Development of Methods and Equipment for Sheet Stamping
NASA Astrophysics Data System (ADS)
Botashev, A. Yu; Bisilov, N. U.; Malsugenov, R. S.
2018-03-01
New methods of sheet stamping were developed: the gas forming with double-sided heating of a blank part and the gas molding with backpressure. In case of the first method the blank part is heated to the set temperature by means of a double-sided impact of combustion products of gas mixtures, after which, under the influence of gas pressure a stamping process is performed. In case of gas molding with backpressure, the blank part is heated to the set temperature by one-sided impact of the combustion products, while backpressure is created on the opposite side of the blank part by compressed air. In both methods the deformation takes place in the temperature range of warm or hot treatment due to the heating of a blank part. This allows one to form parts of complicated shape within one technological operation, which significantly reduces the cost of production. To implement these methods, original devices were designed and produced, which are new types of forging and stamping equipment. Using these devices, an experimental research on the stamping process was carried out and high-quality parts were obtained, which makes it possible to recommend the developed methods of stamping in the industrial production. Their application in small-scale production will allow one to reduce the cost price of stamped parts 2 or 3 times.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
Comparison of microstickies measurement methods. Part II, Results and discussion
Mahendra R. Doshi; Angeles Blanco; Carlos Negro; Concepcion Monte; Gilles M. Dorris; Carlos C. Castro; Axel Hamann; R. Daniel Haynes; Carl Houtman; Karen Scallon; Hans-Joachim Putz; Hans Johansson; R. A. Venditti; K. Copeland; H.-M. Chang
2003-01-01
In part I of the article we discussed sample preparation procedure and described various methods used for the measurement of microstickies. Some of the important features of different methods are highlighted in Table 1. Temperatures used in the measurement methods vary from room temperature in some cases, 45 °C to 65 °C in other cases. Sample size ranges from as low as...
Method for single crystal growth of photovoltaic perovskite material and devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinsong; Dong, Qingfeng
Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.
Maximum Temperature Detection System for Integrated Circuits
NASA Astrophysics Data System (ADS)
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
NASA Astrophysics Data System (ADS)
Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.
2016-11-01
In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Simulation based optimized beam velocity in additive manufacturing
NASA Astrophysics Data System (ADS)
Vignat, Frédéric; Béraud, Nicolas; Villeneuve, François
2017-08-01
Manufacturing good parts with additive technologies rely on melt pool dimension and temperature and are controlled by manufacturing strategies often decided on machine side. Strategies are built on beam path and variable energy input. Beam path are often a mix of contour and hatching strategies filling the contours at each slice. Energy input depend on beam intensity and speed and is determined from simple thermal models to control melt pool dimensions and temperature and ensure porosity free material. These models take into account variation in thermal environment such as overhanging surfaces or back and forth hatching path. However not all the situations are correctly handled and precision is limited. This paper proposes new method to determine energy input from full built chamber 3D thermal simulation. Using the results of the simulation, energy is modified to keep melt pool temperature in a predetermined range. The paper present first an experimental method to determine the optimal range of temperature. In a second part the method to optimize the beam speed from the simulation results is presented. Finally, the optimized beam path is tested in the EBM machine and built part are compared with part built with ordinary beam path.
Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
1999-01-01
One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.
NASA Technical Reports Server (NTRS)
Haertling, Gene H.; Lee, Burtrand; Grabert, Gregory; Gilmour, Phillip
1991-01-01
This report is presented in two parts. Part 1 deals primarily with Bi-based materials and a small amount of work on a Y-based composition while Part 2 covers work on Tl-based materials. In Part 1, a reliable and reproducible process for producing bulk bismuth-based superconductors has been developed. It is noted however, that a percentage of the tapecast material experiences curling and fracturing after a 30 hour sintering period and is thus in need of further examination. The Bi-Sr-Ca-Cu-O (BSCCO) material has been characterized by critical temperature data, X-ray diffraction data, and surface morphology. In the case of T sub c, it is not critical to anneal the material. It appears that the BSCCO material has the possibility of producing a better grounding strap than that of the 123 material. Attempts to reproduce near room temperature superconductors in the Y-Ba-Cu-O system were unsuccessful. In Part 2, several methods of processing the high temperature superconductor Tl2Ba2Ca2Cu3O10 were investigated; i.e., different precursor compositions were sintered at various sintering times and temperatures. The highest superconductig temperature was found to be 117.8K when fired at 900 C for three hours. Higher sintering temperatures produced a melted sample which was nonsuperconducting at liquid nitrogen temperature. Also, a preliminary study found Li2O substitutions for copper appeared to increase the transition temperature and create fluxing action upon sintering. It was suggested that lower sintering temperatures might be obtained with lithium additions to produce reliable Tl2Ba2Ca2Cu3O10 processing methods.
Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo
2010-05-10
A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.
Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System
NASA Astrophysics Data System (ADS)
Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu
2017-05-01
This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperatures) are to be used either in addition to, or as a substitute for procedures in a test method... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and...
New method of processing heat treatment experiments with numerical simulation support
NASA Astrophysics Data System (ADS)
Kik, T.; Moravec, J.; Novakova, I.
2017-08-01
In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.
Hardening parts by chrome plating in manufacture and repair
NASA Astrophysics Data System (ADS)
Astanin, V. K.; Pukhov, E. V.; Stekolnikov, Y. A.; Emtsev, V. V.; Golikova, O. A.
2018-03-01
In the engineering industry, galvanic coatings are widely used to prolong the service life of the machines, which contribute to the increase in the strength of the parts and their resistance to environmental influences, temperature and pressure drops, wear and fretting corrosion. Galvanic coatings have been widely applied in engineering, including agriculture, aircraft building, mining, construction, and electronics. The article focuses on the manufacturing methods of new agricultural machinery parts and the repair techniques of worn parts by chrome plating. The main attention is paid to the unstable methods of chromium deposition (in pulsed and reversing modes) in low-concentration electrolytes, which makes it possible to increase the reliability and durability of the hardened parts operation by changing the conditions of electrocrystallization, that is, directed formation of the structure and texture, thickness, roughness and microhardness of chromium plating. The practical recommendations are given on the current and temperature regimes of chromium deposition and composition of baths used for the restoration and hardening of the machine parts. Moreover, the basic methods of machining allowances removal are analysed.
Method for making hydrogen rich gas from hydrocarbon fuel
Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.
1999-07-27
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.
Method for making hydrogen rich gas from hydrocarbon fuel
Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv
1999-01-01
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping
2011-08-01
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.
System and method for 3D printing of aerogels
Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng
2016-03-08
A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.
Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape
NASA Technical Reports Server (NTRS)
Lutz, Otto
1950-01-01
A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.
Measuring and Estimating Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2013-01-01
Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.
Joining of parts via magnetic heating of metal aluminum powders
Baker, Ian
2013-05-21
A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2012 CFR
2012-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2014 CFR
2014-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.
Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel Riza
This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. Inmore » this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.« less
Research on particulate filter simulation and regeneration control strategy
NASA Astrophysics Data System (ADS)
Dawei, Qu; Jun, Li; Yu, Liu
2017-03-01
This paper reports a DPF (Diesel Particulate Filter) collection mathematical model for a new regeneration control strategy. The new strategy is composed by main parts, such as regeneration time capturing, temperature rising strategy and regeneration control strategy. In the part of regeneration time capturing, a multi-level regeneration capturing method is put forward based on the combined effect of the PM (Particulate Matter) loading, pressure drop and fuel consumption. The temperature rising strategy proposes the global temperature for all operating conditions. The regeneration control process considers the particle loading density, temperature and oxygen respectively. Based on the analysis of the initial overheating, runaway temperature and local hot spot, the final control strategy is established.
Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds
NASA Astrophysics Data System (ADS)
Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman
2015-03-01
Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.
Method And Apparatus For Evaluatin Of High Temperature Superconductors
Fishman, Ilya M.; Kino, Gordon S.
1996-11-12
A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2002-08-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2005-11-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
NASA Astrophysics Data System (ADS)
Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.
2017-12-01
This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other..., App. B Appendix B to Part 173—Procedure for Testing Chemical Compatibility and Rate of Permeation in... °C. (64 °F.) b. Test Method 2: 28 days at a temperature no lower than 50 °C. (122 °F.) c. Test Method...
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2018-05-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2017-12-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
A simple method for in situ monitoring of water temperature in substrates used by spawning salmonids
Zimmerman, Christian E.; Finn, James E.
2012-01-01
Interstitial water temperature within spawning habitats of salmonids may differ from surface-water temperature depending on intragravel flow paths, geomorphic setting, or presence of groundwater. Because survival and developmental timing of salmon are partly controlled by temperature, monitoring temperature within gravels used by spawning salmonids is required to adequately describe the environment experienced by incubating eggs and embryos. Here we describe a simple method of deploying electronic data loggers within gravel substrates with minimal alteration of the natural gravel structure and composition. Using data collected in spawning sites used by summer and fall chum salmon Oncorhynchus keta from two streams within the Yukon River watershed, we compare contrasting thermal regimes to demonstrate the utility of this method.
Closed loop oscillating heat pipe as heating device for copper plate
NASA Astrophysics Data System (ADS)
Kamonpet, Patrapon; Sangpen, Waranphop
2017-04-01
In manufacturing parts by molding method, temperature uniformity of the mold holds a very crucial aspect for the quality of the parts. Studies have been carried out in searching for effective method in controlling the mold temperature. Using of heat pipe is one of the many effective ways to control the temperature of the molding area to the right uniform level. Recently, there has been the development of oscillating heat pipe and its application is very promising. The semi-empirical correlation for closed-loop oscillating heat pipe (CLOHP) with the STD of ±30% was used in design of CLOHP in this study. By placing CLOHP in the copper plate at some distance from the plate surface and allow CLOHP to heat the plate up to the set surface temperature, the temperature of the plate was recorded. It is found that CLOHP can be effectively used as a heat source to transfer heat to copper plate with excellent temperature distribution. The STDs of heat rate of all experiments are well in the range of ±30% of the correlation used.
Calero, C.; Knorowski, C.; Travesset, A.
2016-03-22
We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less
NASA Technical Reports Server (NTRS)
Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian
2000-01-01
Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.
X-ray micro-CT measurement of large parts at very low temperature
NASA Astrophysics Data System (ADS)
Koutecký, T.; Zikmund, T.; Glittová, D.; Paloušek, D.; Živčák, J.; Kaiser, J.
2017-03-01
At present, the automotive industry, along with other industries, has increasing demands on accuracy of produced parts and assemblies. Besides the regular dimensional and geometrical inspection, in some cases, also a verification at very low temperatures is required. X-ray computed tomography (CT), as a tool for non-destructive testing, is able to examine samples and then determine dimensions for strictly stable temperature conditions necessary for the stability of the CT system. Until now, no system that allows scanning of samples larger than a few millimeters at temperatures much below 0 °C has been presented. This paper presents a cooling system for CT imaging of parts with length up to 300 mm at the extreme temperature conditions of -40 °C, which are based on automotive industry requests. It describes the equipment and conditions under which it is possible to achieve a temperature stability of samples at low temperatures, while keeping an independent temperature regulation of the CT system. The presented system uses a standard industrial CT device and a newly designed cooling stage with passive cooling based on phase-change material. The system is demonstrated on the measurement of plastic part (car door handle) at temperatures of -40 °C and 20 °C. The paper also presents the method of how to interpret the thermal changes using tools of the commercial software VGStudio MAX (Volume Graphics GmbH, Germany).
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
Method and device for microwave sintering large ceramic articles
Kimrey, Jr., Harold D.
1990-01-01
A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
NASA Astrophysics Data System (ADS)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe
2016-03-01
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micromore » structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.« less
Numerical study of the flow in a three-dimensional thermally driven cavity
NASA Astrophysics Data System (ADS)
Rauwoens, Pieter; Vierendeels, Jan; Merci, Bart
2008-06-01
Solutions for the fully compressible Navier-Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied. Results are computed using a finite volume method on a structured, collocated grid. An explicit third-order discretization for the convective part and an implicit central discretization for the acoustic part and for the diffusive part are used. To stabilize the scheme an artificial dissipation term for the pressure and the temperature is introduced. The discrete equations are solved using a time-marching method with restrictions on the timestep corresponding to the explicit parts of the solver. Multigrid is used as acceleration technique.
Thermal transport across metal–insulator interface via electron–phonon interaction.
Zhang, Lifa; Lü, Jing-Tao; Wang, Jian-Sheng; Li, Baowen
2013-11-06
The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green's function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling.
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility. Such instructions (for example, establish sampling rates, volumes, or temperatures) are to be... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and...
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility. Such instructions (for example, establish sampling rates, volumes, or temperatures) are to be... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and...
METHOD OF HOT ROLLING URANIUM METAL
Kaufmann, A.R.
1959-03-10
A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.
Warpage analysis on thin shell part using glowworm swarm optimisation (GSO)
NASA Astrophysics Data System (ADS)
Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
The Autodesk Moldflow Insight (AMI) software was used in this study to focuses on the analysis in plastic injection moulding process associate the input parameter and output parameter. The material used in this study is Acrylonitrile Butadiene Styrene (ABS) as the moulded material to produced the plastic part. The MATLAB sortware is a method was used to find the best setting parameter. The variables was selected in this study were melt temperature, packing pressure, coolant temperature and cooling time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobas, Miroslav; Weber, Thomas; Steurer, Walter
The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations aremore » present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.« less
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Reduction of particle deposition on substrates using temperature gradient control
Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.
2000-01-01
A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.
SPECIATION OF ORGANICS IN WATER
We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation....
Storlazzi, Curt D.; Presto, M. Kathy
2005-01-01
High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Honolua Bay, northwest Maui, Hawaii, during 2003 and 2004 to better understand coastal dynamics in coral reef habitats. Measurements were acquired through two different collection methods. Two hydrographic survey cruises were conducted to acquire spatially-extensive, but temporally-limited, three-dimensional measurements of currents, temperature, salinity and turbidity in the winter and summer of 2003. From mid 2003 through early 2004, a bottom-mounted instrument package was deployed in a water depth of 10 m to collect long-term, single-point high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties such as water temperature, salinity and turbidity vary spatially and temporally in a near-shore coral reef system adjacent to a major stream drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the final part in a series, describes data acquisition, processing and analysis. Previous reports provided data and results on: Long-term measurements of currents, temperature, salinity and turbidity off Kahana (PART I), the spatial structure of currents, temperature, salinity and suspended sediment along West Maui (PART II), and flow and coral larvae and sediment dynamics during the 2003 summer spawning season (PART III).
Code of Federal Regulations, 2010 CFR
2010-07-01
....5 sample collection filter is weighed (after moisture and temperature conditioning) before and after... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... in micrograms per cubic meter (µg/m3)at local temperature and pressure conditions. The mass...
40 CFR Appendix M to Part 51 - Recommended Test Methods for State Implementation Plans
Code of Federal Regulations, 2010 CFR
2010-07-01
... different temperature within 60 °C (108 °F) of the temperature at which the cyclone is to be used and... property sized and shaped for cleaning the nozzle, cyclone, filter holder, and probe or probe liner, with... stack temperatures from 38 to 260 °C (100 to 500 °F) and stack moisture up to 50 percent. Also, the...
Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv
2000-01-01
A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
Inverse Coarse-Graining: A New Tool for Molecular Design
2010-12-16
simulations. When compared with the more general multiscale coarse-graining (MS-CG) method, the EF-CG method retains the transferable part of the CG...Y.; Yan, T.; Voth, G. A., A Multiscale coarse-graining study of liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of...Energetic Room Temperature Ionic Liquid 1-Hydroxyethyl-4Amino-1, 2, 4-Triazolium Nitrate (HEATN). J. Phys. Chem. B 2008, 112, 3121-3131. 6. Liu, P
Vacuum Compatibility of Laser-Sintered Metals
NASA Astrophysics Data System (ADS)
Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W. J.; Quinley, M.; Woodruff, S.; Stuber, J. E.; Sieck, P. E.; Melnik, P. A.
2016-10-01
We present the design and results of a mass spectrometry system used to assess vacuum compatibility of selective laser-sintered parts. The parts are disks with a thickness of 0.20 cm and a diameter of 8.25 cm, and are made of aluminum, stainless steel, inconel, and titanium. From preliminary results, titanium had the lowest partial pressure for hydrogen. Outgassing from laser-sintered parts is compared against parts with similar surface area that are manufactured with traditional methods. Outgassing is also measured while the part is heated, emulating the conditions at the edge of high temperature plasma confinement chambers. Each part is placed on a heated container that can vary in temperature inside the mass spectrometer's vacuum chamber. The partial pressures of elements up to 200 atomic mass units are analyzed to obtain outgassing data from each sample. This work supported under DOE SBIR Grant DE SC0011858.
Sensorless battery temperature measurements based on electrochemical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.
2014-02-01
A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.
Contamination in Orbit of GOES-8
NASA Technical Reports Server (NTRS)
Sanders, Jack T.
2002-01-01
The GOES-8 satellite has lost some of its ability to dissipate heat over time. This is shown by the temperature increases over time of spacecraft and instrument components that are cooled with optical solar reflector (OSR) radiators. Contamination has a significant, well-documented effect on the solar absorptance (a(sub s)) of OSRs. This document attempts to discern how much molecular contamination has collected on the Imager and Sounder radiant coolers by analyzing the increase in temperature of the vacuum cooler housing. In the first part, temperature change is transformed into solar absorptance units by a method devised by ITT. The second part transfomis the solar absorptance gain into a molecular film thickness.
System and process for aluminization of metal-containing substrates
Chou, Yeong-Shyung; Stevenson, Jeffry W.
2017-12-12
A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.
System and process for aluminization of metal-containing substrates
Chou, Yeong-Shyung; Stevenson, Jeffry W
2015-11-03
A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.
Warpage analysis on thin shell part using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.
40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions
Code of Federal Regulations, 2010 CFR
2010-07-01
... (iii) 10−6 for solids. If any nuclide is heated to a temperature of 100 degrees Celsius or more, boils at a temperature of 100 degrees Celsius or less, or is intentionally dispersed into the environment... Although venturis may remove gases, variability in gaseous removal efficiency dictates adjustment factor...
USDA-ARS?s Scientific Manuscript database
The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...
Atherton, J.E. Jr.; Gurinsky, D.H.
1958-06-24
A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.
Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L
2018-01-01
An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.
Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer
NASA Astrophysics Data System (ADS)
Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.
2018-04-01
Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.
Method for forming a uniformly dense polymer foam body
Whinnery, Jr., Leroy
2002-01-01
A method for providing a uniformly dense polymer foam body having a density between about 0.013 .sup.g /.sub.cm.sup..sub.3 to about 0.5 .sup.g /.sub.cm.sup..sub.3 is disclosed. The method utilizes a thermally expandable polymer microballoon material wherein some of the microballoons are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.
Prediction of Quality Change During Thawing of Frozen Tuna Meat by Numerical Calculation I
NASA Astrophysics Data System (ADS)
Murakami, Natsumi; Watanabe, Manabu; Suzuki, Toru
A numerical calculation method has been developed to determine the optimum thawing method for minimizing the increase of metmyoglobin content (metMb%) as an indicator of color changes in frozen tuna meat during thawing. The calculation method is configured the following two steps: a) calculation of temperature history in each part of frozen tuna meat during thawing by control volume method under the assumption of one-dimensional heat transfer, and b) calculation of metMb% based on the combination of calculated temperature history, Arrenius equation and the first-order reaction equation for the increase rate of metMb%. Thawing experiments for measuring temperature history of frozen tuna meat were carried out under the conditions of rapid thawing and slow thawing to compare the experimental data with calculated temperature history as well as the increase of metMb%. The results were coincident with the experimental data. The proposed simulation method would be useful for predicting the optimum thawing conditions in terms of metMb%.
Detecting the global and regional effects of sulphate aerosol geoengineering
NASA Astrophysics Data System (ADS)
Lo, Eunice; Charlton-Perez, Andrew; Highwood, Ellie
2017-04-01
Climate warming is unequivocal. In addition to carbon dioxide emission mitigation, some geoengineering ideas have been proposed to reduce future surface temperature rise. One of these proposals involves injecting sulphate aerosols into the stratosphere to increase the planet's albedo. Monitoring the effectiveness of sulphate aerosol injection (SAI) would require us to be able to distinguish and detect its cooling effect from the climate system's internal variability and other externally forced temperature changes. This research uses optimal fingerprinting techniques together with simulations from the GeoMIP data base to estimate the number of years of observations that would be needed to detect SAI's cooling signal in near-surface air temperature, should 5 Tg of sulphur dioxide be injected into the stratosphere per year on top of RCP4.5 from 2020-2070. The first part of the research compares the application of two detection methods that have different null hypotheses to SAI detection in global mean near-surface temperature. The first method assumes climate noise to be dominated by unforced climate variability and attempts to detect the SAI cooling signal and greenhouse gas driven warming signal in the "observations" simultaneously against this noise. The second method considers greenhouse gas driven warming to be a non-stationary background climate and attempts to detect the net cooling effect of SAI against this background. Results from this part of the research show that the conventional multi-variate detection method that has been extensively used to attribute climate warming to anthropogenic sources could also be applied for geoengineering detection. The second part of the research investigates detection of geoengineering effects on the regional scale. The globe is divided into various sub-continental scale regions and the cooling effect of SAI is looked for in the temperature time series in each of these regions using total least squares multi-variate detection. Results show that surface temperature observations would be most useful for SAI detection in the Northern Hemisphere mid-latitudes, especially in East Asia. This can be used to indicate the optimal observational network for monitoring the effectiveness of SAI in the future, should that be needed.
Computationally efficient thermal-mechanical modelling of selective laser melting
NASA Astrophysics Data System (ADS)
Yang, Yabin; Ayas, Can
2017-10-01
The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.
Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.
2017-09-01
The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis; Vives, Eduard; Pryds, Nini
2016-12-01
This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress-strain-temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius-Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy-temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni-Ti and Cu-Zn-Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.
NASA Astrophysics Data System (ADS)
Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.
2017-07-01
We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.
Preliminary feasibility study of a new method of hypothermia in an experimental canine model
Sert, İbrahim Ünal; Akand, Murat; Kılıç, Özcan; Yavru, Nuri; Bulut, Ersan
2017-01-01
Objective To build up a new microcontroller thermoelectric system to achieve renal hypothermia. Material and methods Renal hypothermia system was tested under in vivo conditions in the kidneys of ten Mongrel dogs. Ambient temperature was evaluated using two different microcontrollers. In order to ensure hypothermia in the renal parenchyma, selection can be made among 4 modules and sensors which detect the temperature of the area. The temperature range of the system was adjusted between −50°C and +50°C. Results When single and double poles of the kidney were cooled, initial mean intraperitoneal temperature values were found 37.7°C for rectum and 36.5°C for renal cortex and medulla. After the temperature of the cooling module was set to 12°C, the module was placed on the poles of the kidney. After fifteen minutes, temperature was 15.4°C in the lower pole of the kidney, 28.1°C in the cortex of the other side and 29.2°C in the intramedullary region. The temperature was found to be 15°C in the vicinity and 26.1°C in the cortex across the module. After the system was stabilized, a very slight change was observed in the temperature. Conclusion Hypothermia system developed ensured desired cooling of the targeted part of the kidney; however, it did not cause a change in the temperature of other parts of the kidney or general body temperature. Thus, it was possible to create a long-term study area for renal parenchymal surgery. PMID:28861307
Diffusion barriers in modified air brazes
Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung
2013-04-23
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
Diffusion barriers in modified air brazes
Weil, Kenneth Scott [Richland, WA; Hardy, John S [Richland, WA; Kim, Jin Yong [Richland, WA; Choi, Jung-Pyung [Richland, WA
2010-04-06
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
OPTIMIZATION OF RAMAN SPECTROSCOPY FOR SPECIATION OF ORGANICS IN WATER
We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation. Spectra a...
Summary of laser speckle photogrammetry for HOST
NASA Technical Reports Server (NTRS)
Pollack, Frank G.
1986-01-01
High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.
Rouse, James; Hyde, Christopher
2016-01-06
The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
2016-03-01
17 6. SENSOR PARTICLES...explosion also limit measurement options since any sensors employed must be able to withstand the extreme environment, or at least transmit the...in detonations and fireballs. On the other hand, temperature measurements have been less extensive, partly because sensors rugged enough to withstand
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS: We examin...
Thermal expansion method for lining tantalum alloy tubing with tungsten
NASA Technical Reports Server (NTRS)
Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.
