Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki
2012-01-01
Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.
Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki
2012-01-01
Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403
Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min
2017-10-15
In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.
Tolesa, G N; Workneh, T S
2017-09-01
The aim of this study was to explore influence of evaporative cooling (EC), pre-storage disinfection treatments and maturity stage at harvest on postharvest quality of tomato fruit. The tomato samples ( Lycopersicon esculentum Mill. cv. Nemonetta) were harvested, stored for 28 days and data were collected every seven days. The pH, total titratable acidity (TTA), total soluble solids (TSS), firmness, colour, weight loss (PWL) and marketability percentage were analysed. The temperature difference between ambient storage and EC at the fan varied between 4 and 7 °C, the relative humidity (RH) varied between 31 and 86%, while at different locations inside the EC it varied between 2-3 °C and 5-8%, respectively. Maturity had significant influence on the overall quality of tomatoes. The pH value of green, pink and red tomato was 4.86 and 5.03. The TTA content, the TSS content significantly affected over the 14 days of storage. TSS:TA was found to be in the range of 7.8-33.9. The EC storage shows a higher firmness and hue angle, when compared to the ambient conditions stored tomatoes. Compared to ambient storage, EC storage reduced the PWL by 7-10% over 30 days, while ambient storage took 15 days. EC storage and pre-storage treatments improved the shelf-life and marketability of tomatoes. However, variation in temperature and RH inside EC could affect the storability of the produce.
Study of Groundwater Physical Characteristics: A Case Study at District of Pekan, Pahang
NASA Astrophysics Data System (ADS)
Hashim, M. M. M.; Zawawi, M. H.; Samuding, K.; Dominic, J. A.; Zulkurnain, M. H.; Mohamad, K.
2018-04-01
A study of groundwater physical characteristic has been conducted at Pahang Tua, Pekan, Tanjung Batu and Nenasi, Pahang. There are several locations of tube well selected in this study. Four of five locations are situated in the coastal area and another one is located outside of coastal line. The purposes of this study are to identify the physical characteristic of groundwater (temperature, pH, electrical conductivity (EC), total dissolved solids (TDS) and salinity) and to identify the influence of sampling location and tube well depth to its physical characteristics. The results from the in-situ measurement were identified the physical characteristic groundwater for each tube well location. The result shows that temperature and pH for all groundwater samples almost in the same value but for the electrical conductivity, salinity and total dissolved solid have significant difference that related to location and depth of the tube well. The Pekan tube well with 80m depth and 2km distance from the sea have the highest value of EC, TDS and salinity (14460.53µS/cm, 7230.63 ppm and 8.32 PSU) compared to Nenasi with 30m depth of tube well and 0.65km distance from the sea. The EC, TDS and salinity value recorded are 1454.3253µS/cm, 727.00 ppm and 0.72 PSU. From the result of EC, TDS and salinity, it shows that the deeper tube well in the coastal area will obtained higher value of EC, TDS and salinity.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva
2015-04-01
Fire mineralizes the organic matter, increasing the pH level and the amount of dissolved ions (Pereira et al., 2014). The degree of mineralization depends among other factors on fire temperature, burned specie, moisture content, and contact time. The impact of wildland fires it is assessed using the fire severity, an index used in the absence of direct measures (e.g temperature), important to estimate the fire effects in the ecosystems. This impact is observed through the loss of soil organic matter, crown volume, twig diameter, ash colour, among others (Keeley et al., 2009). The effects of fire are highly variable, especially at short spatial scales (Pereira et al., in press), due the different fuel conditions (e.g. moisture, specie distribution, flammability, connectivity, arrangement, etc). This variability poses important challenges to identify the best spatial predictor and have the most accurate spatial visualization of the data. Considering this, the test of several interpolation methods it is assumed to be relevant to have the most reliable map. The aims of this work are I) study the ash pH and Electrical Conductivity (EC) after a grassland fire according to ash colour and II) test several interpolation methods in order to identify the best spatial predictor of pH and EC distribution. The study area is located near Vilnius at 54.42° N and 25.26°E and 154 ma.s.l. After the fire it was designed a plot with a 27 x 9 m space grid. Samples were taken every 3 meters for a total of 40 (Pereira et al., 2013). Ash color was classified according to Úbeda et al. (2009). Ash pH and EC laboratory analysis were carried out according to Pereira et al. (2014). Previous to data comparison and modelling, normality and homogeneity were assessed with the Shapiro-wilk and Levene test. pH data respected the normality and homogeneity, while EC only followed the Gaussian distribution and the homogeneity criteria after a logarithmic transformation. Data spatial correlation was calculated with the Global Moran's I Index. In order to identify the best interpolator, we tested several well known techniques as inverse distance to a power (IDP), with the power of 1, 2, 3, 4 and 5, local polynomial (LP) with the power of 1 (LP1), 2 (LP2) and 3 (LP3), spline with tension (SPT), completely regularized spline (CRS), multiquadratic (MTQ), inverse multiquadratic (IMTQ) thin plate spline (TPS) and ordinary kriging. The best interpolator was the one with the lowest Root mean square error (RMSE). The results shown that on average ash pH was 8.01 (±0.20) and EC (1408± 513.51µm cm3). The coefficient of correlation between both variables was 0.34, p<0.05. Black ash had a significantly higher pH (F=6.29, p<0.05) and EC (F=5.25, p<0.05) than dark grey ash. According to Moran's I index, pH data was significantly (p<0.05) dispersed, while EC had a random pattern. The best spatial predictor for pH was IDW1 (RMSE=0.210), and for EC IMTQ (RMSE=0.141). In both cases the least accurate technique was TPS. pH data did not showed a specific spatial pattern and some high values are very close to high values which shows a great local spatial variability, mainly observed in the northern part of the plot. In relation to EC, the high values were identified in the central part of the plot. In conclusion it was observed that ash pH and EC were different according to fire severity (ash color) and data distribution has a different spatial pattern, despite the significant correlation. pH and EC had different spatial impacts on soil properties in the immediate period after the fire. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Keeley, J.E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 18, 116-126. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28, 3681-3690. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development, 20(6), 589-608.
Electrocoagulation in Water Treatment
NASA Astrophysics Data System (ADS)
Liu, Huijuan; Zhao, Xu; Qu, Jiuhui
Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.
NASA Technical Reports Server (NTRS)
Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.
1993-01-01
Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.
Bidwai, Anil K; Ok, Esther Y; Erman, James E
2008-09-30
The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.
Carbonic anhydrase from Camelia sinensis (tea) leaves.
Demir, Y; Demir, N; Ağar, G
1997-11-01
Carbonic anhydrase (CA) (carbonate hydrolyase; E,C,4.2.1.1) from leaves of mature Camelia sinensis was purified and characterized. The purification level was 53 fold. The optimum temperature for maximal enzyme activity is 50 degrees C. The optimum pH was 6.8 and this pH varied between 6.5 and 7.5. Each enzyme molecule is a hexamer with an M(r) of 169,000 with subunits of M(r) = 28,000.
The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase.
Filip, Jaroslav; Tkac, Jan
2014-04-01
This is the first study showing pH dependence of three distinct redox sites within bilirubin oxidase (BOD) adsorbed on a nanocomposite modified electrode. The 1st redox centre with the highest redox potential Ec(1st)=404 mV vs. Ag/AgCl (614 mV vs. NHE at pH7.0) exhibited pH dependence with a slope -dEc(1st)/dpH=66(±3) mV under a non-turnover process. The 2nd redox centre with a potential Ec(2nd)=228 mV vs. Ag/AgCl (438 mV vs. NHE at pH7.0) was not dependent on pH in the absence and presence of O2. Finally, the 3rd redox site with a redox potential Ec(3rd)=92 mV vs. Ag/AgCl (302 mV vs. NHE at pH7.0) exhibited pH dependence for a cathodic process with -dEc(3rd)/dpH=70(±6) mV and for anodic process with -dEa(3rd)/dpH=73(±2) mV, respectively. Moreover, two break points for dependence of Ec(1st) or Ec(3rd) on pH were observed for the 1st (T1) site and the 3rd site assigned to involvement of two acidic amino acids (Asp105 and Glu463). A diagram of a potential difference between cathodic peaks of BOD as a dependence on pH is shown. The results obtained can be of interest for construction of biofuel cells based on BOD such as for generation of a low level of electricity from body fluids. Copyright © 2013 Elsevier B.V. All rights reserved.
Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.
Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa
2015-12-01
The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies.
On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.
Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T
2017-08-01
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha
2014-04-01
The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.
Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.
Tolia, Gaurav; Li, S Kevin
2014-02-01
Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.
Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed
2016-04-08
factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N
Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu
2006-09-01
A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.
Sandhwar, Vishal Kumar; Prasad, Basheshwar
2017-12-01
In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Yuyun; Voon, Marilyn Kai Wen; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan
2017-04-01
This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.
Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J
2014-05-01
The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.
Govindan, Kadarkarai; Raja, Mohan; Noel, Michael; James, E J
2014-05-15
The present study is to investigate the reactivity of free radicals (SO4(-) and HO) generated from common oxidants (peroxomonosulfate (PMS), peroxodisulfate (PDS) and hydrogen peroxide (HP)) activated by electrochemically generated Fe(2+)/Fe(3+) ions which furthermore are evaluated to destroy pentachlorophenol (PCP) in aqueous solution. The effect of solution pH and amount of oxidants (PMS, PDS and HP) in electrocoagulation (EC) on PCP degradation is analyzed in detail. The experimental results reveal that, optimum initial solution pH is 4.5 and PMS is more efficient oxidant addition in EC. 75% PCP degradation is achieved at 60min electrolysis time from PMS assisted EC. According to the first order rate constant, faster PCP degradation rate is obtained by PMS assisted EC. The PCP degradation rate by oxidant assisted EC is observed in the following order: EC/PMS>EC/PDS>EC/HP>EC. Further to identify the influences of experimental factors involved in PCP degradation by oxidant assisted EC, an experimental design based on an orthogonal array (OA) L9 (3(3)) is proposed using Taguchi method. The factors that most significantly affect the process robustness are identified as A (oxidant) and B (pH) which together account for nearly 86% of the variance. Copyright © 2014 Elsevier B.V. All rights reserved.
Ogunade, I M; Jiang, Y; Kim, D H; Cervantes, A A Pech; Arriola, K G; Vyas, D; Weinberg, Z G; Jeong, K C; Adesogan, A T
2017-03-01
Inhibiting the growth of Escherichia coli O157:H7 (EC) in feeds may prevent the transmission or cycling of the pathogen on farms. The first objective of this study was to examine if addition of propionic acid or microbial inoculants would inhibit the growth of EC during ensiling, at silo opening, or after aerobic exposure. The second objective was to examine how additives affected the bacterial community composition in corn silage. Corn forage was harvested at approximately 35% dry matter, chopped to a theoretical length of cut of 10 mm, and ensiled after treatment with one of the following: (1) distilled water (control); (2) 1 × 10 5 cfu/g of EC (ECCH); (3) EC and 1 × 10 6 cfu/g of Lactobacillus plantarum (ECLP); (4) EC and 1 × 10 6 cfu/g of Lactobacillus buchneri (ECLB); and (5) EC and 2.2 g/kg (fresh weight basis) of propionic acid, containing 99.5% of the acid (ECA). Each treatment was ensiled in quadruplicate in laboratory silos for 0, 3, 7, and 120 d and analyzed for EC, pH, and organic acids. Samples from d 0 and 120 were also analyzed for chemical composition. Furthermore, samples from d 120 were analyzed for ammonia N, yeasts and molds, lactic acid bacteria, bacterial community composition, and aerobic stability. The pH of silages from all treatments decreased below 4 within 3 d of ensiling. Escherichia coli O157:H7 counts were below the detection limit in all silages after 7 d of ensiling. Treatment with L. buchneri and propionic acid resulted in fewer yeasts and greater aerobic stability compared with control, ECCH, and ECLP silages. Compared with the control, the diversity analysis revealed a less diverse bacterial community in the ECLP silage and greater abundance of Lactobacillus in the ECLP and ECA silages. The ECLB silage also contained greater abundance of Acinetobacter and Weissella than other silages. Subsamples of silages were reinoculated with 5 × 10 5 cfu/g of EC either immediately after silo opening or after 168 h of aerobic exposure, and EC were enumerated after 6 or 24 h, respectively. All silages reinoculated with EC immediately after silo opening (120 h) had similar low pH values (<4.0) and EC counts were below the detection limit. The ECCH and ECLP silages reinoculated with EC after 168 h of aerobic exposure had relatively high pH values (>5.0) and EC counts (5.39 and 5.30 log cfu/g, respectively) 24 h later. However, those treated with L. buchneri or propionic acid had lower pH values (4.24 or 3.96, respectively) and lower EC counts (1.32 log cfu/g or none, respectively). During ensiling, EC was eliminated from all silages at pH below 4.0. During aerobic exposure, the growth of EC was reduced or prevented in silages that had been treated with L. buchneri or propionic acid at ensiling, respectively. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ferrous and ferric ion generation during iron electrocoagulation.
Lakshmanan, Divagar; Clifford, Dennis A; Samanta, Gautam
2009-05-15
Our research on arsenate removal by iron electrocoagulation (EC) produced highly variable results, which appeared to be due to Fe2+ generation without subsequent oxidation to Fe3+. Because the environmental technology literature is contradictory with regard to the generation of ferric or ferrous ions during EC, the objective of this research was to establish the iron species generated during EC with iron anodes. Experimental results demonstrated that Fe2+, not Fe3+, was produced at the iron anode. Theoretical current efficiency was attained based on Fe2+ production with a clean iron rod, regardless of current, dissolved-oxygen (DO) level, or pH (6.5-8.5). The Fe2+ remaining after generation and mixing decreased with increasing pH and DO concentration due to rapid oxidation to Fe3+. At pH 8.5, Fe2+ was completely oxidized, which resulted in the desired Fe(OH)3(s)/ FeOOH(s), whereas, at pH 6.5 and 7.5, incomplete oxidation was observed, resulting in a mixture of soluble Fe2+ and insoluble Fe(OH)3(s)/FeOOH(s). When compared with Fe2+ chemical coagulation, a transient pH increase during EC led to faster Fe2+ oxidation. In summary, for EC in the pH 6.5-7.5 range and at low DO conditions, there is a likelihood of soluble Fe2+ species passing through a subsequentfiltration process resulting in secondary contamination and inefficient contaminant removals.
Delaire, Caroline; van Genuchten, Case M; Nelson, Kara L; Amrose, Susan E; Gadgil, Ashok J
2015-08-18
Technologies addressing both arsenic and microbial contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a simple process relying on the dissolution of an Fe(0) anode to produce Fe(III) precipitates, has been shown to efficiently remove arsenic from groundwater at low cost. We investigated Escherichia coli (E. coli) attenuation by Fe-EC in synthetic Bengal groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural organic matter (NOM). A 2.5 mM Fe dosage simultaneously achieved over 4-log E. coli attenuation and arsenic removal from 450 to below 10 μg/L. E. coli reduction was significantly enhanced at pH 6.6 compared to pH 7.5, which we linked to the decreased rate of Fe(II) oxidation at lower pH. 3 mg/L-C of NOM (Suwanee River fulvic acid) did not significantly affect E. coli attenuation. Live-dead staining and comparisons of Fe-EC with chemical coagulation controls showed that the primary mechanism of E. coli attenuation is physical removal with Fe(III) precipitates, with inactivation likely contributing as well at lower pH. Transmission electron microscopy showed that EC precipitates adhere to and bridge individual E. coli cells, resulting in large bacteria-Fe aggregates that can be removed by gravitational settling. Our results point to the promising ability of Fe-EC to treat arsenic and bacterial contamination simultaneously at low cost.
How do operating conditions affect As(III) removal by iron electrocoagulation?
Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok
2017-04-01
Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enzymatic catalysis treatment method of meat industry wastewater using lacasse.
Thirugnanasambandham, K; Sivakumar, V
2015-01-01
The process of meat industry produces in a large amount of wastewater that contains high levels of colour and chemical oxygen demand (COD). So they must be pretreated before their discharge into the ecological system. In this paper, enzymatic catalysis (EC) was adopted to treat the meat wastewater. Box-Behnken design (BBD), an experimental design for response surface methodology (RSM), was used to create a set of 29 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the colour and COD removals. The experimental results show that EC could effectively reduce colour (95 %) and COD (86 %) at the optimum conditions of enzyme dose of 110 U/L, incubation time of 100 min, pH of 7 and temperature of 40 °C. RSM could be effectively adopted to optimize the operating multifactors in complex EC process.
Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Hoyos, L V; Gonzales, S; Barrena, R; Komilis, D; Sanchez, A
2015-10-01
Stability and maturity are important criteria to guarantee the quality of a compost that is applied to agriculture or used as amendment in degraded soils. Although different techniques exist to evaluate stability and maturity, the application of laboratory tests in municipalities in developing countries can be limited due to cost and application complexities. In the composting facilities of such places, some classical low cost on-site tests to monitor the composting process are usually implemented; however, such tests do not necessarily clearly identify conditions of stability and maturity. In this article, we have applied and compared results of stability and maturity tests that can be easily employed on site (i.e. temperature, pH, moisture, electrical conductivity [EC], odor and color), and of tests that require more complex laboratory techniques (volatile solids, C/N ratio, self-heating, respirometric index, germination index [GI]). The evaluation of the above was performed in the field scale using 2 piles of biowaste applied compost. The monitoring period was from day 70 to day 190 of the process. Results showed that the low-cost tests traditionally employed to monitor the composting process on-site, such as temperature, color and moisture, do not provide consistent determinations with the more complex laboratory tests used to assess stability (e.g. respiration index, self-heating, volatile solids). In the case of maturity tests (GI, pH, EC), both the on-site tests (pH, EC) and the laboratory test (GI) provided consistent results. Although, stability was indicated for most of the samples, the maturity tests indicated that products were consistently immature. Thus, a stable product is not necessarily mature. Conclusively, the decision on the quality of the compost in the installations located in developing countries requires the simultaneous use of a combination of tests that are performed both in the laboratory and on-site. Copyright © 2015 Elsevier Ltd. All rights reserved.
Health Monitoring of Composite Structures Using Guided Waves
2012-01-20
k represents the wave number, represents the radial frequency, and...elements. 6 (a) (b) 0 0.5 1 1.5 2 0 5 10 15 20 Frequency (MHz) Ph as e Ve lo ci ty ( k m /s ec .) (c) Figure 1: Phase velocity...Frequency (MHz) Ph as e Ve lo ci ty ( k m /s ec .) 1 2 3 4 5 6 0 0.5 1 1.5 2 0 5 10 15 20 Frequency (MHz) Ph as e Ve lo ci ty ( k m /s ec .)
Kim, Jeong Myeong; Roh, An-Sung; Choi, Seung-Chul; Kim, Eun-Jeong; Choi, Moon-Tae; Ahn, Byung-Koo; Kim, Sun-Kuk; Lee, Young-Han; Joa, Jae-Ho; Kang, Seong-Soo; Lee, Shin Ae; Ahn, Jae-Hyung; Song, Jaekyeong; Weon, Hang-Yeon
2016-12-01
Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca 2+ , Mg 2+ , Na + , and K + ), available P 2 O 5 , organic matter, and NO 3 -N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R 2 = 0.1683, P < 0.001) and diversity (pH: R 2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca 2+ , Mg 2+ , Na + , and K + . Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.
Mane, U H; Muley, D V
1984-11-01
Static bioassay tests were conducted using commercial grade endosulfan 35EC to study its toxicity during different seasons to two species of Lamellidens from the Godavari river at Paithan (Maharashtra State). Acute toxicity studies for 96 h showed that both species of Lamellidens were more sensitive to endosulfan 35EC in summer, at times of high temperature, pH and total carbonate content of the water used, than in monsoon and winter. LC0 and LC50 values were determined for L. corrianus and L. marginalis, during summer, monsoon and winter. Statistical analyses showed that both species were more sensitive during summer (P less than 0.001) than in monsoon and winter and that L. marginalis was more sensitive to endosulfan 35EC than L. corrianus in summer (P less than 0.001). Behavioural changes and mortality of the bivalves were dose-related. Regression equations and 95% confidence limits for each species were established in different studies. The results are discussed in the light of possible effects of endosulfan on these species of bivalve molluscs.
Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro
2012-01-01
NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
Sun, Lijun; Liu, Dongjie; Sun, Jiaojiao; Yang, Xingbin; Fu, Minghai; Guo, Yurong
2017-09-01
The method for separating and purifying chlorogenic acid (CA), epicatechin (EC), hyperoside (HY) and phlorizin (PH) simutaneously from young Qinguan apples by successive use of X-5 and polyamide resins has been developed in this study. The order of adsorption capacities of X-5 for the four phenolics was PH>HY>EC>CA, and the adsorption equilibriums of the four phenolics onto X-5 resin conformed to Langmuir isotherms preferentially. The adsorption kinetics of EC and CA onto X-5 conformed to the pseudo-first-order model, while that of HY and PH accorded with the pseudo-second-order model. Interestingly, the values of equilibrium adsorption capacities (Q e ) calculated in the preferential kinetics models were closer to that of theoretical maximum adsorption capacities (Q 0 ) calculated by Langmuir isotherms. Through dynamic adsorption and desorption using X-5 and polyamide resins with ethanol solution as strippant, CA, EC, HY and PH were obtained with purities of 96.21%, 95.34%, 95.36% and 97.36%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Xuan; Hao, Qi Li; Sun, Ying Ying
2017-06-18
Studies on the spatial heterogeneity of saline soil in the Mu Us Desert-Loess Plateau transition zone are meaningful for understanding the mechanisms of land desertification. Taking the Mu Us Desert-Loess Plateau transition zone as the study subject, its spatial heterogeneity of pH, electrical conductivity (EC) and total salt content were analyzed by using on-site sampling followed with indoor analysis, classical statistical and geostatistical analysis. The results indicated that: 1) The average values of pH, EC and total salt content were 8.44, 5.13 mS·cm -1 and 21.66 g·kg -1 , respectively, and the coefficient of variation ranged from 6.9% to 73.3%. The pH was weakly variable, while EC and total salt content were moderately variable. 2) Results of semivariogram analysis showed that the most fitting model for spatial variability of all three indexes was spherical model. The C 0 /(C 0 +C) ratios of three indexes ranged from 8.6% to 14.3%, which suggested the spatial variability of all indexes had a strong spatial autocorrelation, and the structural factors played a more important role. The variation range decreased in order of pH
NASA Technical Reports Server (NTRS)
Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120-130 mS/m) a set amount of a stock solution of nutrients is automatically added by a metering pump to bring the EC back into operating range [Fortson, 1992]. This paper describes a system developed at Tuskegee University for controlling the EC of a nutrient solution used for growing sweetpotatoes with an EC controller and a computer with LabView data acquisition and instrumentation software. It also describes the preliminary data obtained from the growth of sweetpotatoes using this prototype control system.
Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito
2017-04-01
The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Two Novel Antioxidant Nonapeptides from Protein Hydrolysate of Skate (Raja porosa) Muscle
Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin; Deng, Shang-Gui
2015-01-01
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2−· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs. PMID:25854645
Two novel antioxidant nonapeptides from protein hydrolysate of skate (Raja porosa) muscle.
Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin; Deng, Shang-Gui
2015-04-03
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2-· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.
Tomimatsu, Yoshio; Donovan, John W.
1981-01-01
Circular dichroism, differential scanning calorimetry and light-scattering measurements of ribulose 1,5-bisphosphate carboxylase (E.C. 4.1.1.39) from alfalfa, spinach and tobacco show: a) The conformation and thermal stability of the native carboxylases are sensitive to changes in pH and to activation of the enzyme with Mg2+ and CO2. The helical content, denaturation temperature (Td) and specific enthalpy of denaturation (Δq) decreased with increase in pH. Addition of Mg2+ and CO2 at pH 9 increased Td by 4 to 5 C; at pH 7.5 the changes in Td were smaller. b) Addition of mercurials produced changes in conformation and thermal stability. The decrease in helical content of the enzymes with increase in pH was enhanced by the addition of p-chloromercuribenzoate. At pH 9, addition of p-chloromercuribenzoate or of 1-(3-(chloromercuri)-2-methoxypropyl)urea decreased Td by 11.4 to 20.2 C and Δq by 2.1 to 2.8 calories per gram. c) The spinach carboxylase undergoes the largest and the tobacco the smallest changes in conformation and thermal stability upon change in pH or treatment with mercurials. d) The calorimetric data suggest that the large and small subunits are heat denatured independently but at the same temperature. e) Light scattering measurements at pH 9 of p-chloromercuribenzoate treated tobacco enzyme showed that there is no dissociation into subunits upon heating to temperatures greater than Td. A `ball and string' model for the carboxylase molecule is proposed to reconcile independence of subunit denaturation with apparent strong interactions between subunits. PMID:16662003
Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.
2014-01-01
Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164
Badshah, Syed Lal; Sun, Junlei; Mula, Sam; Gorka, Mike; Baker, Patricia; Luthra, Rajiv; Lin, Su; van der Est, Art; Golbeck, John H; Redding, Kevin E
2018-01-01
In Photosystem I, light-induced electron transfer can occur in either of two symmetry-related branches of cofactors, each of which is composed of a pair of chlorophylls (ec2 A /ec3 A or ec2 B /ec3 B ) and a phylloquinone (PhQ A or PhQ B ). The axial ligand to the central Mg 2+ of the ec2 A and ec2 B chlorophylls is a water molecule that is also H-bonded to a nearby Asn residue. Here, we investigate the importance of this interaction for charge separation by converting each of the Asn residues to a Leu in the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Synechocystis sp. PCC6803, and studying the energy and electron transfer using time-resolved optical and EPR spectroscopy. Nanosecond transient absorbance measurements of the PhQ to F X electron transfer show that in both species, the PsaA-N604L mutation (near ec2 B ) results in a ~50% reduction in the amount of electron transfer in the B-branch, while the PsaB-N591L mutation (near ec2 A ) results in a ~70% reduction in the amount of electron transfer in the A-branch. A diminished quantum yield of P 700 + PhQ - is also observed in ultrafast optical experiments, but the lower yield does not appear to be a consequence of charge recombination in the nanosecond or microsecond timescales. The most significant finding is that the yield of electron transfer in the unaffected branch did not increase to compensate for the lower yield in the affected branch. Hence, each branch of the reaction center appears to operate independently of the other in carrying out light-induced charge separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)
NASA Astrophysics Data System (ADS)
Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh
2018-03-01
Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.
Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations
NASA Astrophysics Data System (ADS)
Chen, X.; Chen, L.; Zhao, J.
2015-12-01
Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
Impact of pH on the structure and function of neural cadherin.
Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan
2014-12-02
Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.
Wang, N.; Erickson, R.J.; Ingersoll, C.G.; Ivey, C.D.; Brunson, E.L.; Augspurger, T.; Barnhart, M.C.
2008-01-01
The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20??C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity. ?? 2008 SETAC.
Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.
Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou
2016-12-01
The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang
2016-12-01
The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L-1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L-1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH.
NASA Astrophysics Data System (ADS)
Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming
2010-12-01
A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.
Cheng, Zhibo; Chen, Yun; Zhang, Fenghua
2018-07-15
Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies. Copyright © 2018. Published by Elsevier B.V.
Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M
2015-04-01
Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.
Han, Sangwon; Jung, Jaejoon; Park, Woojun
2014-08-01
L-Asparaginase from gram-positive bacteria has been poorly explored. We conducted recombinant overexpression and purification of L-asparaginase from Staphylococcus sp. OJ82 (SoAsn) isolated from Korean fermented seafood to evaluate its biotechnological potential as an antileukemic agent. SoAsn was expressed in Escherichia coli BL21 (DE3) with an estimated molecular mass of 37.5 kDa, determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with asparaginases in gram-negative bacteria, size-exclusion chromatography determined SoAsn as a homodimer. Interestingly, the optimal temperature of SoAsn was 37°C and over 90% of activity was retained between 37°C and 50°C, and its thermal stability range was narrower than that of commercial E. coli L-asparaginase (EcAsn). Both SoAsn and EcAsn were active between pH 9 and 10, although their overall pH-dependent enzyme activities were slightly different. The Km value of SoAsn was 2.2 mM, which is higher than that of EcAsn. Among eight metals tested for enzyme activity, cobalt and magnesium greatly enhanced the SoAsn and EcAsn activity, respectively. Interestingly, SoAsn retained more than 60% of its activity under 2 M NaCl condition, but the activity of EcAsn was reduced to 48%. Overall, the biochemical characteristics of SoAsn were similar to those of EcAsn, but its kinetics, cofactor requirements, and NaCl tolerance differed from those of EcAsn.
Dissolution of Commercially Available Mesalamine Formulations at Various pH Levels.
Tenjarla, Srini
2015-06-01
Mesalamine (5-aminosalicylic acid; 5-ASA) is recommended first-line therapy for mild-to-moderate ulcerative colitis. Many mesalamine formulations employ a pH-dependent release mechanism designed to maximize drug release in the colon. This study compared the in vitro release of 5-ASA from six commercially available mesalamine formulations at pH levels similar to those typically encountered in the human gastrointestinal tract. The release of 5-ASA from six mesalamine formulations [Mesalazin-Kohlpharma (Kohlpharma, Germany), Mesalazin-Eurim (Eurimpharm, Germany), Mesalazina-Faes (Faes Farma, Spain), Mesalazine EC (Actavis B.V., Netherlands), Mesalazine EC 500 PCH (Pharmachemie B.V., Netherlands); multimatrix mesalamine (Shire US Inc., USA)] was monitored separately at three different pH levels [1.0 (2 h), 6.4 (1 h), and 7.2 (8 h)] using United States Pharmacopeia dissolution apparatus II. The dissolution percentage was calculated as a mean of 12 units for each formulation. At pH 1.0 and 6.4, <1 % of 5-ASA release was observed for each of the mesalamine formulations tested. At pH 7.2, complete release of 5-ASA occurred within 1 h for Mesalazine EC and Mesalazine EC 500 PCH, and within 2 h for Mesalazin-Kohlpharma, Mesalazin-Eurim, and Mesalazina-Faes; complete release of 5-ASA from multimatrix mesalamine occurred within 7 h. Little variability in rate of 5-ASA dissolution was observed between tablets of each formulation. At pH 7.2, 5-ASA release profiles were variable among the commercially available mesalamine formulations that were tested.
Shiino, Kai; Iwao, Yasunori; Miyagishima, Atsuo; Itai, Shigeru
2010-08-16
The purpose of the present study was to design and evaluate a novel wax matrix system containing various ratios of aminoalkyl methacrylate copolymer E (AMCE) and ethylcellulose (EC) as functional polymers in order to achieve the optimal acetaminophen (APAP) release rate for taste masking. A two factor, three level (3(2)) full factorial study design was used to optimize the ratios of AMCE and EC, and the release of APAP from the wax matrix was evaluated using a stationary disk in accordance with the paddle method. The disk was prepared by congealing glyceryl monostearate (GM), a wax with a low melting point, with various ratios of polymers and APAP. The criteria for release rate of APAP from the disk at pH 4.0 and pH 6.5 were calculated to be more than 0.5017 microg/(mlxmin) and less than 0.1414 microg/(mlxmin), respectively, under the assumption that the particle size of spherical matrix should be 100 microm. In multiple regression analysis, the release of APAP at pH 4.0 was found to increase markedly as the concentration of AMCE increased, whereas the release of APAP at pH 6.5 decreased as the EC concentration increased, even when a high level of AMCE was incorporated. Using principle component analysis, it was found that the viscosity of the matrix affects the pH-dependent release of APAP at pH 4.0 and pH 6.5. Furthermore, using multiple regression analysis, the optimum ratio of APAP:AMCE:EC:GM was found to be 30:7:10:53, and the release pattern of APAP from the optimum wax formulation nearly complied with the desired criteria. Therefore, the present study demonstrated that the incorporation of AMCE and EC into a wax matrix system enabled the appropriate release of APAP as a means of taste masking. Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun
2010-12-15
An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages onmore » the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.« less
Degradation of orthodontic wires under simulated cariogenic and erosive conditions.
Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso
2014-01-01
This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.
Removal of trace metal contaminants from potable water by electrocoagulation.
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K
2016-06-21
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
Removal of trace metal contaminants from potable water by electrocoagulation
NASA Astrophysics Data System (ADS)
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-06-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang
2016-01-01
The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L−1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L−1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH. PMID:28004779
GilPavas, Edison; Arbeláez-Castaño, Paula; Medina, José; Acosta, Diego A
2017-11-01
A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m 3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm 2 . This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.
Schubert, Michael; Knoeller, Kay; Rocha, Carlos; Einsiedl, Florian
2015-03-01
Freshwater discharge into the coastal sea is of general interest for two reasons: (i) It acts as vehicle for the transport of contaminants or nutrients into the ocean, and (ii) it indicates the loss of significant volumes of freshwater that might be needed for irrigation or drinking water supply. Due to the large-scale and long-term nature of the related hydrological processes, locating and quantitatively assessing freshwater discharge into the sea require naturally occurring tracers that allow fast, inexpensive and straightforward detection. In several studies, the standard water parameters electrical conductivity (EC) and pH have proven their suitability in this regard. However, while distribution patterns of EC and pH in the coastal sea indicate freshwater discharge in general, a separation between discharging surface water and submarine groundwater discharge (SGD) is not possible with these alone. The naturally occurring radionuclide radon-222 has been shown to be useful in the quantification of SGD and its distinction from surface runoff. This study aimed to evaluate and compare the informative value of the three parameters-EC, pH and radon concentration-in detecting and quantifying SGD by carrying out a case study in a bay located in western Ireland. The results reveal that radon activity is the most sensitive parameter for detecting SGD. However, only the combined evaluation of radon, EC and pH allows a quantitative allocation of groundwater and surface water contributions to the overall freshwater discharge into the sea. This conclusion is independently supported by stable isotope data measured on selected samples.
Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya
2010-01-01
Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this study displayed good performance over a wide temperature range, good cycle life characteristics, and are expected to have improved safety characteristics, such as low flammability. Of the electrolytes studied, 1.0 M LiPF6 in EC+EMC+DEP (20:75:5 v/v %) and 1.0 M LiPF6 in EC+EMC+DPP (20:75:5 v/v %) displayed the best operation at low temperatures, whereas the electrolyte containing triphenylphosphite displayed the best cycle life performance compared to the baseline solution. It is anticipated that further improvements can be made to the life characteristics with the incorporation of a SET promoters (such as VC, vinylene carbonate), which will likely inhibit the decomposition of the flame-retardant additives.
Ogunwande, Gbolabo A; Osunade, James A
2011-01-01
A passive aeration composting study was undertaken to investigate the effects of aeration pipe orientation (PO) and perforation size (PS) on some physico-chemical properties of chicken litter (chicken manure + sawdust) during composting. The experimental set up was a two-factor completely randomised block design with two pipe orientations: horizontal (Ho) and vertical (Ve), and three perforation sizes: 15, 25 and 35 mm diameter. The properties monitored during composting were pile temperature, moisture content (MC), pH, electrical conductivity (EC), total carbon (C(T)), total nitrogen (N(T)) and total phosphorus (P(T)). Moisture level in the piles was periodically replenished to 60% for efficient microbial activities. The results of the study showed that optimum composting conditions (thermophilic temperatures and sanitation requirements) were attained in all the piles. During composting, both PO and PS significantly affected pile temperature, moisture level, pH, C(T) loss and P(T) gain. EC was only affected by PO while N(T) was affected by PS. Neither PO nor PS had a significant effect on the C:N ratio. A vertical pipe was effective for uniform air distribution, hence, uniform composting rate within the composting pile. The final values showed that PO of Ve and PS of 35 mm diameter resulted in the least loss in N(T). The PO of Ho was as effective as Ve in the conservation of C(T) and P(T). Similarly, the three PSs were equally effective in the conservation of C(T) and P(T). In conclusion, the combined effects of PO and PS showed that treatments Ve35 and Ve15 were the most effective in minimizing N(T) loss. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Soonyoung; Chae, Gitak; Jo, Minki; Kim, Jeong-Chan; Yun, Seong-Taek
2015-04-01
CO2-rich springs have been studied as a natural analogue of CO2 leakage through shallow subsurface environment, as they provide information on the behaviors of CO2 during the leakage from geologic CO2 storage sites. For this study, we monitored the δ13C values as well as temperature, pH, EC, DO, and alkalinity for a CO2-rich spring for 48 hours. The water samples (N=47) were collected every hour in stopper bottles without headspace to avoid the interaction with air and the CO2 degassing. The δ13C values of total dissolved inorganic carbon (TDIC) in the water samples were analyzed using a cavity ring-down spectroscopy (CRDS) system (Picarro). The values of δ13CTDIC, temperature, pH, EC, DO, and alkalinity were in the range of -9.43 ~ -8.91 o 12.3 ~ 13.2oC, 4.86 ~ 5.02, 186 ~ 189 μS/cm, 1.8 ~ 3.4 mg/L, and 0.74 ~ 0.95 meq/L, respectively. The concentrations of TDIC calculated using pH and alkalinity values were between 22.5 and 34.8 mmol/L. The δ13CTDIC data imply that dissolved carbon in the spring was derived from a deep-seated source (i.e., magmatic) that was slightly intermixed with soil CO2. Careful examination of the time-series variation of measured parameters shows the following characteristics: 1) the δ13CTDIC values are negatively correlated with pH (r = -0.59) and positively correlated with TDIC (r = 0.58), and 2) delay times of the change of pH and alkalinity following the change of δ13CTDIC values are 0 and -3 hours, respectively; the pH change occurs simultaneously with the change of δ13CTDIC, while the alkalinity change happens before 3 hours. Our results indicate that the studied CO2-rich spring is influenced by the intermittent supply of deep-seated CO2. [Acknowledgment] This work was financially supported by the fundamental research project of KIGAM and partially by the "Geo-Advanced Innovative Action (GAIA) Project (2014000530003)" from Korea Ministry of Environment (MOE).
Nutrients content and quality of liquid fertilizer made from goat manure
NASA Astrophysics Data System (ADS)
Sunaryo, Yacobus; Purnomo, Djoko; Theresia Darini, Maria; Ratri Cahyani, Vita
2018-05-01
Quality of liquid fertilizer is determined by the content of nutrients and other chemical factors such as pH and EC. This research aimed to examine nutrient contents and dynamic of pH and EC of liquid fertilizer made from goat manure in combination with sugar and ammonium sulfate (ZA) and using Effective Microorganisms (EM) as the decomposer. This research was conducted by employing 3 x 3 factorial experiment with three replications. Each treatment combination was applied in 20 L of water. The first factor was the quantity of sugar which consisted of 3 levels: 12.5, 25, and 50 g L-1 of water. The second factor was the quantity of ZA which consisted of 3 levels: 25, 37.5, and 50 g L-1 of water. All combinations were added by 100 g of air dried goat manure L-1 of water and EM solution 1 ml L-1 of water, and incubated for five months. Results of the experiment indicated that the increasing concentration of ZA resulted in the significantly increase of N total and S total. Increasing concentration of sugar resulted in decreasing pH and increasing lactic acid; whereas, increasing concentration of ZA followed by increasing Electrical Conductivity (EC). There was no significantly change of pH and EC of the liquid fertilizer during five months incubation.
Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
Li, Lei; van Genuchten, Case M; Addy, Susan E A; Yao, Juanjuan; Gao, Naiyun; Gadgil, Ashok J
2012-11-06
Understanding the chemical kinetics of arsenic during electrocoagulation (EC) treatment is essential for a deeper understanding of arsenic removal using EC under a variety of operating conditions and solution compositions. We describe a highly constrained, simple chemical dynamic model of As(III) oxidation and As(III,V), Si, and P sorption for the EC system using model parameters extracted from some of our experimental results and previous studies. Our model predictions agree well with both data extracted from previous studies and our observed experimental data over a broad range of operating conditions (charge dosage rate) and solution chemistry (pH, co-occurring ions) without free model parameters. Our model provides insights into why higher pH and lower charge dosage rate (Coulombs/L/min) facilitate As(III) removal by EC and sheds light on the debate in the recent published literature regarding the mechanism of As(III) oxidation during EC. Our model also provides practically useful estimates of the minimum amount of iron required to remove 500 μg/L As(III) to <50 μg/L. Parameters measured in this work include the ratio of rate constants for Fe(II) and As(III) reactions with Fe(IV) in synthetic groundwater (k(1)/k(2) = 1.07) and the apparent rate constant of Fe(II) oxidation with dissolved oxygen at pH 7 (k(app) = 10(0.22) M(-1)s(-1)).
Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun
2015-10-01
The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells.
Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng
2015-01-01
A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.
Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas
2018-02-01
The expansion of donor-derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3-fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1-mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.
Waalewijn-Kool, Pauline L; Rupp, Svenja; Lofts, Stephen; Svendsen, Claus; van Gestel, Cornelis A M
2014-10-01
Organic matter (OM) and pH may influence nanoparticle fate and effects in soil. This study investigated the influence of soil organic matter content and pH on the toxicity of ZnO-NP and ZnCl2 to Folsomia candida in four natural soils, having between 2.37% and 14.7% OM and [Formula: see text] levels between 5.0 and 6.8. Porewater Zn concentrations were much lower in ZnO-NP than in ZnCl2 spiked soils, resulting in higher Freundlich sorption constants for ZnO-NP. For ZnCl2 the porewater Zn concentrations were significantly higher in less organic soils, while for ZnO-NP the highest soluble Zn level (23mgZn/l) was measured in the most organic soil, which had the lowest pH. Free Zn(2+) ion concentrations were higher for ZnCl2 than for ZnO-NP and were greatly dependent on pH (pHpw) and dissolved organic carbon content of the pore water. The 28-d EC50 values for the effect of ZnCl2 on the reproduction of F. candida increased with increasing OM content from 356 to 1592mgZn/kg d.w. For ZnO-NP no correlation between EC50 values and OM content was found and EC50 values ranged from 1695 in the most organic soil to 4446mgZn/kg d.w. in the higher pH soil. When based on porewater and free Zn(2+) concentrations, EC50 values were higher for ZnCl2 than for ZnO-NP, and consistently decreased with increasing pHpw. This study shows that ZnO-NP toxicity is dependent on soil properties, but is mainly driven by soil pH. Copyright © 2014 Elsevier Inc. All rights reserved.
Removal of trace metal contaminants from potable water by electrocoagulation
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-01-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564
High-temperature beverages and Foods and Esophageal Cancer Risk -- A Systematic Review
Islami, Farhad; Boffetta, Paolo; Ren, JianSong; Pedoeim, Leah; Khatib, Dara; Kamangar, Farin
2009-01-01
Coffee, tea, and maté may cause esophageal cancer (EC) by causing thermal injury to the esophageal mucosa. If so, the risk of EC attributable to thermal injury could be large in populations in which these beverages are commonly consumed. In addition, these drinks may cause or prevent EC via their chemical constituents. Therefore, a large number of epidemiologic studies have investigated the association of an indicator of amount or temperature of use of these drinks or other hot foods and beverages with risk of EC. We conducted a systematic review of these studies, and report the results for amount and temperature of use separately. By searching PubMed and the ISI, we found 59 eligible studies. For coffee and tea, there was little evidence for an association between amount of use and EC risk; however, the majority of studies showed an increased risk of EC associated with higher drinking temperature which was statistically significant in most of them. For maté drinking, the number of studies was limited, but they consistently showed that EC risk increased with both amount consumed and temperature, and these two were independent risk factors. For other hot foods and drinks, over half of the studies showed statistically significant increased risks of EC associated with higher temperature of intake. Overall, the available results strongly suggest that high-temperature beverage drinking increases the risk of EC. Future studies will require standardized strategies that allow for combining data, and results should be reported by histological subtypes of EC. PMID:19415743
NASA Astrophysics Data System (ADS)
Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang
2012-12-01
Three temperature protocols with different peak inert mode temperature (Tpeak-inert) were compared based on source and ambient samples (both untreated and extracted using a mixture of hexane, methylene chloride, and acetone) collected in Beijing, China. The ratio of EC580 (elemental carbon measured by the protocol with a Tpeak-inert of 580 °C; similar hereinafter) to EC850 could be as high as 4.8 for biomass smoke samples whereas the ratio was about 1.0 for diesel and gasoline exhaust samples. The EC580 to EC850 ratio averaged 1.95 ± 0.89 and 1.13 ± 0.20 for the untreated and extracted ambient samples, whereas the EC580 to EC650 ratio of ambient samples was 1.22 ± 0.10 and 1.20 ± 0.12 before and after extraction. It was suggested that there are two competing mechanisms for the effects of Tpeak-inert on the EC results such that when Tpeak-inert is increased, one mechanism tends to decrease EC by increasing the amount of charring whereas the other tends to increase EC through promoting more charring to evolve before native EC. Results from this study showed that EC does not always decrease when increasing the peak inert mode temperature. Moreover, reducing the charring amount could improve the protocols agreement on EC measurements, whereas temperature protocol would not influence the EC results if no charring is formed. This study also demonstrated the benefits of allowing for the OC and EC split occurring in the inert mode when a high Tpeak-inert is used (e.g., 850 °C).
NASA Astrophysics Data System (ADS)
Pasten, P.; Guerra, P. A.; Simonson, K.; Bonilla, C.; Pizarro, G. E.; Escauriaza, C. R.; González, C.
2014-12-01
The importance of hydrologic-geochemical interactions in arid environments is a controlling factor in quality and quantity of water available for human consumption and agriculture. When acid drainage affects these watersheds, water quality is gravely degraded. Despite its effect on watersheds, the relationship between time changes in hydrological variables and water quality in arid regions has not been studied thoroughly. Temporal variations in acid drainage can control when the transport of toxic elements is increased. We performed field work at the Azufre River (pH 2, E.C~10.9 mS/cm) and Caracarani River (pH 8.7, E.C~1.2 mS/cm) confluence, located in the Northern Chilean Altiplano (at 4000 m asl). We registered stream flowrates (total flowrate~430 L/s), temperature and electric conductivity (E.C) hourly using in-stream data loggers during one year. We also measured turbidity and pH during one field survey at different distances from the junction, as a proxy of the formation of iron-aluminum particles that cycle trace elements in these environments. We found turbidity-pH diurnal cycles were caused by upstream hourly changes in upstream flowrate: when the Caracarani River flowrate reached its daily peak, particle formation occurred, while the dissolution of particles occurred when the Azufre River reached its maximum value. This last process occurred due to upstream freeze-thaw cycles. This study shows how the dynamics of natural confluences determines chemical transport. The formation of particles enriched in toxic elements can promote settling as a natural attenuation process, while their dissolution will produce their release and transport long distances downstream. It is important to consider time as an important variable in water quality monitoring and in water management infrastructure where pulses of contamination can have potentially negative effects in its use. Acknowledgements: Funding was provided by "Proyecto Fondecyt 1130936" and "CONICYT/FONDAP 15110020".
Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine
2012-12-01
Recent studies have demonstrated the presence of trace-level pharmaceutically active compounds (PhACs) and endocrine disrupting compounds (EDCs) in a number of finished drinking waters (DWs). Since there is sparse knowledge currently available on the potential effects on human health associated with the chronic exposure to trace levels of these Emerging Contaminants (ECs) through routes such as DW, it is suggested that the most appropriate criterion is a treatment criterion in order to prioritize ECs to be monitored during DW preparation. Hence, only the few ECs showing the lowest removals towards a given DW Treatment (DWT) process would serve as indicators of the overall efficiency of this process and would be relevant for DW quality monitoring. In addition, models should be developed for estimating the removal of ECs in DWT processes, thereby overcoming the practical difficulties of experimentally assessing each compound. Therefore, the present review has two objectives: (1) to provide an overview of the recent scientific surveys on the occurrence of PhACs and EDCs in finished DWs; and (2) to propose the potential of Quantitative-Structure-Activity-Relationship-(QSAR)-like models to rank ECs found in environmental waters, including parent compounds, metabolites and transformation products, in order to select the most relevant compounds to be considered as indicators for monitoring purposes in DWT systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact of a low intensity controlled-fire in some chemical soil properties.
NASA Astrophysics Data System (ADS)
Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José
2014-05-01
Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).
Pectinolytic enzymes of anaerobic fungi.
Kopecný, J; Hodrová, B
1995-05-01
Pectinolytic enzymes of four rumen fungi have been described. Three fungal species were monocentric Neocallimastix spp. H15, JL3 and OC2, and one isolate was a polycentric strain of Orpinomyces joyonii, A4. They differed in degree of pectin degradation and utilization. Only the strain Neocallimastix sp. H15 and partially Orpinomyces joyonii A4 were able to utilize pectin to a higher extent. The most important pectinolytic activity in all these isolates represented pectin lyase (EC 4.2.2.10) and polygalacturonase (EC 3.2.1.15). Their specific activities were in the range of 100-900 and 10-450 micrograms galacturonic acid h-1 mg protein-1 for pectin lyase and polygalacturonase, respectively. Polygalacturonase, located mainly in the endocellular fraction, was inhibited by calcium ions and had the main pH optimum at pH 6.0. All strains produced pectate lyase (EC 4.2.2.2). None of the strains tested produced pectinesterase (EC 3.1.1.11).
Electrocoagulation and decolorization of landfill leachate
NASA Astrophysics Data System (ADS)
Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi
2013-11-01
In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.
Jasik, Michał; Małek, Stanisław; Żelazny, Mirosław
2017-12-01
The purpose of this study was to identify the factors affecting spring water chemistry in different tree stands and to measure the influence of water stage on the physicochemical parameters of spring waters in a small Carpathian catchment. Water samples were collected three times per year at various stages of the water: after the spring thaw, after a period of heavy rain and after a dry period in 2011 and 2012. Water samples were left in the laboratory to reach room temperature (19-20°C) and analyzed for EC (reference T=25°C) and pH. After filtration through 0.45μm PTFE syringe filters, the water samples were analyzed by means of ion chromatography using a DIONEX ICS 5000 unit. The following ions were analyzed: Ca 2+ , Mg 2+ , Na + , K + , HCO 3 - , SO 4 2- , Cl - , and NO 3 - . Multivariate analysis (PCA) allowed the identification of two factors of spring water chemistry: factor 1, water stage and factor 2 tree stand composition. Seasonal variation of spring water chemistry showed that, higher pH values and mineralization as well as higher concentrations of Ca 2+ and Mg 2+ were measured during low water stage periods while lower EC and pH values were noted after spring snowmelt and rainfall, when higher concentrations of NO 3 - and SO 4 2- were also found. Higher concentrations of Ca 2+ and Mg 2+ and higher pH of spring waters located in beech-fir stands and in those mixed with a large proportion of beech as well as a lower concentration of Ca 2+ , Mg 2+ and HCO 3 - , pH, conductivity and mineralization of these spring waters, in which the alimentation areas were covered by upper subalpine spruce stands were noted. Copyright © 2017 Elsevier B.V. All rights reserved.
Karki, Pratap; Birukova, Anna A.
2018-01-01
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH. PMID:29714090
Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Lieder, Ernestine; Weiler, Markus; Blume, Theresa
2017-04-01
Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.
Functional characterization of a ClC transporter by solid-supported membrane electrophysiology
Garcia-Celma, Juan; Szydelko, Adrian
2013-01-01
EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl− exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4′-diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties. PMID:23478993
Material System Engineering for Advanced Electrocaloric Cooling Technology
NASA Astrophysics Data System (ADS)
Qian, Xiaoshi
Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor ferroelectric polymers which possess both giant ECE (27 Kelvin temperature drop) and much wider operating temperature window (over 50 kelvin covering RT) by proper defect modification which delicately tailors ferroelectrics in meso-, micro- and molecular scales. In addition, in order to be practical, EC device requires EC material can be driven at low electric fields upon achieve the large ECE. It is demonstrated in this dissertation that by facially modifying materials structure in meso-, micro- and molecular scale, lowfield ECE can be greatly improved. Large ECE, induced by low electric fields and existing in wide temperature window, is a major improvement in EC materials for practical applications. Besides EC polymers, this thesis also investigated EC ceramics. Due to several unique opportunities offered by the EC ceramics, Ba(ZrxTi 1-x)O3 (BZT), that is studied. (i) This class of EC ceramics offers a possibility to explore the invariant critical point (ICP), which maximizes the number of coexistent phase and provides a nearly vanishing energy barrier for switching among different phases. As demonstrated in this thesis, the BZT bulk ceramics at x˜ 0.2 exhibits a large adiabatic temperature drop DeltaTc=4.5 K, a large isothermal entropy change DeltaS = 8 Jkg-1K-1, a large EC coefficient (|DeltaT c/DeltaE| = 0.52x10-6 KmV-1 and DeltaS/DeltaE=0.93x10 -6 Jmkg-1K-1V-1) over a wide operating temperature range Tspan>30K. (ii) The thermal conductivity of EC ceramics is in general, much higher than that of EC polymers, and consequently they will allow EC cooling configurations which are not accessible by the EC polymers. Moreover, in the same device configuration, the high thermal conductivity of EC ceramics (kappa> 5 W/mK, compared with EC polymer, ˜ 0.25 W/mK) allows higher operation frequency and therefore a higher cooling power. (iii) Well-established fabrication processes of multilayer ceramic capacitor (MLCC) provide a foundation for the EC ceramic toward mass production. In this thesis, BZT thick film double layers have been fabricated and large ECE has been directly measured. EC induced temperature drop (DeltaT) around 6.3 °C and entropy change (DeltaS) of 11.0 Jkg-1K -1 are observed under an electric field of DeltaE=14.6 MV/m at 40 °C was observed in BZT thick film double layers. The result encourages further investigations on ECE in MLCC for practical applications. (Abstract shortened by ProQuest.).
Rouphael, Youssef; Rea, Elvira; Cardarelli, Mariateresa; Bitterlich, Michael; Schwarz, Dietmar; Colla, Giuseppe
2016-01-01
Low-pH and aluminum (Al) stresses are the major constraints that limit crop yield in acidic soils. Grafting vegetable elite cultivars onto appropriate rootstocks may represent an effective tool to improve crop tolerance to acidity and Al toxicity. Two greenhouse hydroponic experiments were performed to evaluate growth, yield, biomass production, chlorophyll index, electrolyte leakage, mineral composition, and assimilate partitioning in plant tissues of cucumber plants (Cucumis sativus L. “Ekron”) either non-grafted or grafted onto “P360” (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne; E/C) or figleaf gourd (Cucurbita ficifolia Bouché; E/F). Cucumber plants were cultured in pots and supplied with nutrient solutions having different pH and Al concentrations: pH 6, pH 3.5, pH 3.5 + 1.5 mM Al, and pH 3.5 + 3 mM Al (Experiment 1, 14 days) and pH 6, pH 3.5, and pH 3.5 + 0.75 mM Al (Experiment 2, 67 days). Significant depression in shoot and root biomass was observed in response to acidity and Al concentrations, with Al-stress being more phytotoxic than low pH treatment. Significant decrease in yield, shoot, and root biomass, leaf area, SPAD index, N, K, Ca, Mg, Mn, and B concentration in aerial parts (leaves and stems) in response to low pH with more detrimental effects at pH 3.5 + Al. Grafted E/C plants grown under low pH and Al had higher yield, shoot, and root biomass compared to E/F and non-grafted plants. This better crop performance of E/C plants in response to Al stress was related to (i) a reduced translocation of Al from roots to the shoot, (ii) a better shoot and root nutritional status in K, Ca, Mg, Mn, and Zn concentration, (iii) a higher chlorophyll synthesis, as well as (iv) the ability to maintain cell membrane stability and integrity (lower electrolyte leakage). Data provide insight into the role of grafting on Al stress tolerance in cucumber. PMID:27621740
The microbiology of beef carcasses and primals during chilling and commercial storage.
Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Lindqvist, Roland; Yu, Zhongyi; Bolton, Declan
2017-02-01
The primary objective of this study was to characterise (microbiology and physical parameters) beef carcasses and primals during chilled storage. A minor aim was to compare observed growth of key spoilage bacteria on carcasses with that predicted by ComBase and the Food Safety Spoilage Predictor (FSSP). Total viable count (TVC), total Enterobacteriacae count (TEC), Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and Clostridium spp. were monitored on beef carcasses (n = 30) and primals (n = 105) during chilled storage using EC Decision 2001/471/EC and ISO sampling/laboratory procedures. The surface and/or core temperature, pH and water activity (a w ) were also recorded. Clostridium (1.89 log 10 cfu/cm 2 ) and Pseudomonas spp. (2.12 log 10 cfu/cm 2 ) were initially the most prevalent bacteria on carcasses and primals, respectively. The shortest mean generation time (G) was observed on carcasses with Br. thermosphacta (20.3 h) and on primals with LAB (G = 68.8 h) and Clostridium spp. (G = 67 h). Over the course of the experiment the surface temperature decreased from 37 °C to 0 °C, pH from 7.07 to 5.65 and a w from 0.97 to 0.93 The observed Pseudomonas spp. and Br. thermosphacta growth was more or less within the range of predictions of Combase. In contrast, the FSSP completely overestimated the growth of LAB. This study contributes to the very limited microbiological data on beef carcasses and primals during chilling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploring the spatial variability of soil properties in an Alfisol Catena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.
Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less
Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim
2002-10-01
A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.
Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom.
Kang, Changkeun; Munawir, Al; Cha, Mijin; Sohn, Eun-Tae; Lee, Hyunkyoung; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Kim, Euikyung
2009-07-01
The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (
Hsing, Hao-Jan; Chiang, Pen-Chi; Chang, E-E; Chen, Mei-Yin
2007-03-06
The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)
Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua
2015-01-01
The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness. PMID:26618176
Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua
2015-01-01
The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.
NASA Astrophysics Data System (ADS)
Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang
2016-06-01
Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.
Formation of ethyl carbamate and changes during fermentation and storage of yellow rice wine.
Wu, Pinggu; Cai, Chenggang; Shen, Xianghong; Wang, Liyuan; Zhang, Jing; Tan, Ying; Jiang, Wei; Pan, Xiaodong
2014-01-01
Ethyl carbamate (EC) was analyzed during yellow rice wine production and storage. EC increased slowly during fermentation and rapidly after frying and sterilization. Less amount of EC was formed when cooled rapidly to 30 °C than when cooled naturally. High temperature and long storage time increased EC formation. After 400 days storage, EC increased from 74.0 to 84.2, 131.8 and 509.4 μg/kg at 4 °C, room temperature and 37 °C, respectively, and there was significantly difference between the fried wine and the wine on sale from 2011 (p<0.01). Urea increased during yellow rice wine fermentation and was above 20 mg/kg after the wine was fried; urea contributed to EC formation when the fried wine was cooled slowly. These results indicate that it is necessary for industry to optimize the wine frying conditions, such as temperature, time and cooling process in order to decrease EC formation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad
2012-06-15
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.
Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz
2009-12-15
In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.
NASA Astrophysics Data System (ADS)
Pavlovic, J.; Kinsey, J. S.; Hays, M. D.
2014-09-01
Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.
Chen, Wei-Yu; Lin, Hsing-Chieh
2018-05-01
Growing evidence indicates that ocean acidification has a significant impact on calcifying marine organisms. However, there is a lack of exposure risk assessments for aquatic organisms under future environmentally relevant ocean acidification scenarios. The objective of this study was to investigate the probabilistic effects of acidified seawater on the life-stage response dynamics of fertilization, larvae growth, and larvae mortality of the green sea urchin (Strongylocentrotus droebachiensis). We incorporated the regulation of primary body cavity (PBC) pH in response to seawater pH into the assessment by constructing an explicit model to assess effective life-stage response dynamics to seawater or PBC pH levels. The likelihood of exposure to ocean acidification was also evaluated by addressing the uncertainties of the risk characterization. For unsuccessful fertilization, the estimated 50% effect level of seawater acidification (EC50 SW ) was 0.55 ± 0.014 (mean ± SE) pH units. This life stage was more sensitive than growth inhibition and mortality, for which the EC50 values were 1.13 and 1.03 pH units, respectively. The estimated 50% effect levels of PBC pH (EC50 PBC ) were 0.99 ± 0.05 and 0.88 ± 0.006 pH units for growth inhibition and mortality, respectively. We also predicted the probability distributions for seawater and PBC pH levels in 2100. The level of unsuccessful fertilization had 50 and 90% probability risks of 5.07-24.51 (95% CI) and 0-6.95%, respectively. We conclude that this probabilistic risk analysis model is parsimonious enough to quantify the multiple vulnerabilities of the green sea urchin while addressing the systemic effects of ocean acidification. This study found a high potential risk of acidification affecting the fertilization of the green sea urchin, whereas there was no evidence for adverse effects on growth and mortality resulting from exposure to the predicted acidified environment.
Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M
2009-09-15
Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.
Valenzuela-Reyes, Edgardo; Casas-Flores, Sergio; Isordia-Jasso, Isabel; Arriaga, Sonia
2014-09-01
In this work, several conditions of pH and inlet load (IL) were applied to a scale laboratory biofilter treating n-hexane vapors during 143 days. During the first 79 days of operation (period 1, P1), the system was fed with neutral pH mineral medium (MM) and the IL was progressively decreased from 177 to 16 g m(-3) h(-1). A maximum elimination capacity (EC) of 30 g m(-3) h(-1) was obtained at an IL of 176.9 ± 9.8 g m(-3) h(-1). During the following 64 days (period 2, P2), acidic conditions were induced by feeding the biofilter with acidic buffer solution and pH 4 MM in order to evaluate the effect of bacterial community changes on EC. Within the acidic period, a maximum EC of 54 g m(-3) h(-1) (IL 132.3 ± 13 g m(-3) h(-1)) was achieved. Sequence analysis of 16S rDNA genes amplified from the consortium revealed the presence of Sphingobacteria, Actinobacteria, and α-, β- and γ-Proteobacteria. An Actinobacteria of the Mycobacterium genus had presence throughout the whole experiment of biofiltration showing resistance to fluctuating pH and IL conditions. Batch tests confirm the bacterial predominance and a negligible contribution of fungi in the degradation of n-hexane.
Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.
2009-01-01
Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.
Ester-Based Electrolytes for Low-Temperature Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2005-01-01
Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in five different solvent mixtures of alkyl carbonates have been found to afford improved performance in rechargeable lithium-ion electrochemical cells at temperatures as low as -70 C. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (NPO-30226), NASA Tech Briefs, Vol. 27, No. 1 (January 2003), page 46. The ingredients of the present solvent mixtures are ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), and ethyl valerate (EV). In terms of volume proportions of these ingredients, the present solvent mixtures are 1EC + 1EMC + 8MB, 1EC + 1EMC + 8EB, 1EC + 1EMC + 8MP, 1EC + 1EMC + 8EV, and 1EC + 9EMC. These electrolytes were placed in Liion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the low-temperature electrical performances of the cells were measured. The cells containing the MB and MP mixtures performed best.
An assessment of quality of water from boreholes in Bindura District, Zimbabwe
NASA Astrophysics Data System (ADS)
Hoko, Zvikomborero
This study assessed the water quality of 144 boreholes in Bindura District in Mashonaland Province of Zimbabwe as part of a borehole rehabilitation project implemented by a local NGO. In previous studies it has been observed that some boreholes are not used for domestic purposes because of consumer perceived poor water quality. Consequently, communities have resorted to unsafe alternative water sources thus creating health risks. The study was carried out in June 2005. The objectives of the study were to assess the levels of parameters associated with the aesthetics of the water and to compare them with guideline values for drinking water. The study also investigated the relationship between some of the measured water quality and the consumer perceived water quality. Measured water quality parameters included pH, temperature, electrical conductivity (EC), turbidity, calcium (Ca), magnesium (Mg) and iron (Fe). All parameters were measured in the field except Ca, Mg and Fe, which were measured in a laboratory using a spectrophotometer. Consumer perceptions on water quality were investigated through interviews with the consumer community. Turbidity was found to be 0.75-428(20.8 ± 59.2; n = 144) NTU, pH 5.7-9.3 (6.88 ± 0.46; n = 144), temperature 18-26.8 (22.6 ± 2.1; n = 144) °C. EC 26-546 (199 ± 116; n = 144) μS/cm, Ca 6-71.6 (26.9 ± 14.1; n = 81) mg/l, Mg 1.2-49.6 (12.3 ± 10.0; n = 81) mg/l and Fe 0.08-9.60 (0.56 ± 1.15; n = 81) mg/l. Some 23% of the samples had pH outside the recommended range of 6.5-8.5, whilst 59% of the samples had turbidity values exceeding the 5NTU WHO limit. For EC, all samples had values less than the WHO derived limit of 1380 μS/cm. All Ca and magnesium values were within the common and recommended levels of 100 mg/l and 70 mg/l respectively. Iron had values greater than the WHO and SAZ limit of 0.3 mg/l in 36% of the samples. Water quality was deemed satisfactory for taste and soap consumption by 95% and 72% of the respondents respectively. Satisfaction was higher for drinking compared to soap consumption meaning that generally hard waters may still be acceptable for drinking purposes. The water quality met the stipulated standard or guideline value from a minimum of 41% (turbidity) to a maximum of 100% (EC, Ca and Mg). There was no correlation between taste and conductivity as some 5% of the respondents suggested the water was unsatisfactory although all EC values were far below the maximum limit. Again there was no correlation between iron and taste as iron had 36% of the samples above the threshold of 0.3 mg/l whilst objectionable taste perception was only in 5% of the cases. It is recommended that priority in future projects should be given to repairs of boreholes whose water quality is acceptable according to consumer perceptions obtained at project planning stage. Low cost household treatment aimed at improving quality should be investigated.
Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P
2015-01-01
In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.
Temperature dependence of the elastocaloric effect in natural rubber
NASA Astrophysics Data System (ADS)
Xie, Zhongjian; Sebald, Gael; Guyomar, Daniel
2017-07-01
The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers.
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...
2016-02-04
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less
Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J
2016-03-01
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less
Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar
2014-01-01
The electrochemical (EC) treatment of rice grain-based distillery wastewater was carried out in a 1.5 dm3 electrolytic batch reactor using aluminium plate electrodes. With the four-plate configurations, a current density (j) of 89.3 A/m2 and pH 8 was found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 93% and 87%, respectively. The chemical dissolution of aluminium was strongly influenced by initial pH (pHi). At higher pHi (pH 9.5) anode consumption decreased while energy consumption increased. At the optimal current density 89.3 A/m2, the aluminium electrode consumption was 16.855 g/dm3 wastewater and energy consumption was 31.4 Wh/dm3 achieving a maximum COD removal of 87%. The settling and filterability characteristics ofelectrochemically treated sludge were also analysed at different pH. It was noted that treated slurry at pHi 9.5 gave best settling characteristic, which decreased with increase in pH. EC-treated effluent at pHi 8 had provided best filterability. Characteristics of scum and residues are also analysed at different pH.
Claoston, N; Samsuri, A W; Ahmad Husni, M H; Mohd Amran, M S
2014-04-01
Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
Assessing groundwater quality for irrigation using indicator kriging method
NASA Astrophysics Data System (ADS)
Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini
2016-11-01
One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.
Mustapha, Moshood Keke
2017-04-01
Hexavalent chromium is a bio accumulative toxic metal in water and fish. It enters aquaculture ponds mainly through anthropogenic sources. Hexavalent chromium concentrations and its effects on the morphology and behavior of Clarias gariepinus were investigated from four aquaculture ponds for 12 weeks. Chromium was measured using diphenyl carbohdrazide method; alkalinity and hardness were measured using colometric method and analyzed with Bench Photometer. Temperature and pH were measured using pH/EC/TDS/Temp combined tester. Temporal and spatial replications of samples were done with triplicates morphological and behavioural effects of the metal on fish were observed visually. Chromium ranged from no detection to 0.05 mg/L, alkalinity 105 to 245 mg/L, hardness 80 to 165 mg/L, pH 6.35 to 8.03 and temperature 29.1 to 35.9°C. Trend in the chromium concentrations in the ponds is natural > earthen > concrete > collapsible. There was a significant difference ( P < 0.05) in chromium, alkalinity, water hardness, pH and temperature among the four ponds. Significant positive correlation also existed between alkalinity, water hardness, pH, with chromium. Morphological and behavioural changes observed in the fish include irregular swimming, frequent coming to the surface, dark body colouration, mucous secretion on the body, erosion of gill epithelium, fin disintegration, abdominal distension and lethargy. High chromium concentration in natural pond was due to anthropogenic run-off of materials in to the pond. Acidic pH, low alkalinity, low water hardness also contributed to the high chromium concentration. Morphological and behavioural changes observed were attributed to the high concentrations, toxicity and bio accumulative effect of the metal. Toxicity of chromium to fish in aquaculture could threaten food security. Watershed best management practices and remediation could be adopted to reduce the effects of toxicity of chromium on pond water quality, fish flesh quality and fish welfare.
Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics
NASA Astrophysics Data System (ADS)
Sanlialp, Mehmet; Luo, Zhengdong; Shvartsman, Vladimir V.; Wei, Xianzhu; Liu, Yang; Dkhil, Brahim; Lupascu, Doru C.
