses from Euler and boundary-layer codes.

  2. The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.

    2004-01-01

    A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.

  3. The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.

    2003-01-01

    A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.

  4. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  5. The SHOOT cryogenic components - Testing and applicability to other flight programs

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.

    1990-01-01

    Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.

  6. Ozone and temperature trends

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Fioletov, Vitali; Bishop, Lane; Godin, Sophie; Bojkov, Rumen D.; Kirchhoff, Volker; Chanin, Marie-Lise; Zawodny, Joseph M.; Zerefos, Christos S.; Chu, William

    1991-01-01

    An update of the extensive reviews of the state of knowledge of measured ozone trends published in the Report of the International Ozone Trends Panel is presented. The update contains a review of progress since these reports, including reviewing of the ozone records, in most cases through March 1991. Also included are some new, unpublished reanalyses of these records including a complete reevaluation of 29 stations located in the former Soviet Union. The major new advance in knowledge of the measured ozone trend is the existence of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAG) instruments. These confirm many of the findings, originally derived from the Dobson record, concerning northern mid-latitude changes in ozone. We now have results from several instruments, whereas the previously reported changes were dependent on the calibration of a single instrument. This update will compare the ozone records from many different instruments to determine whether or not they provide a consistent picture of the ozone change that has occurred in the atmosphere. The update also briefly considers the problem of stratospheric temperature change. As in previous reports, this problem received significantly less attention, and the report is not nearly as complete. This area needs more attention in the future.

  7. Analysis of Deformations of the Skylight Construction at the Main Hall of the Warsaw University of Technology

    NASA Astrophysics Data System (ADS)

    Odziemczyk, Waldemar

    2015-02-01

    The paper presents technology and results of measurements of the steel construction of the skylight of the Main Hall of the Warsaw University of Technology. The new version of the automated measuring system has been used for measurements. This system is based on Leica TCRP1201+ total station and the TCcalc1200 software application, developed by the author, which operates on a laptop computer connected with the total station by the wire. Two test measurements were performed. Each of them consisted of cyclic measurement using the polar method, from one station; points located on the skylight construction, as well as control points located on concrete, bearing poles, were successively measured. Besides geometrical values (such as Hz, V angles and the slope distance D), the changes of temperature and atmospheric pressure, were also recorded. Processed results of measurements contained information concerning the behaviour of the skylight; asymmetry of horizontal displacements with respect to the X axis have been proved. Changes of parameters of the instrument telescope and changes of the instrument orientation were also stated; they were connected with changes of the temperature. The most important results of works have been presented in the form of diagrams.

  8. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.

    PubMed

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  9. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  10. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  11. Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument

    NASA Astrophysics Data System (ADS)

    Rook, H.; Thiemann, E.

    2017-12-01

    The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.

  12. Warm Rivers Play Role in Arctic Sea Ice Melt

    NASA Image and Video Library

    2014-03-05

    Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.

  13. One-wire thermocouple

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Staimach, C. J.

    1977-01-01

    Nickel alloy/constantan device accurately measures surface temperature at precise locations. Device is moderate in cost and simplifies fabrication of highly-instrumented seamless-surface heat-transfer models. Device also applies to metal surfaces if constantan wire has insulative coat.

  14. Comet Gas and Dust Dynamics Modeling

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul A.; Lee, Seungwon

    2010-01-01

    This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.

  15. Development of a Remote Sensing Small Satellite for Temperature Sounding in the Mesosphere/Lower Thermosphere by Measurement of the Oxygen Atmospheric Band Emission

    NASA Astrophysics Data System (ADS)

    Deiml, Michael; Kaufmann, Martin

    2017-04-01

    Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.

  16. Characterization of Thermal Parameters for Improving Pyranometer and Pyrgeometer Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Jhabvala, Murzy D.; Ji, Qiang; Rapshun, David; Shu, Peter K.

    2000-01-01

    Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 micrometers) and pyrgeometers (terrestrial, e.g., 4-50 micrometers) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate change. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 20 W m(exp -2)). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWTP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NEAT) less than 0.1 K. The quality of pyranometer and pyrgeometer measure- ments can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. Data correction procedure and algorithm will be presented and discussed.

  17. High-Tech Hip Implant for Wireless Temperature Measurements In Vivo

    PubMed Central

    Bergmann, Georg; Graichen, Friedmar; Dymke, Jörn; Rohlmann, Antonius; Duda, Georg N.; Damm, Philipp

    2012-01-01

    When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2–10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants. PMID:22927973

  18. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    NASA Astrophysics Data System (ADS)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement. The result of data acquisition saved on excels and database format.