1973-01-01
A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.
Thermochromatography and activation analysis
NASA Astrophysics Data System (ADS)
Stattarov, G. S.; Kist, A. A.
1999-01-01
Gas thermochromatography is a promising method in combination with neutron activation analysis. The procedure includes heating of irradiated samples in a stream of reacting gas carrier (air, chlorine, etc.) or heating in presence of compounds evolving gas at high temperatures. Gaseous products are passed through a tube with certain temperature gradient filled with various sorbents and the gases condense in different parts of the column. Studies of the processes of producing and trapping of volatile compounds allowed to work out various set-ups of apparatus with sorption tubes of various length and various temperature gradients, various filters, sorbents, etc. Sensitivity of these methods is sufficiently better then in INAA.
Aeronautic Instruments. Section V : Power Plant Instruments
NASA Technical Reports Server (NTRS)
Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C
1923-01-01
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.
Design and development of data acquisition system based on WeChat hardware
NASA Astrophysics Data System (ADS)
Wang, Zhitao; Ding, Lei
2018-06-01
Data acquisition system based on WeChat hardware provides methods for popularization and practicality of data acquisition. The whole system is based on WeChat hardware platform, where the hardware part is developed on DA14580 development board and the software part is based on Alibaba Cloud. We designed service module, logic processing module, data processing module and database module. The communication between hardware and software uses AirSync Protocal. We tested this system by collecting temperature and humidity data, and the result shows that the system can aquisite the temperature and humidity in real time according to settings.
Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution
NASA Astrophysics Data System (ADS)
Devlin, Steven Leon
Fused Deposition Modeling (FDM(TM)) or fused filament fabrication (FFF) systems are extrusion-based technologies used to produce functional or near functional parts from a wide variety of plastic materials. First patented by S. Scott Crump and commercialized by Stratasys, Ltd in the early 1990s, this technology, like many additive manufacturing systems, offers significant opportunities for the design and production of complex part structures that are difficult if not impossible to produce using traditional manufacturing methods. Standing on the shoulders of a twenty-five year old invention, a rapidly growing open-source development community has exponentially driven interest in FFF technology. However, part quality often limits use in final product commercial markets. Development of accurate and repeatable methods for determining material strength in FFF produced parts is essential for wide adoption into mainstream manufacturing. This study builds on the empirical, squeeze flow and intermolecular diffusion model research conducted by David Grewell and Avraham Benatar, applying a combined model to predict auto adhesion or healing to FFF part samples. In this research, an experimental study and numerical modeling were performed in order to drive and validate a closed form heat transfer solution for extrusion processes to develop temperature field models. An extrusion-based 3D printing system, with the capacity to vary deposition speeds and temperatures, was used to fabricate the samples. Standardized specimens of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filament were used to fabricate the samples with different speeds and temperatures. Micro-scanning of cut and lapped specimens, using an optical microscope, was performed to find the effect of the speed and the temperature on the geometry of the cross-sections. It was found that by increasing the speed of the extrusion printing, the area of the cross-section and the maximum thickness decrease, while the weld/bead geometry minimum thickness increases at higher speeds, although actual part strength appeared to plateau for speeds above 15mm/sec. Temperature effect was found to increase the geometry minimum thickness. In most cases, test results show that by increasing the speed and the temperature, the geometry strength increases. Non-Linear finite element based numerical modeling was performed to predict the strength of the samples. The geometry produced from the optical microscope scanning and typical PLA material properties were used to create the model. The finite element model was able to predict the strength of the tested samples at different speeds and temperatures. Analysis of resulting data and examination of tested samples offer favorable insights and opportunities for additional and continuing investigation.
Agreement between auricular and rectal measurements of body temperature in healthy cats.
Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C
2013-04-01
Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calero, C.; Knorowski, C.; Travesset, A.
We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less
NASA Astrophysics Data System (ADS)
Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).
NIMBUS-5 sounder data processing system. Part 2: Results
NASA Technical Reports Server (NTRS)
Smith, W. L.; Woolf, H. M.; Hayden, C. M.; Shen, W. C.
1975-01-01
The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented.
NASA Astrophysics Data System (ADS)
Matthews, J. B. R.
2012-09-01
Sea Surface Temperature (SST) measurements have been obtained from a variety of different platforms, instruments and depths over the post-industrial period. Today most measurements come from ships, moored and drifting buoys and satellites. Shipboard methods include temperature measurement of seawater sampled by bucket and in engine cooling water intakes. Engine intake temperatures are generally thought to average a few tenths of a °C warmer than simultaneous bucket temperatures. Here I review SST measurement methods, studies comparing shipboard methods by field experiment and adjustments applied to SST datasets to account for variable methods. In opposition to contemporary thinking, I find average bucket-intake temperature differences reported from field studies inconclusive. Non-zero average differences often have associated standard deviations that are several times larger than the averages themselves. Further, average differences have been found to vary widely between ships and between cruises on the same ship. The cause of non-zero average differences is typically unclear given the general absence of additional temperature observations to those from buckets and engine intakes. Shipboard measurements appear of variable quality, highly dependent upon the accuracy and precision of the thermometer used and the care of the observer where manually read. Methods are generally poorly documented, with written instructions not necessarily reflecting actual practices of merchant mariners. Measurements cannot be expected to be of high quality where obtained by untrained sailors using thermometers of low accuracy and precision.
Advanced Aeroelastic Technologies for Turbomachinery Application
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.
2004-01-01
A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented
40 CFR 63.1064 - Alternative means of emission limitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards, Chapter 19, Section 3, Part A, Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss... limitation. 63.1064 Section 63.1064 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... as wind, temperature, and barometric pressure. Test methods that can be used to perform the testing...
40 CFR 63.1064 - Alternative means of emission limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards, Chapter 19, Section 3, Part A, Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss... limitation. 63.1064 Section 63.1064 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... as wind, temperature, and barometric pressure. Test methods that can be used to perform the testing...
40 CFR 63.1064 - Alternative means of emission limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards, Chapter 19, Section 3, Part A, Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss... limitation. 63.1064 Section 63.1064 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... as wind, temperature, and barometric pressure. Test methods that can be used to perform the testing...
40 CFR 63.1064 - Alternative means of emission limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards, Chapter 19, Section 3, Part A, Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss... limitation. 63.1064 Section 63.1064 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... as wind, temperature, and barometric pressure. Test methods that can be used to perform the testing...
40 CFR 63.1064 - Alternative means of emission limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards, Chapter 19, Section 3, Part A, Wind Tunnel Test Method for the Measurement of Deck-Fitting Loss... limitation. 63.1064 Section 63.1064 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... as wind, temperature, and barometric pressure. Test methods that can be used to perform the testing...
NASA Astrophysics Data System (ADS)
Woskov, P. P.; Sundaram, S. K.
2002-11-01
A radiometric method for resolving emissivity epsilon and temperature T in thermal emission measurements is presented. Thermal radiation from a viewed source is split by a beamsplitter between a radiometer and a mirror aligned to return a part of the thermal radiation back to the source. The ratio of the thermal signal with and without a return reflection provides a measurement of the emissivity without need of any other probing sources. The analytical expressions that establish this relationship are derived taking into account waveguide/optic losses and sources between the radiometer and viewed sample. The method is then applied to thermal measurements of several refractory materials at temperatures up to 1150 degC. A 137 GHz radiometer is used to measure the emissivity and temperature of an alumina brick, an Inconel 690 plate, and two grades of silicon carbide. Reasonable temperature agreement is achieved with an independent thermocouple measurement. However, when the emissivity approaches zero, as in the case of the Inconel plate, radiometric temperature determinations are inaccurate, though an emissivity near zero is correctly measured. This method is expected to be of considerable value to noncontact thermal analysis applications of materials.
Flat plate solar air heater with latent heat storage
NASA Astrophysics Data System (ADS)
Touati, B.; Kerroumi, N.; Virgone, J.
2017-02-01
Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.
NASA Technical Reports Server (NTRS)
Smalley, A. J.; Tessarzik, J. M.
1975-01-01
Effects of temperature, dissipation level and geometry on the dynamic behavior of elastomer elements were investigated. Force displacement relationships in elastomer elements and the effects of frequency, geometry and temperature upon these relationships are reviewed. Based on this review, methods of reducing stiffness and damping data for shear and compression test elements to material properties (storage and loss moduli) and empirical geometric factors are developed and tested using previously generated experimental data. A prediction method which accounts for large amplitudes of deformation is developed on the assumption that their effect is to increase temperature through the elastomers, thereby modifying the local material properties. Various simple methods of predicting the radial stiffness of ring cartridge elements are developed and compared. Material properties were determined from the shear specimen tests as a function of frequency and temperature. Using these material properties, numerical predictions of stiffness and damping for cartridge and compression specimens were made and compared with corresponding measurements at different temperatures, with encouraging results.
Continuous measurement of tympanic temperature with a new infrared method using an optical fiber.
Shibasaki, M; Kondo, N; Tominaga, H; Aoki, K; Hasegawa, E; Idota, Y; Moriwaki, T
1998-09-01
The purpose of this study was to investigate the utility of an infrared tympanic thermometry by using an optical fiber for measuring tympanic temperature (Tty). In the head cooling and facial fanning tests during normothermia, right Tty measured by this method (infrared-Tty) and esophageal temperature (Tes) were not affected by decreased temple and forehead skin temperatures, suggesting that the infrared sensor in this system measured the infrared radiation from the tympanic membrane selectively. Eight male subjects took part in passive-heat-stress and progressive-exercise tests. No significant differences among infrared-Tty, the left Tty measured by thermistor (contact-Tty), and Tes were observed at rest or at the end of each experiment, and there was no significant difference in the increase in these core temperatures from rest to the end. Furthermore, there were no significant differences in the core temperature threshold at the onset of sweating and slope (the relationship of sweating rate vs. infrared-Tty and vs. contact-Tty). These results suggest that this method makes it possible to measure Tty accurately, continuously, and more safely.
Esterification of fermentation-derived acids via pervaporation
Datta, R.; Tsai, S.P.
1998-03-03
A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.
Esterification of fermentation-derived acids via pervaporation
Datta, Rathin; Tsai, Shih-Perng
1998-01-01
A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.
NASA Astrophysics Data System (ADS)
Chu, Zhe-Qi; Yuan, Jie; Stephen, Z. Pinter; Oliver, D. Kripfgans; Wang, Xue-Ding; Paul, L. Carson; Liu, Xiao-Jun
2015-10-01
Hyperthermia is a promising method to enhance chemo and radiation therapy of breast cancer. In the process of hyperthermia, temperature monitoring is of great importance to assure the effectiveness of treatment. The transmission speed of ultrasound in biomedical tissue changes with temperature. However, when mapping the speed of sound directly to temperature in each pixel as desired for using all speeds of ultrasound data, temperature bipolar edge enhancement artifacts occur near the boundary of two tissues with different speeds of ultrasound. After the analysis of the reasons for causing these artifacts, an optimized method is introduced to rebuild the temperature field image by using the continuity constraint as the judgment criterion. The significant smoothness of the rebuilding image in the transitional area shows that our proposed method can build a more precise temperature image for controlling the medical thermal treatment. Project supported in part by DoD/BCRP Idea Award, BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131280), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China, and the National Institutes of Health (NIH) of United States (Grant Nos. R01AR060350, R01CA91713, and R01AR055179).
Uniformly dense polymeric foam body
Whinnery, Jr., Leroy
2003-07-15
A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.
Maes, W H; Steppe, K
2012-08-01
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.
Pandey, Devendra Kumar; Kaur, Prabhjot
2018-03-01
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
Carbide and carbonitride surface treatment method for refractory metals
Meyer, G.A.; Schildbach, M.A.
1996-12-03
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.
NASA Technical Reports Server (NTRS)
Livingood, John N. B.; Sams, Eldon W.
1947-01-01
A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.
Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Guazzo, Dana Morton
2013-01-01
This Part 3 of this three-part research series reports the impact of high-voltage leak detection (HVLD) exposure on the physico-chemical stability of the packaged product. The product, intended for human administration by injection, is an aqueous solution formulation of the rapid acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. The package is a small-volume form-fill-seal plastic laminate bag. Product-packages exposed to HVLD were compared to unexposed product after storage for 9 months at recommended storage conditions of 5 ± 3 °C. No differences in active ingredient or degradation products assays were noted. No changes in any other stability indicating parameter results were observed. This report concludes this three-part series. Part 1 documented HVLD method development and validation work. Part 2 explored the impact of various package material, package temperature, and package storage conditions on HVLD test results. Detection of leaks in the bag seal area was investigated. In conclusion, HVLD is reported to be a validatable leak test method suitable for rapid, nondestructive container-closure integrity evaluation of the subject product-package. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was proven to find hole leaks in small plastic bags filled with a solution of insulin aspart intended for human injection (NovoRapid®/NovoLog® by Novo Nordisk A/S, Bagsværd, Denmark). In Part 2, the ability of the HVLD method to find other types of package leaks was tested, and the impact of package material and product storage temperature on HVLD results was explored. This final Part 3 checked how well the packaged protein drug solution maintained its potency after HVLD exposure over 9 months of storage under long-term stability conditions. Results showed that HVLD caused no harm to the product.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (LE), Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of Electric Lamps R Appendix R to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. R Appendix R to Subpart B of Part...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (LE), Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of Electric Lamps R Appendix R to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. R Appendix R to Subpart B of Part...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (LE), Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of Electric Lamps R Appendix R to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. R Appendix R to Subpart B of Part...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (LE), Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of Electric Lamps R Appendix R to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. R Appendix R to Subpart B of Part...
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and... (2 in.). Immerse the impingers in an ice water bath and maintain near 0 °C (32 °F). The scrubber...
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and... (2 in.). Immerse the impingers in an ice water bath and maintain near 0 °C (32 °F). The scrubber...
2016-12-08
mesoscopic models of interfaces and interphases, and microstructure-resolved representative volume element simulations. Atomic simulations were...title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a...careful prediction of the pressure- volume -temperature equation of state, pressure- and temperature-dependent crystal and liquid thermal and transport
A New Apparatus for Measuring the Temperature at Machine Parts Rotating at High Speeds
NASA Technical Reports Server (NTRS)
Gnam, E.
1945-01-01
After a brief survey of the available methods for measuring the temperatures of machine parts at high speed, in particular turbine blades and rotors, an apparatus is described which is constructed on the principle of induction. Transmission of the measuring current by sliding contacts therefore is avoided. Up-to-date experiments show that it is possible to give the apparatus a high degree of sensitivity and accuracy. In comparison with sliding contact types, the present apparatus shows the important advantage that it operates for any length of time without wear, and that the contact difficulties, particularly occurring at high sliding speeds,are avoided.
In situ baking method for degassing of a kicker magnet in accelerator beam line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru
In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less
Convection in containerless processing.
Hyers, Robert W; Matson, Douglas M; Kelton, Kenneth F; Rogers, Jan R
2004-11-01
Different containerless processing techniques have different strengths and weaknesses. Applying more than one technique allows various parts of a problem to be solved separately. For two research projects, one on phase selection in steels and the other on nucleation and growth of quasicrystals, a combination of experiments using electrostatic levitation (ESL) and electromagnetic levitation (EML) is appropriate. In both experiments, convection is an important variable. The convective conditions achievable with each method are compared for two very different materials: a low-viscosity, high-temperature stainless steel, and a high-viscosity, low-temperature quasicrystal-forming alloy. It is clear that the techniques are complementary when convection is a parameter to be explored in the experiments. For a number of reasons, including the sample size, temperature, and reactivity, direct measurement of the convective velocity is not feasible. Therefore, we must rely on computation techniques to estimate convection in these experiments. These models are an essential part of almost any microgravity investigation. The methods employed and results obtained for the projects levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS) and quasicrystalline undercooled alloys for space investigation (QUASI) are explained.
Temperature Control Diagnostics for Sample Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santodonato, Louis J; Walker, Lakeisha MH; Church, Andrew J
2010-01-01
In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environmentmore » inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.« less
Osvay, M; Deme, S
2006-01-01
Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.
NASA Astrophysics Data System (ADS)
Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele
2018-03-01
In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.
Method and apparatus for measuring surface contour on parts with elevated temperatures
Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George
1991-01-01
The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.
Salvaged castings and methods of salvaging castings with defective cast cooling bumps
Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles
2002-01-01
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.
Method for Molding Structural Parts Utilizing Modified Silicone Rubber
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); Baucom, Robert M. (Inventor); Snoha, John J. (Inventor)
1998-01-01
This invention improves upon a method for molding structural parts from preform material. Preform material to be used for the part is provided. A silicone rubber composition containing entrained air voids is prepared. The silicone rubber and preform material assembly is situated within a rigid mold cavity used to shape the preform material to die desired shape. The entire assembly is heated in a standard heating device so that the thermal expansion of the silicone rubber exerts the pressure necessary to force the preform material into contact with the mold container. The introduction of discrete air voids into the silicone rubber allows for accurately controlled pressure application on the preform material at the cure temperature.
Blazhko modulation in the infrared
NASA Astrophysics Data System (ADS)
Jurcsik, J.; Hajdu, G.; Dékány, I.; Nuspl, J.; Catelan, M.; Grebel, E. K.
2018-04-01
We present first direct evidence of modulation in the K band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of Optical Gravitational Lensing Experiment-IV. A method has been developed to decompose the K-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations.
NASA Astrophysics Data System (ADS)
Karami-Lakeh, Hossein; Hosseini-Abardeh, Reza; Kaatuzian, Hassan
2017-05-01
One major problem of solar cells is the decrease in efficiency due to an increase in temperature when operating under constant irradiation of solar energy. The combination of solar cell and a thermoelectric generator is one of the methods proposed to solve this problem. In this paper, the performance of thermo-photovoltaic system is studied experimentally as well as through numerical simulation. In the experimental part, design, manufacture and test of a novel thermo-photovoltaic system assembly are presented. Results of the assembled system showed that with reduction of one degree (Centigrade) in the temperature of solar cell under investigation, and about 0.2 % increase in the efficiency will be obtained in comparison with given efficiency at that specified temperature. The solar cell in a hybrid-assembled system under two cooling conditions (air cooling and water cooling) obtained an efficiency of 8 % and 9.5 %, respectively, while the efficiency of a single cell under the same radiation condition was 6 %. In numerical simulation part, photo-thermoelectric performance of system was analyzed. Two methods for evaluation of thermoelectric performance were used: average properties and finite element method. Results of simulation also demonstrate an increase in solar cell efficiency in the combined system in comparison with that of the single cell configuration.
Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.
2007-05-01
Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.
Estimating missing daily temperature extremes in Jaffna, Sri Lanka
NASA Astrophysics Data System (ADS)
Thevakaran, A.; Sonnadara, D. U. J.
2018-04-01
The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.
Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.
2006-02-14
A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.
Method of realizing catalytic processes under unsteady state conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noskov, A.S.; Lakhmostov, V.S.; Matros, Yu.S.
1988-07-01
The operation of a system with the catalyst bed divided into three parts was investigated theoretically and experimentally. The conditions under which the system will efficiently convert a reaction mixture with a low inlet temperature in an unsteady state regime are determined. Calculations were performed for the industrially typical process of afterburning CO on a copper-chrome catalyst in the form of Raschig rings. A flow sheet of the unit with the catalyst divided into three is shown with temperature profiles along the bed at various moments in time. The method can be used for processing large volumes of gaseous wastesmore » on very active catalysts and for catalytic reactions with optimum temperature profiles close to those presented.« less
Low-cycle fatigue testing methods
NASA Technical Reports Server (NTRS)
Lieurade, H. P.
1978-01-01
The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.
Optimal ranking regime analysis of U.S. climate variablility. Part II: Precipitation and streamflow
USDA-ARS?s Scientific Manuscript database
In a preceding companion paper the Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) regimes in U.S. climate division temperature data during 1896-2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. In add...
Analysis of the shrinkage at the thick plate part using response surface methodology
NASA Astrophysics Data System (ADS)
Hatta, N. M.; Azlan, M. Z.; Shayfull, Z.; Roselina, S.; Nasir, S. M.
2017-09-01
Injection moulding is well known for its manufacturing process especially in producing plastic products. To measure the final product quality, there are lots of precautions to be taken into such as parameters setting at the initial stage of the process. Sometimes, if these parameters were set up wrongly, defects may be occurred and one of the well-known defects in the injection moulding process is a shrinkage. To overcome this problem, a maximisation at the precaution stage by making an optimal adjustment on the parameter setting need to be done and this paper focuses on analysing the shrinkage by optimising the parameter at thick plate part with the help of Response Surface Methodology (RSM) and ANOVA analysis. From the previous study, the outstanding parameter gained from the optimisation method in minimising the shrinkage at the moulded part was packing pressure. Therefore, with the reference from the previous literature, packing pressure was selected as the parameter setting for this study with other three parameters which are melt temperature, cooling time and mould temperature. The analysis of the process was obtained from the simulation by Autodesk Moldflow Insight (AMI) software and the material used for moulded part was Acrylonitrile Butadiene Styrene (ABS). The analysis and result were obtained and it found that the shrinkage can be minimised and the significant parameters were found as packing pressure, mould temperature and melt temperature.
Decadal climate prediction with a refined anomaly initialisation approach
NASA Astrophysics Data System (ADS)
Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco J.; Hawkins, Ed; Nichols, Nancy K.
2017-03-01
In decadal prediction, the objective is to exploit both the sources of predictability from the external radiative forcings and from the internal variability to provide the best possible climate information for the next decade. Predicting the climate system internal variability relies on initialising the climate model from observational estimates. We present a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following key innovations: (1) the use of a weight applied to the observed anomalies, in order to avoid the risk of introducing anomalies recorded in the observed climate, whose amplitude does not fit in the range of the internal variability generated by the model; (2) the AI of the ocean density, instead of calculating it from the anomaly initialised state of temperature and salinity. An experiment initialised with this refined AI method has been compared with a full field and standard AI experiment. Results show that the use of such refinements enhances the surface temperature skill over part of the North and South Atlantic, part of the South Pacific and the Mediterranean Sea for the first forecast year. However, part of such improvement is lost in the following forecast years. For the tropical Pacific surface temperature, the full field initialised experiment performs the best. The prediction of the Arctic sea-ice volume is improved by the refined AI method for the first three forecast years and the skill of the Atlantic multidecadal oscillation is significantly increased compared to a non-initialised forecast, along the whole forecast time.
SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices
NASA Astrophysics Data System (ADS)
Shikunov, S. L.; Kurlov, V. N.
2017-12-01
We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.
Purssell, E.
2000-01-01
Fever is a common symptom of childhood illness, and much time and effort is spent in the pursuit of reducing high temperature. Although antipyretic drugs are the main form of treatment, this report considers the part that physical treatments might play in reducing the temperature of febrile children. Such treatments include tepid sponging, removing clothing, and cooling the environment. Of these treatments, tepid sponging has been studied most extensively, as an addition to paracetamol, but seems to offer little advantage over paracetamol alone. It is likely that other methods might be equally ineffective because they all rely on similar methods of heat loss. PMID:10685930
Reservoir Simulations of Low-Temperature Geothermal Reservoirs
NASA Astrophysics Data System (ADS)
Bedre, Madhur Ganesh
The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at West Virginia University.
Effectiveness-weighted control method for a cooling system
Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.
2015-12-15
Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
Waterman, Kenneth C; Swanson, Jon T; Lippold, Blake L
2014-10-01
Three competing mathematical fitting models (a point-by-point estimation method, a linear fit method, and an isoconversion method) of chemical stability (related substance growth) when using high temperature data to predict room temperature shelf-life were employed in a detailed comparison. In each case, complex degradant formation behavior was analyzed by both exponential and linear forms of the Arrhenius equation. A hypothetical reaction was used where a drug (A) degrades to a primary degradant (B), which in turn degrades to a secondary degradation product (C). Calculated data with the fitting models were compared with the projected room-temperature shelf-lives of B and C, using one to four time points (in addition to the origin) for each of three accelerated temperatures. Isoconversion methods were found to provide more accurate estimates of shelf-life at ambient conditions. Of the methods for estimating isoconversion, bracketing the specification limit at each condition produced the best estimates and was considerably more accurate than when extrapolation was required. Good estimates of isoconversion produced similar shelf-life estimates fitting either linear or nonlinear forms of the Arrhenius equation, whereas poor isoconversion estimates favored one method or the other depending on which condition was most in error. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Self-locking threaded fasteners
Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.
1996-01-01
A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy.
NASA Astrophysics Data System (ADS)
Gilev, B.; Kraev, G.; Venkov, G. I.