2017-10-01
In this study, we report on investigation of the electrocaloric (EC) effect in lead-free Ba(SnxTi1-x)O3 (BSnT) ceramics with compositions in the range of 0.08 ≤ x ≤ 0.15 by the direct measurement method using a differential scanning calorimeter. The maximum EC temperature change, ΔTEC-max = 0.63 K under an electric field of 2 kV/mm, was observed for the composition with x = 0.11 at ˜44 °C around the multiphase coexistence region. We observed that the EC effect also peaks at transitions between ferroelectric phases of different symmetries. Comparison with the results of indirect EC measurements from our previous work shows that the indirect approach provides reasonable estimations of the magnitude of the largest EC temperature changes and EC strength. However, it fails to describe correctly temperature dependences of the EC effect for the compositions showing relaxor-like behaviour (x = 0.14 and 0.15) because of their non-ergodic nature. Our study provides strong evidence supporting that looking for multiphase ferroelectric materials can be very useful to optimize EC performance.
Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule).
Mateos, Sergio Espíndola; Cervantes, Carlos Alberto Matías; Zenteno, Edgar; Slomianny, Marie-Christine; Alpuche, Juan; Hernández-Cruz, Pedro; Martínez-Cruz, Ruth; Canseco, Maria del Socorro Pina; Pérez-Campos, Eduardo; Rubio, Manuel Sánchez; Mayoral, Laura Pérez-Campos; Martínez-Cruz, Margarito
2015-10-23
β-Glucosidase (EC 3.2.1.21) is a prominent member of the GH1 family of glycoside hydrolases. The properties of this β-glucosidase appear to include resistance to temperature, urea, and iodoacetamide, and it is activated by 2-ME, similar to other members. β-Glucosidase from chayote (Sechium edule) was purified by ionic-interchange chromatography and molecular exclusion chromatography. Peptides detected by LC-ESI-MS/MS were compared with other β-glucosidases using the BLAST program. This enzyme is a 116 kDa protein composed of two sub-units of 58 kDa and shows homology with Cucumis sativus β-glucosidase (NCBI reference sequence XP_004154617.1), in which seven peptides were found with relative masses ranging from 874.3643 to 1587.8297. The stability of β-glucosidase depends on an initial concentration of 0.2 mg/mL of protein at pH 5.0 which decreases by 33% in a period of 30 h, and then stabilizes and is active for the next 5 days (pH 4.0 gives similar results). One hundred μg/mL β-D-glucose inhibited β-glucosidase activity by more than 50%. The enzyme had a Km of 4.88 mM with p-NPG and a Kcat of 10,000 min(-1). The optimal conditions for the enzyme require a pH of 4.0 and a temperature of 50 °C.
Identification of Sediment Sources to Calumet River through Geochemical Fingerprinting
2017-04-01
4 2 Methods ...measurements ..................................................................... 10 Radioisotope analysis...conductivity (EC) and pH measurements ............................................................. 21 Radioisotope analysis
NASA Astrophysics Data System (ADS)
Jacintha, T. German Amali; Rawat, Kishan Singh; Mishra, Anoop; Singh, Sudhir Kumar
2017-10-01
Groundwater quality of Chennai, Tamil Nadu (India) has been assessed during different seasons of year 2012. Three physical (pH, EC, and TDS) and four chemical parameters (Ca2+, Cl-, TH, Mg2+ and SO4 2-) from 18 bore wells were assessed. The results showed that pH of majority of groundwater samples indicates a slightly basic condition (7.99post-monsoon and 8.35pre-monsoon). TH was slightly hard [322.11 mg/lpre-monsoon, 299.37 mg/lpost-monsoon but lies under World Health Organization (WHO) upper limit]. EC, TDS, Ca2+ and Mg2+ concentrations were under WHO permissible limit during post-monsoon (1503.42 μS/cm, 1009.37, 66.58 and 32.42 mg/l respectively) and pre-monsoon (1371.58 μS/cm, 946.84, 71.79 and 34.79 mg/l, respectively). EC shows a good correlation with SO4 2- ( R 2 = 0.59pre-monsoon, 0.77post-monsoon) which indicates that SO4 2- plays a major role in EC of ground water of bore wells. SO4 2- has also showed positive correlations with TDS ( R 2 = 0.84pre-monsoon, 0.95post-monsoon) and TH ( R 2 = 0.70pre-monsoon, 0.75post-monsoon). The principal component analysis (PCA)/factor analysis (FA) was carried out; Factor1 explains 59.154 and 69.278 % of the total variance during pre- and post-monsoon, respectively, with a strong positive loading on Ca2+, Mg2+, SO4 2-, TDS and a negative loading on pH. Factor2 accounts for 13.94 and 14.22 % of the total variance during pre- and post-monsoon, respectively, and was characterized by strong positive loading of only pH and poor/negative loading of EC, Ca2+, Mg2+, SO4 2-, TDS and TH during pre- and post-monsoon. We recommend routine monitoring and thorough treatment before consumption. Further, this study has demonstrated the effectiveness of PCA/FA to assess the hydrogeochemical processes governing the groundwater chemistry in the area.
Quinto, E J; Arinder, P; Axelsson, L; Heir, E; Holck, A; Lindqvist, R; Lindblad, M; Andreou, P; Lauzon, H L; Marteinsson, V Þ; Pin, C
2014-05-01
A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.
Quinto, E. J.; Arinder, P.; Axelsson, L.; Heir, E.; Holck, A.; Lindqvist, R.; Lindblad, M.; Andreou, P.; Lauzon, H. L.; Marteinsson, V. Þ.
2014-01-01
A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions. PMID:24561587
NASA Astrophysics Data System (ADS)
Jiang, Zhijun; Prokhorenko, Sergei; Prosandeev, Sergey; Nahas, Y.; Wang, D.; Íñiguez, Jorge; Defay, E.; Bellaiche, L.
2017-07-01
Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba (Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT's polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.
Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation
NASA Astrophysics Data System (ADS)
Sharma, Arun Kumar; Chopra, A. K.
2017-06-01
The present investigation observed the effect of current density ( j), electrocoagulation (EC) time, inter electrode distance, electrode area, initial pH and settling time on the removal of nitrate (NO3 -) and sulphate (SO4 2-) from biologically treated municipal wastewater (BTMW), and optimization of the operating conditions of the EC process. A glass chamber of two-liter volume was used for the experiments with DC power supply using two electrode plates of aluminum (Al-Al). The maximum removal of NO3 - (63.21 %) and SO4 2- (79.98 %) of BTMW was found with the optimum operating conditions: current density: 2.65 A/m2, EC time: 40 min, inter electrode distance: 0.5 cm, electrode area: 160 cm2, initial pH: 7.5 and settling time: 60 min. The EC brought down the concentration of NO3 - within desirable limit of the Bureau of Indian Standard (BIS)/WHO for drinking water. Under optimal operating conditions, the operating cost was found to be 1.01/m3 of water in terms of the electrode consumption (23.71 × 10-5 kg Al/m3) and energy consumption (101.76 kWh/m3).
Köksal, Ekrem; Gülçin, Ilhami
2008-01-01
Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.
Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir
2018-02-01
Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.
Unravel biophysical factors on river water quality response in Chilean Central-Southern watersheds.
Yevenes, Mariela A; Arumí, José L; Farías, Laura
2016-05-01
Identifying the key anthropogenic (land uses) and natural (topography and climate) biophysical drivers affecting river water quality is essential for efficient management of water resources. We tested the hypothesis that water quality can be predicted by different biophysical factors. Multivariate statistics based on a geographical information system (GIS) were used to explore the influence of factors (i.e., precipitation, topography, and land uses) on water quality (i.e., nitrate (NO 3 (-)), phosphate (PO 4 (3-)), silicate (Si(OH)4), dissolved oxygen (DO), suspended solids (TSS), biological oxygen demand (DO), temperature (T), conductivity (EC), and pH) for two consecutive years in the Itata and Biobío river watersheds, Central Chile (36° 00' and 38° 30'). The results showed that (NO 3 (-)), (PO 4 (3-)), Si(OH)4, TSS, EC, and DO were higher during rainy season (austral fall, winter, and spring), whereas BOD and temperature were higher during dry season. The spatial variation of these parameters in both watersheds was related to land use, topography (e.g., soil moisture, soil hydrological group, and erodability), and precipitation. Soil hydrological group and soil moisture were the strongest explanatory predictors for PO 4 (3-) , Si(OH)4 and EC in the river, followed by land use such as agriculture for NO 3 (-) and DO and silviculture for TSS and Si(OH)4. High-resolution water leaching and runoff maps allowed us to identify agriculture areas with major probability of water leaching and higher probability of runoff in silviculture areas. Moreover, redundancy analysis (RDA) revealed that land uses (agriculture and silviculture) explained in 60 % the river water quality variation. Our finding highlights the vulnerability of Chilean river waters to different biophysical drivers, rather than climate conditions alone, which is amplified by human-induced degradation.
A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.
Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas
2017-09-20
The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of childhood malnutrition on salivary flow and pH.
Psoter, Walter J; Spielman, Andrew L; Gebrian, Bette; St Jean, Rudolph; Katz, Ralph V
2008-03-01
While protein-energy malnutrition may have multiple effects on oral tissues and subsequent disease development, reports of the effect of malnutrition on the human salivary glands are sparse. A retrospective cohort study of the effect of early childhood protein-energy malnutrition (EC-PEM) and adolescent nutritional status on salivary flow and pH was conducted with rural Haitian children, ages 11-19 years (n=1017). Malnutrition strata exposure cohorts were based on 1988-1996 weight-for-age records which covered the birth through 5-year-old period for all subjects. Then, data on current anthropometrical defined nutritional status categories, stimulated and unstimulated salivary flow rates, and salivary pH were collected for the same subjects of 11-19 years old during field examinations in the summer of 2005. Multivariate analysis of variance (MANOVA) was used for the analyses. Stimulated and unstimulated salivary flow rates were reduced at statistically significant levels in subjects who had experienced severe malnutrition in their early childhood or who had continuing nutrition stress which resulted in delayed growth, as measured at ages 11-19 years. Salivary pH demonstrated little clinically meaningful variability between malnourished and nonmalnourished groups. This study is the first to report of a continuing effect on diminished salivary gland function into adolescence as a result of early childhood malnutrition (EC-PEM) and suggests that exocrine glandular systems may be compromised for extended periods following EC-PEM, which may have important implications for the body's systemic antimicrobial defences.
Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos
2015-05-01
In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.
David, Charles; Arivazhagan, M; Tuvakara, Fazaludeen
2015-11-01
In this study, laboratory scale experiments were performed to degrade highly concentrated organic matter in the form of color in the distillery spent wash through batch oxidative methods such as electrocoagulation (EC), electrofenton (EF) and Fenton process. The effect of corresponding operating parameters, namely initial pH: 2-10; current intensity: 1-5A; electrolysis time: 0.5-4h; agitation speed: 100-500rpm; inter-electrode distance: 0.5-4cm and Fenton's reagent dosage: 5-40mg/L was employed for optimizing the process of spent wash color removal. The performance of all the three processes was compared and assessed in terms of percentage color removal. For EC, 79% color removal was achieved using iron electrodes arranged with 0.5cm of inter-electrode space and at optimum conditions of pH 7, 5A current intensity, 300rpm agitation speed and in 2h of electrolysis time. In EF, 44% spent wash decolorization was observed using carbon (graphite) electrodes with an optimum conditions of 0.5cm inter-electrode distance, pH 3, 4A current intensity, 20mg/L FeSO4 and agitation speed of 400rpm for 3h of electrolysis time. By Fenton process, 66% decolorization was attained by Fenton process at optimized conditions of pH 3, 40mg/L of Fenton's reagent and at 500rpm of agitation speed for 4h of treatment time. Copyright © 2015 Elsevier Inc. All rights reserved.
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng
2013-01-01
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude
2017-07-01
We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.
Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Surampudi, Subbarao
2003-01-01
Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to -60 C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 5 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures < -20 C.
Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere
1998-01-01
Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...
NASA Astrophysics Data System (ADS)
Byun, T. S.; Farrell, K.; Lee, E. H.; Mansur, L. K.; Maloy, S. A.; James, M. R.; Johnson, W. R.
2002-05-01
This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 °C. Tensile testing was performed at room temperature (20 °C) and 164 °C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 °C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability.
Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil.
Ren, Jie; Wang, Fenghua; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming
2017-12-01
To investigate hydrochar as a soil amendment for the immobilization of Cd, the characteristics of hydrochars (HCs) under three temperatures and residence times, were studied, with a particular interest in soil properties, as well as the speciation, availability and plant uptake of Cd. HCs were obtained by a hydrothermal carbonization (HTC) reaction of sewage sludge (SS). Based on the study of HC properties, we found that HCs present weak acidity with relatively high ash content and low electrical conductivity (EC) values. The addition of HCs to soil decreased soil pH and EC values but increased the abundance of soil microorganism. HCs also promoted the transformation of Cd from unstable to stable speciation and can decrease the content of phyto-available Cd (optimum condition and efficiency: A13, 2 15.38%), which restrained cabbage from assimilating Cd from soil both the aboveground (optimum condition and efficiency: A35, 52.29%) and underground (optimum condition and efficiency: C15, 57.53%) parts of it. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard
2016-06-01
In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.
Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure.
Han, Taejun; Kong, Jeong-Ae; Kang, Hee-Gyu; Kim, Seon-Jin; Jin, Gyo-Sun; Choi, Hoon; Brown, Murray T
2011-11-01
The sensitivity of early life stages of the brown seaweed Saccharina japonica to six metals (Cd, Cu, Hg, Ni, Pb, Zn) and two waste-water samples were investigated and a new toxicity bioassay developed. The two endpoints used were spore germination and germ tube elongation with an exposure time of 24 h. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were darkness, pH 8, 35‰ and 15°C, respectively. The toxicity ranking of five metals was: Hg (EC(50) of 41 and 42 μg l(-1)) > Cu (120 and 81 μg l(-1)) > Ni (2,009 and 1,360 μg l(-1)) > Zn (3,024 and 3,897 μg l(-1)) > Pb (4,760 and 4,429 μg l(-1)) > Cd (15,052 and 7,541 μg l(-1)) for germination and germ tube elongation, respectively. The sensitivities to Cd, Cu and Ni were greater in germ tube elongation than in germination process. When tested against two different waste-water samples (processed animal and printed circuit board waste-water) values of EC(50) were between 21.29 and 32.02% for germination and between 5.33 and 8.98% for germ tube elongation. Despite differences in their chemical composition, the toxic effects of waste-water samples, as indicated by EC(50) values, did not differ significantly for the same endpoints. The CV range for both germination and germ tube elongation was between 4.61 and 37.69%, indicating high levels of precision of the tests. The results compare favourably with those from more established test procedures employing micro- and macroalgae. The advantages and potential limitations of the bioassay for the assessment of anthropogenic impacts on coastal ecosystems and commercial cultivation areas in near-shore environments are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao
2015-09-01
Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.
Nitrogen form affects pH and EC of whole pine tree substrate and growth of petunia
USDA-ARS?s Scientific Manuscript database
Wood-based substrates are potential alternatives or amendments to traditional peat-based and pine bark substrates. Undesirable changes in substrate pH may result from the application of supplemental fertilizer required by some crops grown in wood-based substrates. Experiments were conducted to evalu...
Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils
USDA-ARS?s Scientific Manuscript database
Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...
NASA Astrophysics Data System (ADS)
Variankaval, N. E.; Jacob, K. I.; Dinh, S. M.
2000-08-01
The structure and select crystalline properties of a common drug (estradiol) used in a transdermal drug delivery system are investigated. Four different crystal forms of estradiol (EA, EC, ED and EM) were prepared in the laboratory and characterized by thermal analysis, optical microscopy, Raman microspectroscopy, and solid-state NMR. Variable temperature X-ray studies were carried out on form A (EA) to determine whether the crystal structure changed as a function of temperature. These four forms exhibited different thermal behavior. EA and EC had similar melting points. This study clearly shows that water cannot be released from the crystal lattice of EA unless melting is achieved, and exposing EA to temperatures below the melting point only results in a partial release of hydrogen bonded water. EC was prepared by melting EA and subsequently cooling it to room temperature. Form EC was anhydrous, as it did not exhibit water loss, as opposed to EA, which had about 3.5% water in its crystal structure. ED was very difficult to prepare and manifested itself only as a mixture with EC. Its melting point was about 10°C lower than that of EC. It is thought to be an unstable form due to its simultaneous occurrence with EC and the inability to isolate it. EM is a solvate of methanol, not a polymorph. Its melting point was similar to EA and EC. From thermogravimetry/differential thermal analysis and differential scanning calorimetry data, it was apparent that estradiol formed a hemisolvate with methanol. All four forms had different morphologies. Raman microscopy was carried out on the different crystal forms. The spectra of EC and ED were almost identical. Thermal analysis revealed that this is due to the highly unstable nature of ED and its tendency to either convert spontaneously to EC or occur in mixtures with it.
[Study on content of ethyl carbamate in yellow rice wine and its change in Zhejiang province].
Shen, Xiang-hong; Wu, Ping-gu; Wang, Li-yuan; Zhang, Jing; Tan, Ying; Ying, Ying; Ma, Bing-jie
2013-11-01
To understand the content status of ethyl carbamate (EC) in yellow rice wine and the changes in storage period and shelf life in Zhejiang province. A total of 475 samples of yellow rice wine purchased randomly from supermarkets and food stores in Zhejiang province during 2008-2012, and 49 samples collected from manufacturers were measured for EC content. The sample collected from manufacturers by filter sterilization was placed at 4 °C, room temperature and 37 °C for 400 d, respectively;a bottled wine and a wine in bag were bought from market were placed for 400 d in room temperature to conduct shelf life storage test, and measure the content in every point in 2011. The EC of the samples was determinated by gas chromatography-mass spectrometry after the samples were diluted with D5-EC isotope dilution technique, and purified by alkaline diatomite solid phase extraction column. The overall detection rate of EC was 99% (472/475) in yellow rice wine of Zhejiang province in 2008-2012, the median value was 70-112 µg/kg, the 90th percentile was 190-333 µg/kg, the 95th percentile was 214-393 µg/kg, and the maximum value was 430-515 µg/kg. The content of EC was increased gradually along with the increasing of storage age in commercially yellow rice wine, and the average content of EC were positively correlated with storage age(r = 0.988). The contents of EC in yellow rice wine after sterilization increased from 74 µg/kg to 86 µg/kg, 127 µg/kg and 509 µg/kg at 4 °C, room temperature and 37°C, respectively for 400 d storage, the differences had statistical significance (F = 14.73, P < 0.01). The content of EC in yellow rice wines in shelf life, which stored in room temperature with bottle and bag package, was decreased slightly with increasing storage time in the beginning, from 215 to 184 µg/kg and 196 to 158 µg/kg, respectively, and increased again with increasing storage time after 250 d, with 252 µg/kg and 210 µg/kg in bottle and bag package after 400 d, respectively, the differences had statistical significance (Z = 2.37, P < 0.05). EC is widespread in rice wine, the content of EC was correlated with storage time and temperature.
Waalewijn-Kool, Pauline L; Ortiz, Maria Diez; Lofts, Stephen; van Gestel, Cornelis A M
2013-10-01
The effect of soil pH on the toxicity of 30 nm ZnO to Folsomia candida was assessed in Dorset field soils with pHCaCl2 adjusted to 4.31, 5.71, and 6.39. To unravel the contribution of particle size and dissolved Zn, 200 nm ZnO and ZnCl2 were tested. Zinc sorption increased with increasing pH, and Freundlich kf values ranged from 98.9 (L/kg)(1/n) to 333 (L/kg)(1/n) for 30 nm ZnO and from 64.3 (L/kg)(1/n) to 187 (L/kg)(1/n) for ZnCl2. No effect of particle size was found on sorption, and little difference was found in toxicity between 30 nm and 200 nm ZnO. The effect on reproduction decreased with increasing pH for all Zn forms, with 28-d median effective concentrations (EC50s) of 553 mg Zn/kg, 1481 mg Zn/kg, and 3233 mg Zn/kg for 30 nm ZnO and 331 mg Zn/kg, 732 mg Zn/kg, and 1174 mg Zn/kg for ZnCl2 at pH 4.31, 5.71, and 6.39, respectively. The EC50s based on porewater Zn concentrations increased with increasing pH for 30 nm ZnO from 4.77 mg Zn/L to 18.5 mg Zn/L, while for ZnCl2 no consistent pH-related trend in EC50s was found (21.0-63.3 mg Zn/L). Porewater calcium levels were 10 times higher in ZnCl2 -spiked soils than in ZnO-spiked soils. The authors' results suggest that the decreased toxicity of ZnCl2 compared with 30 nm ZnO based on porewater concentrations was because of a protective effect of calcium and not a particle effect. © 2013 SETAC.
Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang
2015-12-01
Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren
2009-03-01
The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process.
Treatment of leachate by electrocoagulation using aluminum and iron electrodes.
Ilhan, Fatih; Kurt, Ugur; Apaydin, Omer; Gonullu, M Talha
2008-06-15
In this paper, treatment of leachate by electrocoagulation (EC) has been investigated in a batch process. The sample of leachate was supplied from Odayeri Landfill Site in Istanbul. Firstly, EC was compared with classical chemical coagulation (CC) process via COD removal. The first comparison results with 348 A/m2 current density showed that EC process has higher treatment performance than CC process. Secondly, effects of process variables such as electrode material, current density (from 348 to 631 A/m2), pH, treatment cost, and operating time for EC process are investigated on COD and NH4-N removal efficiencies. The appropriate electrode type search for EC provided that aluminum supplies more COD removal (56%) than iron electrode (35%) at the end of the 30 min operating time. Finally, EC experiments were also continued to determine the efficiency of ammonia removal, and the effects of current density, mixing, and aeration. All the findings of the study revealed that treatment of leachate by EC can be used as a step of a joint treatment.
Enhanced degradation of Orange G by permanganate with the employment of iron anode.
Bu, Lingjun; Shi, Zhou; Zhou, Shiqing
2017-01-01
Iron anode was employed to enhance the degradation of Orange G (OG) by permanganate (EC/KMnO 4 ). Continuously generated Fe 2+ from iron anode facilitated the formation of fresh MnO 2 , which plays a role in catalyzing permanganate oxidation. The EC/KMnO 4 system also showed a better performance to remove OG than Fe 2+ /KMnO 4 , indicating the importance of in situ formed fresh MnO 2 . Besides, the effects of applied current, KMnO 4 dosage, solution pH, and natural organics were evaluated and results demonstrated that high current and oxidant dosage are favorable for OG removal. And the application of iron anode has a promoting effect on the KMnO 4 oxidation over a wide pH range (5.0-9.0), while the Fe 2+ /KMnO 4 process does not. For natural organics, its presence could inhibit OG removal due to its competitive role. And the promoting effect of OG removal by the EC/KMnO 4 process in natural water was confirmed. At last, the EC/KMnO 4 process showed a satisfying performance on the decolorization and mineralization of OG. This study provides a potential technology to enhance permanganate oxidation and broadens the knowledge of azo dye removal.