  19. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  20. Wright Laboratory Research and Development Facilities Handbook

    DTIC Science & Technology

    1992-08-01

    properties o. superconductors SPECIAL/UNIQUE CAPABILITIES: Two superconducting coils: 3-inch bore, 10 Tesla coil. 20 kilojoule repetitively pulsed coil 7 inch...bore, cryogenically cooled 14 Tesla coil INSTRUMENTATION: Computer Controlled Variable Temperature (2-400K) and Field (0-5 Tesla ) Squid Susceptometer...Variable Temperature (10-80K) and Field (0-10 Tesla ) Transport Current Measurement Apparatus RF Source Sputtering Rig, Optical Microscope, Furnaces

  1. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  2. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  3. Research and Technology Capabilities Available for Partnership, 2007-2008

    DTIC Science & Technology

    2010-01-01

    simulated aircraft environment to measure acoustic and/ or IR radiation and signature. Instrumentation is capable of 96 pressure channels and 105...temperature channels. Mobile Aircraft Infrared Measurement System (AIMS) is field deployable and is used to take full-spectrum IR measurements at our CTF...three phase power. The facility is utilized for the development of visible, IR and RF spectrum sensors/seekers, signature measurement collection of

  4. LabVIEW-operated Novel Nanoliter Osmometer for Ice Binding Protein Investigations

    PubMed Central

    Braslavsky, Ido; Drori, Ran

    2013-01-01

    Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish1, plants2, 3, arthropods4, 5, fungi6, and bacteria7. IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested8-10, see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears11, and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments. We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously9, 10, contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details. To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)12. This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies' group (Queens University)10. We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs5, 13. In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations14, 15. We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber13. The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere16. The Cold Stage System The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA). PMID:23407403

  5. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations.

    PubMed

    Braslavsky, Ido; Drori, Ran

    2013-02-04

    Ice-binding proteins (IBPs), including antifreeze proteins, ice structuring proteins, thermal hysteresis proteins, and ice recrystallization inhibition proteins, are found in cold-adapted organisms and protect them from freeze injuries by interacting with ice crystals. IBPs are found in a variety of organism, including fish(1), plants(2, 3), arthropods(4, 5), fungi(6), and bacteria(7). IBPs adsorb to the surfaces of ice crystals and prevent water molecules from joining the ice lattice at the IBP adsorption location. Ice that grows on the crystal surface between the adsorbed IBPs develops a high curvature that lowers the temperature at which the ice crystals grow, a phenomenon referred to as the Gibbs-Thomson effect. This depression creates a gap (thermal hysteresis, TH) between the melting point and the nonequilibrium freezing point, within which ice growth is arrested(8-10), see Figure 1. One of the main tools used in IBP research is the nanoliter osmometer, which facilitates measurements of the TH activities of IBP solutions. Nanoliter osmometers, such as the Clifton instrument (Clifton Technical Physics, Hartford, NY,) and Otago instrument (Otago Osmometers, Dunedin, New Zealand), were designed to measure the osmolarity of a solution by measuring the melting point depression of droplets with nanoliter volumes. These devices were used to measure the osmolarities of biological samples, such as tears(11), and were found to be useful in IBP research. Manual control over these nanoliter osmometers limited the experimental possibilities. Temperature rate changes could not be controlled reliably, the temperature range of the Clifton instrument was limited to 4,000 mOsmol (about -7.5 °C), and temperature recordings as a function of time were not an available option for these instruments. We designed a custom-made computer-controlled nanoliter osmometer system using a LabVIEW platform (National Instruments). The cold stage, described previously(9, 10), contains a metal block through which water circulates, thereby functioning as a heat sink, see Figure 2. Attached to this block are thermoelectric coolers that may be driven using a commercial temperature controller that can be controlled via LabVIEW modules, see Figure 3. Further details are provided below. The major advantage of this system is its sensitive temperature control, see Figure 4. Automated temperature control permits the coordination of a fixed temperature ramp with a video microscopy output containing additional experimental details. To study the time dependence of the TH activity, we tested a 58 kDa hyperactive IBP from the Antarctic bacterium Marinomonas primoryensis (MpIBP)(12). This protein was tagged with enhanced green fluorescence proteins (eGFP) in a construct developed by Peter Davies' group (Queens University)(10). We showed that the temperature change profile affected the TH activity. Excellent control over the temperature profile in these experiments significantly improved the TH measurements. The nanoliter osmometer additionally allowed us to test the recrystallization inhibition of IBPs(5, 13). In general, recrystallization is a phenomenon in which large crystals grow larger at the expense of small crystals. IBPs efficiently inhibit recrystallization, even at low concentrations(14, 15). We used our LabVIEW-controlled osmometer to quantitatively follow the recrystallization of ice and to enforce a constant ice fraction using simultaneous real-time video analysis of the images and temperature feedback from the sample chamber(13). The real-time calculations offer additional control options during an experimental procedure. A stage for an inverted microscope was developed to accommodate temperature-controlled microfluidic devices, which will be described elsewhere(16). The Cold Stage System The cold stage assembly (Figure 2) consists of a set of thermoelectric coolers that cool a copper plate. Heat is removed from the stage by flowing cold water through a closed compartment under the thermoelectric coolers. A 4 mm diameter hole in the middle of the copper plate serves as a viewing window. A 1 mm diameter in-plane hole was drilled to fit the thermistor. A custom-made copper disc (7 mm in diameter) with several holes (500 μm in diameter) was placed on the copper plate and aligned with the viewing window. Air was pumped at a flow rate of 35 ml/sec and dried using Drierite (W.A. Hammond). The dry air was used to ensure a dry environment at the cooling stage. The stage was connected via a 9 pin connection outlet to a temperature controller (Model 3040 or 3150, Newport Corporation, Irvine, California, US). The temperature controller was connected via a cable to a computer GPIB-PCI card (National instruments, Austin, Texas, USA).