2007-10-01
This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.
A nonintrusive method for measuring the operating temperature of a solenoid-operated valve
NASA Astrophysics Data System (ADS)
Kryter, Robert C.
Experimental data are presented to show that the in-service operating temperature of a solenoid operated valve (SOV) can be inferred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include: (1) there is no need for an add-on temperature sensor, (2) the true temperature of a critical and likely the hottest, part of the SOV (namely, the electrical coil) is measured directly, (3) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (4) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (5) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system.
Closed loop air cooling system for combustion turbines
Huber, David John; Briesch, Michael Scot
1998-01-01
Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.
Closed loop air cooling system for combustion turbines
Huber, D.J.; Briesch, M.S.
1998-07-21
Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.
A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon
2002-02-01
In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Coating and curing apparatus and methods
Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S
2015-02-24
Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remigy, J.C.; Nakache, E.; Brechot, P.D.
This article presents a method which allows one to find the Hansen solubility parameters by means of data processing. In the first part, the authors present the thermodynamical principle of Hansen parameters, and then they explain the model used to find parameters from experimental data. They validate the method by studying the solubility parameters of CFC-12 (dichlorodifluoromethane), HFC-134a (1,1,1,2-tetrafluoroethane), neopentylglycol esters, trimethylolpropane esters, dipentaerythritol esters, and pentaerythritol esters. Then, the variation of Hansen parameters are studied as well as the relation between the miscibility temperature (the temperature at which a blend passes from the miscible state to the immiscible state)more » and the interaction distance. The authors establish the critical interaction distance of HFC-134a which determines the solubility limit and they study its variation with temperature.« less
Carbide and carbonitride surface treatment method for refractory metals
Meyer, Glenn A.; Schildbach, Marcus A.
1996-01-01
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.
Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk
2016-05-26
We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.
Spectroscopic investigation of the high-current phase of a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.
2010-11-01
While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.
Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J
2006-01-01
The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the "vial method." The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (DeltaT; 2 degrees C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with DeltaT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and "vial-method" resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few "warm" edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of DeltaT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therriault-Proulx, F; Wootton, L; Beddar, S
Purpose: To evaluate a measurement method that renders plastic scintillation detectors temperature independent and capable of recovering dose and temperature information simultaneously. Methods: A novel approach was developed to account for the temperature dependence of plastic scintillation detectors (PSDs) without prior knowledge of the temperature. To enable this, the optical response of the scintillating element is separated into two sub-components, one being the response at a given temperature and the other accounting for the change in the optical emission spectrum with temperature. Using a previously demonstrated hyperspectral approach and following the proper calibration protocol, the contribution to scintillator emission andmore » physical value of both dose and temperature can be obtained in real-time. To validate the method, dose and temperature were measured under cobalt irradiation in a temperature controlled water tank developed for this study. The temperature was varied from 22°C to 42°C. Depth-dose curves were also obtained during irradiations from a linear accelerator, first maintaining the water at room temperature and then warming it to 40°C and letting it cool down naturally over the course of the second measurement. Results: Dose measurements delivered with the Co-60 unit showed an average relative difference to the expected value of (1.0±0.8)%, with a maximum difference of 2.3% over the entire range of temperatures. The measured temperatures using the PSD were all within 1°C of the expected values. The difference between room temperature and warmer depth dose measurements differed by only (1.2±0.4)%. The dosimeter showed to be accurate for temporal resolution down to 0.1s. Conclusion: The proposed method was shown to reliably correct for the temperature dependence of a PSD. Additionally, it makes it possible to assess the temperature at the point of measurement. These are significant advances in PSD technology, particularly in relation to real-time in vivo dosimetry. Part of this research was supported by the Odyssey Program at The University of Texas MD Anderson Cancer Center.« less
Kelly, Gregory S
2007-03-01
This is the second of a two-part review on body temperature variability. Part 1 discussed historical and modern findings on average body temperatures. It also discussed endogenous sources of temperature variability, including variations caused by site of measurement; circadian, menstrual, and annual biological rhythms; fitness; and aging. Part 2 reviews the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can be a significant source of body temperature variability. Body temperature variability findings in disease states are also reviewed.
NASA Astrophysics Data System (ADS)
Kruczek, Tadeusz
2015-03-01
Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.
High-efficiency machining methods for aviation materials
NASA Astrophysics Data System (ADS)
Kononov, V. K.
1991-07-01
The papers contained in this volume present results of theoretical and experimental studies aimed at increasing the efficiency of cutting tools during the machining of high-temperature materials and titanium alloys. Specific topics discussed include a study of the performance of disk cutters during the machining of flexible parts of a high-temperature alloy, VZhL14N; a study of the wear resistance of cutters of hard alloys of various types; effect of a deformed electric field on the precision of the electrochemical machining of gas turbine engine components; and efficient machining of parts of composite materials. The discussion also covers the effect of the technological process structure on the residual stress distribution in the blades of gas turbine engines; modeling of the multiparameter assembly of engineering products for a specified priority of geometrical output parameters; and a study of the quality of the surface and surface layer of specimens machined by a high-temperature pulsed plasma.
NASA Astrophysics Data System (ADS)
Castrillo, A.; de Vizia, M. D.; Fasci, E.; Odintsova, T.; Moretti, L.; Gianfrani, L.
The expression of the Doppler width of a spectral line, valid for a gaseous sample at thermodynamic equilibrium, represents a powerful tool to link the thermodynamic temperature to an optical frequency. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry. Implemented at the Second University of Naples on H218O molecules at the temperature of the triple point of water, this method has recently allowed to determine the Boltzmann constant with a global uncertainty of 24 parts over 106. Even though this is the best result ever obtained by using an optical method, its uncertainty is still far from the requirement for the new definition of the unit kelvin. To this end, Doppler broadening thermometry should approach the accuracy of 1 part per million. In this paper, we will report on our recent efforts to further develop and optimize Doppler broadening thermometry at 1.39 μm, using acetylene as a molecular target. Main progresses and current limitations will be highlighted.
Predicting Fatigue Lives Of Metal-Matrix/Fiber Composites
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1994-01-01
Method of prediction of fatigue lives of intermetallic-matrix/fiber composite parts at high temperatures styled after method of universal slopes. It suffices to perform relatively small numbers of fatigue tests. Data from fatigue tests correlated with tensile-test data by fitting universal-slopes equation to both sets of data. Thereafter, universal-slopes equation used to predict fatigue lives from tensile properties.
Thermographic process monitoring in powderbed based additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Harald, E-mail: harald.krauss@iwb.tum.de; Zaeh, Michael F.; Zeugner, Thomas
2015-03-31
Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitoredmore » and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.« less
Thermographic process monitoring in powderbed based additive manufacturing
NASA Astrophysics Data System (ADS)
Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.
2015-03-01
Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.
NASA Astrophysics Data System (ADS)
Banerjee, Krishnarjun; Asthana, Saket; Karuna Kumari, P.; Niranjan, Manish K.
2018-03-01
Lead-free polycrystalline K1/2Bi1/2TiO3 was prepared by the solid state reaction method. Experimentally observed frequencies of Raman modes signified its tetragonal phase, and matched reasonably well with theoretically calculated values. The relaxor nature of this material was observed in the temperature-dependent real part of the permittivity and dielectric loss curve. The value of the degree of diffuseness (1.99) was estimated from the modified Curie-Weiss law confirmed its relaxor behavior. The validation of this behavior was justified by the Vogel-Fülcher relation. The shoulder in the imaginary part of the modulus (M″) and permittivity (ɛ″) spectra revealed the presence of polar nano regions (PNRs). The evidence of PNRs was detectable above freezing temperatures, and became weaker when the temperature exceeded T m (temperature at the maximum of the dielectric constant). The electric field-induced polarization and strain curve showed the stabilization of the long-range ferroelectric order of the specimen at room temperature. Moreover, the discharge energy density and strain were 0.46 J cm-3 and 0.12%, respectively, at the maximum application of the electric field of 115 kV cm-1 at room temperature.
Use of unbalanced laminates as a screening method for microcracking
NASA Technical Reports Server (NTRS)
Papadopoulos, Demetrios S.; Bowles, Kenneth J.
1990-01-01
State-of-the-art, high temperature polyimide matrix composites, reinforced with continuous graphite fibers are known to be susceptible to intraply cracking when thermally cycled over their useful service temperature range. It is believed that the transply cracking, in part, results from residual stresses caused by differences in coefficients of thermal expansion (CTE) between the polymer matrix and the reinforcement. Thermal cycling tests to investigate this phenomenon involve expensive time and energy consuming programs which are not economically feasible for use as a part of a materials screening process. As an alternative to thermal cycling studies, a study of unbalanced crossply graphite fiber reinforcement composites was conducted to assess the effect of the composite ply layup and surface condition on the residual stresses that remain after the processing of these materials. The residual stresses were assessed by measuring the radii of curvature of the types of laminates that were studied. The temperature at which stress-free conditions existed were determined and a dye penetrant method was used to observe surface damage resulting from excessive residual stress buildup. These results are compared with some published results of thermal cycling tests that were previously conducted on balanced polyimide composites.
A study on hardness behavior of geopolymer paste in different condition
NASA Astrophysics Data System (ADS)
Zainal, Farah Farhana; Hussin, Kamarudin; Rahmat, Azmi; Abdullah, Mohd Mustafa Al Bakri; Shamsudin, Shaiful Rizam
2016-07-01
This study has been conducted to understand the hardness behavior of geopolymer paste in different conditions; with and without being immersed in water. Geopolymer paste has been used nowadays as an alternative way to reduce global warming pollution by carbon dioxide (CO2) released to the air caused from the production of Ordinary Portland Cement (OPC). Geopolymer has many advantages such as high compressive strength, lower water absorption and lower porosity. Geopolymer paste in this study was made from a mixture of fly ash and alkaline activators. The alkaline activators that have been used were sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) solution. Then the mixture was allowed to harden for 24hrs at ambient temperature and then placed in the oven for 24hrs with 60°C for the curing process. The hardness testing was conducted after a few months when the samples already achieved the optimum design. The samples were divided to two conditions; without immersion which was placed at ambient temperature (S1) and immersed in water for one week (S2). The samples then are divided into two at the center and testing was conducted into 4 parts which are part 1, part 2, part 3 and part 4. Various methods of non-destructively testing concrete and mortar have been in use for many years such as Vickers hardness test, Rockwell hardness test, Brinell hardness test and many more. The Rockwell hardness test method as defined in ASTM E-18 is the most commonly used hardness test method which is also used in this study. From the results, S1 has higher hardness value than S2 for all parts with the maximum value of S1 is 118.6 and the minimum value is 71.8. The maximum value of S2 is 114.4 and the minimum value is 0. The central part of the geopolymer paste also showed greater hardness values than the edge area of the samples.
D. M. Jimenez; B. W. Butler; J. Reardon
2003-01-01
Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...
Coating and curing apparatus and methods
Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze'ev R.
2016-04-19
Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.
Bowers, G N; Inman, S R
1977-01-01
We are impressed with the ease and certainty of calibration electronic thermometers with thermistor probes to +/- 0.01 degree C at the gallium melting point, 29.771(4) degrees C. The IFCC reference method for measuring aspartate aminotransferase activity in serum was run at the reaction temperature of 29.771(4) degrees C. By constantly referencing to gallium as an integral part of the assay procedure, we determined the absolute reaction temperature to IPTS-68 (International Practical Temperature Scale of 1968) to +/- 0.02 degrees C. This unique temperature calibration standard near the center of the range of temperatures commonly used in the clinical laboratory is a valuable addition and can be expected to improve the accuracy of measurements, especially in clinical enzymology.
Self-locking threaded fasteners
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.
1996-01-16
A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy. 13 figs.
ERIC Educational Resources Information Center
Openshaw, Peter
1983-01-01
Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)
Microbiological sampling of returned Surveyor 3 electrical cabling
NASA Technical Reports Server (NTRS)
Knittel, M. D.; Favero, M. S.; Green, R. H.
1972-01-01
A piece of electrical wiring bundle running from the television camera to another part of the spacecraft was selected for microbiological examination. Sampling methods are discussed. The results presented show that no viable microorganisms were recovered from the part of the Surveyor 3 cable which was tested. Factors that could have contributed to the sterility of the cable are thermal vacuum testing, natural dieoff, change in pressure during launch, and lunar vacuum and temperature.
Method for producing small hollow spheres
Hendricks, C.D.
1979-01-09
Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.
Method and apparatus for producing small hollow spheres
Hendricks, Charles D.
1979-01-01
Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.
Method for producing small hollow spheres
Hendricks, Charles D. [Livermore, CA
1979-01-09
Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
NASA Astrophysics Data System (ADS)
Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.
2011-08-01
A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.
NASA Astrophysics Data System (ADS)
Dunkel, Zoltan; Grob-Szenyán, Ildiko
The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of the daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ET d-R nd= a+ b( Tc- Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observations trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field ( 1 km×1 km) and a larger, and relatively homogeneous area was scanned, before noon and afternoon. In the western part of the country, a much larger area ( 45 km×45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed. Comparison of model output with data from field experiment has played a crucial role in model development and suggested an evaluation method.
Raising of Operating a Motor Vehicle Effects on Environment in Winter
NASA Astrophysics Data System (ADS)
Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.
2016-08-01
Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.
Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.
Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less
Efficient prepreg recycling at low temperatures
NASA Astrophysics Data System (ADS)
Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen
When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.
Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K
NASA Astrophysics Data System (ADS)
Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.
2018-03-01
The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.
Hanks, G.S.; Keil, R.W.
1963-05-21
A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)
NASA Astrophysics Data System (ADS)
Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.
2017-09-01
This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.
Methods of increasing thermal efficiency of steam and gas turbine plants
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Shutenko, M. A.
2017-11-01
Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.
Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area
NASA Astrophysics Data System (ADS)
Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek
2015-09-01
The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
NASA Astrophysics Data System (ADS)
Kummert, C.; Josupeit, S.; Schmid, H.-J.
2018-03-01
The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.
NASA Technical Reports Server (NTRS)
Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)
2017-01-01
Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.
A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Scott, Robert W.; Chen, J.
1991-01-01
A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research.
NASA Astrophysics Data System (ADS)
Sylwester, J.; Mewe, R.; Schrijver, J.
1980-06-01
In this paper, the third in a series dealing with plasmas out of equilibrium we present quantitative methods of analysis of non-stationary flare plasma parameters. The method is designed to be used for the interpretation of the SMM XRP Bent Crystal Spectrometer spectra. Our analysis is based on measurements of 11 specific lines in the 1.77-3.3 Å range. Using the proposed method we are able to derive information about temperature, density, emission measure, and other related parameters of the flare plasma. It is shown that the measurements, to be made by XRP can give detailed information on these parameters and their time evolution. The method is then tested on some artificial flares, and proves to be useful and accurate.
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-01-01
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557
Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints
2009-01-01
tolerances available for manufacturing the molds are relatively low. Any inaccuracy in mold First stage part (ABS) Second stage part ( LDPE ) Pins...case, the viscosity of LDPE is also a function of temperature. For each of these cases, they have considered the filling of a thin mold cavity. From...predicting the weld-line strengths of crystalline polymers such as LDPE . 63 3 Issues in In-Mold Assembly at the Mesoscale 3.1 Motivation In-mold
Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy
2010-01-27
The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules formore » possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.« less
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zhang, Hao; Davis, Lynn
This paper focuses on the failure mechanisms and color stability of a commercially available high power LED under harsh environmental conditions. 3 groups of the same pc-HB warm white LED were used in the experiment. The first group was subjected to both high temperature and high relative humidity (85°C/85%RH) with a 350mA bias current. The second group was subjected to only temperature stress at 105°C with a 350mA bias current. The last group was subjected to extreme high temperature 175°C and high bias current (500mA). Samples were taken out from the chamber for both photometric and colorimetric analysis at periodicmore » intervals to investigate the change of the optical parameters. The physics of failure due to the material degradation has been correlated with the change in the photometric and colorimetric parameters of the LED packages. At the end of the experiment, 6000 hours of data is projected forward with state estimation methods to compare with projections made with the TM-21 method. Experimental results shows that only optical parts degrades at high temperature conditions. However, at both high temperature and high relative humidity condition, the phosphor layer of the pc-LED can swell and the color stability of LEDs degrades significantly. Also, comparison between TM-21 method and state estimation method shows that state estimation can achieve the same goal with a relatively easy method.« less
Numerical analysis of laser ablation using the axisymmetric two-temperature model
NASA Astrophysics Data System (ADS)
Dziatkiewicz, Jolanta; Majchrzak, Ewa
2018-01-01
Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.
Treating tar sands formations with dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Karanikas, John Michael
A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.
Experiences issues with plastic parts at cold temperatures
NASA Technical Reports Server (NTRS)
Sandor, Mike; Agarwal, Shri
2005-01-01
Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.
The effect of human-mattress interface's temperature on perceived thermal comfort.
Califano, R; Naddeo, A; Vink, P
2017-01-01
In recent years, methods that allow for an objective evaluation of perceived comfort, in terms of postural, physiological, cognitive and environmental comfort, have received a great deal of attention from researchers. This paper focuses on one of the factors that influences physiological comfort perception: the temperature difference between users and the objects with which they interact. The first aim is to create a measuring system that does not affect the perceived comfort during the temperatures' acquisition. The main aim is to evaluate how the temperature at the human-mattress interface can affect the level of perceived comfort. A foam mattress has been used for testing in order to take into account the entire back part of the human body. The temperature at the interface was registered by fourteen 100 Ohm Platinum RTDs (Resistance Temperature Detectors) placed on the mattress under the trunk, the shoulders, the buttocks, the legs, the thighs, the arms and the forearms of the test subject. 29 subjects participated in a comfort test in a humidity controlled environment. The test protocol involved: dress-code, anthropometric-based positioning on mattress, environment temperature measuring and an acclimatization time before the test. At the end of each test, each of the test subject's thermal sensations and the level of comfort perception were evaluated using the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) scale. The data analyses concerned, in the first instance, correlations between the temperature at the interface and comfort levels of the different parts of the body. Then the same analyses were performed independently of the body parts being considered. The results demonstrated that there was no strong correlation among the studied variables and that the total increase of temperature at interface is associated with a reduction in comfort. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification
NASA Technical Reports Server (NTRS)
Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel
1992-01-01
Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.
“Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation
Ruan, Chunlei
2018-01-01
“Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. PMID:29659516
Effect of NASA advanced designs on thermal behavior of Ni-H2 cells
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, Olga D.
1987-01-01
As part of an overall effort to advance the technology of nickel-hydrogen batteries for low Earth orbit (LEO) applications, advanced designs for individual pressure vessel (IPV) nickel-hydrogen cells have been conceived. These designs incorporate alternative methods of oxygen recombination which affect the thermal behavior of the cells. The effect of these oxygen recombination methods on the cell temperature profiles is examined.
Effect of NASA advanced designs on thermal behavior of Ni-H2 cells
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, Olga D.
1988-01-01
As part of an overall effort to advance the technology of nickel-hydrogen batteries for low earth orbit (LEO) applications, advanced designs for individual pressure vessel (IPV) nickel-hydrogen cells have been conceived. These designs incorporate alternative methods of oxygen recombination which affect the thermal behavior of the cells. The effect of these oxygen recombination methods on the cell temperature profiles will be examined.
NASA Technical Reports Server (NTRS)
Mattox, D. M.
1981-01-01
Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.
Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph
Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less
Mechanical Properties and Microstructure of High-Strength Steel Controlled by Hot Stamping Process
NASA Astrophysics Data System (ADS)
Ou, Hang; Zhang, Xu; Xu, Junrui; Li, Guangyao; Cui, Junjia
2018-03-01
A novel design and manufacturing method, dubbed "precast," of the cooling system and tools for a hot forming process was proposed in this paper. The integrated structures of the punch and blank holder were determined by analyzing the bending and reverse-bending deformation of the forming parts. The desired crashworthiness performance of an automotive front bumper constructed with this process was obtained by a tailored phase transformation, which generated martensite-bainite in the middle and full martensite transformation in the corner areas. Varying cooling effects in the formed parts caused the highest temperature to be located in the bottom and the lowest on the end of the formed parts. Moreover, the microstructural distributions demonstrated that the bottom possessed a relatively lower content of martensite, while, conversely, the end possessed a higher content. This was precisely the most desired phase distributions for the hot formed parts. For the six-process cycle stamping, the temperatures reached a stable status after an initial rapid increase in the first three process cycles. The microstructural results verified the feasibility of the hot forming tools under multiprocess cycles.
Heat recovery from sorbent-based CO.sub.2 capture
Jamal, Aqil; Gupta, Raghubir P
2015-03-10
The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
29 CFR 1926.751 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...
29 CFR 1926.751 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...
29 CFR 1926.751 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... brakes, rolls, or other methods to shape steel into desired cross sections at room temperature. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do..., such as a wall or column and work with both hands free while leaning. Post means a structural member...
Susceptibility of blackberry flower parts to subfreezing temperatures
USDA-ARS?s Scientific Manuscript database
Injury of tight buds, open flowers and green fruit often occur in fruit crops in later winter to early spring frosts. In this study, freezing tolerance of ‘Triple Crown’ blackberry flowers at various maturity ranging from tight bud to green drupe stage was determined using two freezing methods. On...
Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy
NASA Astrophysics Data System (ADS)
Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.
2014-11-01
Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.
1985-01-01
The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2007-01-01
In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.
Evolution of oil-generative window (OGW) in Niger delta basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejedawe, J.E.; Coker, S.J.L.; Lambert-Aikhionbare, D.O.
1983-03-01
Assuming a simple model of delta development involving progradation and uniform subsidence to present depths (rate, 500 m/m.y.; 1640 ft/m.y.), oil-genesis nomographs derived from the TTI method were constructed for various geothermal gradients of the Niger delta (2.2., 2.5., 2.9, 3.6, 4.0, 4.4, and 4.7/sup 0/C/100 m) and utilized in mapping the positions (depth, temperature) of the top of the oil-generative window (OGW) at arbitrarily selected times (40 m.y.B.P., 30 m.y.B.P., 15 m.y.B.P., and the present). About 200 data points were evaluated. During the active subsidence phase, oil generation within any megastructure was initiated at a temperature of 140 tomore » 146/sup 0/C (284 to 294/sup 0/F) and depth of 3000 to 5200 m (9842 to 17,060 ft) within 7 to 11 m.y. after deposition of the potential source rocks. After cessation of subsidence, upward movement of the OGW by 800 to 1600 m (2624 to 5249 ft) was accompanied by a temperature lowering of 23 to 54/sup 0/C (73 to 129/sup 0/F). Lower temperatures produced correspondingly heavier crudes. In some parts of the delta oil generation and expulsion from the lower part of the Agbada Formation predates the cessation of subsidence and structural deformation, while in others it postdates those events. In most parts of the Niger delta, the upper and normally compacted part of the Akata Formation appears to constitute the major source rock.« less
Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Kowal, A.; Lipiński, L.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.
2017-06-01
The argon triple point (T_{90} = 83.8058 \\hbox {K}) is a fixed point of the International Temperature Scale of Preston-Thomas (Metrologia 27:3, 1990). Cells for realization of the fixed point have been manufactured by several European metrology institutes (Pavese in Metrologia 14:93, 1978; Pavese et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Hermier et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The Institute of Low Temperature and Structure Research has in its disposal a few argon cells of various constructions used for calibration of capsule-type standard platinum resistance thermometers (CSPRT) that were produced within 40 years. These cells differ in terms of mechanical design and thermal properties, as well as source of gas filling the cell. This paper presents data on differences between temperature values obtained during the realization of the triple point of argon in these cells. For determination of the temperature, a heat-pulse method was applied (Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The comparisons were performed using three CSPRTs. The temperatures difference was determined in relation to a reference function W(T)=R(T_{90})/R(271.16\\hbox {K}) in order to avoid an impact of CSPRT resistance drift between measurements in the argon cells. Melting curves and uncertainty budgets of the measurements are given in the paper. A construction of measuring apparatus is also presented in this paper.
Preliminary feasibility study of a new method of hypothermia in an experimental canine model.