Oladzad, Sepideh; Fallah, Narges; Nasernejad, Bahram
2017-07-01
In the present study a combination of a novel coalescing oil water separator (COWS) and electrocoagulation (EC) technique was used for treatment of petroleum product contaminated groundwater. In the first phase, COWS was used as the primary treatment. Two different types of coalescing media and two levels of flow rates were examined in order to find the optimum conditions. The effluent of COWS was collected in optimum conditions and was treated using an EC process in the second phase of the research. In this phase, preliminary experiments were conducted in order to investigate the effect of EC reaction time and sedimentation time on chemical oxygen demand (COD) removal efficiency. Best conditions for EC reaction time and sedimentation time were obtained to be 5 min and 30 min, respectively. Response surface methodology was applied to evaluate the effect of initial pH, current density and aeration rate on settling velocity (V s ) and effluent COD. The optimum conditions, for achieving maximum values of V s as well as the values of effluent COD, in the range of results were obtained at conditions of 7, 34 mA·cm -2 and 1.5 L·min -1 for initial pH, current density and aeration rate, respectively.
Wang, Xiansheng; Ni, Jiaheng; Pang, Shuo; Li, Ying
2017-04-01
A electrocoagulation (EC)/peanut shell (PS) adsorption coupling technique was studied for the removal of malachite green (MG) in our present work. The addition of an appropriate PS dosage (5 g/L) resulted in remarkable increase in the removal efficiency of MG at lower current density and shorter operating time compared with the conventional EC process. The effect of current density, pH of MG solution, dosage of PS and initial concentration of MG were also investigated. The maximum removal efficiency of MG was 98% under optimum conditions in 5 min. And it was 23% higher than that in EC process. Furthermore, the unit energy demand (UED) and the unit electrode material demand (UEMD) were calculated and discussed. The results demonstrated that the EC/PS adsorption coupling method achieved a reduction of 94% UED and UEMD compared with EC process.
NASA Astrophysics Data System (ADS)
Alves-Prado, Heloiza Ferreira; Gomes, Eleni; da Silva, Roberto
A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45°C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65°C at pH 6.5, and it was thermally stable up to 60°C without substrate during 1 h in the presence of 10 mM CaCl2 The enzyme activity increased in the presence of Co2+, Ba2+, and Mn2+. Using maltodextrin as substrate, the K m and K cat were 1.65 mg/mL and 347.9 μmol/mg-min, respectively.
Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Chikita, Kazuhisa A.; Nishi, Masataka; Fukuyama, Ryuji; Hamahara, Kazuhiro
2004-05-01
The contribution of groundwater output and input to lake chemistry was examined by estimating the hydrological and chemical budgets of a volcanic caldera lake, Lake Kussharo, Hokkaido, Japan. The lake level, meteorology, river water discharge and water properties were measured in the ice-covered period of February-March and in the open-water period of June-October in 2000. The inorganic chemistry was then analyzed for sporadically sampled surface water and hot spring water. The chemistry of lake water at pH of 6.91-7.57 and EC25 (electric conductivity at 25 °C) of 29.2-32.7 mS/m appears to be controlled by the input of two types of hot spring water: the inflowing Yunokawa River (pH of 2.27-2.54 and EC25 of 197.8-258.0 mS/m) and groundwater discharging directly on the shore (pH of 7.13-8.32, water temperature of 35.0-46.5 °C and EC25 of 53.1-152.0 mS/m). Excluding the days with rainfall or a great change in lake level, the water budget in June-October gave a net groundwater input of -7.41 to 2.97 m 3/s. A combination of the water budget with the chemical budget of two solutes, Na + and Cl -, led to the best estimate of groundwater output, Gout, at 3.82±3.02 m 3/s, the total fresh groundwater input, ∑ Gfresh, at 2.14±1.00 m 3/s, and the total groundwater input of hot springs, ∑ Gspa, at 0.46±0.05 m 3/s. This is comparable to G out=3.87 m3/ s, ∑G fresh=1.49 m3/ s and ∑G spa=0.41 m3/ s during the ice-covered period. The chemical flux by the freshwater input plays an important role in the alkalinity of lake water, as does the chemical flux by the shoreline hot springs. The large groundwater output could occur by the leakage through the highly permeable, underground pumice, distributed from the east-to-south lake basin to southeast of the outlet.
Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun
2011-10-26
Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.
Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano
2017-07-26
A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.
NASA Astrophysics Data System (ADS)
Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.
As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31±0.12 Tg yr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.
NASA Astrophysics Data System (ADS)
Chen, L.-W. Antony; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.
2001-05-01
As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31+/-0.12Tgyr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.
Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.
2004-01-01
To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902
Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M
2017-12-01
This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Emergent constraint on equilibrium climate sensitivity from global temperature variability.
Cox, Peter M; Huntingford, Chris; Williamson, Mark S
2018-01-17
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
Emergent constraint on equilibrium climate sensitivity from global temperature variability
NASA Astrophysics Data System (ADS)
Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.
2018-01-01
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.
Gagaoua, Mohammed; Ziane, Ferhat; Nait Rabah, Sabrina; Boucherba, Nawel; Ait Kaki El-Hadef El-Okki, Amel; Bouanane-Darenfed, Amel; Hafid, Kahina
2017-09-01
Cucumisin [EC 3.4.21.25] was first purified from Cucumis melo var. reticulatus juice by three-phase partitioning (TPP). Optimum purification parameters of the TPP system were determined as 60% ammonium sulfate saturation with 1.0:1.25 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 20°C, respectively. Cucumisin was purified with 4.61 purification fold and 156% activity recovery. The molecular weight of the recovered cucumisin was determined as 68.4kDa and its isoelectric point is 8.7. Optimum pH and temperature of cucumisin were pH 9.0 and 60-70°C, respectively. The protease was very stable at 20-70°C and a pH range of 2.0-12.0. Km and Vmax constants were 2.24±0.22mgmL -1 and 1048±25μ Mmin -1 , respectively. The enzyme was stable against numerous metal ions and its activity was highly enhanced by Ca 2+ , Mg 2+ , and Mn +2 . Cucumisin activity was 2.35-folds increased in the presence of 5mM of CaCl 2 . It was inactivated by Co 2+ , Cd 2+ , Zn 2+ and Fe 2+ and dramatically by PMSF. Cucumisin milk-clotting activity was highly stable when stored under freezing (-20°C) compared at 4°C and 25°C. Finally, TPP revealed to be a useful strategy to concentrate and purify cucumisin for its use as a milk-clotting enzyme for cheese-making. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng
2013-01-01
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method. PMID:24358286
Vermicomposting of food waste: assessing the stability and maturity
2012-01-01
The vermicompost using earthworms (Eisenia Fetida) was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents (C/N)) and germination bioassay was examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress. The ranges of EC, pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8-58.4%, respectively. The germination index (GI) value revealed that vermicompost rendered as moderate phytotoxic to cress seed. Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level. The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests. PMID:23369642
Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick
2010-02-28
Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.
Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Bugga, Ratnakumar V.
2011-01-01
This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate capability at low temperatures (i.e., 20 to 40 C), this approach was optimized further, resulting in the development of 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %), which were demonstrated to operate well over a wide temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12(-)LiNiCoAlO2 prototype cells.
Effects of alkyl polyglycoside (APG) on composting of agricultural wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi
2011-06-15
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less
Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.
Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi
2011-06-01
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater.
Espejo, Azahara; Beltrán, Fernando J; Rivas, Francisco J; García-Araya, Juan F; Gimeno, Olga
2015-01-01
A synthetic secondary effluent containing an aqueous mixture of emerging contaminants (ECs) has been treated by photocatalytic ozonation using Fe(3+) or Fe3O4 as catalysts and black light lamps as the radiation source. For comparative purposes, ECs have also been treated by ultraviolet radiation (UVA radiation, black light) and ozonation (pH 3 and 7). With the exception of UVA radiation, O3-based processes lead to the total removal of ECs in the mixture. The time taken to achieve complete degradation depends on the oxidation process applied. Ozonation at pH 3 is the most effective technique. The addition of iron based catalysts results in a slight inhibition of the parent compounds degradation rate. However, a positive effect is experienced when measuring the total organic carbon (TOC) and the chemical oxygen demand (COD) removals. Photocatalytic oxidation in the presence of Fe(3+) leads to 81% and 88% of TOC and COD elimination, respectively, compared to only 23% and 29% of TOC and COD removals achieved by single ozonation. The RCT concept has been used to predict the theoretical ECs profiles in the homogeneous photocatalytic oxidation process studied. Treated wastewater effluent was toxic to Daphnia magna when Fe(3+) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Single ozonation significantly reduced the toxicity of the treated wastewater.
Gong, Chenhao; Zhang, Zhongguo; Li, Haitao; Li, Duo; Wu, Baichun; Sun, Yuwei; Cheng, Yanjun
2014-06-15
The electrocoagulation (EC) process was used to pretreat wastewater from the manufacture of wet-spun acrylic fibers, and the effects of varying the operating parameters, including the electrode area/wastewater volume (A/V) ratio, current density, interelectrode distance and pH, on the EC treatment process were investigated. About 44% of the total organic carbon was removed using the optimal conditions in a 100 min procedure. The optimal conditions were a current density of 35.7 mA cm(-2), an A/V ratio of 0.28 cm(-1), a pH of 5, and an interelectrode distance of 0.8 cm. The biodegradability of the contaminants in the treated water was improved by the EC treatment (using the optimal conditions), increasing the five-day biological oxygen demand/chemical oxygen demand ratio to 0.35, which could improve the effectiveness of subsequent biological treatments. The improvement in the biodegradability of the contaminants in the wastewater was attributed to the removal and degradation of aromatic organic compounds, straight-chain paraffins, and other organic compounds, which we identified using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy. The EC process was proven to be an effective alternative pretreatment for wastewater from the manufacture of wet-spun acrylic fibers, prior to biological treatments. Copyright © 2014 Elsevier B.V. All rights reserved.
Bassyouni, D G; Hamad, H A; El-Ashtoukhy, E-S Z; Amin, N K; El-Latif, M M Abd
2017-08-05
In this study, a laboratory scale for the treatment of a recalcitrant and toxic synthetic wastewater containing diazo dye, acid brown 14 (AB-14) has been comparatively performed by two electro-catalytic treatment processes, namely anodic oxidation (AO) and electrocoagulation (EC) using a new batch electrochemical cell. Additionally, the influence of several operating parameters such as; current density (j), initial dye concentration (C o ), NaCl concentration (C N ), and pH on the color removal efficiency and chemical oxygen demand (COD) are evaluated. The powerful capability of the AO and EC of AB-14 which related to the mechanistic reaction pathway is shown. The poor degradation is ascribed to higher C o and pH, while the enhancement of j and C N is responsible for better degradation of AB-14 dye. The results indicate that the EC is more effective than AO under the same operational condition. A kinetic model is developed for evaluation of the pseudo-first-order-rate constant (k app ) as a function of various operational parameters. The results emphasize the high efficiency of AO and EC and the clean processes which are hopeful alternative for the treatment of the large volume wastewater of the textile industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I
2016-05-15
Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process. Copyright © 2016 Elsevier B.V. All rights reserved.
Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S
2011-01-01
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Yongjun; Cao, Min; Yuan, Daoxian; Zhang, Yuanzhu; He, Qiufang
2018-02-01
The unique hydrogeology of karst makes the associated groundwater respond quickly to rainfall events and vulnerable to anthropogenic pollutions. In this study, high-frequency monitoring of spring discharge, temperature, electrical conductivity (EC) and pH, along with monthly hydrochemical and microbial analyses, was undertaken at the outlet of Laolondong karst underground river in Nanshan, southwestern China. The aim was to explore the environmental effects of the catchment's urban area on the karst groundwater resources. The monitoring data of a tracer test and the response of discharge to rainfall events demonstrate that conduits and narrow fissures coexist in the Laolongdong karst aquifer. The EC, Na+, Cl- and SO4 2- values (840 μS/cm, 33.7, 38.6 and 137.2 μg/L, respectively), along with high concentrations of fecal coliform bacteria, at the outlet indicate considerable urban pollution in this area. The contaminants sulfate and nitrate showed different relationships with discharge and EC in different stages of a rainfall event. This behavior provided information about aquifer structure and the influence of transport properties. Meanwhile, the hydrological processes of groundwater flow could be modified by urbanization and result in increasing magnitude of urban floods in the underground river. In addition, sulfuric and nitric acids introduced by urbanization not only impact the karst groundwater quality, but also result in a significant perturbation to the carbon cycling system in the karst area.
Kuntworbe, Noble; Al-Kassas, Raida
2012-06-01
Cryptolepine hydrochloride-loaded gelatine nanoparticles were developed and characterised as a means of exploring formulation techniques to improve the pharmaceutic profile of the compound. Cryptolepine hydrochloride-loaded gelatine-type (A) nanoparticles were developed base on the double desolvation approach. After optimisation of formulation parameters including temperature, stirring rate, incubation time polymer and cross-linker (glutaraldehyde) concentrations, the rest of the study was conducted at two different formulation pH values (2.5 and 11.0) and by two different approaches to drug loading. Three cryoprotectants--sucrose, glucose and mannitol--were investigated for possible use for the preparation of freeze-dried samples. Nanoparticles with desired size mostly less than 350 nm and zeta potential above ±20 were obtained when formulation pH was between 2.5 and 5 and above 9. Entrapment efficiency was higher at pH 11.0 than pH 2.5 and for products formulated when drug was loaded during the second desolvation stage compared to when drug was loaded onto pre-formed nanoparticles. Further investigation of pH effect showed a new isoelectric point of 6.23-6.27 at which the zeta potential of nanoparticles was zero. Sucrose and glucose were effective in low concentrations as cryoprotectants. The best formulation produced an EC(50) value of 227.4 μM as a haemolytic agent compared to 51.61 μM by the free compound which is an indication of reduction in haemolytic side effect. There was sustained released of the compound from all formulation types over a period of 192 h. Stability data indicated that the nanosuspension and freeze-dried samples were stable at 4 and 25°C, respectively, over a 52-week period, but the former was less stable at room temperature. In conclusion, cryptolepine hydrochloride-loaded gelatine nanoparticles exhibited reduced haemolytic effect compared to the pure compound and can be developed further for parenteral delivery.
Dynamic temperature response of electrocaloric multilayer capacitors
NASA Astrophysics Data System (ADS)
Kwon, Beomjin; Roh, Im-Jun; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang; Kang, Chong-Yun
2014-05-01
We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.
Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
Jassal, Rachhpal S; Johnson, Mark S; Molodovskaya, Marina; Black, T Andrew; Jollymore, Ashlee; Sveinson, Kelly
2015-04-01
Nitrogen (N) enrichment of biochar from both inorganic and organic waste N sources has the potential to add economic and environmental value through its use as a slow release N fertilizer. We investigated the sorption of N by, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 °C from three feedstocks: poultry litter (PL with a carbon (C) to N ratio (C:N) of 14), softwood chips of spruce-pine-fir (SPF with a C:N of 470), and a 50:50 mixture of PL and SPF (PL/SPF). The prepared biochars were enriched with ammonium nitrate (AN) and urea ammonium nitrate (UAN). PL biochars had the lowest C content (50-56% C), but the highest pH (9.3-9.9), electrical conductivity (EC, 780-960 dS m(-1)), cation exchange capacity (CEC, 40-46 cmol kg(-1)), and N content (3.3-4.5%). While N content and hydrogen (H) to C atomic ratio (H:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly increased with pyrolysis temperature for all feedstocks. The PL and SPF biochars showed similar H:C and also similar N sorption and N release at all pyrolysis temperatures. These biochars sorbed up to 5% N by mass, irrespective of the source of N. However, PL/SPF biochar performed poorly in sorbing N from either AN or UAN. Biochar H:C was found to be unrelated to N sorption rates, suggesting that physical adsorption on active surfaces was the main mechanism of N sorption in these biochars. There were minor differences between N sorbed from NO3-N and NH4-N among different biochars. Very small amounts of sorbed N (0.2-0.4 mg N g(-1) biochar) was released when extracted with 1 M KCl solution, indicating that the retained N was strongly held in complex bonds, more so for NH4-N because the release of NO3-N was 3-4 times greater than that of NH4-N. NH4-N sorption far exceeded the effective CEC of the biochars, thereby suggesting that most of the sorption may be due to physical entrapment of NH4(+) in biochar pores. The results of this study suggest that biochar can be used to remove excess N from poultry and dairy manure and be a good mitigation option for reducing N leaching and gaseous losses. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.
The reclamation effort typically deals with consequences of mining activity instead of being planned well before the mining. Detailed assessment of principal hydro- and geochemical processes participating in pore and groundwater chemistry evolution was carried out at three surface mine localities in North Dakota-the Fritz mine, the Indian Head mine, and the Velva mine. The geochemical model MINTEQUA2 and advanced statistical analysis coupled with traditional interpretive techniques were used to determine site-specific environmental characteristics and to compare the differences between study sites. Multivariate statistical analysis indicates that sulfate, magnesium, calcium, the gypsum saturation index, and sodium contribute the most tomore » overall differences in groundwater chemistry between study sites. Soil paste extract pH and EC measurements performed on over 3700 samples document extremely acidic soils at the Fritz mine. The number of samples with pH <5.5 reaches 80%-90% of total samples from discrete depth near the top of the soil profile at the Fritz mine. Soil samples from Indian Head and Velva do not indicate the acidity below the pH of 5.5 limit. The percentage of samples with EC > 3 mS cm{sup -1} is between 20% and 40% at the Fritz mine and below 20% for samples from Indian Head and Velva. The results of geochemical modeling indicate an increased tendency for gypsum saturation within the vadose zone, particularly within the lands disturbed by mining activity. This trend is directly associated with increased concentrations of sulfate anions as a result of mineral oxidation. Geochemical modeling, statistical analysis, and soil extract pH and EC measurements proved to be reliable, fast, and relatively cost-effective tools for the assessment of soil acidity, the extent of the oxidation zone, and the potential for negative impact on pore and groundwater chemistry.« less
NASA Astrophysics Data System (ADS)
Zong-Jie, Li; Song, Ling-Ling; Jing-zhu, Ma; Li, Yong-ge
2017-05-01
Through the analysis of pH value, EC, precipitation and wind speed of 402 precipitation samples in the source region of the Yangtze River from January 1, 2010 to December 31, 2015, especially for the analysis of the 14 acid rain events. The results showed that: the acid rain in the source region of the Yangtze River was mainly affected by the southwest monsoon and the westerly circulation. The occurrence of acid rain mainly controlled by industrial pollution and other pollutants coming from India and other surrounding areas. And the other cause was that because of the Qinghai Tibet highway and the Qinghai Tibet railway, there were a lot of cars coming and going. And there were people in the summer to plateau tourism increased year by year, and more for self-driving travelling. This added additional pollutants (automobile exhaust) for the source of the Yangtze River. During the period of sampling, the variation range of pH value was from 4.0 to 8.57, with the mean was 6.37. And the range of EC was from 5.2 to 124.4 μs/cm, the average was 27.59 μs/cm. The order of conductivity in the four seasons was Spring > Winter > Summer > Autumn. And the order of pH in four seasons was Summer > Spring = Winter > Autumn. The results are also helpful for further understanding the acid rain in the Tibetan Plateau and providing scientific basis for the effective prevention and control of acid rain.
Thermal decay of Coulomb blockade oscillations
NASA Astrophysics Data System (ADS)
Idrisov, Edvin G.; Levkivskyi, Ivan P.; Sukhorukov, Eugene V.
2017-10-01
We study transport properties and the charge quantization phenomenon in a small metallic island connected to the leads through two quantum point contacts (QPCs). The linear conductance is calculated perturbatively with respect to weak tunneling and weak backscattering at QPCs as a function of the temperature T and gate voltage. The conductance shows Coulomb blockade (CB) oscillations as a function of the gate voltage that decay with the temperature as a result of thermally activated fluctuations of the charge in the island. The regimes of quantum T ≪EC and thermal T ≫EC fluctuations are considered, where EC is the charging energy of an isolated island. Our predictions for CB oscillations in the quantum regime coincide with previous findings by Furusaki and Matveev [Phys. Rev. B 52, 16676 (1995), 10.1103/PhysRevB.52.16676]. In the thermal regime the visibility of Coulomb blockade oscillations decays with the temperature as √{T /EC }exp(-π2T /EC) , where the exponential dependence originates from the thermal averaging over the instant charge fluctuations, while the prefactor has a quantum origin. This dependence does not depend on the strength of couplings to the leads. The differential capacitance, calculated in the case of a single tunnel junction, shows the same exponential decay, however the prefactor is linear in the temperature. This difference can be attributed to the nonlocality of the quantum effects. Our results agree with the recent experiment [Nature (London) 536, 58 (2016), 10.1038/nature19072] in the whole range of the parameter T /EC .
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo
2003-09-01
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, J. R.; Golovko, V. V.; Iacob, V. E.
2009-10-15
We have measured the half-life of the electron-capture (ec) decay of {sup 97}Ru in a metallic environment, both at low temperature (19 K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for {sup 7}Be changes by 0.9%{+-}0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of {sup 97}Ru, 2.8370(14) d at room temperature and 2.8382(14) d at 19 K, are consistent with, but much more precise than, previous room-temperature measurements. Inmore » addition, we have also measured the half-lives of the {beta}{sup -}-emitters {sup 103}Ru and {sup 105}Rh at both temperatures, and found them also to be unchanged.« less
Direct comparison of oligochaete erythrocruorins as potential blood substitutes
Zimmerman, Devon; DiIusto, Matthew; Dienes, Jack; Abdulmalik, Osheiza
2017-01-01
Abstract While many blood substitutes are based on mammalian hemoglobins (e.g., human hemoglobin, HbA), the naturally extracellular hemoglobins of invertebrates (a.k.a. erythrocruorins, Ecs) are intriguing alternative oxygen carriers. Specifically, the erythrocruorin of Lumbricus terrestris has been shown to effectively deliver oxygen in mice and rats without the negative side effects observed with HbA. In this study, the properties of six oligochaete Ecs (Lumbricus terrestris, Eisenia hortensis, Eisenia fetida, Eisenia veneta, Eudrilus eugeniae, and Amynthas gracilis) were compared in vitro to identify the most promising blood substitute candidate(s). Several metrics were used to compare the Ecs, including their oxidation rates, dissociation at physiological pH, thermal stability, and oxygen transport characteristics. Overall, the Ecs of Lumbricus terrestris (LtEc) and Eisenia fetida (EfEc) were identified as promising candidates, since they demonstrated high thermal and oligomeric stability, while also exhibiting relatively low oxidation rates. Interestingly, the O2 affinity of LtEc (P 50 = 26.25 mmHg at 37 °C) was also observed to be uniquely lower than EfEc and all of the other Ecs (P 50 = 9.29–13.62 mmHg). Subsequent alignment of the primary sequences of LtEc and EfEc revealed several significant amino acid substitutions within the D subunit interfaces that may be responsible for this significant change in O2 affinity. Nonetheless, these results show that LtEc and EfEc are promising potential blood substitutes that are resistant to oxidation and denaturation, but additional experiments will need to be conducted to determine their safety, efficacy, and the effects of their disparate oxygen affinities in vivo. PMID:29313031
Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan
2003-02-01
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.
Hydrological influences on the water quality trends in Tamiraparani Basin, South India.