  6. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh temperature will be predicted using the correlated analytical thermal model since direct measurements from in-situ flight thermal sensors are not possible.

  7. Cyanogen Excitation Measurements of the Cosmic Microwave Background Temperature at 2.64 mm

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.

    1993-01-01

    We have measured CN excitation temperatures in the diffuse lines of sight toward the stars zeta Ophiuchi, zeta Persei, HD 27778, HD 21483 and HD 154368. We find respective 2.64 mm rotational excitation temperatures of 2.737 +/- 0.025, 2.774 +/- 0.086, 2.769 +/- (0.093}_{0.099), 2.771 +/- (0.057}_{0.060) and 2.68 +/- (0.22}_{0.33)K. The fact that these values are all consistent with each other even though the associated CN column densities range over an order of magnitude strongly suggests that local processes contribute little to the excitation. We have corrected our temperatures for the small local collisional effects utilizing millimeter searches for CN line emission. The resulting values give a weighted average temperature for the cosmic microwave background radiation (CMBR) at 2.64 mm of 2.733 +/- (0.023}_{0.031)K. We also find a CMBR temperature at 1.32 mm of 2.657 +/- 0.057 K. Our result is entirely consistent with the CMBR temperature results from COBE (Mather et al. 1990, Ap.J. 354, L37) and the COBRA rocket experiment (Gush, Halpern and Wishnow 1990, Phys. Rev. Lett. 65, 537) of 2.735 +/- 0.06 and 2.736 +/- 0.017 K, respectively. CN excitation determinations are not susceptible to the same systematic errors as are the direct measurement experiments. In addition, our temperatures originate in physically separate Galactic locations far from the near-Earth environment. The excellent agreement among the results from these independent methods attests to the accuracy of each approach and reaffirms the global nature of the background radiation. Our measurements stem from a large set of observations utilizing CCD detectors with various telescope and instrument combinations. The data were analyzed in a consistent manner designed to expose systematic equivalent width measurement errors resulting from the different instrumental configurations. We have found no evidence for such a bias and feel this illustrates the potential for using CCD detectors in sensitive spectral applications for making accurate measurements of weak absorption features.

  8. Nist Microwave Blackbody: The Design, Testing, and Verification of a Conical Brightness Temperature Source

    NASA Astrophysics Data System (ADS)