Sert, İbrahim Ünal; Akand, Murat; Kılıç, Özcan; Yavru, Nuri; Bulut, Ersan
2017-09-01
To build up a new microcontroller thermoelectric system to achieve renal hypothermia. Renal hypothermia system was tested under in vivo conditions in the kidneys of ten Mongrel dogs. Ambient temperature was evaluated using two different microcontrollers. In order to ensure hypothermia in the renal parenchyma, selection can be made among 4 modules and sensors which detect the temperature of the area. The temperature range of the system was adjusted between -50°C and +50°C. When single and double poles of the kidney were cooled, initial mean intraperitoneal temperature values were found 37.7°C for rectum and 36.5°C for renal cortex and medulla. After the temperature of the cooling module was set to 12°C, the module was placed on the poles of the kidney. After fifteen minutes, temperature was 15.4°C in the lower pole of the kidney, 28.1°C in the cortex of the other side and 29.2°C in the intramedullary region. The temperature was found to be 15°C in the vicinity and 26.1°C in the cortex across the module. After the system was stabilized, a very slight change was observed in the temperature. Hypothermia system developed ensured desired cooling of the targeted part of the kidney; however, it did not cause a change in the temperature of other parts of the kidney or general body temperature. Thus, it was possible to create a long-term study area for renal parenchymal surgery.
NASA Astrophysics Data System (ADS)
Alberti, Michael; Weber, Roman; Mancini, Marco
2017-10-01
The line-by-line procedure developed in the associated paper (Part A ) has been used to generate the total emissivity chart for pure CO and CO -N2 /air mixtures at 1 bar total pressure, in the 300 to 3000 K temperature and 0.01 to 3000 bar cm pressure path length range. Methods of scaling the emissivity to pressures different to 1 bar, in the range 0.1 to 40 bar, are provided through pressure correction graphs and EXCEL interpolator (Supplementary Material). The interpolated emissivities are within ± 2% margin from the line-by-line calculated values. The newly developed emissivity graphs are substantially more accurate than the existing Ulrich (1936) & Hottel (1954) and Abu-Romia & Tien (1966) charts.
Low-temperature growth and photoluminescence property of ZnS nanoribbons.
Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen
2005-10-06
At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.
METHOD FOR PRODUCING THORIUM TETRACHLORIDE
Mason, E.A.; Cobb, C.M.
1960-03-15
A process for producing thorium tetrachloride from thorium concentrate comprises reacting thorium concentrates with a carbonaceous reducing agent in excess of 0.05 part by weight per part of thoriferous concentrate at a temperature in excess of 1300 deg C, cooling and comminuting the mass, chlorinating the resulting comminuting mass by suspending in a gaseous chlorinating agent in a fluidized reactor at a temperatare maintained between about l85 deg C and 770 deg C, and removing the resulting solid ThCl/sub 4/ from the reaction zone.
Understanding Radiation Thermometry. Part II
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
Understanding Radiation Thermometry. Part I
NASA Technical Reports Server (NTRS)
Risch Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
Is sperm cryopreservation at -150 degree C a feasible alternative?
Medrano, A; Cabrera, F; González, F; Batista, M; Gracia, A
2002-01-01
A series of experiments was carried out to validate a -150 degree C ultra-low temperature freezer for its possible use to properly freeze and store semen. In the first part, crude sample handling was simulated to see whether temperature of stored samples was maintained within a safe range; also, the freezing point and latent heat of fusion plateau of a semen extender were monitored. In the second part, buck semen was (i) frozen in liquid nitrogen and stored in the ultra-low freezer, (ii) frozen and stored in the ultra-low freezer, and (iii) frozen and stored in liquid nitrogen, to compare sperm cryosurvival between freezing methods. Both, frequent removal of samples and long opening of the freezer door did not negatively affect stored sample temperature; latent heat of fusion plateau was 5 minutes long. Semen stored either at -150 degree C or at -196 degree C cryosurvived similarly after 2 days and after 2 months of cryopreservation.
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
Fiber optic temperature sensor gives rise to thermal analysis in complex product design
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.
Probing The Temperature Field, Concentration Field and Effect of Air in Water Freezing Process
NASA Astrophysics Data System (ADS)
Xu, Wenqiang
As we know, water is one of the most important substances on earth. It is indispensable for the survival of all creatures, including animals and plants. Despite such an enormous significance, nevertheless, a deep understanding of the physical behaviors of water freezing, including characterization from different scales and the dynamic temperature behaviors are stilling missing. On the other hand, currently, the main focus on developing anti-icing methods is super-hydrophobic surface. But it is well known that, the expanse is large and the efficiency is low. In this thesis, we primarily investigate two important issues concerned with water freezing, which are the characterization of water freezing from molecule-scale to macro-scale and the corresponding temperature field, and the promotion of a novel promising anti-icing method, respectively. In the first part, we lay emphasis on the temperature field behaviors and the physical characteristics in different scales during water freezing. We mainly use the Fluorescence-lifetime imaging microscopy (FLIM, mapping temperature field) and a series of thermal-couples (in situ bulk site) to directly measure and characterize the temperature field of water freezing. On the other hand, by combining the high-speed camera, X-ray diffractometer and also the confocal microscopy, we are able to directly visualize its physical behaviors in dynamic way. Based on these methods, we found that the freezing process can be divided into two stages, the first stage and the second stage which have totally distinct behaviors. Here we will elucidate them explicitly. Before getting the exact temperature field, We first noticed the concentration dependence of fluorescence lifetime and thus made an elaborate calibration of the relation between them which has never been reported before. And then we developed an innovative method to acquire the temperature of each pixel in the field of view, and thus derived the distinct temperature field. Through this method, we found that there is a high temperature area between the ice area and the liquid water region which is the freezing front. The quantified temperature can be as high as about 30 degrees centigrade. By employing these methods, we've got a systematic and comprehensive understanding of water freezing. In the second part of this thesis, we first introduce a very intriguing phenomenon. We call it 'the sudden melting event' which is about the bottom nucleated ice crystal melting suddenly and detaching from the substrate while the system is still cooling down. This event takes place right before the completion of stage two. In view of its great significance, we've deeply delved into the related factors that may play a considerable role in its emerging, especially the air dissolved in water. We verified that this event has a great dependence on air content in water sample as we varied the amount of air or gas by degassing under vacuum chamber, we got totally different melting behaviors. Along with varying the size and shape of our set-up, we have found the mechanism of this event and we conducted a lot of corresponding confirmation experiments which will be clarified explicitly. In the end, we hope that this discovery can be developed to applications on industry and our daily life, like a feasibly applicable anti-icing method.
Climate change impact on growing degree day accumulation values
NASA Astrophysics Data System (ADS)
Bekere, Liga; Sile, Tija; Bethers, Uldis; Sennikovs, Juris
2015-04-01
A well-known and often used method to assess and forecast plant growth cycle is the growing degree day (GDD) method with different formulas used for accumulation calculations. With this method the only factor that affects plant development is temperature. So with climate change and therefore also change in temperature the typical times of plant blooming or harvest can be expected to change. The goal of this study is to assess this change in the Northern Europe region. As an example strawberry bloom and harvest times are used. As the first part of this study it was required to define the current GDD amounts required for strawberry bloom and harvest. It was done using temperature data from the Danish Meteorological Institute's (DMI) NWP model HIRLAM for the years 2010-2012 and general strawberry growth observations in Latvia. This way we acquired an example amount of GDD required for strawberry blooming and harvest. To assess change in the plant growth cycle we used regional climate models (RCM) - Euro-CORDEX. RCM temperature data for both past and future periods was analyzed and bias correction was carried out. Then the GDD calculation methodology was applied on corrected temperature data and results showing change in strawberry growth cycle - bloom and harvest times - in Northern Europe were visualized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolokotroni, Maria; Bhuiyan, Saiful; Davies, Michael
2010-12-15
This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found thatmore » site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)« less
Holographic conductivity of holographic superconductors with higher-order corrections
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin
2018-02-01
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.
Making Activated Carbon for Storing Gas
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.
2005-01-01
Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.
Experimental Study of Residual Stresses in Metal Parts Obtained by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Protasov, C. E.; Safronov, V. A.; Kotoban, D. V.; Gusarov, A. V.
High local temperature gradients occur at additive manufacturing by selective laser melting of powder. This gives rise to undesirable residual stresses, deformations, and cracks. To understand how to control the formation of the residual stresses, a reliable method is necessary for measuring their distribution in the fabricated part. It is proposed to cut the part into thin plates and to reconstruct the residual stresses from the measured deformation of the plates. This method is tested on beams with square cross-section built from stainless steel. The beams were cut by electrical discharge machining and chemically etched. The obtained stress profile in vertical transversal direction slightly increases from the top to the bottom of the beam. This dependency is confirmed by numerical modeling. The measured stress profile agrees with the known results by other authors.
Monitoring Colony-level Effects of Sublethal Pesticide Exposure on Honey Bees
Meikle, William G.; Weiss, Milagra
2017-01-01
The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood, and food resources by weighing hives and hive parts, by photographing frames, and by installing hives on scales and with internal sensors. Data from these periodic evaluations are then combined with running average and daily detrended data on hive weight and internal hive temperature. The resulting datasets have been used to detect colony-level effects of imidacloprid applied in a sugar syrup as low as 5 parts per billion. The methods are objective, require little training, and provide permanent records in the form of sensor output and photographs. PMID:29286367
NASA Technical Reports Server (NTRS)
Holmes, Thomas; Owe, Manfred; deJeu, Richard
2007-01-01
Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.
Cakan, Umut; Cakan, Murat; Delilbasi, Cagri
2016-01-01
The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.
NASA Astrophysics Data System (ADS)
Daldoul, Wafa; Toulorge, Thomas; Vincent, Michel
2017-10-01
The cost and quality of complex parts manufactured by thermoplastic injection is traditionally limited by design constraints on the cooling system of the mold. A possible solution is to create the mold by additive manufacturing, which makes it possible to freely design the cooling channels. Such molds normally contain hollow parts (alveoli) in order to decrease their cost. However, the complex geometry of the cooling channels and the alveoli makes it difficult to predict the performance of the cooling system. This work aims to compute the heat exchanges between the polymer, the mold and the cooling channels with complex geometries. An Immersed Volume approach is taken, where the different parts of the domain (i.e. the polymer, the cooling channels, the alveoli and the mold) are represented by level-sets and the thermo-mechanical properties of the materials vary smoothly at the interface between the parts. The energy and momentum equations are solved by a stabilized Finite Element method. In order to accurately resolve the large variations of material properties and the steep temperature gradients at interfaces, state-of-the art anisotropic mesh refinement techniques are employed. The filling stage of the process is neglected. In a first step, only the heat equation is solved, so that the packing stage is also disregarded. In a second step, thermo-mechanical effects occurring in the polymer during the packing stage are taken into account, which results in the injection of an additional amount of polymer that significantly influences the temperature evolution. The method is validated on the simple geometry of a center-gated disk and compared with experimental measurements. The agreement is very good. Simulations are performed on an industrial case which illustrates the ability of the method to deal with complex geometries.
Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures
NASA Astrophysics Data System (ADS)
Yu, Zi-De; Chen, Xiao-Ming
2018-03-01
BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.
Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures
NASA Astrophysics Data System (ADS)
Yu, Zi-De; Chen, Xiao-Ming
2018-07-01
BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.
Historical Phenological Observations: Past Climate Impact Analyses and Climate Reconstructions
NASA Astrophysics Data System (ADS)
Rutishauser, T.; Luterbacher, J.; Meier, N.; Jeanneret, F.; Pfister, C.; Wanner, H.
2007-12-01
Plant phenological observations have been found an important indicator of climate change impacts on seasonal and interannual vegetation development for the late 20th/early 21st century. Our contribution contains three parts that are essential for the understanding (part 1), the analysis (part 2) and the application (part 3) of historical phenological observations in global change research. First, we propose a definition for historical phenonolgy (Rutishauser, 2007). We shortly portray the first appearance of phenological observations in Medieval philosophical and literature sources, the usage and application of this method in the Age of Enlightenment (Carl von Linné, Charles Morren), as well as the development in the 20th century (Schnelle, Lieth) to present-day networks (COST725, USA-NPN) Second, we introduce a methodological approach to estimate 'Statistical plants' from historical phenological observations (Rutishauser et al., JGR-Biogeoscience, in press). We combine spatial averaging methods and regression transfer modeling to estimate 'statistical plant' dates from historical observations that often contain gaps, changing observers and changing locations. We apply the concept to reconstruct a statistical 'Spring plant' as the weighted mean of the flowering date of cherry and apple tree and beech budburst of Switzerland 1702- 2005. Including dating total data uncertainty we estimate 10 at interannual and 3.4 days at decadal time scales. Third, we apply two long-term phenological records to describe plant phenological response to spring temperature and reconstruct warm-season temperatures from grape harvest dates (Rutishauser et al, submitted; Meier et al, GRL, in press).
NASA Technical Reports Server (NTRS)
Jex, D. W.; Workman, G. L.
1975-01-01
A method of measuring concentrations of hydrogen chloride between 1 part per billion and 10 parts per million at standard temperature and pressure is presented. The feasibility of a low-cost device incorporating a chemisorption technique coupled with a quartz crystal microbalance was demonstrated in the field at the Viking B launch using a Titan-Centaur vehicle from Kennedy Space Center on August 20, 1975. Hydrogen chloride is a product of solid rocket combustion. The concentration level of hydrogen chloride for this particular launch was measured as approximately 0.2 parts per million at 4 km from the launch site.
USDA-ARS?s Scientific Manuscript database
Despite its many documented advantages, the QuEChERS (quick, easy, cheap, effective, rugged and safe) sample preparation approach has problems with a few unstable pesticides, partly due to the exothermic reaction generated by the use of anhydrous magnesium sulfate during extraction. These pesticide...
NASA Astrophysics Data System (ADS)
Shevenell, Lisa
1999-03-01
Values of evapotranspiration are required for a variety of water planning activities in arid and semi-arid climates, yet data requirements are often large, and it is costly to obtain this information. This work presents a method where a few, readily available data (temperature, elevation) are required to estimate potential evapotranspiration (PET). A method using measured temperature and the calculated ratio of total to vertical radiation (after the work of Behnke and Maxey, 1969) to estimate monthly PET was applied for the months of April-October and compared with pan evaporation measurements. The test area used in this work was in Nevada, which has 124 weather stations that record sufficient amounts of temperature data. The calculated PET values were found to be well correlated (R2=0·940-0·983, slopes near 1·0) with mean monthly pan evaporation measurements at eight weather stations.In order to extrapolate these calculated PET values to areas without temperature measurements and to sites at differing elevations, the state was divided into five regions based on latitude, and linear regressions of PET versus elevation were calculated for each of these regions. These extrapolated PET values generally compare well with the pan evaporation measurements (R2=0·926-0·988, slopes near 1·0). The estimated values are generally somewhat lower than the pan measurements, in part because the effects of wind are not explicitly considered in the calculations, and near-freezing temperatures result in a calculated PET of zero at higher elevations in the spring months. The calculated PET values for April-October are 84-100% of the measured pan evaporation values. Using digital elevation models in a geographical information system, calculated values were adjusted for slope and aspect, and the data were used to construct a series of maps of monthly PET. The resultant maps show a realistic distribution of regional variations in PET throughout Nevada which inversely mimics topography. The general methods described here could be used to estimate regional PET in other arid western states (e.g. New Mexico, Arizona, Utah) and arid regions world-wide (e.g. parts of Africa).
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2017-03-01
The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.
Results of a remote multiplexer/digitizer unit accuracy and environmental study
NASA Technical Reports Server (NTRS)
Wilner, D. O.
1977-01-01
A remote multiplexer/digitizer unit (RMDU), a part of the airborne integrated flight test data system, was subjected to an accuracy study. The study was designed to show the effects of temperature, altitude, and vibration on the RMDU. The RMDU was subjected to tests at temperatures from -54 C (-65 F) to 71 C (160 F), and the resulting data are presented here, along with a complete analysis of the effects. The methods and means used for obtaining correctable data and correcting the data are also discussed.
Mechanical behavior and modelisation of Ti-6Al-4V titanium sheet under hot stamping conditions
NASA Astrophysics Data System (ADS)
Sirvin, Q.; Velay, V.; Bonnaire, R.; Penazzi, L.
2017-10-01
The Ti-6Al-4V titanium alloy is widely used for the manufacture of aeronautical and automotive parts (solid parts). In aeronautics, this alloy is employed for its excellent mechanical behavior associated with low density, outstanding corrosion resistance and good mechanical properties up to 600°C. It is especially used for the manufacture of fuselage frames, on the pylon for carrying out the primary structure (machining forged blocks) and the secondary structure in sheet form. In this last case, the sheet metal forming can be done through various methods: at room temperature by drawing operation, at very high temperature (≃900°C) by superplastic forming (SPF) and at intermediate temperature (≥750°C) by hot forming (HF). In order to reduce production costs and environmental troubles, the cycle times reduction associated with a decrease of temperature levels are relevant. This study focuses on the behavior modelling of Ti-6Al-4V alloy at temperatures above room temperature to obtained greater formability and below SPF condition to reduce tools workshop and energy costs. The displacement field measurement obtained by Digital Image Correlation (DIC) is based on innovative surface preparation pattern adapted to high temperature exposures. Different material parameters are identified to define a model able to predict the mechanical behavior of Ti-6Al-4V alloy under hot stamping conditions. The hardening plastic model identified is introduced in FEM to simulate an omega shape forming operation.
NASA Astrophysics Data System (ADS)
Pokorný, Jan; Kopečková, Barbora; Fišer, Jan; JÍcha, Miroslav
2018-06-01
The aim of the paper is to assemble a simulator for evaluation of thermal comfort in car cabins in order to give a feedback to the HVAC (heating, ventilation and air conditioning) system. The HW (hardware) part of simulator is formed by thermal manikin Newton and RH (relative humidity), velocity and temperature probes. The SW (software) part consists of the Thermal Comfort Analyser (using ISO 14505-2) and Virtual Testing Stand of Car Cabin defining the heat loads of car cabin. Simulator can provide recommendation for the climate control how to improve thermal comfort in cabin by distribution and directing of air flow, and also by amount of ventilation power to keep optimal temperature inside a cabin. The methods of evaluation of thermal comfort were verified by tests with 10 test subjects for summer (summer clothing, ambient air temperature 30 °C, HVAC setup: +24 °C auto) and winter conditions (winter clothing, ambient air temperature -5 °C, HVAC setup: +18 °C auto). The tests confirmed the validity of the thermal comfort evaluation using the thermal manikin and ISO 14505-2.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products
NASA Astrophysics Data System (ADS)
Reinl, S.
Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Temperature Schedules II Appendix II... to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
Muto, A.; Scambos, T.A.; Steffen, K.; Slater, A.G.; Clow, G.D.
2011-01-01
We use measured firn temperatures down to depths of 80 to 90 m at four locations in the interior of Dronning Maud Land, East Antarctica to derive surface temperature histories spanning the past few decades using two different inverse methods. We find that the mean surface temperatures near the ice divide (the highest-elevation ridge of East Antarctic Ice Sheet) have increased approximately 1 to 1.5 K within the past ???50 years, although the onset and rate of this warming vary by site. Histories at two locations, NUS07-5 (78.65S, 35.64E) and NUS07-7 (82.07S, 54.89E), suggest that the majority of this warming took place in the past one or two decades. Slight cooling to no change was indicated at one location, NUS08-5 (82.63S, 17.87E), off the divide near the Recovery Lakes region. In the most recent decade, inversion results indicate both cooler and warmer periods at different sites due to high interannual variability and relatively high resolution of the inverted surface temperature histories. The overall results of our analysis fit a pattern of recent climate trends emerging from several sources of the Antarctic temperature reconstructions: there is a contrast in surface temperature trends possibly related to altitude in this part of East Antarctica. Copyright 2011 by the American Geophysical Union.
Modeling and reduction with applications to semiconductor processing
NASA Astrophysics Data System (ADS)
Newman, Andrew Joseph
This thesis consists of several somewhat distinct but connected parts, with an underlying motivation in problems pertaining to control and optimization of semiconductor processing. The first part (Chapters 3 and 4) addresses problems in model reduction for nonlinear state-space control systems. In 1993, Scherpen generalized the balanced truncation method to the nonlinear setting. However, the Scherpen procedure is not easily computable and has not yet been applied in practice. We offer a method for computing a working approximation to the controllability energy function, one of the main objects involved in the method. Moreover, we show that for a class of second-order mechanical systems with dissipation, under certain conditions related to the dissipation, an exact formula for the controllability function can be derived. We then present an algorithm for a numerical implementation of the Morse-Palais lemma, which produces a local coordinate transformation under which a real-valued function with a non-degenerate critical point is quadratic on a neighborhood of the critical point. Application of the algorithm to the controllabilty function plays a key role in computing the balanced representation. We then apply our methods and algorithms to derive balanced realizations for nonlinear state-space models of two example mechanical systems: a simple pendulum and a double pendulum. The second part (Chapter 5) deals with modeling of rapid thermal chemical vapor deposition (RTCVD) for growth of silicon thin films, via first-principles and empirical analysis. We develop detailed process-equipment models and study the factors that influence deposition uniformity, such as temperature, pressure, and precursor gas flow rates, through analysis of experimental and simulation results. We demonstrate that temperature uniformity does not guarantee deposition thickness uniformity in a particular commercial RTCVD reactor of interest. In the third part (Chapter 6) we continue the modeling effort, specializing to a control system for RTCVD heat transfer. We then develop and apply ad-hoc versions of prominent model reduction approaches to derive reduced models and perform a comparative study.
Gas turbine engine active clearance control
NASA Technical Reports Server (NTRS)
Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)
1985-01-01
Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.
Dielectric Constant Measurements of Solid 4He
NASA Astrophysics Data System (ADS)
Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.
2011-03-01
Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.
Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating.
Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui
2017-02-15
This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.
A development optical course based on optical fiber white light interference
NASA Astrophysics Data System (ADS)
Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo
2017-08-01
The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.
Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys
NASA Astrophysics Data System (ADS)
Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.
2018-04-01
Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.
Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales
NASA Astrophysics Data System (ADS)
Ma, Feiyue
Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is observed. Therefore, another technique was adopted to address this issue. A texturing process was also explored to optimize the NaxCo 2O4 structure. It was found that a highly textured structure can be obtained using a combined process of combustion synthesis, chemical demixing, and a flux method.
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, Burkhard
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less
Haughie, David W; Buckley, C Paul; Wu, Junjie
2006-07-01
In Part 2 of a study of welding of ultra-high molecular weight polyethylene (UHMWPE), experiments were conducted to measure the interfacial fracture energy of butt welds, for various welding times and temperatures above the melting point. Their toughness was investigated at 37 degrees C in terms of their fracture energy, obtained by adapting the essential work of fracture (EWF) method. However, a proportion of the welded samples (generally decreasing with increasing welding time or temperature) failed in dual ductile/brittle mode, hence invalidating the EWF test. Even those failing in purely ductile mode showed a measurable interface work of fracture only for the highest weld temperature and time: 188 degrees C and 90 min. Results from the model presented in Part 1 show that this corresponds to the maximum reptated molecular weight reaching close to the peak in the molar mass distribution. Hence this work provides the first experimental evidence that the slow rate of self-diffusion in UHMWPE leads to welded interfaces acting as low-toughness crack paths. Since such interfaces exist around every powder particle in processed UHMWPE this problem cannot be avoided, and it must be accommodated in design of hip and knee bearing surfaces made from this polymer.
Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning
NASA Astrophysics Data System (ADS)
Aguilera, Jesus; Wright, John D.; Bean, Vern E.
2008-01-01
We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.
Intravenous fluid temperature management by infrared thermometer.
Lapostolle, Frédéric; Catineau, Jean; Le Toumelin, Philippe; Proust, Clément; Garrigue, Bruno; Galinski, Michel; Adnet, Frédéric
2006-03-01
The management of intravenous (IV) fluid temperature is a daily challenge in critical care, anesthesiology, and emergency medicine. Infusion of IV fluids at the right temperature partly influences clinical outcomes of critically ill patients. Nowadays, intravenous fluid temperature is poorly managed, as no suitable device is routinely available. Infrared (IR) thermometers have been recently developed for industrial, personal, or medical purposes. The aim of this study was to evaluate the accuracy of an IR thermometer in measuring temperature of warmed and cooled infusion fluids in fluid bags. This study compared temperatures simultaneously recorded by an infrared thermometer and a temperature sensor. Temperatures of warmed (41 degrees C) and cooled (4 degrees C) infusion fluids in fluid bags were recorded by 2 independent operators every minute until IV bags' temperature reached ambient temperature. The relation curve was established with 576 measures. Temperature measures performed with an IR thermometer were perfectly linear and perfectly correlated with the reference method (R(2) = 0.995, P < 10(-5)). Infrared thermometers are efficient to measure IV fluid bag temperature in the range of temperatures used in clinical practice. As these devices are easy to use and inexpensive, they could be largely used in critical care, anesthesiology, or emergency medicine.