Ravichandran, S
2003-09-01
Water quality variables--Turbidity, pH, Electrical Conductivity (EC), Chlorides and Total Hardness (TH) were monitored at a downstream location in the Tamiraparani River during 1978-1992. The observations were made at weekly intervals in a water treatment and supply plant using standard methods. Graphical and statistical analyses were used for data exploration, trend detection and assessment. Box-Whisker plots of annual and seasonal changes in variables indicated apparent trends being present in the data and their response to the seasonal influence of the monsoon rainfall. Further, the examination of the median values of the variables indicated that changes in the direction of trend occurred during 1985-1986, especially in pH, EC and TH. The statistical analyses were done using non-parametric methods, the ANCOVA on rank transformed data and the Seasonal Man-Kendall test. The presence of monotonic trend in all the water quality variables was confirmed, however, with independent direction of change. The trend line was fitted by the method of least squares. The estimated values indicated significant increases in EC (28 microS cm(-1)) while significant decreases were observed in turbidity (90 NTU), pH (0.78), and total hardness (23 ppm) in a span of 15 years. The changes induced in river flow by the addition of a stabilizing reservoir, the influence of seasonal and spatial pattern of monsoon rainfall across the river basin and the increased agriculture appear causative factors for the water quality trends seen in the Tamiraparani River system.
Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations
NASA Technical Reports Server (NTRS)
Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.
2018-01-01
An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations
NASA Astrophysics Data System (ADS)
Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.
2018-02-01
An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil
Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo
2015-01-01
In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731
Fahrenkrug, Eli; Maldonado, Stephen
2015-07-21
This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (∼1 cm(3)), micro- (∼10(-10) cm(3)), and nano-sized (∼10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors.
Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)
NASA Astrophysics Data System (ADS)
Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.
2009-12-01
The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.
Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar
2015-01-01
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132
Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet
2007-01-01
In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.
Likus-Cieślik, Justyna; Pietrzykowski, Marcin; Chodak, Marcin
2018-01-01
The impact of tree litter on soil chemistry leachate and sulfurous substrates of mine soils from former Jeziórko sulfur mine was investigated. Composites were used: soil substrate (less contaminated at mean 5090 mg kg -1 S or high contaminated at 42,500 mg kg -1 S) + birch or pine litter and control substrate (no litter). The composites were rinsed with distilled water over 12 weeks. In the obtained leachate, pH, EC, dissolved organic carbon, N, Ca, Mg, Al, and S were determined. Physicochemical parameters of the substrates and their basal respiration rate were determined. Rinsing and litter application lowered sulfur concentration in high contamination substrates. Pine litter application decreased EC and increased pH of the low-contaminated substrate. The substrate pH remained at low phytotoxic level (i.e., below 3.0), resulting in the low biological activity of the composites. Birch litter application increased leaching of N and Mg, indicating the possibility of an intensification of soil-forming processes in contaminated sites.
Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.
Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua
2008-11-30
A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.
Effects of fire in the Northern Great Plains
Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.
1989-01-01
This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.
Purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) pulp.
Yang, C P; Fujita, S; Ashrafuzzaman, M; Nakamura, N; Hayashi, N
2000-07-01
Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.
Electrolytes for Li-Ion Cells in Low Temperature Applications
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.
2000-01-01
Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.
Aoudj, S; Khelifa, A; Drouiche, N
2017-08-01
Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Kuan; Chang, Hao Han R; Shalviri, Alireza; Li, Jason; Lugtu-Pe, Jamie Anne; Kane, Anil; Wu, Xiao Yu
2017-11-01
Water-soluble polymers are often used as pore formers to tailor permeability of film-forming hydrophobic polymers on coated dosage forms. However, their addition to a coating formulation could significantly increase the viscosity thus making the coating process difficult. Moreover, the dissolution of pore formers after oral administration could compromise film integrity resulting in undesirable, inconsistent release profiles. Therefore, a non-leaching, pH-responsive nanoparticulate pore former is proposed herein to preserve film integrity and maintain pH-dependent permeability. Poly(methacrylic acid)-polysorbate 80-grafted-starch terpolymer nanoparticles (TPNs) were incorporated within an ethylcellulose (EC) film (TPN-EC) by casting or spray coating. TPNs at 10%wt (pore former level) only increased viscosity of EC coating suspension slightly while conventional pore formers increased the viscosity by 490-11,700%. Negligible leaching of TPNs led to superior mechanical properties of TPN-EC films compared to Eudragit® L-EC films. As pH increased from 1.2 to 6.8, TPN-EC films with 10% pore former level exhibited an 8-fold higher diltiazem permeability compared to Eudragit® L-EC films. The pH-dependent drug release kinetics of diltiazem HCl beads coated with TPN-EC films was tunable by adjusting the pore former level. These results suggest that the TPNs are promising pH-sensitive nanoparticulate pore formers in EC-coated dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Ning; Ivey, Chris D.; Brunson, Eric L.; Cleveland, Danielle; Ingersoll, Christopher G.; Stubblefield, William A.; Cardwell, Allison S.
2018-01-01
The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for aluminum (Al) and compiling a toxicity data set to update the WQC. Freshwater mussels are one of the most imperiled groups of animals in the world, but little is known about their sensitivity to Al. The objective of the present study was to evaluate acute 96‐h and chronic 28‐d toxicity of Al to a unionid mussel (Lampsilis siliquoidea) and a commonly tested amphipod (Hyalella azteca) at a pH of 6 and water hardness of 100 mg/L as CaCO3. The acute 50% effect concentration (EC50) for survival of both species was >6200 μg total Al/L. The EC50 was greater than all acute values in the USEPA acute Al data set for freshwater species at a pH range of 5.0 to <6.5 and hardness normalized to 100 mg/L, indicating that the mussel and amphipod were insensitive to Al in acute exposures. The chronic 20% effect concentration (EC20) based on dry weight was 163 μg total Al/L for the mussel and 409 μg total Al/L for the amphipod. Addition of the EC20s to the USEPA chronic Al data set for pH 5.0 to <6.5 would rank the mussel (L. siliquoidea) as the fourth most sensitive species and the amphipod (H. azteca) as the fifth most sensitive species, indicating the 2 species were sensitive to Al in chronic exposures. The USEPA‐proposed acute and chronic WQC for Al would adequately protect the mussel and amphipod tested; however, inclusion of the chronic data from the present study and recalculation of the chronic criterion would likely lower the proposed chronic criterion.
Kumar, S; Reusch, H P; Ladilov, Y
2008-01-01
Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important feature of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activity Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 +/- 1.3%versus 3.9 +/- 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 +/- 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.
Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.
Márquez, Gracia; Rodríguez, Eva M; Beltrán, Fernando J; Álvarez, Pedro M
2014-10-01
Aqueous solutions of mixtures of four pharmaceutical compounds (atenolol, hydrochlorothiazide, ofloxacin and trimethoprim) both in Milli-Q ultrapure water and in a secondary effluent from a municipal wastewater treatment plant have been treated at pH 7 by different oxidation methods, such as conventional ozonation, photolytic ozonation, TiO2 catalytic ozonation, TiO2 photocatalytic oxidation and TiO2 photocatalytic ozonation. Experiments were carried out using a solar compound parabolic concentrator. The performance results have been compared in terms of removal of emerging contaminants (ECs), generation rate of phenolic intermediates, organic matter mineralization, ecotoxicity removal and enhancement of biodegradability. Also, the consumption of ozone to achieve certain treatment goals (95% removal of ECs and 40% mineralization) is discussed. Results reveal that solar photocatalytic ozonation is a promising oxidation method as it led to the best results in terms of EC mineralization (∼85%), toxicity removal (∼90%) and efficient use of ozone (∼2mgO3mgEC(-1) to achieve complete EC removal and ∼18mgO3mgTOC(-1) to achieve 40% EC mineralization, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.
Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail
2018-02-01
In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.
Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.
Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio
2012-01-01
The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission.
Leong, Wan Mei; Geier, Renae; Engstrom, Sarah; Ingham, Steve; Ingham, Barbara; Smukowski, Marianne
2014-08-01
Potentially hazardous foods require time/temperature control for safety. According to the U.S. Food and Drug Administration Food Code, most cheeses are potentially hazardous foods based on pH and water activity, and a product assessment is required to evaluate safety of storage >6 h at 21°C. We tested the ability of 67 market cheeses to support growth of Listeria monocytogenes (LM), Salmonella spp. (SALM), Escherichia coli O157:H7 (EC), and Staphylococcus aureus (SA) over 15 days at 25°C. Hard (Asiago and Cheddar), semi-hard (Colby and Havarti), and soft cheeses (mozzarella and Mexican-style), and reduced-sodium or reduced-fat types were tested. Single-pathogen cocktails were prepared and individually inoculated onto cheese slices (∼10(5) CFU/g). Cocktails were 10 strains of L. monocytogenes, 6 of Salmonella spp., or 5 of E. coli O157:H7 or S. aureus. Inoculated slices were vacuum packaged and stored at 25°C for ≤ 15 days, with surviving inocula enumerated every 3 days. Percent salt-in-the-moisture phase, percent titratable acidity, pH, water activity, and levels of indigenous/starter bacteria were measured. Pathogens did not grow on 53 cheeses, while 14 cheeses supported growth of SA, 6 of SALM, 4 of LM, and 3 of EC. Of the cheeses supporting pathogen growth, all supported growth of SA, ranging from 0.57 to 3.08 log CFU/g (average 1.70 log CFU/g). Growth of SALM, LM, and EC ranged from 1.01 to 3.02 log CFU/g (average 2.05 log CFU/g), 0.60 to 2.68 log CFU/g (average 1.60 log CFU/g), and 0.41 to 2.90 log CFU/g (average 1.69 log CFU/g), respectively. Pathogen growth varied within cheese types or lots. Pathogen growth was influenced by pH and percent salt-in-the-moisture phase, and these two factors were used to establish growth/no-growth boundary conditions for safe, extended storage (≤25°C) of pasteurized milk cheeses. Pathogen growth/no-growth could not be predicted for Swiss-style cheeses, mold-ripened or bacterial surface-ripened cheeses, and cheeses made with nonbovine milk, as insufficient data were gathered. This challenge study data can support science-based decision making in a regulatory framework.
Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China
Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun
2015-01-01
To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525
Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh
2012-07-01
The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority of groundwater samples can be considered suitable for irrigation purposes.
Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea
NASA Astrophysics Data System (ADS)
Moon, S. H.; Kim, Y.
2015-12-01
There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.
Evaluation of mixed solvent electrolytes for ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Shen, D. H.; Subbarao, S.; Deligiannis, F.; Dawson, S.; Halpert, G.
1988-01-01
The ethylene carbonate/2-methyltetrahydrofuran (EC/2-MeTHF) mixed-solvent electrolyte has been experimentally found to possess many desirable electrolyte characteristics for ambient-temperature secondary Li-TiS2 cell applications. As many as 300 cycles have been demonstrated, and a cycling efficiency figure-of-merit of 38.5 percent, for 10-percent EC/90-percent MeTHF mixed-solvent electrolyte in experimental Li-TiS2 cells. The improved performance of this electrolyte is attributable to the formation of a beneficial passivating film on the Li electrode by interaction with the EC.
Fernandes, Alex Andrade; Moreira, Danilo Gomes; Brito, Ciro José; da Silva, Cristiano Diniz; Sillero-Quintana, Manuel; Pimenta, Eduardo Mendonça; Bach, Aaron J E; Garcia, Emerson Silami; Bouzas Marins, João Carlos
2016-12-01
Research into obtaining a fast, valid, reliable and non-invasive measure of core temperature is of interest in many disciplinary fields. Occupational and sports medicine research has attempted to determine a non-invasive proxy for core temperature particularly when access to participants is limited and thermal safety is of a concern due to protective encapsulating clothing, hot ambient environments and/or high endogenous heat production during athletic competition. This investigation aimed to determine the validity of inner canthus of the eye temperature (T EC ) as an alternate non-invasive measure of intestinal core temperature (T C ) during rest, exercise and post-exercise conditions. Twelve physically active males rested for 30min prior to exercise, performed 60min of aerobic exercise at 60% V̇O 2max and passively recovered a further 60min post-exercise. T EC and T C were measured at 5min intervals during each condition. Mean differences between T EC and T C were 0.61°C during pre-exercise, -1.78°C during exercise and -1.00°C during post-exercise. The reliability between the methods was low in the pre-exercise (ICC=0.49 [-0.09 to 0.82]), exercise (ICC=-0.14 [-0.65 to 0.44]) and post-exercise (ICC=-0.25 [-0.70 to 0.35]) conditions. In conclusion, poor agreement was observed between the T EC values measured through IRT and T C measured through a gastrointestinal telemetry pill. Therefore, T EC is not a valid substitute measurement to gastrointestinal telemetry pill in sports and exercise science settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Zhijun; Nahas, Y.; Prokhorenko, S.; Prosandeev, S.; Wang, D.; Íñiguez, Jorge; Bellaiche, L.
2018-03-01
An atomistic effective Hamiltonian is used to investigate electrocaloric (EC) effects of Pb (Mg1 /3Nb2 /3) O3 relaxor ferroelectrics in its ergodic regime, and subject to electric fields applied along the pseudocubic [111] direction. Such a Hamiltonian qualitatively reproduces (i) the electric field-versus-temperature phase diagram, including the existence of a critical point where first-order and second-order transitions meet each other; and (ii) a giant EC response near such a critical point. It also reveals that such giant response around this critical point is microscopically induced by field-induced percolation of polar nanoregions. Moreover, it is also found that, for any temperature above the critical point, the EC coefficient-versus-electric-field curve adopts a maximum (and thus larger electrocaloric response too), that can be well described by the general Landau-like model proposed by Jiang et al., [Phys. Rev. B 96, 014114 (2017)], 10.1103/PhysRevB.96.014114, and that is further correlated with specific microscopic features related to dipoles lying along different rhombohedral directions. Furthermore, for temperatures being at least 40 K higher than the critical temperature, the (electric field, temperature) line associated with this maximal EC coefficient is below both the Widom line and the line representing percolation of polar nanoregions.
Miao, J.; Barnhart, M.C.; Brunson, E.L.; Hardesty, D.K.; Ingersoll, C.G.; Wang, N.
2010-01-01
Acute 96-h ammonia toxicity to three-month-old juvenile mussels (Lampsilis siliquoidea) was evaluated in four treatments (water-only, water-only with feeding, water and soil, and water and sand) using an exposure unit designed to maintain consistent pH and ammonia concentrations in overlying water and in pore water surrounding the substrates. Median effect concentrations (EC50s) for total ammonia nitrogen in the four treatments ranged from 5.6 to 7.7mg/L and median lethal concentrations (LC50s) ranged from 7.0 to 11mg/L at a mean pH of 8.4. Similar EC50s or LC50s with overlapping 95% confidence intervals among treatments indicated no influence of substrate on the response of mussels in acute exposures to ammonia. ?? 2010 SETAC.
Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana
2013-12-01
The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Liu, D.
2017-12-01
Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.
Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S
2016-02-01
Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family.
Queirós, R B; Gouveia, C; Fernandes, J R A; Jorge, P A S
2014-12-15
An evanescent wave fiber optic sensor for detection of Escherichia coli (E. coli) outer membranes proteins (EcOMPs) using long period gratings (LPGs) as a refractometric platform is presented. The sensing probes were attained by the functionalization of LPGs inscribed in single mode fiber using two different methods of immobilization; electrostatic assembly and covalent binding. The resulting label-free configuration enabled the specific recognition of EcOMPs in water by monitoring the resonance wavelength shift due to refractive index changes induced by binding events. The sensors displayed linear responses in the range of 0.1 nM to 10 nM EcOMPs with sensitivities of -0.1563±0.005 nm decade(-1) [EcOMP, M] (electrostatic method) and -0.1597±0.004 nm decade(-1) [EcOMP, M] (covalent method). The devices could be regenerated (under low pH conditions) with a deviation less than 0.1% for at least three subsequent detection events. The sensors were also applied to spiked environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Qun; Zhao, Yamin; Wang, Dong; Xu, Yan
2013-12-01
Rhodotorula mucilaginosa, producing the ethyl carbamate (EC)-degrading enzyme, urethanase, was newly isolated from the Chinese rice wine making process. It removed 80 % of EC when it was incubated with 5.0 g/L EC. It grew and stably produced urethanase, with pH ranging from 7.0 to 3.0. In addition, urethanase production by R. mucilaginosa was systematically optimized. Glucose, yeast extract, peptone, and inoculum size were selected with the Plackett-Burman design. They were further optimized via uniform design and determined to be 24.6 g/L, 2.5 g/L, 23.1 g/L, and 65.8 mL/500 mL, respectively. Urethanase activity reached 4,340.0 U/L in the optimal fermentation condition. Furthermore, cell immobilization of R. mucilaginosa in calcium alginate/chitosan was applied to improve cell resistance to environmental stresses. The immobilized cells removed 51.6 % of EC in commercial rice wine, which was 10 times more than that of the free cells. It indicated that the immobilized R. mucilaginosa was effective for degrading EC.
Leaf Dynamics of Panicum maximum under Future Climatic Changes
Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto
2016-01-01
Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932
Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro
2011-03-01
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
Mamo, Gashaw; Thunnissen, Marjolein; Hatti-Kaul, Rajni; Mattiasson, Bo
2009-09-01
The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P2(1)2(1)2(1) and the structure was determined at a resolution of 2.1 A. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9-9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.
Comparison of the triple-point temperatures of {sup 20}Ne, {sup 22}Ne and normal Ne
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, T.; Tamura, O.; Nagao, K.
2013-09-11
At the National Metrology Institute of Japan (NMIJ), the triple points of {sup 20}Ne and {sup 22}Ne were realized using modular sealed cells, Ec3Ne20 and Ec8Ne22, made by the Istituto Nazionale di Ricerca Metrologica (INRiM) in Italy. The difference of the triple-point temperatures of {sup 20}Ne and {sup 22}Ne was estimated by using the sub-range of standard platinum resistance thermometers (SPRTs) calibrated by NMIJ on the International Temperature Scale of 1990 (ITS-90). The melting curves obtained with the Ec3Ne20 and Ec8Ne22 cells show narrow widths (0.1 mK) over a wide range of the inverse of the melted fraction (1/F) frommore » 1/F=1 to 1/F=10. The liquidus point T{sub tp} estimated by the melting curves from F∼0.5 to F∼0.85 using the Ec8Ne22 is 0.146 29 (4) K higher than that using the Ec3Ne20 cell, which is in good agreement with that observed by INRiM using the same cells. After correction of the effect of impurities and other isotopes for Ec3Ne20 and Ec8Ne22 cells, the difference of T{sub tp} between pure {sup 20}Ne and pure {sup 22}Ne is estimated to be 0.146 61 (4) K, which is consistent with the recent results reported elsewhere. The sub-ranges of SPRTs computed by using the triple point of {sup 20}Ne or {sup 22}Ne realized by the Ec3Ne20 cell or the Ec8Ne22 cell in place of the triple point of Ne for the defining fixed point of the ITS-90 are in good agreement with those realized on the basis of the ITS-90 at NMIJ within 0.03 mK, which is much smaller than the non-uniqueness and the sub-range inconsistency of SPRTs.« less
Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study.
Brown, Sally; Svendsen, Alex; Henry, Chuck
2009-01-01
A field study was conducted to test the ability of biosolids (BS) and different types of lime to increase soil pH, neutralize subsoil acidity, and restore a vegetative cover to alluvial mine tailings in Leadville, CO. The tailings had soil pH of 5.2 and total Cd, Pb, and Zn of 75+/-20, 2600+/-1100, and 6700+/-1900 mg kg(-1). Types of lime included agricultural lime (AL), sugar beet lime (SBL), and lime kiln dust (LKD) applied at 224 Mg ha(-1) calcium carbonate equivalent. Plots were established in 2000 and monitored intermittently through 2007. All amendments increased pH in surface and subsurface depths, with LKD, LKD+BS, and SBL+BS being the most effective. Amendments also reduced 0.01 mol L(-1) Ca(NO3)2 extractable Zn and Cd compared to the control. Plant growth was sparse on all treatments with limited yield for three of four harvests. Poor growth may have been related to elevated electrical conductivity (EC). All amendments except LKD alone (5.79 dS m(-1)) increased EC compared to the control treatment (5.28 dS m(-1)). Electrical conductivity was highest in 2002 which had the lowest summer rainfall. In 2005 EC in all treatments except the SBL+BS was similar in the surface soil. Aboveground plant tissue concentrations of Zn and Cd were also elevated. Limited precipitation and high electrical conductivity may be responsible for poor plant growth. Higher rainfall for the last sampling period resulted in significant growth in the LKD+BS, SBL+BS, and LKD alone treatments.
Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.
Kuan, W H; Hu, C Y; Chiang, M C
2009-01-01
A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.
Son, Jino; Shin, Key-il; Cho, Kijong
2009-11-01
A central composite design (CCD) was employed to investigate the effects of organic matter (OM) content and soil pH on the reproduction, and chronic toxicity (28-d EC(50-reproduction)) of cadmium for Paronychiurus kimi after 28days exposure in a standard artificial soil. Two statistical models were developed, one describing reproduction in control artificial soils as a function of OM content and pH, and the other describing cadmium toxicity to the same soil parameters. In the reproduction model, pH was the most important factor, followed by two quadratic factors of OM(2) and pH(2). The parameter pH alone could explain 75.5% of the response variation. The reproduction model will allow us to predict a mean reproduction in the non-treated control soils that contain various combinations of OM content and different pH values. In the chronic toxicity model, only the linear factor of the OM content and pH significantly (p<0.05) affect cadmium toxicity, which explains the 78.9% and 14.9% of total response variance, respectively. Therefore, the final polynomial regression describing the chronic toxicity of cadmium to P. kimi is as follows: predicted 28-d EC(50) of cadmium (mgkg(-1))=-21.231+2.794 x OM+4.874 x pH. The present study show that soil characteristics, which can alter the toxicity of cadmium, can also act as stressors themselves in regards to the reproduction of P. kimi. Based on the physico-chemical characteristics of the test media, the response surface model developed in this study can be used to provide initial toxicity information for cadmium within a region of interest in terms of OM content and pH, and may lead to more scientific based risk assessment for metals.
Control of abusive water addition to Octopus vulgaris with non-destructive methods.
Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara
2018-01-01
Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P
2006-03-01
The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.
Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan
2002-05-01
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.
NASA Astrophysics Data System (ADS)
Delaire, C.; Van Genuchten, C. M.; Amrose, S. E.; Gadgil, A.