    Houtz, Derek Anderson

    Microwave radiometers allow remote sensing of earth and atmospheric temperatures from space, anytime, anywhere, through clouds, and in the dark. Data from microwave radiometers are high-impact operational inputs to weather forecasts, and are used to provide a vast array of climate data products including land and sea surface temperatures, soil moisture, ocean salinity, cloud precipitation and moisture height profiles, and even wind speed and direction, to name a few. Space-borne microwave radiometers have a major weakness when it comes to long-term climate trends due to their lack of traceability. Because there is no standard, or absolute reference, for microwave brightness temperature, nationally or internationally, individual instruments must each rely on their own internal calibration source to set an absolute reference to the fundamental unit of Kelvin. This causes each subsequent instrument to have a calibration offset and there is no 'true' reference. The work introduced in this thesis addresses this vacancy by proposing and introducing a NIST microwave brightness temperature source that may act as the primary reference. The NIST standard will allow pre-launch calibration of radiometers across a broad range of remote sensing pertinent frequencies between 18 GHz and 220 GHz. The blackbody will be capable of reaching temperatures ranging between liquid nitrogen boiling at approximately 77 K and warm-target temperature of 350 K. The brightness temperature of the source has associated standard uncertainty ranging as a function of frequency between 0.084 K and 0.111 K. The standard can be transferred to the calibration source in the instrument, providing traceability of all subsequent measurements back to the primary standard. The development of the NIST standard source involved predicting and measuring its brightness temperature, and minimizing the associated uncertainty of this quantity. Uniform and constant physical temperature along with well characterized and maximized emissivity are fundamental to a well characterized blackbody. The chosen geometry is a microwave absorber coated copper cone. Electromagnetic and thermal simulations are introduced to optimize the design. Experimental verifications of the simulated quantities confirm the predicted performance of the blackbody.

  9. [A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].

    PubMed

    Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding

    2012-11-01

    Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.

  10. Portable Unit for Metabolic Analysis

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.

  11. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  12. Optical properties and emissivities of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Nordine, Paul C.

    1993-01-01

    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated.

  13. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.

    PubMed

    Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe

    2017-10-01

    The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (P<0.0001). RBC, Hb, Hct and T rectal values were higher at T3 (P<0.05). Statistically significant higher temperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (P<0.0001). The results obtained in this study showed that both internal and surface temperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Challenges in characterization of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Mergo, Pawel; Schuster, Kay

    2011-05-01

    We present experience with photonic crystal fiber (PCF) characterization during COST Action 299, focusing on phenomena causing errors and ways to mitigate them. PCFs developed at IPHT Jena (Germany; UMCS Lublin, Poland), designed for single mode operation were coupled to test instruments by fusion splicing to intermediate lengths of telecom single mode fibers (SMF). PCF samples were short (0.5-100 m), with 20-70 dB/km attenuation at 1310 nm and 1550 nm. Optical Time Domain Reflectometer (OTDR) was best for measuring loss as most PCFs produced strong backscattering, while variable splice losses and difficulties with PCF cleaving for optical power measurements made cutback and insertion loss measurements inaccurate. Experience with PCF handling and cleaving is also reviewed. Quality of splices to fiber under test was critical. Excitation of higher order modes produced strong "noise" during measurements of polarization parameters like PMD or PDL. Multimode propagation and vibration-induced interference precluded testing of fine dependence of PMD on temperature or strain, causing random variations comparable to true changes of PMD. OTDR measurements were not affected, but testing of short fiber sections with very different backscattering intensities puts special demands on instrument performance. Temperature testing of liquid-infiltrated PCF was time-consuming, as settling of parameters after temperature change took up to 40 minutes. PCFs were fragile, breaking below 2% linear expansion, sometimes in unusual way when twisted.

  15. Comparison between 1-minute and 15-minute averages of turbulence parameters

    NASA Technical Reports Server (NTRS)

    Noble, John M.

    1993-01-01

    Sonic anemometers are good instruments for measuring temperature and wind speed and are fast enough to calculate the temperature and wind structure parameters used to calculate the variance in the acoustic index of refraction. However, the turbulence parameters are typically 15-minute averaged point measurements. There are several problems associated with making point measurements and using them to represent a turbulence field. Some of the sonic anemometer data analyzed from the Joint Acoustic Propagation Experiment (JAPE) conducted during July 1991 at DIRT Site located at White Sands Missile Range, New Mexico, are examined.

  16. Development of techniques and associated instrumentation for high temperature emissivity measurements

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.

    1972-01-01

    The calibrating and testing procedures for the radiometric emittance measurement apparatus are described. Test results are given for the NBS platinum-rhodium standard (SRM No. 1409), the NBS oxidized Kanthal standard, and the oxidized Rene 41 materials. Results indicate that with the platinum-rhodium standard the measurement system compared with the NBS data to within 0.02 for both total and spectral normal emitttance. Data from the Kanthal strip was consistently higher than NBS values. For oxidized Rene 41, no significant changes in as prepared emittance was observed. The emittance was stable for temperatures up to 1150 K.

  17. Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2015-01-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  18. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  19. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  20. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    NASA Astrophysics Data System (ADS)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

Top