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin
2017-10-15
In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-Invasive In Vivo Ultrasound Temperature Estimation
NASA Astrophysics Data System (ADS)
Bayat, Mahdi
New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which could result in significant artifacts. The first part of this thesis addresses the first limitation by introducing the Recursive Echo Strain Filter (RESF) as a new temperature reconstruction model which largely corrects for the spatial inconsistencies resulting from the infinitesimal model. The performance of this model is validated using the data collected during sub therapeutic temperature changes in the tissue mimicking phantom as well as ex vivo tissue blocks. The second part of this thesis deals with in vivo ultrasound thermography. Tissue deformations caused by natural motions (e.g. respiration, gasping, blood pulsation etc) can create non-thermal changes to the ultrasound echoes which are not accounted for in the derivation of physical model for temperature estimation. These fluctuations can create severe artifacts in the estimated temperature field. Using statistical signal processing techniques an adaptive method is presented which takes advantage of the localized and global availability of these interference patterns and use this data to enhance the estimated temperature in the region of interest. We then propose a model based technique for continuous tracking of temperature in the presence of natural motion and deformation. The method uses the direct discretization of the transient bioheat equation to derive a state space model of temperature change. This model is then used to build a linear estimator based on the Kalman filtering capable of robust estimation of temperature change in the presence of tissue motion and deformation. The robustness of the adaptive and model-based models in removing motion and deformation artifacts is demonstrated using data from in vivo experiments. Both methods are shown to provide effective cancellation of the artifacts with minimal effect on the expected temperature dynamics.
Differentiating fatty and non-fatty tissue using photoacoustic imaging
NASA Astrophysics Data System (ADS)
Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo
2014-03-01
In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.
Study on the hydrogenation of Zircaloy-4
NASA Astrophysics Data System (ADS)
da Silva Dupim, Ivaldete; Moreira, João M. L.; Silva, Selma Luiza; Silva, Cecilia Chaves Guedes e.; Nunes, Oswaldo; Gomide, Ricardo Gonçalves
2012-08-01
In this article we investigate producing Zirconium powder from discarded Zircaloy-4 material through the hydride-dehydride method. We restrict our study to the first part of the method, namely the hydrogenation process. Differential thermal analyses of the hydrogenation process of the Zircaloy-4 show that no hydrogen absorption occurs at temperatures below 573 K and hydrogen gas pressure of 25 kPa. When the system temperature is raised to around 770 K, with the same gas pressure, the protecting oxide layer of the specimens can be overcome and they are quickly hydrogenated. The bulk of the reaction occurs in about 5 min with the precipitation of Zirconium hydrides in the Zr-δ and Zr-ɛ phases. Once the temperature passes 573 K, the incubation time to initiate the reaction is short (about 5 min). Tests in a tube furnace system with larger samples, hydrogen pressure varying from 30 to 180 kPa, and temperature from 700 to 833.15 K, show that the specimens are fully hydrogenated and can be easily pulverized. The results indicate that the hydrogenation of the Zircaloy-4 chips can be successfully undertaken at temperatures around 770 K and hydrogen gas pressure as low as 30 kPa.
NASA Astrophysics Data System (ADS)
De Lucas, Javier; Segovia, José Juan
2018-05-01
Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
NASA Astrophysics Data System (ADS)
Hickmott, Curtis W.
Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
Characterization of sapphire: For its material properties at high temperatures
NASA Astrophysics Data System (ADS)
Bal, Harman Singh
There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.
Method for producing high energy electroluminescent devices
Meyerson, Bernard S.; Scott, Bruce A.; Wolford, Jr., Donald J.
1992-09-29
A method is described for fabricating electroluminescent devices exhibiting visible electroluminescence at room temperature, where the devices include at least one doped layer of amorphous hydrogenated silicon (a-Si:H). The a-Si:H layer is deposited on a substrate by homogeneous chemical vapor deposition (H-CVD) in which the substrate is held at a temperature lower than about 200.degree. C. and the a-Si:H layer is doped in-situ during deposition, the amount of hydrogen incorporated in the deposited layer being 12-50 atomic percent. The bandgap of the a-Si:H layer is between 1.6 and 2.6 eV, and in preferrable embodiments is between 2.0 and 2.6 eV. The conductivity of the a-Si:H layer is chosen in accordance with device requirements, and can be 10.sup.16 -10.sup.19 carriers/cm.sup.2. The bandgap of the a-Si:H layer depends at least in part on the temperature of the substrate on which the layer is deposited, and can be "tuned" by changing the substrate temperature.
Drilling of bone: A comprehensive review
Pandey, Rupesh Kumar; Panda, S.S.
2013-01-01
Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771
NASA Astrophysics Data System (ADS)
Razavizadeh, Mahmoud; Jamshidi, Masoud
2016-01-01
Fiber to rubber adhesion is an important subject in rubber composite industry. It is well known that surface physical, mechanical and chemical treatments are effective methods to improve interfacial bonding. Ultra violet (UV) light irradiation is an efficient method which is used to increase interfacial interactions. In this research UV assisted chemical modification of PET fabric was used to increase its bonding to nitrile rubber (NBR). NBR is perfect selection to produce fuel and oil resistant rubber parts but it has weak bonding to fabrics. For this purpose at first, the PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was reacted and grafted to carboxylated PET. T-peel test was used to evaluate PET fabric to NBR bonding strength. Attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR-AT) was used to assess surface modifications of the PET fabrics. The chemical composition of the PET surfaces before and after carboxylation and MDI grafting was investigated by X-ray photoelectron spectroscopy (XPS). It was found that at vulcanizing temperature of 150 °C, carboxylation in contrary to MDI grafting, improved considerably PET to NBR adhesion. Finally effect of curing temperature on PET to NBR bonding strength was determined. It was found that increasing vulcanizing temperature to 170 °C caused considerable improvement (about 134%) in bonding strength.
Static Mixer for Heat Transfer Enhancement for Mold Cooling Application
NASA Astrophysics Data System (ADS)
Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil
Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.
1992-01-01
NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-04-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.
Temperature dependence of needle and shoot elongation before bud break in Scots pine.
Schiestl-Aalto, Pauliina; Mäkelä, Annikki
2017-03-01
Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)
2014-01-01
Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.
Cichocki, Brandy; Dugat, Danielle; Payton, Mark
Obtaining a patient's temperature is an important part of a patient's physical examination. As human medicine transitions to noninvasive temperature measurements, so does veterinary medicine. Historically, temperature measurement has been obtained from rectal readings; however, alternative methods, such as axillary and auricular temperatures, are increasing in popularity. The purpose of the study was to compare these alternative techniques to the gold standard of rectal temperature. Temperatures were obtained three ways for each patient: rectal, axillary, and auricular. Results indicated a positive linear relationship between rectal and axillary temperatures (bivariate correlation coefficient [r] = 0.65, P < .001) and axillary and auricular temperatures (r = 0.55, P < .001). Agreement was strongest between rectal and auricular temperatures (r = 0.80, P < .001). The average discrepancy between axillary and rectal temperature was 1.2°C [2.1°F] with the highest difference being 4.0°C [7.3°F]. The average discrepancy between auricular and rectal temperature was 0.6°C [1.2°F] with the highest difference being 2.2°C [4.1°F]. Despite auricular temperatures having stronger agreement, Bland-Altman Limits of Agreement testing revealed that it was a poor predictor of rectal temperature. Based on these results, axillary and auricular temperatures should not be substituted for rectal temperature.
Comparison of temporal to pulmonary artery temperature in febrile patients.
Furlong, Donna; Carroll, Diane L; Finn, Cynthia; Gay, Diane; Gryglik, Christine; Donahue, Vivian
2015-01-01
As a routine part of clinical care, temperature measurement is a key indicator of illness. With the criterion standard of temperature measurement from the pulmonary artery catheter thermistor (PAT), which insertion of PAT carries significant risk to the patient, a noninvasive method that is accurate and precise is needed. The purpose of this study was to measure the precision and accuracy of 2 commonly used methods of collecting body temperature: PAT considered the criterion standard and the temporal artery thermometer (TAT) in those patients with a temperature greater than 100.4°F. This is a repeated-measures design with each patient with a PAT in the intensive care unit acting as their own control to investigate the difference in PAT readings and readings from TAT in the core mode. Accuracy and precision were analyzed. There were 60 subjects, 41 males and 19 females, with mean age of 60.8 years, and 97% (n = 58) were post-cardiac surgery. There was a statistically significant difference between PAT and TAT (101.0°F [SD, 0.5°F] vs 100.5°F [SD, 0.8°F]; bias, -0.49°F; P < .001). Differences in temperature between the 2 methods were clinically significant (ie, >0.9°F different) in 15 of 60 cases (25%). No TAT measurements were 0.9 F greater than the corresponding PAT measurement (0%; 95% confidence interval, 0%-6%). These data demonstrate the accuracy of TAT when compared with PAT in those with temperatures of 100.4°F or greater. This study demonstrates that TAT set to core mode is accurate with a 0.5°F lower temperature than PAT. There was 25% in variability in precision of TAT.
NASA Technical Reports Server (NTRS)
Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David
2014-01-01
The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
Process of preparing metal parts to be heated by means of infrared radiance
Mayer, Howard Robinson [Cincinnati, OH; Blue, Craig A [Knoxville, TN
2009-06-09
A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.
1988-04-12
Res. Minneapolis Dr P Klocek Texas Instruments, Dallas Dr D N Lewis Naval Research Lab Dr S Musikant General Electric Co, Philadelphia Dr D Perry US...by utilising only a small fraction of the available reactants. Not only is this wasteful, limiting the method to reactants that are comparatively
Method of forming low cost, formable High T(subc) superconducting wire
NASA Technical Reports Server (NTRS)
Smialek, James L. (Inventor)
1989-01-01
A ceramic superconductivity part, such as a wire, is produced through the partial oxidation of a specially formulated copper alloy in a core. The alloys contains low level of quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperatures, and superconducting oxide phases are formed as a thin film.
Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas
2014-05-01
The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed that the CPU time required for the operational procedure is relatively short (less than 15 minutes including a large time spent for interpolation). These also showed that in order to start correction of forecasts there is no need to have a long-term pre-historical data (containing forecasts and observations) and, at least, a couple of weeks will be sufficient when a new observational station is included and added to the forecast point. Note for the road weather application, the operationalization of the statistical correction of the road surface temperature forecasts (for the RWM system daily hourly runs covering forecast length up to 5 hours ahead) for the Danish road network (for about 400 road stations) was also implemented, and it is running in a test mode since Sep 2013. The method can also be applied for correction of the dew point temperature and wind speed (as a part of observations/ forecasts at synoptical stations), where these both meteorological parameters are parts of the proposed system of equations. The evaluation of the method performance for improvement of the wind speed forecasts is planned as well, with considering possibilities for the wind direction improvements (which is more complex due to multi-modal types of such data distribution). The method worked for the entire domain of mainland Denmark (tested for 60 synoptical and 395 road stations), and hence, it can be also applied for any geographical point within this domain, as through interpolation to about 100 cities' locations (for Danish national byvejr forecasts). Moreover, we can assume that the same method can be used in other geographical areas. The evaluation for other domains (with a focus on Greenland and Nordic countries) is planned. In addition, a similar approach might be also tested for statistical correction of concentrations of chemical species, but such approach will require additional elaboration and evaluation.
Chlorophyll a reconstruction from in situ measurements: 1. Method description
NASA Astrophysics Data System (ADS)
Fründt, B.; Dippner, J. W.; Waniek, J. J.
2015-02-01
Understanding the development of primary production is essential for projections of the global carbon cycle in the context of climate change. A chlorophyll a hindcast that serves as a primary production indicator was obtained by fitting in situ measurements of nitrate, chlorophyll a, and temperature. The resulting fitting functions were adapted to a modeled temperature field. The method was applied to observations from the Madeira Basin, in the northeastern part of the oligotrophic North Atlantic Subtropical Gyre and yielded a chlorophyll a field from 1989 to 2008 with a monthly resolution validated with remotely measured surface chlorophyll a data by SeaWiFS. The chlorophyll a hindcast determined with our method resolved the seasonal and interannual variability in the phytoplankton biomass of the euphotic zone as well as the deep chlorophyll maximum. Moreover, it will allow estimation of carbon uptake over long time scales.
Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2004-01-01
A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.
Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2003-01-01
A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.
A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2006-01-01
A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.
Huang, Jianhua
2012-07-01
There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.
Use of radiometer to reform and repair an old living house to passive solar one
NASA Astrophysics Data System (ADS)
Okamoto, Yoshizo; Inagaki, Terumi; Suzuki, Takakazu; Kurokawa, Takashi
1994-03-01
Japanese living houses mainly consist of wooden elements in high-temperature and moist conditions. To modify the hot and humid environment, a conventional old house was partially rebuilt and repaired. Especially in the winter season, a diagnostic thermographic test was used to find deteriorated and leaking parts of interior and exterior walls. Macroscopic deteriorated parts were checked again in detail. The deteriorated element was then removed. During the reconstruction process, a new solar heat and air conditioning system using a silica-gel adsorber and underground water was installed to cool and warm up the living room. Thermography tests of this remodeled house show that room temperature is always constant and mild to human beings, especially in the winter. Temperature and heat flow distribution of flowing air in the living room was measured using thermal net and wire methods. Leaking thermal streak flow of the gap was locally visualized by the IR radiometer and a highly sensitive video camera. It was verified that IR thermography is a useful measuring instrument to check thermal defects of a house.
Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Collins, TImothy J.
2006-01-01
Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.
Verification of Loop Diagnostics
NASA Technical Reports Server (NTRS)
Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.
2014-01-01
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J
2016-01-15
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.
2016-01-01
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934
Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten
2016-01-01
Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells. Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation. PMID:27019778
Evaluation of Heating Methods for Thermal Structural Testing of Large Structures
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.
1998-01-01
An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II
NASA Astrophysics Data System (ADS)
Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea
2016-04-01
In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.
Residual stresses in injection molded shape memory polymer parts
NASA Astrophysics Data System (ADS)
Katmer, Sukran; Esen, Huseyin; Karatas, Cetin
2016-03-01
Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.
Estimating past precipitation and temperature from fossil ostracodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.J.; Forester, R.M.
1994-12-31
The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less
Manufacturing techniques for titanium aluminide based alloys and metal matrix composites
NASA Astrophysics Data System (ADS)
Kothari, Kunal B.
Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.
NASA Astrophysics Data System (ADS)
Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan
2017-03-01
A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
NASA Astrophysics Data System (ADS)
Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.
2010-09-01
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.
Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM
NASA Astrophysics Data System (ADS)
Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.
2018-06-01
As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.
Analytical study on the thermal performance of a partially wet constructal T-shaped fin
NASA Astrophysics Data System (ADS)
Hazarika, Saheera Azmi; Zeeshan, Mohd; Bhanja, Dipankar; Nath, Sujit
2017-07-01
The present paper addresses the thermal analysis of a T-shaped fin under partially wet condition by adopting a cubic variation of the humidity ratio of saturated air with the corresponding fin surface temperature. The point separating the dry and wet parts may lie either in the flange or stem part of the fin and so, two different cases having different governing equations and boundary conditions are analyzed in this paper. Since the governing equations are highly non-linear, they are solved by using an analytical technique called the Differential Transform Method and subsequently, the dry fin length, temperature distribution and fin performances are evaluated and analyzed for a wide range of the various psychometric, geometric and thermo-physical parameters. Finally, it can be highlighted that relative humidity has a pronounced effect on the performance parameters when the fin surface is partially wet whereas this effect is marginally small for fully wet surface.
NASA Astrophysics Data System (ADS)
Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili
2007-05-01
Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.
Frictional conditions between alloy AA6060 aluminium and tool steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wideroee, Fredrik; Welo, Torgeir
The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less
Method of forming and starting a sodium sulfur battery
Paquette, David G.
1981-01-01
A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.
NASA Astrophysics Data System (ADS)
Chen, K.; Y Zhang, T.; Zhang, F.; Zhang, Z. R.
2017-12-01
Grey system theory regards uncertain system in which information is known partly and unknown partly as research object, extracts useful information from part known, and thereby revealing the potential variation rule of the system. In order to research the applicability of data-driven modelling method in melting peak temperature (T m) fitting and prediction of polypropylene (PP) during ultraviolet radiation aging, the T m of homo-polypropylene after different ultraviolet radiation exposure time investigated by differential scanning calorimeter was fitted and predicted by grey GM(1, 1) model based on grey system theory. The results show that the T m of PP declines with the prolong of aging time, and fitting and prediction equation obtained by grey GM(1, 1) model is T m = 166.567472exp(-0.00012t). Fitting effect of the above equation is excellent and the maximum relative error between prediction value and actual value of T m is 0.32%. Grey system theory needs less original data, has high prediction accuracy, and can be used to predict aging behaviour of PP.
Iridium/Rhenium Parts For Rocket Engines
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Harding, John T.; Wooten, John R.
1991-01-01
Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.
NASA Astrophysics Data System (ADS)
Kamiya, N.; Yamamoto, Y.; Takemura, T.
2015-12-01
Since forearc-basin evolve associated with development of the accretionary prisms, their geologic structures have clues to understanding the tectonic processes associated with plate subduction. We found a major difference in paleo-geothermal structure and consolidation states between the unconformity in the forearc basin in the Boso Peninsula, central Japan. The geology of the Boso Peninsula, central Japan is divided into three parts; Early Miocene and Late Miocene accretionary prisms in the southern part, the Hayama-Mineoka tectonic belt mainly composed of ophiolite in the middle part, and post-Middle Miocene forearc basin in the northern part. Sediments in the forearc basin are composed of 15-3Ma Miura Group and 3-0.6Ma Kazusa Group. Boundary of the two groups is the Kurotaki Unconformity formed about 3Ma, when convergent direction of the Philippine Sea Plate has been changed (Takahashi, 2006). Vitrinite reflectance (Ro) analyses were conducted and revealed that major variation of paleo-maximum temperature between the Miura and Kazusa groups. The maximum paleo-temperature in the Miura Group is estimated as 70-95˚C, whereas in the lower part of the Kazusa Group is less than 10-35˚C. Given 20˚C/km (Sakai et al, 2011) paleo-geothermal gradient, approximately 2000 m uplifting/erosion of the Miura Group is expected when the unconformity formed. To verify the amount of this uplifting/erosion, we are performing consolidation test of mudstone. [Reference] Takahashi, M., 2006, Tectonic Development of the Japanese Islands Controlled by Philippine Sea Plate Motion, Journal of Geography, 115, 116-123. Sakai R., Munakata M., Kimura H., Ichikawa Y., and Nakamura M., 2011, Study on Validation Method of Regional Groundwater Flow Model : Case Study for Boso Peninsula, JAEA-research 2010(66), 1-20, 1-2.
Electronic part of the optical correlation function at finite temperature: the S-matrix expansion
NASA Astrophysics Data System (ADS)
Tavares, M.; Marques, G. E.; Tejedor, C.
1998-12-01
We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.
1992-01-01
instrument logbook was maintained, but all calibration printouts for the SFC/MS were put in a dedicated loose- leaf notebook. The temperature of the...to-date temperature - monitoring sheets were located at the freezer. Each worker maintained a project-specific personal logbook to enter data...driven 10-cm-diameter gate valve into a 1.5-m3 carbon-impregnated polyethylene ( Velostat 7") sampling bag. The bag, constructed of electrically
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayle, Scott; Gupta, Tanuj; Davis, Sam
Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.
Sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.
1995-01-01
This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
NASA Astrophysics Data System (ADS)
Neira Arce, Alderson
To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective heating and cooling steps. The second method consisted of the solution of a prescribed domain, where each powder layer is discretized by an individual 3D element and the heat source is represented by a 1D element displaced by a temperature-coupling extrapolation routine. Two validation strategies were presented here; the first was used to confirm the accuracy of the proposed model strategy by setting up a controlled experiment; the second was used to validate the post-processing data obtained by the simulation by comparison with in-situ measured EBSM process temperature. Finally, a post-process part evaluation on surface finishing and part porosity was discussed including an assessment of the use of non-destructive inspection techniques such as 3D profilometry by axial chromatism for surface roughness, partial section analysis by serial block-face scanning electron microscopy (SBFSEM) and micro computed tomography (CT-Scan) for pore and inclusion detection.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Ochs, Harry T., III
1988-01-01
The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.
Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M
2014-05-01
A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.
Towards a monitoring system of temperature extremes in Europe
NASA Astrophysics Data System (ADS)
Lavaysse, Christophe; Cammalleri, Carmelo; Dosio, Alessandro; van der Schrier, Gerard; Toreti, Andrea; Vogt, Jürgen
2018-01-01
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. The heat waves in western Europe in 2003 and in Russia in 2010, or the cold wave in southeastern Europe in 2012, generated a considerable amount of economic loss and resulted in the death of several thousands of people. Providing an operational system to monitor extreme-temperature anomalies in Europe is thus of prime importance to help decision makers and emergency services to be responsive to an unfolding extreme event. In this study, the development and the validation of a monitoring system of extreme-temperature anomalies are presented. The first part of the study describes the methodology based on the persistence of events exceeding a percentile threshold. The method is applied to three different observational datasets, in order to assess the robustness and highlight uncertainties in the observations. The climatology of extreme events from the last 21 years is then analysed to highlight the spatial and temporal variability of the hazard, and discrepancies amongst the observational datasets are discussed. In the last part of the study, the products derived from this study are presented and discussed with respect to previous studies. The results highlight the accuracy of the developed index and the statistical robustness of the distribution used to calculate the return periods.
NASA Astrophysics Data System (ADS)
Dunkel, Z.; Szenyán, I. G.
The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of calculation of daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ETd-Rnd = a + b (Tc-Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA/AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observation trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field (1 km × 1 km) was scanned before noon and afternoon. In the western part of the country, a much larger area (45 km × 45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed too. Comparison of model output with data from field experiment has played a crucial role in model development and suggested evaluation method
Design of a high power TM01 mode launcher optimized for manufacturing by milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo
2016-12-15
Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less
Large forging manufacturing process
Thamboo, Samuel V.; Yang, Ling
2002-01-01
A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.
NASA Astrophysics Data System (ADS)
Wen, Xiaohu; Wu, Xiaoqing; Gao, Meng
2017-11-01
Climate change is potentially challenging the sustainable development in many parts of the world, especially the semi-arid and arid regions on the earth. Northwest China (NWC) is one of the most arid areas in East Asia, and Gansu Province is located at the important climate transition zone in NWC. Spatiotemporal variability of both temperature and precipitation were analyzed based on the daily observation dataset at 29 meteorological stations over Gansu during 1951-2015. The Mann-Kendall trend test was utilized to detect monotonic trends in extreme climate indices, mean temperature, and total precipitation. The results revealed that the warming trends were statistically significant at most stations in Gansu, especially at the high altitude stations; however, the change trends in annual and seasonal precipitation over Gansu were not significant as expected. Furthermore, the 29 stations were spatially grouped using hierarchical clustering method. The regional-averaged temperature anomalies also showed a significant warming trend beginning at the end of 1970s. Spatial variations were also observed in the annual and seasonal precipitation over Gansu. In general, precipitation increased in the western part of Gansu while decreased in the eastern part. Additionally, the wavelet analyses revealed that the teleconnection between large scale circulation and summer precipitation varied not only from region to region, but also was different at different time scale and different time periods. Analysis of large-scale atmospheric circulation changes showed that a strengthening anticyclonic circulation, increasing geopotential height and rapid warming over the Eurasian continent were considered to be attributable to climate change in Gansu and even in NWC.
40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline
Code of Federal Regulations, 2013 CFR
2013-07-01
... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...
40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline
Code of Federal Regulations, 2012 CFR
2012-07-01
... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...
40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline
Code of Federal Regulations, 2014 CFR
2014-07-01
... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...
Accelerated life testing of spacecraft subsystems
NASA Technical Reports Server (NTRS)
Wiksten, D.; Swanson, J.
1972-01-01
The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.