2013-12-01
Around 60 million people in South Asia drink groundwater from arsenic contaminated shallow aquifers. Research over the last two decades has focused on arsenic removal alone to mitigate this problem, largely ignoring possible microbial contamination of shallow groundwater. However, diarrheal diseases are still prevalent in the region and recently, fecal indicators and pathogens were detected in shallow tubewells in Bangladesh. Comprehensive treatment technologies addressing both microbial and arsenic contamination are needed and may have a higher social acceptability, contributing to their sustainability in resource poor areas. Iron electro-coagulation (EC) is a low-cost and low-waste process using small amounts of electricity to produce Fe(III)-oxides that serve as an adsorbent for arsenic and a coagulant for microbes. Iron EC relies on the oxidative dissolution of a Fe(0) anode to produce Fe(II) ions that rapidly oxidize and precipitate in the presence of oxygen. In the process, strong oxidants generated by Fenton-like reactions convert As(III) into As(V), which is more amenable to adsorption. In this work, we demonstrate that iron EC can simultaneously remove arsenic and the model organism E.coli in South Asian synthetic groundwater. We find that E.coli is attenuated because it adheres to iron precipitates and is trapped in aggregates that settle out. Some inactivation (~20%, as probed by membrane permeability stains) also takes place, likely due to oxidative stress caused by strong oxidants produced in Fenton-like reactions. We find that pH has a significant effect on E.coli removal from South Asian synthetic groundwater. The iron dosages required to achieve 4-log attenuation (from an initial concentration of 10^6.4 CFU/mL) at pH 6.6. and 7.5 are 25 and 140 mg-Fe/L respectively, other parameters being equal. In this pH range, iron precipitates generated in synthetic groundwater have a negative surface charge, whose variation cannot entirely explain the sensitivity of bacterial attenuation to pH. We propose an alternative explanation involving Fe(II) oxidation rate. We use TEM and ATR-FTIR spectroscopy to investigate how E.coli binds to EC-precipitates. TEM enables identifying where iron particles are located with respect to the cell surface (e.g. in EPS at a distance from the cell, on the cell surface, or inside the periplasm). Analysis of ATR-FTIR spectra in the mid-IR region (800 to 1700 cm-1) allows detection of possible covalent bonds between carboxyl or phosphate residues on the cell wall and EC-precipitates. We build on these results to discuss the strength and robustness of attachment.
Evaluation of quick tests for phosphorus determination in dairy manures.
Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B
2005-05-01
Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.
Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P
2012-07-27
In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.
Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo
2016-01-01
Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.
Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities.
Zhao, Qingyun; Xiong, Wu; Xing, Yizhang; Sun, Yan; Lin, Xingjun; Dong, Yunping
2018-04-17
Long-term monoculture severely inhibits coffee plant growth, decreases its yield and results in serious economic losses in China. Here, we selected four replanted coffee fields with 4, 18, 26 and 57 years of monoculture history in Hainan China to investigate the influence of continuous cropping on soil chemical properties and microbial communities. Results showed long-term monoculture decreased soil pH and organic matter content and increased soil EC. Soil bacterial and fungal richness decreased with continuous coffee cropping. Principal coordinate analysis suggested monoculture time was a major determinant of bacterial and fungal community structures. Relative abundances of bacterial Proteobacteria, Bacteroidetes and Nitrospira and fungal Ascomycota phyla decreased over time. At genus level, potentially beneficial microbes such as Nitrospira and Trichoderma, significantly declined over time and showed positive relationships with coffee plant growth in pots. In conclusion, continuous coffee cropping decreased soil pH, organic matter content, potentially beneficial microbes and increased soil EC, which might lead to the poor growth of coffee plants in pots and decline of coffee yields in fields. Thus, developing sustainable agriculture to improve soil pH, organic matter content, microbial activity and reduce the salt stress under continuous cropping system is important for coffee production in China.
Influence of softening sequencing on electrocoagulation treatment of produced water.
Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar
2015-01-01
Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of metal mobility from copper mine tailings in northern Chile.
Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A
2016-06-01
This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.
Alcañiz, M; Outeiro, L; Francos, M; Farguell, J; Úbeda, X
2016-12-01
This study examines the effects of a prescribed fire on soil chemical properties in the Montgrí Massif (Girona, Spain). The prescribed forest fire was conducted in 2006 to reduce understory vegetation and so prevent potential severe wildfires. Soil was sampled at a depth of 0-5cm at 42 sampling points on four separate occasions: prior to the event, immediately after, one year after and nine years after. The parameters studied were pH, electrical conductivity (EC), total carbon (C), total nitrogen (N), available phosphorus (P), potassium (K + ), calcium (Ca 2+ ) and magnesium (Mg 2+ ). All parameters (except pH) increased significantly immediately after the fire. One year after burning, some chemical parameters - namely, EC, available P and K + - had returned to their initial, or even lower, values; while others - pH and total C - continued to rise. Total N, Ca 2+ and Mg 2+ levels had fallen one year after the fire, but levels were still higher than those prior to the event. Nine years after the fire, pH, total C, total N and available P are significantly lower than pre-fire values and nutrients concentrations are now higher than at the outset but without statistical significance. The soil system, therefore, is still far from being recovered nine years later. Copyright © 2016 Elsevier B.V. All rights reserved.
A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers
NASA Astrophysics Data System (ADS)
Sliski, David H.; Blake, Cullen H.; Halverson, Samuel
2017-12-01
We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.
Zhuo, Qiongfang; Ma, Hongzhu; Wang, Bo; Gu, Lin
2007-04-02
The new catalytic decoloration of C.I. Acid Red 3R with electro-coagulation (EC) method assisted by cobalt phosphomolybdate modified kaolin has been studied. The result showed that this process could effectively remove the C.I. Acid Red 3R contained in wastewater and its color removal efficiency could reach up to 98.3% in 7 min. The kinetics of the catalytic decolorization of Acid Red 3R was also studied. The decolorization reaction order was dependent on the initial concentration [R](0) with respect to the concentration of C.I. Acid Red 3R. At lower [R](0) the order was first, which then decreases with increasing [R](0). The operating parameters such as initial pH, current density and temperature were also investigated. A possible reaction mechanism was proposed.
Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.
2013-01-01
Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086
Bansal, Baljinder K; Hamann, Joern; Grabowskit, Nils Th; Singh, Krishan B
2005-05-01
Seven variables--electrical conductivity (EC), somatic cell count (SCC), N-acetyl-beta-D-glucosaminidase (NAGase), lactose, protein, fat and pH--were compared in four quarter milk fractions (MF1: strict foremilk; MF2: first 12-15 ml foremilk; MF3: subsequent 40-45 ml milk; MF4: strippings) and in one cow composite milk sample (CC) per cow. The study used 142 quarters from 37 lactating cows of the German Black Pied breed. To rule out any possible effect due to management, animal physiology and analytical procedures, the collection and processing of milk samples from each cow was repeated for three consecutive days, and the means of 3-d values were used. All variables were affected significantly by milk fraction and udder health. Compared with foremilk, EC, lactose and protein levels in strippings decreased, while SCC, NAGase and fat increased. The pH of foremilk and strippings did not differ significantly in healthy or in mastitic quarters. The difference between MF1 and MF2 was significant for EC in mastitic quarters, and for SCC in healthy quarters only. In general, mastitis resulted in a significant increase in EC, SCC, NAGase and protein but in a decrease in lactose and fat contents of milk in one or more of the milk fractions studied. Comparison of cow composite milk samples from healthy and mastitic cows revealed the significance (P < 0.01) of udder health for EC, SCC and lactose. Of the different parameters that can distinguish between healthy and mastitic quarters or cows, EC could be used to classify 76% of quarters and 73% of cows correctly, while the lactose content permitted correct identification of 81% of quarters and 76% of cows. NAGase and pH could be used to determine the status of 73% and 61% of quarters, respectively. In general, the correlation observed in strippings was higher than in foremilk for almost all the variables studied. Surprisingly, EC, SCC, NAGase and lactose in milk from healthy quarters of mastitic cows (with at least one mastitic quarter) differed significantly (P < 0.05) from those from healthy quarters of cows with all four healthy quarters, indicating an inconsistent effect of mastitic quarters on neighbouring healthy quarters (quarter interdependence).
Lhoste, E F; Catala, I; Fiszlewicz, M; Gueugneau, A M; Popot, F; Vaissade, P; Corring, T; Szylit, O
1996-03-01
Dietary proteins are degraded by both endogenous enzymes and the caecal microflora. In conventional rats the enzyme content of the pancreas depends on the amount of dietary protein. The influence of the caecal microflora on this process is unknown. We report here the effect of the caecal microflora on pancreatic enzymes (proteases, amylase (EC 3.2.1.1), lipase (EC 3.1.1.3)) and on colonic metabolites (NH3, urea, short-chain fatty acids). Germ-free and conventional male Fischer rats were fed for 3 weeks with a diet containing 220 or 450 g protein/kg provided as a mixture of fish concentrate and soyabean isolate. The excretion of NH3 and the pH were specifically increased by the high-protein diet in the germ-free rats. The higher production of isobutyrate, valerate and isovalerate in conventional rats fed on the high-protein diet reflected a high bacterial proteolytic activity since these short-chain fatty acids are specific indicators of this activity. The microflora hydrolysed urea to NH3 and maintained the pH at neutrality whatever the amount of protein in the diet since there were changes in germ-free rats but not in conventional ones. In germ-free rats, amylase, trypsin (EC 3.4.21.4), elastase (EC 3.4.21.36) and carboxypeptidase A (EC 3.4.17.1) specific activities were significantly lower than in conventional rats. The adaptation of the pancreas to the 450 g protein/kg diet was not impaired by the bacterial status except for the specific activity of chymotrypsin (EC 3.4.21.1) which was more increased by this diet in germ-free than in conventional rats. Moreover, the specific activity of lipase increased only in conventional rats fed on the 450 g protein/kg diet. In conclusion, we observed a relationship between the enzyme content of the pancreas and the presence or absence of the caecal microflora suggesting that bacterial fermentation influences pancreatic function.
Deutch, Charles E
2013-11-01
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.
NASA Astrophysics Data System (ADS)
Gulamali, Murtaza; Leinov, Eli; Jackson, Matthew; Pain, Christopher
2010-05-01
Downhole measurements of electrokinetic (EK) streaming potential, using electrodes mounted on the outside of insulated casing, has been shown to be useful for informing production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric (TE) and/or electrochemical (EC) effects may also be present during production and may contribute to the signal measured at the production well. We present a study of the contribution of these effects based on numerical models of subsurface potentials during production. We find that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both TE and EC potential signals in an oil reservoir, which may be measured at the production well along with EK potential signals. In particular, there is a peak in the TE potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The EC potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the TE and EC coupling coefficient. When we use the maximum theoretical magnitude for the TE and EC coupling coefficients, in the case of a perfect membrane, the lag in the temperature front relative to the saturation front leads to a negligible TE potential signal at the production well until long after water breakthrough occurs. In contrast, the EC potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front approximately coincide. The dependence of the TE and EC coupling coefficients upon temperature, salinity and/or partial water saturation is still uncertain. We explore the contribution of the EK and EC potential signals to the overall signal measured at the well as a function of salinity and water saturation. Our results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.
Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen
2017-05-24
Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.
GREENROOF RUNOFF WATER QUALITY
Runoff samples were collected from 5 experimental green roof test plots on small buildings at the Center for Green Roof Research at Rock Springs, PA during the period from January 2005 through May 2006. Samples were either analyzed in-house for pH, Electrical Conductivity (EC), T...
Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review
NASA Astrophysics Data System (ADS)
Zailani, L. W. M.; Zin, N. S. M.
2018-04-01
Electrocoagulation is a method that has a great ability on various wastewater and leachate treatment. It has a potential in removing various pollutants such as chemical oxygen demand, turbidity, ammonia, color, and suspended solid. The effectiveness of electrocoagulation method depends on several factors such as electrode, current density, operation time and pH. The aim of this paper is to review the relevant literature that publishes from 2000 to 2015 on the factor that influence Electrocoagulation (EC). The review describes, discussing and compare the factors that influence the EC process in various wastewater and leachate treatment.
Control of Hepatic Glucose Metabolism by the Oral Hypoglycemic Sulfonylureas
1984-05-11
another In vitro study, Vignerl, et al. (1982) were unable to detect any effect on Insulin binding to MCF-7 human breast cancer cells, IM-9 human cultured...according to the method of Huljlng (1970). Aspirgillus niger amyloglucosidase (1,4 a- glucan glucohy- drolase; E.C. 3.2.1.3), (0.5 U) and 0.38 U of porcine...pancreatic a-amylase (1,6 a- glucan glucohydrolase; E.C. 3.2.1.1), in 1.0 ml of 100 mM sodium acetate buffer (pH 4.8) were added to the glycogen 34
Hosseinifard, Seyed Javad; Mirzaei Aminiyan, Milad
One of the important purposes of hydrology is to ensure water supply in accordance with the quality criteria for agricultural, industrial, and drinking water uses. The groundwater is the main source of water supply in arid and semi-arid regions. This study was conducted to evaluate factors regulating groundwater quality in Rafsanjan plain. A total of 1040 groundwater samples randomly were collected from different areas of Rafsanjan. Then, each sample was analyzed for the major ions based on standard methods. The pH, SAR, EC, and TDS parameters and concentrations of Ca 2+ , Mg 2+ , and Na + cations, and Cl - , [Formula: see text], [Formula: see text] and [Formula: see text] anions were measured. Also boron concentration in each sample was determined. Although, maximum and minimum values of EC and TDS linked to the Anar-Beyaz area and Eastern Urban, respectively, irrigation water EC condition, however, was critical in the study areas. The pH value in Western Urban was higher than the other areas, and its value for Anar-Beyaz area was lower than the other areas, but pH value is at the optimal level in all the study areas. The results showed that hazard state with respect to Mg was critical except in Koshkoueiyeh and Anar-Beyaz areas, that these areas are marginal for irrigation use with little harm with reference to Mg. From the results, it was concluded that the status of boron concentration in study areas was critical. According to the hydrochemistry diagrams, the main groundwater type in different study areas was NaCl. Groundwater quality was not appropriate for drinking usage, and its status for agricultural practices was unsuitable in these areas.
Electro-oxidation and characterization of nickel foam electrode for removing boron.
Kartikaningsih, Danis; Huang, Yao-Hui; Shih, Yu-Jen
2017-01-01
The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm -2 ), and initial concentration of boron (10-100 mg L -1 ). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH) 2 , a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm -2 was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L -1 did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L -1 -B, leaving less than 0.1 mg L -1 -B in the electrolyte, were pH 8 and 1.25 mA cm -2 for 120 min. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, C P; Fujita, S; Kohno, K; Kusubayashi, A; Ashrafuzzaman, M; Hayashi, N
2001-03-01
Polyphenol oxidase (EC 1.10.3.1, o-diphenol: oxygen oxidoreductase, PPO) of banana (Musa sapientum L.) peel was partially purified about 460-fold with a recovery of 2.2% using dopamine as substrate. The enzyme showed a single peak on Toyopearl HW55-S chromatography. However, two bands were detected by staining with Coomassie brilliant blue on PAGE: one was very clear, and the other was faint. Molecular weight for purified PPO was estimated to be about 41 000 by gel filtration. The enzyme quickly oxidized dopamine, and its Km value (Michaelis constant) for dopamine was 3.9 mM. Optimum pH was 6.5 and the PPO activity was quite stable in the range of pH 5-11 for 48 h. The enzyme had an optimum temperature at 30 degrees C and was stable up to 60 degrees C after heat treatment for 30 min. The enzyme activity was strongly inhibited by sodium diethyldithiocarbamate, potassium cyanide, L-ascorbic acid, and cysteine at 1 mM. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.
Singh, Ram Sarup; Dhaliwal, Rajesh; Puri, Munish
2007-05-01
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.
Towards understanding the effects of additives on the vermicomposting of sewage sludge.
Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian
2015-03-01
This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.
Single-step purification and characterization of recombinant aspartase of Aeromonas media NFB-5.
Singh, Ram Sarup; Yadav, Mukesh
2012-07-01
Aspartase (L-aspartate ammonia-lyase; EC 4.3.1.1) catalyzes the reversible amination of fumaric acid to produce L-aspartic acid. Aspartase coding gene (aspA) of Aeromonas media NFB-5 was cloned, sequenced, and expressed with His tag using pET-21b⁺ expression vector in Escherichia coli BL21. Higher expression was obtained with IPTG (1.5 mM) induction for 5 h at 37 °C in LB medium supplemented with 0.3% K₂HPO₄ and 0.3% KH₂PO₄. Recombinant His tagged aspartase was purified using Ni-NTA affinity chromatography and characterized for various biochemical and kinetic parameters. The purified aspartase showed optimal activity at pH 8.5 and 8.0 in the presence and absence of magnesium ions, respectively. The optimum temperature was determined to be 35 °C. The enzyme showed apparent K(m) and V(max) values for L-aspartate as 2.01 mM and 114 U/mg, respectively. The enzyme was stable in pH range of 6.5-9.5 and temperature up to 45 °C. Divalent metal ion requirement of enzyme was efficiently fulfilled by Mg²⁺, Mn²⁺, and Ca²⁺ ions. The cloned gene (aspA) product showed molecular weight of approximately 51 kDa by SDS-PAGE, which is in agreement with the molecular weight calculated from putative amino acid sequence. This is the first report on expression and characterization of recombinant aspartase from A. media.
Effect of alpha-particle irradiation on the electrical properties of n-type Ge
NASA Astrophysics Data System (ADS)
Roro, K. T.; Janse van Rensburg, P. J.; Auret, F. D.; Coelho, S.
2009-12-01
Deep-level transient spectroscopy was used to investigate the effect of alpha particle irradiation on the electrical properties of n-type Ge. The samples were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radionuclide source. The main defects introduced were found to be electron traps with energy levels at EC-0.38, EC-0.21, EC-0.20, EC-0.15, and EC-0.10 eV, respectively. The main defects in alpha particle irradiation are similar to those introduced by MeV electron irradiation, where the main defect is the E-center. A quadratic increase in concentration as a function of dose is observed.
Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E
2009-04-01
The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.
Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu
2010-08-15
In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.
Single Electron Delivery to Lewis Pairs: An Avenue to Anions by Small Molecule Activation.
Liu, Liu Leo; Cao, Levy L; Shao, Yue; Stephan, Douglas W
2017-07-26
Single electron transfer (SET) reactions are effected by the combination of a Lewis acid (e.g., E(C 6 F 5 ) 3 E = B or Al) with a small molecule substrate and decamethylferrocene (Cp* 2 Fe). Initially, the corresponding reactions of (PhS) 2 and (PhTe) 2 were shown to give the species [Cp* 2 Fe][PhSB(C 6 F 5 ) 3 ] 1 and [Cp* 2 Fe][(μ-PhS)(Al(C 6 F 5 ) 3 ) 2 ] 2 and [Cp* 2 Fe][(μ-PhTe)(Al(C 6 F 5 ) 3 ) 2 ] 3, respectively. Analogous reactions with di-tert-butyl peroxide yielded [Cp* 2 Fe][(μ-HO)(B(C 6 F 5 ) 3 ) 2 ] 4 with isobutene while with benzoyl peroxide afforded [Cp* 2 Fe][PhC(O)OE(C 6 F 5 ) 3 ] (E = B 5, Al 6). Evidence for a radical pathway was provided by the reaction of Ph 3 SnH and p-quinone afforded [Cp* 2 Fe][HB(C 6 F 5 ) 3 ] 7 and [Cp* 2 Fe] 2 [(μ-O 2 C 6 H 4 )(E(C 6 F 5 ) 3 ) 2 ] (E = B 8, Al 9). In addition, the reaction of TEMPO with Lewis acid and Cp* 2 Fe afforded [Cp* 2 Fe][(C 5 H 6 Me 4 NOE(C 6 F 5 ) 3 ] (E = B 10, Al 11). Finally, reactions with O 2 , Se, Te and S 8 gave [Cp* 2 Fe] 2 [((C 6 F 5 ) 2 Al(μ-O)Al(C 6 F 5 ) 3 ) 2 ] 2 12, [Cp* 2 Fe] 2 [((C 6 F 5 ) 2 Al(μ-Se)Al(C 6 F 5 ) 3 ) 2 ] 2 13, [Cp* 2 Fe][(μ-Te) 2 (Al(C 6 F 5 ) 2 ) 3 ] 14 and [Cp* 2 Fe] 2 [(μ-S 7 )B(C 6 F 5 ) 3 ) 2 ] 15, respectively. The mechanisms of these SET reactions are discussed, and the ramifications are considered.
Stressler, Timo; Ewert, Jacob; Merz, Michael; Funk, Joshua; Claaßen, Wolfgang; Lutz-Wahl, Sabine; Schmidt, Herbert; Kuhn, Andreas; Fischer, Lutz
2016-01-01
Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition. PMID:27003449
Stressler, Timo; Ewert, Jacob; Merz, Michael; Funk, Joshua; Claaßen, Wolfgang; Lutz-Wahl, Sabine; Schmidt, Herbert; Kuhn, Andreas; Fischer, Lutz
2016-01-01
Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.
Electric and hybrid vehicles environmental control subsystem study
NASA Technical Reports Server (NTRS)
1981-01-01
An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek
2017-10-01
The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.
NASA Astrophysics Data System (ADS)
Cao, Y.; Xing, L.; Zhang, T.
2017-12-01
To reconstruct and compare the SST changes in different regions of the ECS over the last 100 years, in this study, we analyzed iGDGTs compounds and TEX86 index in two sediment cores (DH5-1 and DH6-2) from the inner shelf of the East China Sea (ECS). GDGT-0 and GDGT-5 in the two cores account for 80% of iGDGTs, significantly more abundant than the other iGDGTs compounds. It is also found that iGDGTs are mainly derived from marine Thaumarchaeota. TEXH86 temperatures varied from 17 °C to 22 °C (average 19.4 °C), showing a gradual increase in Core DH5-1 near the Changjiang River Estuary, corresponding to global warming and temperature rise in the ECS over the last 100 years. However, in Core DH6-2 further away from the Changjiang River Estuary, TEXH86 temperatures gradually decreased over the last 80 years with a range of 15.3 °C-18.3 °C, which is attributed to the strengthened near-shore Kuroshio Branch Current transporting more subsurface cold water to the ECS coastal area. In future, more sites should be investigated to confirm the range of the coastal area where the decrease in SST is caused by upwelling subsurface water.
Optimization of immunostaining on flat-mounted human corneas.