NASA Astrophysics Data System (ADS)
Klouda, Petr; Moni, Vlastimil; Řehoř, Michal; Blata, Jan; Helebrant, František
2018-06-01
The article is a summary of information about evaluation of a risk degree for a brown coal spontaneous ignition which is realized on the base of a database analysis of information about the development of stative quantities and desorbated gases in the stored bodies of the brown coal. The data were gained from the long term complex measurements which were realized at chosen companies during the coal mining in the previous parts of the project. In the last part of the project, we examined results of temperature models from thermographs with results of gasses and coal samples from the mines. Then, the influence of atmospheric conditions (insolation, water downfall, changes of barometric pressure etc.), the influence of coal mass degradation, the influence of physical and chemical factors, and the influence of other defective factors on the process of the coal spontaneous ignition. The gasmetry was assess with gas in-situ samples and laboratory gas models of indicative gasses for the spontaneous ignition, which were taken from the method of the thermic oxidation with the aim of the correlation finding for an epicentre of temperature within the spontaneous ignition.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-01-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods. PMID:28429796
Vaccaro, J.J.; Maloy, K.J.
2006-01-01
The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.
Active magnetic regenerator method and apparatus
DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.
1993-01-01
In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.
Evaluation of Thermal State of Siberian Permafrost From Accumulated Surface Heat Flow Balance.
NASA Astrophysics Data System (ADS)
Sueyoshi, T.
2008-12-01
Permafrost exists as a response to the climatic condition and has significant longer response time than that of climate change itself. It is oftern reported the warming of permafrost in relation with recent warming. It is essential to look into the past trends of variation, since its response of to the climate change is partly determined by past condition. In this study, we use the "accumulated surface heat flow balance" as an index to discuss the year-to-year change of the thermal condition of the permafrost. This method aim to analyze the trend of the ground temperature change quantitatively, using relatively shallow-depth ground temperature data, up to several meters deep. It would be useful because deep boreholes are not always available at the field observation, while the shallow depth measurements is far easier to install. As an application of this method, we present a case of Siberian permafrost, using dataset "Russian Historical Soil Temperature Data" compiled by Zhang et al. (2001) and archived by NCAR/EOL. Some sites in this data are showing the sign of temperature rise, which should correspond to the permafrost degradation. Central Siberia is one of the key regions where a remarkable rise of ground temperature was observed recently. Our analysis provides historical information of thermal state in the region.
NASA Astrophysics Data System (ADS)
Nyssanbayeva, Aiman S.; Cherednichenko, Alexandr V.; Cherednichenko, Vladimir S.; Abayev, Nurlan N.; Madibekov, Azamat S.
2018-03-01
The territory of West Kazakhstan is an intensively developing region. The main oil and gas fields are concentrated there. In addition, this region is well-known as a region of nomad cattle breeding. Both of industry and agriculture demand a lot of employees, working in the open air in wintertime. Severe winter conditions, primary very low temperatures, and strong winds characterize the region. In this work, we calculated and analyzed the spatial and temporal distributions of effective temperatures in the region and their dynamics due to the global warming in the last decades. To calculate the equivalent temperature (WCET) was used the method of OFCM 2003. Nowadays, it is known as a common method for similar studies. It was shown that in the observed region, WCET is significantly lower than the ambient temperature. Repeatability of WCET, corresponding to «increasing risk», «high risk» is high in the main part of the region. Global warming in the region results in returning extremely high temperatures of the air, decreasing repeatability of the average gradation of WCET approximately on 4%, but there is no any visible changing repeatability of extreme WCET. Obtained results can be used for planning any construction work in the open air and agriculture branches.
Nyssanbayeva, Aiman S; Cherednichenko, Alexandr V; Cherednichenko, Vladimir S; Abayev, Nurlan N; Madibekov, Azamat S
2018-03-05
The territory of West Kazakhstan is an intensively developing region. The main oil and gas fields are concentrated there. In addition, this region is well-known as a region of nomad cattle breeding. Both of industry and agriculture demand a lot of employees, working in the open air in wintertime. Severe winter conditions, primary very low temperatures, and strong winds characterize the region. In this work, we calculated and analyzed the spatial and temporal distributions of effective temperatures in the region and their dynamics due to the global warming in the last decades. To calculate the equivalent temperature (WCET) was used the method of OFCM 2003. Nowadays, it is known as a common method for similar studies. It was shown that in the observed region, WCET is significantly lower than the ambient temperature. Repeatability of WCET, corresponding to «increasing risk», «high risk» is high in the main part of the region. Global warming in the region results in returning extremely high temperatures of the air, decreasing repeatability of the average gradation of WCET approximately on 4%, but there is no any visible changing repeatability of extreme WCET. Obtained results can be used for planning any construction work in the open air and agriculture branches.
NASA Astrophysics Data System (ADS)
de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.
2016-10-01
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mendonça, R. R. S.; Braga, C. R.; Echer, E.
2016-10-20
The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticedmore » that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.« less
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Price, W. E.
1976-01-01
An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.
Scalar Similarity for Relaxed Eddy Accumulation Methods
NASA Astrophysics Data System (ADS)
Ruppert, Johannes; Thomas, Christoph; Foken, Thomas
2006-07-01
The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( < 0.01 Hz). The simulations of REA showed significant change in b-factors throughout the diurnal course. The b-factor is part of the REA parameterisation scheme and describes a relation between the concentration difference and the vertical flux of a trace gas. The diurnal course of b-factors for carbon dioxide, sonic temperature and water vapour matched well. Relative flux errors induced in REA by varying scalar similarity were generally below ± 10%. Systematic underestimation of the flux of up to - 40% was found for the use of REA applying a hyperbolic deadband (HREA). This underestimation was related to poor scalar similarity between the scalar of interest and the scalar used as proxy for the deadband definition.
NASA Astrophysics Data System (ADS)
Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming
2018-05-01
Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.
NASA Astrophysics Data System (ADS)
Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos
2007-09-01
Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.
Dating base flow in streams using dissolved gases and diurnal temperature changes
Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.
2015-01-01
A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.
Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature
NASA Astrophysics Data System (ADS)
Welch, Ashley J.; van Gemert, Martin J. C.
The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.
Tang, Xiaolin; Nail, Steven L; Pikal, Michael J
2006-02-10
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperature, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45 degrees C).
Tang, Xiaolin; Nail, Steven L; Pikal, Michael J
2006-03-01
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45°C).
Heat, temperature and Clausius inequality in a model for active Brownian particles
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-01-01
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787
Heat, temperature and Clausius inequality in a model for active Brownian particles.
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-04-21
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.
Heat transfer and flow in solar energy and bioenergy systems
NASA Astrophysics Data System (ADS)
Xu, Ben
The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-11-10
Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
[A Surface Plasmon Micro-Ring Sensor Suitable for Humidity Sensing].
Li, Zhi-quan; An, Dong-yang; Zhang, Xin; Zhao, Ling-ling; Sha, Xiao-peng; Guo, Shi-liang; Li, Wen-chao
2015-09-01
Temperature is a very important parameter in scientific research, production and life. Almost all the properties of materials are related to temperature. The precise measurement of the temperature is a very important task, so the temperature sensor is widely used as a core part in the temperature measuring instrument. A novel surface plasmon micro-ring sensor suitable for humidity sensing is presented in this paper. The sensor uses a multi-layered surface plasmon waveguide structure and choosing Polyimide (Polyimide, PI) as the moisture material. We get the transfer function of surface plasmon micro-ring sensor by using transfer matrix method. Refractive indexes of Polyimide and the multilayer waveguide structure change as environment relative humidity changes, thus leading to an obvious peak drift of output spectrum. The paper mainly discusses the influence of the changes of the refractive index of humidity-sensing parts on the output spectrum, and the transmission characteristics of multilayer waveguide structure. Through the finite element method and the theoretical simulation of Matlab, We can draw: When the length between the two coupling points of the U-shaped waveguide is an integer multiple of circumference of the micro-ring, an obvious drift in the horizontal direction appears, the free spectral range (FSR) doubled and the sensitivity is 0.0005 μm/%RH; When the external environment relative humidity RH changes from 10% to 100% RH, scatter is change between including (including 0.005 m to 0.005 m, compared to other humidity sensor, the Sensitivity of sensor improves 10~50 times and the transmission is very stable. Results show that the design of surface plasma micro ring sensors has better sensitivity, stable performance and can be used in the humidity measurement, achieving a high sensitivity in the sense of humidity when the wide range of filter frequency selection is taken into account, and providing a theoretical basis for the preparation of micro-optics.
Kinetics of phase transformations in glass forming systems
NASA Technical Reports Server (NTRS)
Ray, Chandra S.
1994-01-01
A nucleation rate like curve for a glass can be determined from the functional dependence of the maximum height of its DTA crystallization peak, (delta T)(sub p), on the nucleation temperature, T(sub n). This nucleation rate curve provides information for the temperature range where nucleation for the glass can occur and the temperature where the nucleation rate is a maximum. However, this curve does not provide information for the nucleation rate, I, for the glass at different temperatures. A method for estimating I at different temperatures from (delta T)(sub p) was developed using a Li2O.2SiO2 (LS2) glass. Also, the dielectric constant (epsilon) and the loss factor (tan delta) of a glass-ceramic depend, in part, upon the amount of crystallinity which, in turn, depends upon the nucleation density in the starting glass. It is therefore expected that epsilon and tan delta should have a relationship with nucleation density and hence on the nucleation rate.
Blackburn, Bryan M; Wachsman, Eric D
2015-05-12
Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.
Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials
NASA Astrophysics Data System (ADS)
Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo
2017-10-01
A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.
Studies of the physical aspects of intumescence using advance diagnostics methods
NASA Astrophysics Data System (ADS)
Saeed, Hussain; Huang, Hua Wei; Zhang, Yang
2014-04-01
The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and using image processing algorithm on the thermal imaging data. A quantitative method of analsysis is presented to an otherwise commonly qualitative nature of experimental study in this field.
Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale
NASA Astrophysics Data System (ADS)
Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.
2015-12-01
Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.
Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications
NASA Technical Reports Server (NTRS)
Lin, Ying; Zhong, Fang; Aveline, David C.; Anderson, Mark S.
2012-01-01
Current spacecraft-compatible cleaning protocols involve a vapor degreaser, liquid sonication, and alcohol wiping. These methods are not very effective in removing live and dead microbes from spacecraft piece parts of slightly complicated geometry, such as tubing and loosely fitted nuts and bolts. Contamination control practices are traditionally focused on cleaning and monitoring of particulate and oily residual. Vapor degreaser and outgassing bakeout have not been proven to be effective in removing some less volatile, hydrophilic biomolecules of significant relevance to life detection. A precision cleaning technology was developed using supercritical CO2 (SCC). SCC is used as both solvent and carrier for removing organic and particulate contaminants. Supercritical fluid, like SCC, is characterized by physical and thermal properties that are between those of the pure liquid and gas phases. The fluid density is a function of the temperature and pressure. Its solvating power can be adjusted by changing the pressure or temperature, or adding a secondary solvent such as alcohol or water. Unlike a regular organic solvent, SCC has higher diffusivities, lower viscosity, and lower surface tension. It readily penetrates porous and fibrous solids and can reach hard-to-reach surfaces of the parts with complex geometry. Importantly, the CO2 solvent does not leave any residue. The results using this new cleaning device demonstrated that both supercritical CO2 with 5% water as a co-solvent can achieve cleanliness levels of 0.01 mg/cm2 or less for contaminants of a wide range of hydrophobicities. Experiments under the same conditions using compressed Martian air mix, which consists of 95% CO2, produced similar cleaning effectiveness on the hydrophobic compounds. The main components of the SCC cleaning system are a high-pressure cleaning vessel, a boil-off vessel located downstream from the cleaning vessel, a syringe-type high-pressure pump, a heat exchanger, and a back pressure regulator (BPR). After soaking the parts to be cleaned in the clean vessel for a period, the CO2 with contaminants is flushed out of the cleaning vessel using fresh CO2 in a first-in-first-out (FIFO) method. The contaminants are either precipitating out in the boil-off container or being trapped in a filter subsystem. The parts to be cleaned are secured in a basket inside and can be rotated up to 1,400 rpm by a magnetic drive. The fluid flows within the vessel generate tangential forces on the parts surfaces, enhancing the cleaning effectiveness and shortening the soaking time. During the FIFO flushing, the pump subsystem pushes fresh CO2 into the cleaning vessel at a constant flow rate between 0.01 and 200 mL/min, while the BPR regulates the pressure in the cleaning vessel to within 0.1 bar by controlling the needle position in an outlet valve. The fresh CO2 gas flows through the heat exchanger at a given temperature before entering the cleaning vessel. A platinum resistance thermometer (PRT) reads the cleaning vessel interior temperature that can be controlled to within 0.1 K. As a result, cleaning vessel temperature remains constant during the FIFO flushing. There is no change in solvent power during FIFO flushing since both temperature and pressure inside the cleaning vessel remain unchanged, thus minimizing contaminants left behind. During decompression, both temperature and pressure are strictly controlled to prevent bubbles from generating in the cleaning vessel that could stir up the contaminants that sank to the bottom by gravity.
Shan Gao; Xiping Wang; Lihai Wang; R. Bruce. Allison
2012-01-01
The goals of this study were to investigate the effect of environment temperature on acoustic velocity of standing trees and green logs and to develop workable models for compensating temperature differences as acoustic measurements are performed in different climates and seasons. The objective of Part 1 was to investigate interactive effects of temperature and...
Improved Multi-Axial, Temperature and Time Dependent (MATT) Failure Model
NASA Technical Reports Server (NTRS)
Richardson, D. E.; Anderson, G. L.; Macon, D. J.
2002-01-01
An extensive effort has recently been completed by the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program to completely characterize the effects of multi-axial loading, temperature and time on the failure characteristics of three filled epoxy adhesives (TIGA 321, EA913NA, EA946). As part of this effort, a single general failure criterion was developed that accounted for these effects simultaneously. This model was named the Multi- Axial, Temperature, and Time Dependent or MATT failure criterion. Due to the intricate nature of the failure criterion, some parameters were required to be calculated using complex equations or numerical methods. This paper documents some simple but accurate modifications to the failure criterion to allow for calculations of failure conditions without complex equations or numerical techniques.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
NASA Astrophysics Data System (ADS)
Niu, Xiqun
Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.
Kelly, Greg
2006-12-01
Body temperature is a complex, non-linear data point, subject to many sources of internal and external variation. While these sources of variation significantly complicate interpretation of temperature data, disregarding knowledge in favor of oversimplifying complex issues would represent a significant departure from practicing evidence-based medicine. Part 1 of this review outlines the historical work of Wunderlich on temperature and the origins of the concept that a healthy normal temperature is 98.6 degrees F (37.0 degrees C). Wunderlich's findings and methodology are reviewed and his results are contrasted with findings from modern clinical thermometry. Endogenous sources of temperature variability, including variations caused by site of measurement, circadian, menstrual, and annual biological rhythms, fitness, and aging are discussed. Part 2 will review the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can influence body temperature, as well as temperature findings in disease states.
Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718
NASA Technical Reports Server (NTRS)
Lambert, D. M.
2016-01-01
The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown might be lower than the knockdown observed above about one million cycles, where it tended to stabilize. This was not universal for all temperatures tested. The higher temperature tests are thought to be influenced by the test temperature, which perhaps continued the aging process. Further evaluation of the method is suggested.
Mixed layer warming-deepening in the Mediterranean Sea and its effect on the marine environment
NASA Astrophysics Data System (ADS)
Rivetti, Irene; Boero, Ferdinando; Fraschetti, Simonetta; Zambianchi, Enrico; Lionello, Piero
2015-04-01
This work aims at investigating the evolution of the ocean mixed layer in the Mediterranean Sea and linking it to the occurrence of mass mortalities of benthic invertebrates. The temporal evolution of selected parameters describing the mixed layer and the seasonal thermocline is provided for the whole Mediterranean Sea for spring, summer and autumn and for the period 1945-2011. For this analysis all temperature profiles collected in the basin with bottles, Mechanical Bathy-Thermographs (MBT), eXpendable Bathy-Thermographs (XBT), and Conductivity-Temperature-Depth (CTD) have been used (166,990). These data have been extracted from three public sources: the MEDAR-MEDATLAS, the World Ocean Database 2013 and the MFS-VOS program. Five different methods for estimating the mixed layer depth are compared using temperature profiles collected at the DYFAMED station in the Ligurian Sea and one method, the so-called three-segment method, has been selected for a systematic analysis of the evolution of the uppermost part of the whole Mediterranean Sea. This method approximates the upper water column with three segments representing mixed layer, thermocline and deep layer and has shown to be the most suitable method for capturing the mixed layer depth for most shapes of temperature profiles. Mass mortalities events of benthic invertebrates have been identified by an extensive search of all data bases in ISI Web of Knowledge considering studies published from 1945 to 2011. Studies reporting the geographical coordinates, the timing of the events, the species involved and the depth at which signs of stress occurred have been considered. Results show a general increase of thickness and temperature of the mixed layer, deepening and cooling of the thermocline base in summer and autumn. Possible impacts of these changes are mass mortalities events of benthic invertebrates that have been documented since 1983 mainly in summer and autumn. It is also shown that most mass mortalities occurred in months with anomalously high mixed layer depth temperature leading to the conclusion that warming of upper Mediterranean Sea has allowed interannual temperature variability to reach environmental conditions beyond the thermal tolerance of some species.
The distribution shifts of Pinus armandii and its response to temperature and precipitation in China
Zheng, Xiaofeng; Gao, Pengxiang
2017-01-01
Background The changing climate, particularly in regard to temperature and precipitation, is already affecting tree species’ distributions. Pinus armandii, which dominates on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural and ecological value. We wish to test the correlations between the distribution shift of P. armandii and changing climate, and figure out how it tracks future climate change. Methods We sampled the surface soil at sites throughout the distribution of P. armandii to compare the relative abundance of pollen to the current percent cover of plant species. This was used to determine possible changes in the distribution P. armandii. Given the hilly terrain, elevation was considered together with temperature and precipitation as variables correlated with distribution shifts of P. armandii. Results We show that P. armandii is undergoing change in its geographic range, including retraction, a shift to more northern areas and from the upper high part of the mountains to a lower-altitude part in hilly areas. Temperature was the strongest correlate of this distribution shift. Elevation and precipitation were also both significantly correlated with distribution change of P. armandii, but to a lesser degree than temperature. Conclusion The geographic range of P. armandii has been gradually decreasing under the influence of climate change. This provides evidence of the effect of climate change on trees at the species level and suggests that at least some species will have a limited ability to track the changing climate. PMID:28929025
Thermo-mechanical characterization of silicone foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.
Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmore » for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures« less
NASA Technical Reports Server (NTRS)
Surinov, Y. A.; Fedyanin, V. E.
1975-01-01
The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).
Code of Federal Regulations, 2014 CFR
2014-07-01
... reading for each 60-minute THC test. Record the gas pressure and temperature at 5-minute intervals... paragraph (d)(8) of this section. (iv) THC must be determined as specified in paragraph (d)(9) of this...) Conduct THC sampling using Method 25A, 40 CFR part 60, appendix A-7, except that the option for locating...
NASA Astrophysics Data System (ADS)
Shahriar, Bakrani Balani; Arthur, Cantarel; France, Chabert; Valérie, Nassiet
2018-05-01
Extrusion is one of the oldest manufacturing processes; it is widely used for manufacturing finished and semi-finished products. Moreover, extrusion is also the main process in additive manufacturing technologies such as Fused Filament Fabrication (FFF). In FFF process, the parts are manufactured layer by layer using thermoplastic material. The latter in form of filament, is melted in the liquefier and then it is extruded and deposited on the previous layer. The mechanical properties of the printed parts rely on the coalescence of each extrudate with another one. The coalescence phenomenon is driven by the flow properties of the melted polymer when it comes out the nozzle just before the deposition step. This study aims to master the quality of the printed parts by controlling the effect of the parameters of the extruder on the flow properties in the FFF process. In the current study, numerical simulation of the polymer coming out of the extruder was carried out using Computational Fluid Dynamics (CFD) and two phase flow (TPF) simulation Level Set (LS) method by 2D axisymmetric module of COMSOL Multiphysics software. In order to pair the heat transfer with the flow simulation, an advection-diffusion equation was used. Advection-diffusion equation was implemented as a Partial Differential Equation (PDE) in the software. In order to define the variation of viscosity of the polymer with temperature, the rheological behaviors of two thermoplastics were measured by extensional rheometer and using a parallel-plate configuration of an oscillatory rheometer. The results highlight the influence of the environment temperature and the cooling rate on the temperature and viscosity of the extrudate exiting from the nozzle. Moreover, the temperature and its corresponding viscosity at different times have been determined using numerical simulation. At highest shear rates, the extrudate undergoes deformation from typical cylindrical shape. These results are required to predict the coalescence of filaments, a step towards understanding the mechanical properties of the printed parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jr., R.L.; Fang, Z.; Tohoku)
In this review, diamond anvil type cells (DACs) are reviewed as a method for studying supercritical water systems. The hydrothermal DAC provides easy and safe experimental access to high pressure (30-3000 MPa) and high temperature (400-800 C) regions and the device allows exploration of supercritical systems at high density (400-1200 kg/m{sup 3}), which is usually difficult or costly with batch or flow systems. In the first part of this review, characteristics of DACs regarding anvil type, DAC type, anvil alignment, heating, analytical methods, pressure and temperature determination, gasket, loading, physical size are discussed with emphasis on DACs that can bemore » used to generate conditions of interest for understanding supercritical water systems. In the second part of this review, applications and key findings of studies on supercritical water systems from geology, chemical, biomass, energy, environmental, polymer, and materials related fields are discussed. Some of the key findings determined with DAC are related to the dissolution or existence of phases at conditions of high temperature and high pressure, however, DAC has been used in many quantitative studies to determine fundamental properties such as speeds of sound, phase behavior, solubilities, partition coefficients and viscosities. Future prospects for DAC as a method for exploring supercritical water systems include combination of DAC with transmission electron microscopy (TEM) for studying nanostructures, use of high-speed streak cameras to study high-speed reactions, combustions, and energetic materials, use of time-dependent loads to study kinetics, precipitation and crystallization phenomena, the use of DAC with synchrotron radiation to follow reaction and material processes in situ, and the many modifications that can be made to DAC anvils and rapid heating methods such as lasers and masers used in conjunction with in situ techniques. The DAC is a highly versatile instrument and should find widespread use in studying supercritical water systems.« less
Duffield, Rob; Steinbacher, Geoff; Fairchild, Timothy J
2009-12-01
The current study investigated the effects of a pre-cooling intervention on physiological and performance responses to team-sport training in the heat. Seven male lacrosse players performed a familiarization session and 2 randomized, counterbalanced sessions consisting of a 30-minute intermittent-sprint conditioning session. Prior to the sessions, players performed a 20-minute mixed-method, part-body cooling intervention (consisting of cooling vests, cold towels to the neck, and ice packs to the quadriceps) or no cooling intervention. Performance was determined from collection of 1 Hz global positioning system (GPS) data and analyzed for distance and speed. Prior to, during, and following the sessions, core temperature, heart rate, rating of perceived exertion (RPE), and thermal sensation scale (TSS) were measured; additionally, a venous blood sample was collected before and after each session for measurement of interleukin-6 (IL-6), insulin-like growth factor (IGF-1) and insulin-like growth factor-binding protein3 (IGF-BP3). Results indicated that a greater distance was covered during the pre-cooling condition (3.35 +/- 0.20 vs. 3.11 +/- 0.13 km; p = 0.05). Further, most of this improvement was evident from a greater distance covered during moderate intensities of 7 to 14 km/h (2.28 +/- 0.18 vs. 2.00 +/- 0.24 km; p = 0.05). Peak speeds and very-high-intensity efforts (20 km/h +/-) were not different between conditions (p > 0.05). The increase in core temperature was blunted following cooling, with a lower core temperature throughout the cooling session (38.8 +/- 0.3 vs. 39.3 +/- 0.4 degrees C; p < 0.05). However, there were no differences in heart rate, RPE, TSS, IL-6, IGF-1, or IGF-BP3 between conditions (p > 0.05). Accordingly, the use of a mixed-method, part-body cooling intervention prior to an intermittent-sprint training session in the heat can assist in reducing thermoregulatory load and improve aspects of training performance for team sports.
Subwavelength coatings and methods for making and using same
Alvine, Kyle J.; Bernacki, Bruce E.
2017-02-28
Methods are disclosed for forming subwavelength coatings for use in the UV, visible, or infrared part of the electromagnetic spectrum. A first material and a second material are deposited onto a substrate. The first material may include dielectric spheres of subwavelength size that self-assemble on the substrate to form a template or scaffold with subwavelength size voids between the spheres into which the second material is deposited or filled. First and second materials are heated on the substrate at a preselected temperature to form the subwavelength coating.
Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source
Paulson, Leland E.
1990-01-01
A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.
Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source
Paulson, L.E.
1988-05-13
A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.
2018-03-01
Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.
Double diffusion in arbitrary porous cavity: Part II
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Kamangar, Sarfaraz; Salman Ahmed N., J.; Soudagar, Manzoor Elahi M.; Khan, T. M. Yunus
2017-07-01
Heat and mass transfer in porous medium is one of the fundamental topics of interest. The present article is dedicated to study the effect of a small block placed at center of left vertical surface of the cavity. The block is maintained at isothermal temperature That three of its edges attached with porous medium. The left surface of cavity is maintained at highest concentration and right surface at lowest concentration. The right surface of cavity is at cold isothermal temperature Tc. Governing equations are converted into matrix form of equations with the help of finite element method and solved iteratively by using a computer code generated in MATLAB.
Thermometry and thermal management of carbon nanotube circuits
NASA Astrophysics Data System (ADS)
Mayle, Scott; Gupta, Tanuj; Davis, Sam; Chandrasekhar, Venkat; Shafraniuk, Serhii
2015-05-01
Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Savage, M. L.; Kittel, P.; Roellig, T.
1990-01-01
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Testing paleointensity determinations on recent lava flows and scorias from Miyakejima, Japan
NASA Astrophysics Data System (ADS)
Fukuma, K.
2013-12-01
Still no consensus has been reached on paleointensity method. Even the classical Thellier method has not been fully tested on recent lava flows with known geomagnetic field intensity based on a systematic sampling scheme. In this study, Thellier method was applied for 1983, 1962 and 1940 basaltic lava flows and scorias from Miyakejima, Japan. Several vertical lava sections and quenched scorias, which are quite variable in magnetic mineralogy and grain size, provide an unparalleled opportunity to test paleointensity methods. Thellier experiments were conducted on a completely automated three-component spinner magnetometer with thermal demagnetizer 'tspin'. Specimens were heated in air, applied laboratory field was 45 microT, and pTRM checks were performed at every two heating steps. Curie points and hysteresis properties were obtained on small fragments removed from cylindrical specimens. For lava flows sigmoidal curves were commonly observed on the Arai diagrams. Especially the interior part of lava flows always revealed sigmoidal patterns and sometimes resulted in erroneously blurred behaviors. The directions after zero-field heating were not necessarily stable in the course of the Thellier experiments. It was very difficult, for the interior part, to ascertain linear segments on Arai diagrams corresponding to the geomagnetic field intensity at the eruption. Upper and lower clinker samples also generally revealed sigmoidal or upward concave curves on Arai diagrams. Neither lower nor higher temperature portions of the sigmoids or concaves gave the expected geomagnetic field intensities. However, there were two exceptional cases of lava flows giving correct field intensities: upper clinkers with relatively low unblocking temperatures (< 400 deg.C) and lower clinkers with broad unblocking temperature ranges from room temperature to 600 deg.C. A most promising target for paleointensity experiments within the volcanic rocks is scoria. Scoria samples always carry single Curie temperatures higher than 500 deg.C, and the ratios of saturation remanence to saturation magnetization (Mr/Ms) of about 0.5 are indicative of truly single-domain low-titanium titanomagnetite. Unambiguous straight lines were always observed on Arai diagrams covering broad temperature ranges like the lower clinker samples, and the gradients gave the expected field values within a few percent errors. Thellier experiments applied for the recent lava flows did not successfully recover the expected field intensity from most samples. No linear segment was recognized or incorrect paleointensity values were obtained from short segments with limited temperature ranges. In Thellier or other types of paleointensity experiments laboratory alteration is checked in details, but if a sample once passed the alteration check, the TRM/NRM ratios of any limited temperature or field ranges were accepted as reflecting paleointensity. Previously published paleointensity data from lava flows should include much of such dubious data. Generally lava flows are not suitable for paleointensity determinations in light of its large grain-size and mixed magnetic mineralogy, except for scoria and clinker.
Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA
Rosenberry, D.O.; Winter, T.C.; Buso, D.C.; Likens, G.E.
2007-01-01
Few detailed evaporation studies exist for small lakes or reservoirs in mountainous settings. A detailed evaporation study was conducted at Mirror Lake, a 0.15 km2 lake in New Hampshire, northeastern USA, as part of a long-term investigation of lake hydrology. Evaporation was determined using 14 alternate evaporation methods during six open-water seasons and compared with values from the Bowen-ratio energy-budget (BREB) method, considered the standard. Values from the Priestley-Taylor, deBruin-Keijman, and Penman methods compared most favorably with BREB-determined values. Differences from BREB values averaged 0.19, 0.27, and 0.20 mm d-1, respectively, and results were within 20% of BREB values during more than 90% of the 37 monthly comparison periods. All three methods require measurement of net radiation, air temperature, change in heat stored in the lake, and vapor pressure, making them relatively data intensive. Several of the methods had substantial bias when compared with BREB values and were subsequently modified to eliminate bias. Methods that rely only on measurement of air temperature, or air temperature and solar radiation, were relatively cost-effective options for measuring evaporation at this small New England lake, outperforming some methods that require measurement of a greater number of variables. It is likely that the atmosphere above Mirror Lake was affected by occasional formation of separation eddies on the lee side of nearby high terrain, although those influences do not appear to be significant to measured evaporation from the lake when averaged over monthly periods. ?? 2007 Elsevier B.V. All rights reserved.
The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models
NASA Astrophysics Data System (ADS)
Carpio, J.; Braack, M.
2012-01-01
This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.
Martens, Jürgen
2005-01-01
The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the legal temperature defaults showed hygienic risk areas over the temperature courses which could be minimized through process optimization. The hygienic risk area of four design types shows a suboptimal hygienic performance.
Flexible Ceramic-Metal Insulation Composite and Method of Making
NASA Technical Reports Server (NTRS)
Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)
1998-01-01
A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.
DIY Soundcard Based Temperature Logging System. Part II: Applications
ERIC Educational Resources Information Center
Nunn, John
2016-01-01
This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes. [For "DIY Soundcard Based Temperature Logging System. Part I: Design," see EJ1114124.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing✩
Seppala, Jonathan E.; Migler, Kalman D.
2016-01-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters. PMID:29167755
Wolska, Jolanta; Czop, Michał; Jakubczyk, Karolina; Janda, Katarzyna
Stinging nettle (Urtica dioica L.) can be found in temperate climate zones of Europe, Africa and America Nettle may be a source of nutritional ingredients, mineral salts, vitamins and antioxidants. The aim of the study was to determine the effect of temperature and brewing time Urtica dioica L. infusions from different parts of this plant on vitamin C (ascorbic acid) content. Infusions of nettle leaf, stem and root were prepared at room temperature, 50°C, 60°C, 70°C and 80°C for 10 minutes. Leaf infusions were also brewed for 5, 10, 15 and 20 minutes at initial water temperature of 60°C. The amount of vitamin C was determined by the spectrophotometric method. The best temperature of brewing nettle infusions, in terms of vitamin C concentration, is between 50 °C and 60 °C as it is sufficient to extract the substance, yet not high enough to destroy it. The optimal time of brewing appeared to be 10 minutes as the prolonged exposure to high temperature appeared to be detrimental for ascorbic acid as well.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing.
Seppala, Jonathan E; Migler, Kalman D
2016-10-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
Clark, M.R.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R.
2004-01-01
A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persistence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature to individual stations located in and around four study basins in the United States. Output from the forecast model is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times. A method is presented for reordering the ensemble output in order to recover the space-time variability in precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked and matched with the rank of precipitation and temperature data from days randomly selected from similar dates in the historical record. The ensembles are then reordered to correspond to the original order of the selection of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology also has applications for recovering the space-time variability in modeled streamflow. ?? 2004 American Meteorological Society.
Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun
2018-07-01
Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L C C
2017-03-15
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-08-01
Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.
NASA Astrophysics Data System (ADS)
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-03-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-01-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186
NASA Astrophysics Data System (ADS)
Kohnizio Mahli, Maximus; Jamian, Saifulnizan; Ismail, Al Emran; Nor, Nik Hisyamudin Muhd; Nor, Mohd Khir Mohd; Azhar Kamarudin, Kamarul
2017-10-01
Al LM6 hollow cylinder is fabricated using horizontal centrifugal casting which produce a very fine grain on the outer surface of the structure. In this study, the effect of motor speed and pouring temperature on the microstructure of Al LM6 hollow cylinder is determined. The speed of the motor used during casting are 1300rpm, 1500rpm and 1700rpm and the pouring temperature are 690°C, 710°C and 725°C. The Al LM6 hollow cylinder is produced by pouring the molten Al LM6 into a cylindrical casting mold which is connected with a shaft and it is rotated by motor until it is solidified. Then, the cross-section is observed using OM and SEM/EDS. From the microstructure observation, the distributions of Si are more concentrated at the inner parts and the size of Si is bigger at the inner parts. The result shows that the Si particles at the inner part which is fabricated at the highest motor speed (1700rpm) have the most Si particles compared with the Si particles that are casted with other motor speeds.
NASA Astrophysics Data System (ADS)
Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker
2006-01-01
A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.
Study of Fluid Cooling Loop System in Chinese Manned Spacecraft
NASA Astrophysics Data System (ADS)
Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong
2002-01-01
change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The thermal designs of the key heat exchanging parts (such as radiator, heat exchangers and cooling plates) in the cooling loop are rational and effective, they meet the requirements of heat exchanging and assure the entire system work order.
NASA Astrophysics Data System (ADS)
Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.
2017-02-01
We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.
EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu, E-mail: bchen3@fsu.edu
2015-05-01
We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use andmore » makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.« less
NASA Astrophysics Data System (ADS)
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2016-01-01
We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of Wilson line correlators in Coulomb gauge. To obtain spectral information from Euclidean time numerical data, our study relies on a novel Bayesian prescription that differs from the Maximum Entropy Method. We perform simulations on quenched 323 × Nτ (β = 7.0, ξ = 3.5) lattices with Nτ = 24, …, 96, which cover 839MeV ≥ T ≥ 210MeV. To investigate the potential in a quark-gluon plasma with light u,d and s quarks we utilize Nf = 2 + 1 ASQTAD lattices with ml = ms/20 by the HotQCD collaboration, giving access to temperatures between 286MeV ≥ T ≥ 148MeV. The real part of the potential exhibits a clean transition from a linear, confining behavior in the hadronic phase to a Debye screened form above deconfinement. Interestingly its values lie close to the color singlet free energies in Coulomb gauge at all temperatures. We estimate the imaginary part on quenched lattices and find that it is of the same order of magnitude as in hard-thermal loop perturbation theory. From among all the systematic checks carried out in our study, we discuss explicitly the dependence of the result on the default model and the number of datapoints.
A variant of the anomaly initialisation approach for global climate forecast models
NASA Astrophysics Data System (ADS)
Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco; Hawkins, Ed; Nichols, Nancy; Carrassi, Alberto
2014-05-01
This work presents a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following particularities: - the use of a weight to the anomalies, in order to avoid the risk of introducing too big anomalies recorded in the observed state, whose amplitude does not fit the range of the internal variability generated by the model. - the AI of the temperature and density ocean state variables instead of the temperature and salinity. Results show that the use of such refinements improve the skill over the Arctic region, part of the North and South Atlantic, part of the North and South Pacific and the Mediterranean Sea. In the Tropical Pacific the full field initialised experiment performs better. This is probably due to a displacement of the observed anomalies caused by the use of the AI technique. Furthermore, preliminary results of an anomaly nudging experiment are discussed.
NASA Astrophysics Data System (ADS)
Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.
2015-12-01
Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.
NASA Astrophysics Data System (ADS)
Heeter, Ann E.
Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
Temperature decline thermography for laminar-turbulent transition detection in aerodynamics
NASA Astrophysics Data System (ADS)
von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.
2017-09-01
Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.
Growing High-Quality InAs Quantum Dots for Infrared Lasers
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Uhl, David
2004-01-01
An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.
NASA Astrophysics Data System (ADS)
Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui
2018-05-01
Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation coefficients showed that annual mean NDVI was closely correlated with temperature extremes during 1982-2015 and 1995-2015, but no significant correlation with precipitation extremes was observed. However, the decrease in NDVI was correlated with increasing R95p and R95 during 1982-1994.
Method for high-accuracy reflectance measurements in the 2.5-microm region.
Richter, Rudolf; Müller, Andreas
2003-02-20
Reflectance measurement with spectroradiometers in the solar wavelength region (0.4-2.5 microm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4-2.5-microm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4-2.5-microm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20-35 degrees C.
Shekhawat, Kuldeep Singh; Chauhan, Arunima
2016-01-01
Aim: The aim of this study was to observe and record the macroscopic, radiographic, and microscopic findings obtained after subjecting the teeth to high temperatures. Materials and Methods: An in vitro study was conducted to observe macroscopic, radiographic, and microscopic changes in dental hard tissues in 60 unrestored non carious extracted human teeth. The teeth were grouped based on age: Below 30 years, 30–40 years, and above 40 years The teeth from each age group were further divided into five subgroups, and each subgroup was subjected to a particular temperature: 200°C, 400°C, 600°C, 800°C, and 1000°C. [C = Celsius]. Results: Various degrees of changes in relation to temperature were observed macroscopically, radiographically, and microscopically. The histological examination was limited for teeth exposed to 200°C. Conclusion: This investigation was carried out to study the gross changes, radiographic changes and histological changes in dental hard tissues exposed to high temperatures, which is an important part of forensic science. The aforementioned alterations caused by heat may provide useful information about temperature ranges and duration of exposure to high temperatures. PMID:27555725
An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2017-06-01
A traditional stochastic hierarchy equations of motion method is extended into the correlated real-time and imaginary-time propagations, in this paper, for its applications in calculating the equilibrium correlation functions. The central idea is based on a combined employment of stochastic unravelling and hierarchical techniques for the temperature-dependent and temperature-free parts of the influence functional, respectively, in the path integral formalism of the open quantum systems coupled to a harmonic bath. The feasibility and validity of the proposed method are justified in the emission spectra of homodimer compared to those obtained through the deterministic hierarchy equations of motion. Besides, it is interesting to find that the complex noises generated from a small portion of real-time and imaginary-time cross terms can be safely dropped to produce the stable and accurate position and flux correlation functions in a broad parameter regime.
Perpetual Motion with Maxwell's Demon
NASA Astrophysics Data System (ADS)
Gordon, Lyndsay G. M.
2002-11-01
A method for producing a temperature gradient by Brownian motion in an equilibrated isolated system composed of two fluid compartments and a separating adiabatic membrane is discussed. This method requires globular protein molecules, partially embedded in the membrane, to alternate between two conformations which lie on opposite sides of the membrane. The greater part of each conformer is bathed by one of the fluids and rotates in Brownian motion around its axis, perpendicular to the membrane. Rotational energy is transferred through the membrane during conformational changes. Angular momentum is conserved during the transitions. The energy flow becomes asymmetrical when the conformational changes of the protein are sterically hindered by two of its side-chains, the positions of which are affected by the angular velocity of the rotor. The heat flow increases the temperature gradient in contravention of the Second Law. A second hypothetical model which illustrates solute transfer at variance with the Second Law is also discussed.
Pattern recognition by wavelet transforms using macro fibre composites transducers
NASA Astrophysics Data System (ADS)
Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego
2014-10-01
This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.
Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2010-01-01
Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.
A Comparative Study of Inspection Techniques for Array Packages
NASA Technical Reports Server (NTRS)
Mohammed, Jelila; Green, Christopher
2008-01-01
This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.
JPRS Report Science & Technology USSR: Chemistry
1991-08-29
EXPLOSIVES Cryostatic Problems at Temperatures Below 2 K. Part 2. Analysis of Principal Refrigerator Designs //. F. Kuzmenko; KHIMICHESKOYEINEFTYANOYE...VOLOKNA, No 1, Jan 91] 24 Eperimental Method for Evaluating Quality of Core-Shell Interface in Polymeric Light Conductors [M. A. Maryukov...No 3, Mar 91 pp 178-179 [Article by Yu. S. Ivchenko] UDC 66.023.002.237:66.063.8 [Abstract] An attempt was made to design a universal apparatus
Kinetics of Chemical Reactions in Flames
NASA Technical Reports Server (NTRS)
Zeldovich, Y.; Semenov, N.
1946-01-01
In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.
Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun
2015-10-01
It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.
Gas Atomization of Molten Metal: Part II. Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
Feketa, Viktor V; Marrelli, Sean P
2015-01-01
Therapeutic hypothermia has emerged as a remarkably effective method of neuroprotection from ischemia and is being increasingly used in clinics. Accordingly, it is also a subject of considerable attention from a basic scientific research perspective. One of the fundamental problems, with which current studies are concerned, is the optimal method of inducing hypothermia. This review seeks to provide a broad theoretical framework for approaching this problem, and to discuss how a novel promising strategy of pharmacological modulation of the thermosensitive ion channels fits into this framework. Various physical, anatomical, physiological and molecular aspects of thermoregulation, which provide the foundation for this text, have been comprehensively reviewed and will not be discussed exhaustively here. Instead, the first part of the current review, which may be helpful for a broader readership outside of thermoregulation research, will build on this existing knowledge to outline possible opportunities and research directions aimed at controlling body temperature. The second part, aimed at a more specialist audience, will highlight the conceptual advantages and practical limitations of novel molecular agents targeting thermosensitive Transient Receptor Potential (TRP) channels in achieving this goal. Two particularly promising members of this channel family, namely TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), will be discussed in greater detail.
Effect of surface moisture on chemically bonded phosphor for thermographic phosphor thermometry
NASA Astrophysics Data System (ADS)
Cai, Tao; Kim, Dong; Kim, Mirae; Liu, Ying Zheng; Kim, Kyung Chun
2016-09-01
This study examined the effect of surface moisture on the calibration lifetime in chemically bonded phosphor paint preparation. Mg4FGeO6:Mn was used as a sensor material, which was excited by a pulsed UV LED. A high-speed camera with a frequency of 8000 Hz was used to conduct phosphor thermometry. Five samples with different degrees of surface moisture were selected during the preparation process, and each sample was calibrated 40 times at room temperature. A conventional post-processing method was used to acquire the phosphorescent lifetime for different samples with a 4 × 4-pixel interrogation window. The measurement error and paint uniformity were also studied. The results showed that there was no obvious phosphorescence boundary between the wet parts and dry parts of phosphor paint. The lifetime increased by about 0.0345% per hour during the preparation process, showing the degree of surface moisture had almost no influence on the lifetime measurement. The lifetime changed only after annealing treatment. There was also no effect on the measurement error and uniformity. These results provide a reference for developing a real-time measurement method using thermographic phosphor thermometry. This study also provides a feasible basis for chemically bonded phosphor thermometry applications in humid and low-temperature environments.
Gas Atomization of Molten Metal: Part II. Applications
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.; ...
2016-02-01
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method
NASA Astrophysics Data System (ADS)
Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil
2014-05-01
Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.
NASA Astrophysics Data System (ADS)
Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William
2017-04-01
Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.
Regionalisation of statistical model outputs creating gridded data sets for Germany
NASA Astrophysics Data System (ADS)
Höpp, Simona Andrea; Rauthe, Monika; Deutschländer, Thomas
2016-04-01
The goal of the German research program ReKliEs-De (regional climate projection ensembles for Germany, http://.reklies.hlug.de) is to distribute robust information about the range and the extremes of future climate for Germany and its neighbouring river catchment areas. This joint research project is supported by the German Federal Ministry of Education and Research (BMBF) and was initiated by the German Federal States. The Project results are meant to support the development of adaptation strategies to mitigate the impacts of future climate change. The aim of our part of the project is to adapt and transfer the regionalisation methods of the gridded hydrological data set (HYRAS) from daily station data to the station based statistical regional climate model output of WETTREG (regionalisation method based on weather patterns). The WETTREG model output covers the period of 1951 to 2100 with a daily temporal resolution. For this, we generate a gridded data set of the WETTREG output for precipitation, air temperature and relative humidity with a spatial resolution of 12.5 km x 12.5 km, which is common for regional climate models. Thus, this regionalisation allows comparing statistical to dynamical climate model outputs. The HYRAS data set was developed by the German Meteorological Service within the German research program KLIWAS (www.kliwas.de) and consists of daily gridded data for Germany and its neighbouring river catchment areas. It has a spatial resolution of 5 km x 5 km for the entire domain for the hydro-meteorological elements precipitation, air temperature and relative humidity and covers the period of 1951 to 2006. After conservative remapping the HYRAS data set is also convenient for the validation of climate models. The presentation will consist of two parts to present the actual state of the adaptation of the HYRAS regionalisation methods to the statistical regional climate model WETTREG: First, an overview of the HYRAS data set and the regionalisation methods for precipitation (REGNIE method based on a combination of multiple linear regression with 5 predictors and inverse distance weighting), air temperature and relative humidity (optimal interpolation) will be given. Finally, results of the regionalisation of WETTREG model output will be shown.
NASA Astrophysics Data System (ADS)
Tisserand, A.; Dokken, T.; Scao, V.; Jorissen, F.; Fontanier, C.
2009-04-01
A cruise with the research vessel G.O. SARS was carried out from 07 to 20 December 2007 within the framework of the European Science Foundation (EuroMARC) project RETRO, which aims to reconstruct changes within the thermocline in the tropics during periods of reduced Meridional Overturning Circulation (MOC). As part of this strategy we need a best possible calibration of methods to reproduce water mass properties, and part of the goal of this cruise was to get a good representation of the thermocline area present at the Brazilian Atlantic margin. The method used to map the thermocline gradient in the western tropical Atlantic is to use the concept of Magnesium/Calcium (Mg/Ca) on bottom water living foraminifera as a representation of temperature at site. The Mg/Ca thermometry on deep-dwelling foraminifera calibrated vs. δ18O measurements provides an estimate of depth of thermocline penetration in modern climate. Knowing the function of modern representation of the thermocline defined by Mg/Ca, we can use this concept to map thermocline deepening/shallowing in the past. The Mg/Ca ratios in benthic foraminiferal calcite are considered as the most commonly used and a reliable paleo-proxy for reconstructing bottom-water temperatures. Mg/Ca ratios of thermocline and deep-dwelling benthic foraminiferal species were determined on cores-top samples from a depth transect from the western tropical Atlantic, spanning a depth range of 600 to 1000 m representing a temperature range of 6 to 4
Thermodynamic properties of tungsten
NASA Astrophysics Data System (ADS)
Grimvall, Göran; Thiessen, Maria; Guillermet, Armando Fernández
1987-11-01
Tungsten has several unusual thermodynamic properties, e.g., very high values of the melting point, the entropy of fusion, the expansion on melting and the lattice anharmonicity. These features are given a semiquantitative explanation, based on the electron density of states N(E). Our treatment includes a numerical calculation of the electronic heat capacity from N(E) and a calculation of the entropy Debye temperature FTHETAS(T) from the vibrational part of the experimental heat capacity. FTHETAS(T) decreases by 36% from 300 K to the melting temperature 3695 K, the largest drop in FTHETAS for elemental metals. Recent quantum-mechanical ab initio calculations of the difference, Hβ/α, in Gibbs energy at T=0 K between the metastable fcc tungsten and the stable bcc phase yield Hβ/α=50+/-5 kJ/mol, which is much larger than the ``experimental'' values Hβ/α=10 and 19 kJ/mol derived from previous semiempirical analyses [the so-called calculation of phase diagrams (``CALPHAD'') method] of binary phase diagrams containing tungsten. We have reanalyzed CALPHAD data, using the results of the first part of this paper. Because of the shapes of N(E) of α-W and β-W, some usually acceptable CALPHAD procedures give misleading results. We give several estimates of Hβ/α, using different assumptions about the hypothetical melting temperature Tβf of fcc W. The more realistic of our estimates gives Hβ/α=30 kJ/mol or larger, thus reducing considerably the previous discrepancy between CALPHAD and ab initio results. The physical picture emerging from this work should be of importance in refinements of the CALPHAD method.
Evaluation of Fast Switching Diode 1N4448 Over a Wide Temperature Range
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Damron, James; Gray, Josh; Hammoud, Ahmad
2017-01-01
Electronic parts used in the design of power systems geared for space applications are often exposed to extreme temperatures and thermal cycling. Limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) electronic parts at temperatures beyond the manufacturers specified operating temperature range. This report summarizes preliminary results obtained on the evaluation of automotive-grade, fast switching diodes over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these diodes and to determine suitability for use outside their recommended temperature limits.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.
Manufacturing and testing VLPC hybrids
NASA Astrophysics Data System (ADS)
Adkins, L. R.; Ingram, C. M.; Anderson, E. J.
1998-11-01
To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of ±0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.
Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min
2017-08-28
The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.
Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X
2016-07-03
Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.
Modeling changes in summer temperature of the Fraser River during the next century
NASA Astrophysics Data System (ADS)
Ferrari, Michael R.; Miller, James R.; Russell, Gary L.
2007-09-01
SummaryThe Fraser River basin in British Columbia has significant environmental, economic and cultural importance. Healthy river conditions through sufficient flows and optimal temperatures are of paramount importance for the survival of Pacific salmon, which migrate upriver toward the headwaters to spawn near the end of their lives. Trends have been detected which indicate that the annual flow and summer temperature have been increasing since the middle of the last century. In this study we examine the observed trend in summer temperature of the Fraser River and compare it with temperatures calculated as part of a global climate model (GCM) simulation in which atmospheric greenhouse gases are increasing. We then use the GCM to consider how these trends might continue through the present century. Both the observations and model indicate that during the last half of the 20th century, the summer temperature near the river mouth has been increasing at a rate of approximately 0.12 °C per decade in August. In this study we use an online method in which river temperatures are calculated directly as part of a GCM simulation and project how summer temperature near the mouth of the Fraser River might change by the end of the present century. The results indicate that between 2000 and 2100 river temperatures will increase in all summer months with a maximum increase of 0.14 °C per decade in August. This result is consistent with an offline modeling study by [Morrison, J., Quick, M.C., Goreman, M.G.G. 2002. Climate change in the Fraser River watershed: flow and temperature projections. Journal of Hydrology, 263, 230-244] in which they used output from two GCMS to drive a hydrologic model and predict future changes in river temperature and supports their contention that the timing and magnitude of the increase could be crucial for salmon migration. Future work can extend this analysis to other river systems in an effort to project the potential effects of climate change on the behavior of the world's large river basins, as well as identify the potential biological effects that may accompany these changes.
Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions
NASA Technical Reports Server (NTRS)
Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg
2013-01-01
Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135(sup o)C. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes.
Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions
NASA Technical Reports Server (NTRS)
Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg
2013-01-01
Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through a change in construction such that the manufacturer significantly restricts the minimum temperature. However, significant subsequent testing was performed with this new version of the part to show that it indeed is still robust to at least Mars minimum temperatures of -135 degrees Centigrade. The additional completed testing will be described. This work has resulted in a successful sensor package qualification and a reliable bonding method suitable for use over large temperature extremes
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giron, Nicholas H.; Celina, Mathew C.
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
Giron, Nicholas H.; Celina, Mathew C.
2017-05-19
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Hejazi, Taha-Hossein
2017-07-01
Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.
Past primary sex-ratio estimates of 4 populations of Loggerhead sea turtle based on TSP durations.
NASA Astrophysics Data System (ADS)
Monsinjon, Jonathan; Kaska, Yakup; Tucker, Tony; LeBlanc, Anne Marie; Williams, Kristina; Rostal, David; Girondot, Marc
2016-04-01
Ectothermic species are supposed to be strongly affected by climate change and particularly those that exhibit temperature-dependent sex-determination (TSD). Actually, predicting the embryonic response of such organism to incubation-temperature variations in natural conditions remains challenging. In order to assess the vulnerability of sea turtles, primary sex-ratio estimates should be produced at pertinent ecological time and spatial scales. Although information on this important demographic parameter is one of the priorities for conservation purpose, accurate methodology to produce such an estimate is still lacking. The most commonly used method invocates incubation duration as a proxy for sex-ratio. This method is inappropriate because temperature influences incubation duration during all development whereas sex is influenced by temperature during only part of development. The thermosensitive period of development for sex determination (TSP) lies in the middle third of development. A model of embryonic growth must be used to define precisely the position of the TSP at non-constant incubation temperatures. The thermal reaction norm for embryonic growth rate have been estimated for 4 distinct populations of the globally distributed and threatened marine turtle Caretta caretta. A thermal reaction norm describes the pattern of phenotypic expression of a single genotype across a range of temperatures. Moreover, incubation temperatures have been reconstructed for the last 35 years using a multi-correlative model with climate temperature. After development of embryos have been modelled, we estimated the primary sex-ratio based on the duration of the TSP. Our results suggests that Loggerhead sea turtles nesting phenology is linked with the period within which both sexes can be produced in variable proportions. Several hypotheses will be discussed to explain why Caretta caretta could be more resilient to climate change than generally thought for sex determination.
NASA Astrophysics Data System (ADS)
Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.
2017-04-01
Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagentoft, C.E.
1986-01-01
Many old district-heating culverts are in bad condition due to the entry of water into the thermal insulation. The thermal conductivity, and thereby the heat loss from the culvert, is much larger for a wet than a dry thermal insulation. The high energy prices make it interesting and necessary to find the water-damaged parts of the district-heating culvert and improve the thermal insulation so that a reduction in the heat losses is obtained. The aim of the project is to develop a simple field method to determine the heat loss and the condition of the culvert. The method is basedmore » on the measurement of the temperature on the top of the culvert and a classification of the soil. The classification of the soil gives an estimation of its thermal conductivity. The heat loss and the reduction in heat loss due to an extra insulation is estimated from these data. Five different types of culverts were tested: two types of asbestos cement culverts, one concrete culvert, and two aerated concrete culverts. The comparison of the measured temperatures and the temperatures obtained from the simulations is reported in the study.« less
NASA Astrophysics Data System (ADS)
Nowoświat, Artur; Skrzypczyk, Jerzy; Krause, Paweł; Steidl, Tomasz; Winkler-Skalna, Agnieszka
2018-05-01
Fast estimation of thermal transmittance based on temperature measurements is uncertain, and the obtained results can be burdened with a large error. Nevertheless, such attempts should be undertaken merely due to the fact that a precise measurement by means of heat flux measurements is not always possible in field conditions (resentment of the residents during the measurements carried out inside their living quarters), and the calculation methods do not allow for the nonlinearity of thermal insulation, heat bridges or other fragments of building envelope of diversified thermal conductivity. The present paper offers the estimation of thermal transmittance and internal surface resistance with the use of temperature measurements (in particular with the use of thermovision). The proposed method has been verified through tests carried out on a laboratory test stand built in the open space, subjected to the influence of real meteorological conditions. The present elaboration involves the estimation of thermal transmittance by means of temperature measurements. Basing on the mentioned estimation, the authors present correction coefficients which have impact on the estimation accuracy. Furthermore, in the final part of the paper, various types of disturbance were allowed for using perturbation numbers, and the introduced by the authors "credibility area of thermal transmittance estimation" was determined.
Standardized assessment of infrared thermographic fever screening system performance
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Pfefer, Joshua; Casamento, Jon; Wang, Quanzeng
2017-03-01
Thermal modalities represent the only currently viable mass fever screening approach for outbreaks of infectious disease pandemics such as Ebola and SARS. Non-contact infrared thermometers (NCITs) and infrared thermographs (IRTs) have been previously used for mass fever screening in transportation hubs such as airports to reduce the spread of disease. While NCITs remain a more popular choice for fever screening in the field and at fixed locations, there has been increasing evidence in the literature that IRTs can provide greater accuracy in estimating core body temperature if appropriate measurement practices are applied - including the use of technically suitable thermographs. Therefore, the purpose of this study was to develop a battery of evaluation test methods for standardized, objective and quantitative assessment of thermograph performance characteristics critical to assessing suitability for clinical use. These factors include stability, drift, uniformity, minimum resolvable temperature difference, and accuracy. Two commercial IRT models were characterized. An external temperature reference source with high temperature accuracy was utilized as part of the screening thermograph. Results showed that both IRTs are relatively accurate and stable (<1% error of reading with stability of +/-0.05°C). Overall, results of this study may facilitate development of standardized consensus test methods to enable consistent and accurate use of IRTs for fever screening.
Alternating current conduction studies on polypyrrole-iron nanocomposite at room temperature
NASA Astrophysics Data System (ADS)
Kumar, T. G. Naveen; Megha, R.; Revanasiddappa, M.; Ravikiran, Y. T.; Kumari, S. C. Vijaya
2018-05-01
In the present work, Polypyrrole (PPy) and Polypyrrole-Iron (PPy-Fe) nanocomposite were synthesized separately by chemical polymerisation method and then they were structurally characterised by Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) techniques. The alternate current (AC) response characteristics at room temperature of PPy and the composite were comparatively studied in the frequency range 100Hz-1MHz. The real part of conductivities of both PPy and the composite were interpreted as power law of frequency and the frequency exponent s was found to lie in the range 0< s<1 in both the cases. The nanocomposite has shown significant improvement in conductivity as compared to PPy.
2015-01-01
Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165
An assessment of three different fire resistance tests for hydraulic fluids
NASA Astrophysics Data System (ADS)
Loftus, J. J.
1981-10-01
The Center for Fire Research at the National Bureau of Standards at the request of the Mine Safety and Health Administration (MSHA) and the Bureau of Mines made an evaluation or assessment of the three different flammability tests used by MSHA for measuring the fire resistance of hydraulic fluids intended for use in underground coal mining operations. The methods described in the Code of Federal Regulations Schedule 30, Part 35, consist of the following: an Autogenous Ignition Temperature Test, a Temperature-Pressure Spray Ignition Test, and a Test to Determine the Effect of Evaporation on the Flammability of Hydraulic Fluids. Recommendations for improvement of the three test procedures are provided.
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred
2014-05-01
High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were created with the identified best interpolation methods. The difference between the input and simulated mean daily rainfall, averaged over all the stations, was 0.03 mm (2.2%), while the error related to the number of dry days was 2 (0.6%). For mean daily minimum temperature the error was 0.005 ºC (0.04%), while for maximum temperature it was 0.01 ºC (0.04%). Overall, the weather generators were found to be reliable instruments for the downscaling of precipitation and temperature. The resulting datasets indicate a decrease of the mean annual rainfall over the study area between 5 and 70 mm (1-15%) for 2020-2050, relative to 1980-2010. Average annual minimum and maximum temperature over the Republic of Cyprus are projected to increase between 1.2 and 1.5 ºC. The dataset is currently used to compute agricultural production and water use indicators, as part of the AGWATER project (AEIFORIA/GEORGO/0311(BIE)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P., and O'Connell, P.E.: RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Software 23, 1356-1369, 2008 Richardson, C.W.: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17, 182-190, 1981.
Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.
2006-06-20
A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys
Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
2006-10-03
An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.
Method of controlling a resin curing process. [for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Webster, Charles Neal (Inventor); Scott, Robert O. (Inventor)
1989-01-01
The invention relates to an analytical technique for controlling the curing process of fiber-reinforced composite materials that are formed using thermosetting resins. The technique is the percent gel method and involves development of a time-to-gel equation as a function of temperature. From this equation a rate-of-gel equation is then determined, and a percent gel is calculated which is the product of rate-of-gel times time. Percent gel accounting is used to control the proper pressure application point in an autoclave cure process to achieve desired properties in a production composite part.
1981-01-14
wet-bulb temperature depression versus dry -bulb temperature, means and standard deviations of d-j-bulb, wet-bulb (over) SDD, 1473 UNCLASS IF I ED FC...distribution tables Dry -bulb temperature versud wet-bulb temperature Cumulative percentage frequency of distribution tables 20. and dew point...PART 5 PRECIPITATION PSYCHROMETRIC.DRY VS WET BULB SNOWFALL MEAN & STO 0EV SNOW EPTH DRY BULB, WET BULB, &DEW POINtI RELATIVE HUMIDITY PARTC SURFACE
Innovative Vacuum Distillation for Magnesium Recycling
NASA Astrophysics Data System (ADS)
Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang
Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.
2D modeling of direct laser metal deposition process using a finite particle method
NASA Astrophysics Data System (ADS)
Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.
2018-05-01
Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.
Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine
NASA Astrophysics Data System (ADS)
Šimák, Jan; Michálek, Jan
2016-03-01
This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.
Construction of Home-Made Tin Fixed-Point Cell at TUBITAK UME
NASA Astrophysics Data System (ADS)
Kalemci, M.; Arifovic, N.; Bağçe, A.; Aytekin, S. O.; Ince, A. T.
2015-08-01
TUBITAK UME Temperature Laboratory initiated a new study which focuses on the construction of a tin freezing-point cell as a primary temperature standard. The design is an open-cell type similar to the National Institute of Standards and Technology design. With this aim, a brand new vacuum and filling line employing an oil diffusion pump and two cold traps (liquid nitrogen and dry ice) was set-up. The graphite parts (crucible, thermometer well, etc.) have been baked at high temperature under vacuum. Each cell was filled with approximately 1 kg of high-purity tin (99.9999 %) in a three-zone furnace. Then several melting and freezing curves were obtained to assess the quality of the home-made cell, and also the new cell was compared with the existing reference cell of the laboratory. The results obtained are very close to the reference cell of UME, indicating that the method used for fabrication was promising and satisfactory and also seems to meet the requirements to have a primary level temperature standard.
Langevin equation in systems with also negative temperatures
NASA Astrophysics Data System (ADS)
Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo
2018-04-01
We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.
Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature
NASA Astrophysics Data System (ADS)
Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.
In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.
Parenteau-carreau, S
1983-11-01
The symptothermal methods include all those that identify the woman's fertile period through the basal body temperature and the periovulatory signs. Research conducted following the discovery over a century ago of the hyperthermic plateau in the later part of the menstrual cycle has confirmed that under normal conditions, and when the daily temperature is taken under comparable conditions, infertility may be assumed when the high temperature plateau is confirmed. A reliable temperature curve requires certain conditions: it should be taken upon awakening with a basal thermometer over a sufficient time to obtain an accurate measure, at almost the same time every day, and the graph paper should be appropriately scaled for recording. Various guidelines of interpretation have been developed throughout the world. Serena considers infertility assured from the 3rd consecutive day of elevated temperature as long as other fertility symptoms have disappeared. Among symptoms of ovulation that are perceptible to the woman are cyclic changes in the quantity and consistency of the cervical mucus, which has the advantage of predating and thus forecasting ovulation and of being less sensitive than the basal temperature to nongenital infections, sleepless nights, or other stresses. Use of mucus changes alone as an indicator of fertility carries the risk that such changes may not be noticed or may be due to an estrogen surge not related to ovulation. Other symptoms that are useful for some women in confirming temperature or mucus changes include 4 different alterations in the cervix, abdominal pain or mittelschmerz, intramenstrual bleeding, feeling of heaviness in the breasts, and variations in mood and libido. Many groups that teach the temperature curve and clyclical symptoms also provide instructions or mathematical rules for determining the number of infertile days at the beginning of the cycle. Some programs state that 6-7 days are usually infertile provided that the menses were preceded by a hyperthermic plateau. Many groups recommend the calculation of Ogino or a variant. The symptothermal method of fertility control combines the basal temperature curve with the other signs of fertility to serve as a basis for modification of sexual behavior to enhance or suppress fertility. Different programs stress different elements or combinations. The efficacy of the symptothermal methods depends on precise recordkeeping and observation and on competent instruction and counseling, as well as the willingness of the couple to modify their sexual behavior. Statistical measures of the method's efficacy are complex and unsatisfactory as they attempt to apply rigid rules to actions and decisions that are in fact filled with nuance.
Visualization assisted by parallel processing
NASA Astrophysics Data System (ADS)
Lange, B.; Rey, H.; Vasques, X.; Puech, W.; Rodriguez, N.
2011-01-01
This paper discusses the experimental results of our visualization model for data extracted from sensors. The objective of this paper is to find a computationally efficient method to produce a real time rendering visualization for a large amount of data. We develop visualization method to monitor temperature variance of a data center. Sensors are placed on three layers and do not cover all the room. We use particle paradigm to interpolate data sensors. Particles model the "space" of the room. In this work we use a partition of the particle set, using two mathematical methods: Delaunay triangulation and Voronoý cells. Avis and Bhattacharya present these two algorithms in. Particles provide information on the room temperature at different coordinates over time. To locate and update particles data we define a computational cost function. To solve this function in an efficient way, we use a client server paradigm. Server computes data and client display this data on different kind of hardware. This paper is organized as follows. The first part presents related algorithm used to visualize large flow of data. The second part presents different platforms and methods used, which was evaluated in order to determine the better solution for the task proposed. The benchmark use the computational cost of our algorithm that formed based on located particles compared to sensors and on update of particles value. The benchmark was done on a personal computer using CPU, multi core programming, GPU programming and hybrid GPU/CPU. GPU programming method is growing in the research field; this method allows getting a real time rendering instates of a precompute rendering. For improving our results, we compute our algorithm on a High Performance Computing (HPC), this benchmark was used to improve multi-core method. HPC is commonly used in data visualization (astronomy, physic, etc) for improving the rendering and getting real-time.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.
Simulation studies of improved sounding systems
NASA Technical Reports Server (NTRS)
Yates, H.; Wark, D.; Aumann, H.; Evans, N.; Phillips, N.; Susskind, J.; Mcmillin, L.; Goldman, A.; Chahine, M.; Crone, L.
1989-01-01
Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown.
Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing
Kramer, D.P.; Massey, R.T.
1985-07-18
A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.
Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing
Kramer, Daniel P.; Massey, Richard T.
1986-01-01
A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.
Thermal Excitation System for Shearography (TESS)
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.
1996-01-01
One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.
[Effects of urban river width on the temperature and humidity of nearby green belts in summer].
Ji, Peng; Zhu, Chun-Yang; Li, Shu-Hua
2012-03-01
As an important part of urban ecosystem, urban river plays a vital role in improving urban ecological environment. By the methods of small scale quantitative measurement, this paper analyzed the effects of seven urban rivers with different widths along the Third to Fifth Ring in Beijing on the air temperature and relative humidity of nearby green belts. The results showed that urban river width was the main factor affecting the temperature and humidity of nearby green belts. When the river had a width of 8 m, it had no effects in decreasing temperature but definite effects in increasing humidity; when the river width was 14-33 m, obvious effects were observed in decreasing temperature and increasing humidity; when the river had a width larger than 40 m, the effects in decreasing temperature and increasing humidity were significant and tended to be stable. There existed significant differences in the temperature and humidity between the green belts near the seven rivers and the corresponding controls. The critical width of urban river for the obvious effects in decreasing temperature and increasing humidity was 44 m. The regression equation of the temperature (x) and humidity (y) for the seven green belts nearby the urban rivers in summer was y = 173.191-3.247x, with the relative humidity increased by 1.0% when the air temperature decreased by about 0.3 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-03
This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, D.W.; Linnhoff, B.
In Part I, criteria for heat engine and heat pump placement in chemical process networks were derived, based on the ''temperature interval'' (T.I) analysis of the heat exchanger network problem. Using these criteria, this paper gives a method for identifying the best outline design for any combined system of chemical process, heat engines, and heat pumps. The method eliminates inferior alternatives early, and positively leads on to the most appropriate solution. A graphical procedure based on the T.I. analysis forms the heart of the approach, and the calculations involved are simple enough to be carried out on, say, a programmablemore » calculator. Application to a case study is demonstrated. Optimization methods based on this procedure are currently under research.« less
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1991-01-01
The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.
Corona evaluation for 270 volt dc systems
NASA Astrophysics Data System (ADS)
Dunbar, William G.
When designing 270 V dc power system electronics and wiring systems, it is essential to evaluate such corona-initiation-prone parts with bare electrodes as terminations and leads, and to take into account spacings, gas pressures (as a function of maximum altitude), temperature, voltage transients, and insulation coating thickness. Both persistent and intermittent transients are important. Filters and transient suppressors are excellent methods for limiting overvoltage transients in order to prevent corona initiation within a module.
Single-molecule strong coupling at room temperature in plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.
2016-07-01
Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2012-06-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less
RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, G.; Epiney, A. S.
2012-07-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less
NASA Astrophysics Data System (ADS)
Matysiak, Wiktor; Tański, Tomasz; Zaborowska, Marta
2018-06-01
The purpose of this article was to produce amorphous ZnO nanowires via the electrospinning process from a polyvinylpyrrolidone (PVP)/zinc acetate dihydrate (Zn(COOH)2)/dimethylformamide (DMF) and ethanol (EtOH) solution. The as obtained nanofibers were calcined at temperatures ranging from 400 to 600 °C to remove the organic phase. The one-dimensional zinc oxide nanostructures were studied using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to analyse the influence of the used temperature on the morphology and structures of the obtained ceramic nanomaterials. In order to examine the chemical structure of nanowires, the energy dispersive spectrometry (EDX) was used. Besides, a thermogravimetric analysis (TGA) was performed to show the polymer concentration loss in a function of temperature in order to obtain pure zinc oxide nanowires. The optical property analysis was performed on the basis of UV-vis spectra of absorbance as a function of the wavelength. Using the modified Swanepoel method, which the authors proposed, and the recorded absorbance spectra determined the banded refractive index n, real n‧ and imaginary k part of the refractive index as a function of the wavelength, complex dielectric permeability ɛ, real and imaginary part εr and εi of the dielectric permeability as a function of the radiation energy of the produced ZnO nanowires.
Development of Yield and Tensile Strength Design Curves for Alloy 617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancy Lybeck; T. -L. Sham
2013-10-01
The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PVmore » Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.« less
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Objective classification of atmospheric circulation over southern Scandinavia
NASA Astrophysics Data System (ADS)
Linderson, Maj-Lena
2001-02-01
A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.
A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.
2017-12-01
A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.
[Measurement and estimation methods and research progress of snow evaporation in forests].
Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing
2013-12-01
Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.
NASA Astrophysics Data System (ADS)
da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham
2017-06-01
The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.
Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb
NASA Technical Reports Server (NTRS)
Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert
1997-01-01
This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.
High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware
NASA Technical Reports Server (NTRS)
Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.
2016-01-01
Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
Solar-thermal reaction processing
Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy
2014-03-18
In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
2D- and 3D SIMS investigations on hot-pressed steel powder HS 6-5-3-8.
Rosner, M; Pöckl, G; Danninger, H; Hutter, H
2002-10-01
Processing of steel with powder metallurgical methods such as sintering or hot-pressing have proven to be a powerful tool for the production of industrial parts and for components in the automotive industry. Series of steel-powders (HS 6-5-3-8) produced by gas atomization has been hot-pressed in a graphite tube at temperatures from 820 degrees C to 1050 degrees C. The samples have been characterized with a Secondary Electron Microscope (SEM) due to their porosity and then investigated with 2D- and 3D- SIMS. The spatial distribution of the non-metallic impurities and the covering oxide layer of the single particles has been traced dependent to the pressing temperature. Powders pressed at temperatures higher than 880 degrees C exhibited different precipitation behavior of the impurities and an excessive loss of the covering oxide layer of the single powder particles.
NASA Technical Reports Server (NTRS)
Ustinov, E. A.
1999-01-01
Evaluation of weighting functions in the atmospheric remote sensing is usually the most computer-intensive part of the inversion algorithms. We present an analytic approach to computations of temperature and mixing ratio weighting functions that is based on our previous results but the resulting expressions use the intermediate variables that are generated in computations of observable radiances themselves. Upwelling radiances at the given level in the atmosphere and atmospheric transmittances from space to the given level are combined with local values of the total absorption coefficient and its components due to absorption of atmospheric constituents under study. This makes it possible to evaluate the temperature and mixing ratio weighting functions in parallel with evaluation of radiances. This substantially decreases the computer time required for evaluation of weighting functions. Implications for the nadir and limb viewing geometries are discussed.
Unintended Perioperative Hypothermia
Hart, Stuart R.; Bordes, Brianne; Hart, Jennifer; Corsino, Daniel; Harmon, Donald
2011-01-01
Background Hypothermia, defined as a core body temperature less than 36°C (96.8°F), is a relatively common occurrence in the unwarmed surgical patient. A mild degree of perioperative hypothermia can be associated with significant morbidity and mortality. A threefold increase in the frequency of surgical site infections is reported in colorectal surgery patients who experience perioperative hypothermia. As part of the Surgical Care Improvement Project, guidelines aim to decrease the incidence of this complication. Methods We review the physiology of temperature regulation, mechanisms of hypothermia, effects of anesthetics on thermoregulation, and consequences of hypothermia and summarize recent recommendations for maintaining perioperative normothermia. Results Evidence suggests that prewarming for a minimum of 30 minutes may reduce the risk of subsequent hypothermia. Conclusions Monitoring of body temperature and avoidance of unintended perioperative hypothermia through active and passive warming measures are the keys to preventing its complications. PMID:21960760