Forest, Fabien; Thuret, Gilles; Gain, Philippe; Dumollard, Jean-Marc; Peoc'h, Michel; Perrache, Chantal; He, Zhiguo
2015-01-01
In the literature, immunohistochemistry on cross sections is the main technique used to study protein expression in corneal endothelial cells (ECs), even though this method allows visualization of few ECs, without clear subcellular localization, and is subject to the staining artifacts frequently encountered at tissue borders. We previously proposed several protocols, using fixation in 0.5% paraformaldehyde (PFA) or in methanol, allowing immunostaining on flatmounted corneas for proteins of different cell compartments. In the present study, we further refined the technique by systematically assessing the effect of fixative temperature. Last, we used optimized protocols to further demonstrate the considerable advantages of immunostaining on flatmounted intact corneas: detection of rare cells in large fields of thousands of ECs and epithelial cells, and accurate subcellular localization of given proteins. The staining of four ubiquitous proteins, ZO-1, hnRNP L, actin, and histone H3, with clearly different subcellular localizations, was analyzed in ECs of organ-cultured corneas. Whole intact human corneas were fixed for 30 min in 0.5% paraformaldehyde or pure methanol at four temperatures (4 °C for PFA, -20 °C for methanol, and 23, 37, and 50 °C for both). Experiments were performed in duplicate and repeated on three corneas. Standardized pictures were analyzed independently by two experts. Second, optimized immunostaining protocols were applied to fresh corneas for three applications: identification of rare cells that express KI67 in the endothelium of specimens with Fuch's endothelial corneal dystrophy (FECD), the precise localization of neural cell adhesion molecules (NCAMs) in normal ECs and of the cytokeratin pair K3/12 and CD44 in normal epithelial cells, and the identification of cells that express S100b in the normal epithelium. Temperature strongly influenced immunostaining quality. There was no ubiquitous protocol, but nevertheless, room temperature may be recommended as first-line temperature during fixation, instead of the conventional -20 °C for methanol and 4 °C for PFA. Further optimization may be required for certain target proteins. Optimized protocols allowed description of two previously unknown findings: the presence of a few proliferating ECs in FECD specimens, suggesting ineffective compensatory mechanisms against premature EC death, and the localization of NCAMs exclusively in the lateral membranes of ECs, showing hexagonal organization at the apical pole and an irregular shape with increasing complexity toward the basal pole. Optimized protocols were also effective for the epithelium, allowing clear localization of cytokeratin 3/12 and CD44 in superficial and basal epithelial cells, respectively. Finally, S100b allowed identification of clusters of epithelial Langerhans cells near the limbus and more centrally. Fixative temperature is a crucial parameter in optimizing immunostaining on flatmounted intact corneas. Whole-tissue overview and precise subcellular staining are significant advantages over conventional immunohistochemistry (IHC) on cross sections. This technique, initially developed for the corneal endothelium, proved equally suitable for the corneal epithelium and could be used for other superficial mono- and multilayered epithelia.
Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.
2007-01-01
The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.
Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.
2018-03-01
The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.
Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y
1992-07-01
A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.
Veale, Margaret F; Healey, Geraldine; Sran, Amrita; Payne, Katherine A; Zia, Majid; Sparrow, Rosemary L
2015-01-01
Extended room temperature (RT) hold of whole blood (WB) may affect the quality of red blood cell (RBC) components produced from these donations. The availability of better RBC additive solutions (ASs) may help reduce the effects. A new AS, AS-7 (SOLX, Haemonetics Corporation), was investigated for improved in vitro quality of RBCs prepared from WB held overnight at RT. Sixteen WB units were held for 21.4 hours ± 40 minutes at 22°C on cooling plates before processing. Each pair of ABO-matched WB units were pooled, divided into a WB filter pack containing saline-adenine-glucose-mannitol (control) and a LEUKOSEP WB-filter pack containing SOLX, and processed according to manufacturer's instructions. RBCs were stored at 2 to 6°C and sampled weekly until expiry. Glycophorin A (GPA+) and annexin V-binding microparticles (MPs) were quantitated using flow cytometry. Osmotic fragility, intracellular pH (pHi), adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG), and routine quality variables were measured. Adhesion of RBCs to human endothelial cells (ECs) was evaluated by flow perfusion under low shear stress (0.5 dyne/cm(2) ), similar to low blood flow in microvessels. ATP and 2,3-DPG levels were improved for SOLX-RBCs. SOLX-RBCs maintained higher pHi, increased resistance to hypotonic stress, and reduced numbers of GPA+ MPs. No significant difference was observed between annexin V binding to MPs or adhesion of RBCs to ECs under shear stress. SOLX-stored RBCs showed increased osmotic resistance, pHi, and reduced GPA+ MPs and together with higher ATP and 2,3-DPG levels demonstrated improved in vitro RBC quality measures during 42 days of storage. © 2014 AABB.
Adaptive response due to changes in gene regulation: a study with Drosophila.
McDonald, J F; Chambers, G K; David, J; Ayala, F J
1977-01-01
In spite of the critical role of the process of adaptation in evolution, there are few detailed studies of the genotypic and molecular basis of the process. Drosophila melanogaster flies selected for increased tolerance to ethanol exhibited higher levels of alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1) activity than unselected controls. A series of tests (electrophoresis, product inhibition, temperature stability, pH optima, substrate specificity, and Michaelis constants) gave no evidence of structural differences in the enzyme of the selected and the control flies. However, quantitative immunological assays showed that the selected flies contained significantly higher amounts of alcohol dehydrogenase. Adaptation of the selected flies to higher alcohol tolerance has most likely taken place by changes not in the structural gene locus coding for the enzyme, but by regulatory changes affecting the amount of gene product. Images PMID:412190
Water state changes during the composting of kitchen waste.
Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang
2015-04-01
Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Singh, Kiran; Giri, B S; Sahi, Amrita; Geed, S R; Kureel, M K; Singh, Sanjay; Dubey, S K; Rai, B N; Kumar, Surendra; Upadhyay, S N; Singh, R S
2017-10-01
The main objective of this study was to evaluate the performance of wood charcoal as biofilter media under transient and high loading condition. Biofiltration of xylene was investigated for 150days in a laboratory scale unit packed with wood charcoal and inoculated with mixed microbial culture at the xylene loading rates ranged from 12 to 553gm -3 h -1 . The kinetic analysis of the xylene revealed absence of substrate inhibition and possibility of achieving higher elimination under optimum condition. The pH, temperature, pressure drop and CO 2 production rate were regularly monitored during the experiments. Throughout experimental period, the removal efficiency (RE) was found to be in the range of 65-98.7% and the maximum elimination capacity (EC) was 405.7gm -3 h -1 . Molecular characterization results show Bacillus sp. as dominating microbial group in the biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones
Cannatelli, Mark D.; Ragauskas, Arthur J.
2015-06-05
Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less
NASA Astrophysics Data System (ADS)
Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia
2017-11-01
Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.
Wide-Temperature Electrolytes for Lithium-Ion Batteries.
Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu
2017-06-07
Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.
What Climate Sensitivity Index Is Most Useful for Projections?
NASA Astrophysics Data System (ADS)
Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy
2018-02-01
Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.
Li, Jitao; Han, Junying; Chen, Ping; Chang, Zhiqiang; He, Yuying; Liu, Ping; Wang, Qingyin; Li, Jian
2012-06-01
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. In this study, a heat shock protein 90 cDNA named EcHSP90 was cloned from the hepatopancreas of ridgetail white prawn Exopalaemon carinicauda by reverse transcription polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcHSP90 was of 2695 bp, including an open reading frame (ORF) of 2163 bp encoding a polypeptide of 720 amino acids with an estimated molecular mass of 82.73 kDa and an estimated isoelectric point of 4.83. BLAST analysis revealed that the EcHSP90 shared high similarity (87.6%-75.24%) with other known HSP90s. The five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in EcHSP90, which indicated that EcHSP90 should be a cytosolic member of the HSP90 family. Quantitative real-time RT-PCR analysis revealed that EcHSP90 transcript could be detected in all the tested tissues, and strongly expressed in ovary of E. carinicauda. The transcript of EcHSP90 in hepatopancreas of E. carinicauda showed different expression profiles after pH and ammonia-N stresses. The results indicated that EcHSP90 was a constitutive and inducible expressed protein and could be induced by various stresses from environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kumar, Raju; Singh, Satyendra
2018-02-16
Electrocaloric (EC) refrigeration, an EC effect based technology has been accepted as an auspicious way in the development of next generation refrigeration due to high efficiency and compact size. Here, we report the results of our experimental investigations on electrocaloric response and electrical energy storage properties in lead-free nanocrystalline (1 - x)K 0.5 Na 0.5 NbO 3 -xLiSbO 3 (KNN-xLS) ceramics in the range of 0.015 ≤ x ≤ 0.06 by the indirect EC measurements. Doping of LiSbO 3 has lowered both the transitions (T C and T O-T ) of KNN to the room temperature side effectively. A maximal value of EC temperature change, ΔT = 3.33 K was obtained for the composition with x = 0.03 at 345 K under an external electric field of 40 kV/cm. The higher value of EC responsivity, ζ = 8.32 × 10 -7 K.m/V is found with COP of 8.14 and recoverable energy storage of 0.128 J/cm 3 with 46% efficiency for the composition of x = 0.03. Our investigations show that this material is a very promising candidate for electrocaloric refrigeration and energy storage near room temperature.
Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN
NASA Astrophysics Data System (ADS)
Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2015-10-01
The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.
Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran.
Asghari, Farzaneh Baghal; Mohammadi, Ali Akbar; Dehghani, Mohammad Hadi; Yousefi, Mahmood
2018-06-01
The aim of this study was to Monitoring of physical and chemical characteristics of ground water including Ca 2+ , Mg 2+ , EC, pH, TDS, TH, H C O 3 - , Na + , K + , Cl - , SAR, %Na and S O 4 2 - in Zanjan city, Iran. For assessing the physic-chemical parameters from 15 wells, water samples 4 times at different times were collected and examined. Data were analyzed using R and Arc GIS software. According to the calculated correlation coefficients, the highest correlation Coefficient belonged to TDS-EC while H C O 3 - and Cl - showed low and weak correlations. However, Na + , Mg 2+ , K + , Ca 2+ exhibited good positive correlations with EC and TDS. The results show that the water in the study area at the time of the study was based on the WHO standards and appropriate for drinking.
NASA Astrophysics Data System (ADS)
Abreu, Manuela; Peres, Sara; Magalhães, M. Clara F.
2014-05-01
Wastes of a former Portuguese steel industry were deposited during 40 years on the left bank of the Coina River, which flows into the estuary of the Tagus River near Lisbon. The aim of this study was to evaluate the release of the chemical elements from the contaminated sediment to the river water. A leaching experiment (four replicates) was performed using 1.6 kg/replicate of sediment from a landfill located in the Coina River bank, forming a lagoon subject to tidal influence. River water coming from this lagoon was collected during low tide. This water (200 mL) was added to the moist sediment, contained in cylindrical reactors, and was collected after 24 h of percolation. The leaching experiments were conducted for 77 days being leachates collected at time zero, after 28, 49 and 77 days with the sediment always moist. The sediment was characterized for: pH, electric conductivity (EC), total organic carbon (TOC), extractable phosphorus and potassium, mineral nitrogen, iron from iron oxides (crystalline and non-crystalline) and manganese oxides. Multi-elemental analysis was also made by ICP-INAA. Leachates and river water were analysed for pH, EC, hydrogencarbonate and sulfatetot by titrations, chloride by potentiometry, and multi-elemental composition by ICP-MS. The sediment presented pH=7.2, EC=18.5 dS/m, TOC=147.8 g/kg, high concentrations of extractable phosphorous (62.8 mg/kg) and potassium (1236.8 mg/kg), mineral nitrogen=11.3 mg/kg. The non-crystalline fraction of iron oxides corresponds to 99% (167.5 g Fe/kg) of the total iron oxides, and manganese from manganese oxides was low (52.7 mg/kg). Sediment is considered contaminated. It contained high concentrations (g/kg) of Zn (2.9), Pb (0.9), Cr (0.59), Cu (0.16), As (0.07), Cd (0.005), and Hg (0.001), which are above Canadian values for marine sediments quality guidelines for protection of aquatic life. River water had: pH=8.2, EC=28.6 dS/m, csulfate=1.23 g/L, and [Cl-]=251.6 mg/L. The concentrations of Cd (0.001 mg/L) and Hg (0.02 mg/L) were above Canadian water quality guidelines for protection of aquatic life. Leachates had pH≡7.9 and EC=38.7 dS/m (mean values), and high concentrations of hydrogencarbonate (723.7 mg/L), sulfatetot (1.8 g/L) and chloride (252.2 mg/L). Over the experiment, only pH (7.6-8.0) and EC (35.7-55.2 dS/m) values showed statistical differences, increasing over time. Regarding multi-elemental contamination, statistical differences were found between some elements concentrations (Co, Cu, Cr, Mn, Ni, Sb, U, V, W, Zn) in the leachates/kg of sediment collected after river water percolation in the four periods. However, only the concentrations of Ni (4.7-9.2 µg/kg), Sb (0.08-0.14 µg/kg), W (0.16-1.1 µg/kg) and Zn (1.72-5.74 µg/kg) have increased. The concentration of the elements in the leachates when compared to the same elements concentration in the sediments corresponds to a fraction lower than 1%. When comparing the concentrations of the elements in the leachates and in the river water used for sediments leaching, the values in leachates are in general lower, being the highest obtained for Ni, W and U, which correspond to 62, 61 and 50% of the river water values, respectively. Chemical elements transfer from sediments to river water can be considered very low.
Körber, Martin; Ciper, Mesut; Hoffart, Valerie; Pearnchob, Nantharat; Walther, Mathias; Macrae, Ross J; Bodmeier, Roland
2011-08-01
Weakly basic drugs and their salts exhibit a decrease in aqueous solubility at higher pH, which can result in pH-dependent or even incomplete release of these drugs from extended release formulations. The objective of this study was to evaluate strategies to set-off the very strong pH-dependent solubility (solubility: 80 mg/ml at pH 2 and 0.02 mg/ml at pH 7.5, factor 4000) of a mesylate salt of weakly basic model drug (pK(a) 6.5), in order to obtain pH-independent extended drug release. Three approaches for pH-independent release were investigated: (1) organic acid addition in the core, (2) enteric polymer addition to the extended release coating and (3) an enteric polymer subcoating below the extended release coating. The layering of aspartic acid onto drug cores as well as the coating of drug cores with an ethylcellulose/Eudragit L (enteric polymer) blend were not effective to avoid the formation of the free base at pH 7.5 and thus failed to significantly improve the completeness of the release compared to standard ethylcellulose/hydroxypropyl cellulose (EC/HPC)-coated drug pellets. Interestingly, the incorporation of an enteric polymer layer underneath the EC/HPC coating decreased the free base formation at pH 7.5 and thus resulted in a more complete release of up to 90% of the drug loading over 18 h. The release enhancing effect was attributed to an extended acidification through the enteric polymer layer. Flexible release patterns with approximately pH-independent characteristics were successfully achieved. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, S. M. Didar-Ul; Bhuiyan, Mohammad Amir Hossain; Rume, Tanjena; Azam, Gausul
2017-12-01
Groundwater acts as a lifeline in the coastal regions to meet out the domestic, drinking, irrigational and industrial needs. To investigate the hydrogeochemical characteristics of groundwater and its suitability, twenty samples were collected from the shallow tubewells of study area having screen depth 21-54 m. The water quality assessment has been carried out by evaluating the physicochemical parameters such as temperature, pH, EC, TDS and major ions i.e., Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, HCO3 -. Results found that, the water is slightly alkaline and brackish in nature. The trends of cations and anions are Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- > NO3 -, respectively and Na-Cl-HCO3 is the dominant groundwater type. The analyzed samples were also characterized with different indices, diagram and permissible limit i.e., electric conductivity (EC), total dissolved solids (TDS), chloride content (Cl), soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelley's ratio (KR), Wilcox diagram and USSL diagram, and results showed that groundwater are not suitable for drinking and irrigational use. The factors responsible for the geochemical characterization were also attempted by using standard plot and it was found that mixing of seawater with entrapped water plays a significant role in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, Mohammad A.; Lin, Zijing; Singh, Prabhakar
2004-05-03
A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC{reg_sign}, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC{reg_sign} and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC{reg_sign} performs flow and thermal analyses basedmore » on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC{reg_sign} and EC is for MARC{reg_sign} to supply the temperature field to EC and for EC to give the heat generation profile to MARC{reg_sign}. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.« less
Azeem, Hafiz Abdul; Martinsson, Johan; Stenström, Kristina Eriksson; Swietlicki, Erik; Sandahl, Margareta
2017-07-01
Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO 2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO 2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.
Ichishima, Eiji
2016-09-01
This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.
Dubrawski, K L; Cataldo, M; Dubrawski, Z; Mazumder, A; Wilkinson, D P; Mohseni, M
2018-06-01
Harmful algal blooms (HAB) release microtoxins that contaminate drinking water supplies and risk the health of millions annually. Crystalline ferrate(VI) is a powerful oxidant capable of removing algal microtoxins. We investigate in-situ electrochemically produced ferrate from common carbon steel as an on-demand alternative to crystalline ferrate for the removal of microcystin-LR (MC-LR) and compare the removal efficacy for both electrochemical (EC) and chemical dosing methodologies. We report that a very low dose of EC-ferrate in deionized water (0.5 mg FeO 4 2- L -1 ) oxidizes MC-LR (MC-LR 0 = 10 μg L -1 ) to below the guideline limit (1.0 μg L -1 ) within 10 minutes' contact time. With bicarbonate or natural organic matter (NOM), doses of 2.0-5.0 mg FeO 4 2- L -1 are required, with lower efficacy of EC-ferrate than crystalline ferrate due to loss of EC-ferrate by water oxidation. To evaluate the EC-ferrate process to concurrently oxidize micropollutants, coagulate NOM, and disinfect drinking water, we spiked NOM-containing real water with MC-LR and Escherichia coli, finding that EC-ferrate is effective at 10.0 mg FeO 4 2- L -1 under normal operation or 2.0 mg FeO 4 2- L -1 if the test water has initial pH optimized. We suggest in-situ EC-ferrate may be appropriate for sporadic HAB events in small water systems as a primary or back-up technology.
NASA Astrophysics Data System (ADS)
Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.
2016-02-01
Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.
Guo, Yiru; Flaherty, Michael P.; Wu, Wen-Jian; Tan, Wei; Zhu, Xiaoping; Li, Qianhong; Bolli, Roberto
2013-01-01
To determine whether the myocardial response to ischemia/reperfusion (I/R) injury varies depending on genetic background, gender, age, body temperature, and arterial blood pH, we studied 1074 mice from 19 strains (including 129S6/SvEvTac (129S6), B6/129P2-Ptgs2tm1Unc, B6/129SvF2/J, B6/129/D2, B6/CBAF1, B6/DBA/1JNcr, BALB/c, BPH2/J, C57BL/6/J (B6/J), C3H/DBA, C3H/FB/FF, C3H/HeJ-Pde6brd1, FVB/N/J [FVB/N], FVB/B6, FVB/ICR and Crl:ICR/H [ICR]) and distributed them into 69 groups depending on strain and: (i) two phases of ischemic preconditioning (PC); (ii) coronary artery occlusion (O) time; (iii) gender; (iv) age; (v) blood transfusion; (vi) core body temperature; and (vii) arterial blood pH. Mice underwent O either without (non-preconditioned [naïve]) or with prior cyclic O/reperfusion (R) (PC stimulus) consisting of six 4-min O/4-min R cycles 10 min (early PC, EPC) or 24 h (late PC, LPC) prior to 30 or 45-min O and 24 h R. In B6/J and B6/129/D2 mice, almost the entire risk region was infarcted after a 60-min O. Of the naïve mouse hearts, B6/ecSODWT and FVB/N mice had infarct sizes significantly smaller than those of the other mice. All strains except FVB/N benefited from the cardioprotection afforded by the early phase of PC; in contrast, development of LPC was inconsistent amongst groups and was strain-dependent. Female gender (i) was associated with reduced infarct size in ICR mice, (ii) determined whether LPC developed in ICR mice, and (iii) limited the protection afforded by EPC in 129S6 mice. Importantly, mild hypothermia (1 °C decrease in core temperature) and mild acidosis (0.18 decrease in blood pH) resulted in a striking cardioprotective effect in ICR mice: 67.5% and 43.0% decrease in infarct size, respectively. Replacing blood losses with crystalloid fluids (instead of blood) during surgery also reduced infarct size. To our knowledge, this is the largest analysis of the determinants of infarct size in mice ever published. The results demonstrate that genetic background, gender, age (but not in ICR), body temperature and arterial blood pH have a major impact on infarct size, and thus need to be carefully measured and/or taken into account when designing a study of myocardial infarction in mice; failure to do so makes results uninterpretable. For example, core temperature and blood pH need to be measured, respiratory acidosis (or alkalosis) and hypothermia (or hyperthermia) must be avoided, and comparisons cannot be made between mouse strains or genders that exhibit different susceptibility to I/R injury (e.g., FVB/N male mice and ICR female mice are inherently protected against I/R injury). PMID:22864681
Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R
2001-12-01
Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations.
Effects of chemical elements in the trophic levels of natural salt marshes.
Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina
2016-06-01
The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.
Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.
Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M
2015-01-01
Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.
Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.
Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M
2015-08-01
Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.
2010-06-01
The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and Europe, perhaps due to the higher concentration of brown carbon in Beijing aerosol.
Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristics
NASA Astrophysics Data System (ADS)
Beysens, D.; Mongruel, A.; Acker, K.
2017-06-01
This paper summarizes one year (April 2011 to March 2012) measurements on planar condensing surfaces of dew and rain events and related physico-chemical characteristics in the urban environment of Paris (city center). Yearly collected water was 3.48 mm for dew (63 events) and 593 mm for rain (146 events). The latter value compares well with rain data (547 mm and 107 events) collected within 12 km at Paris-Orly airport. An estimation of dew yield based on meteo data gives 2.35 mm and 74 events, to be compared with 17.11 mm and 196 events at Paris-Orly. These differences highlight the large reduction in dew events and dew yields in an urban area as compared to a close rural-like area. This reduction is not due to a sky view reduction but to heat island that increases air temperature and decreases relative humidity. Analysis of dew (34) and rain (77) samples were done concerning pH, electrical conductivity (EC), major anions and cations as well as selected trace metals and other minor ions. Mean pH values are found similar for both, dew (6.5) and rain (6.1), rain being slightly more acidic than dew. The mean dew total ionic content (TIC 1.8 meq/l) and EC value (124 μS/cm) are about four times that of rain (0.45 meq/l; 35 μS/cm), meaning that total dissolved solids in dew is nearly four times that in rain. Sulfate and nitrate are the most acidifying components, calcium the most neutralizing constituent with ratio of mean total acidity/total alkalinity comparable for dew and rain ( 0.9). Sulfate and nitrate have mainly anthropogenic sources, whereas chloride and magnesium are mostly connected with marine air masses. Dew is a considerable factor of wet deposition of pollutants; dew and rain ion concentrations, however, meet the WHO requirements for drinking water.
Rahman, Ismail Md Mofizur; Islam, M Monirul; Hossain, M Mosharraf; Hossain, M Shahadat; Begum, Zinnat A; Chowdhury, Didarul A; Chakraborty, Milan K; Rahman, M Azizur; Nazimuddin, M; Hasegawa, Hiroshi
2011-02-01
The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.
Temperature sensitivity of ligand-gated ion channels: ryanodine receptor case
NASA Astrophysics Data System (ADS)
Iaparov, B. I.; Moskvin, A. S.; Solovyova, O. E.
2017-11-01
Temperature influences all biochemical processes, in particular, excitation-contraction coupling(ECC) in cardiac cells. In this work we propose a theoretical explanation of temperature effects on an isolated ryanodine receptor calcium release channel (RyR channel) within the electron-conformational (EC) model. We show that the EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open ↔ closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyR channels. Interestingly that a small change of the activation energy for the “internal” friction can make an ion channel either heat-inhibited or heat-activated while the “external” friction doesn’t play a key role in temperature sensitivity: neglect of “external” friction doesn’t change the channel’s temperature sensitivity qualitatively.
2010-01-01
Background Chitosanases (EC 3.2.1.132) hydrolyze the polysaccharide chitosan, which is composed of partially acetylated β-(1,4)-linked glucosamine residues. In nature, chitosanases are produced by a number of Gram-positive and Gram-negative bacteria, as well as by fungi, probably with the primary role of degrading chitosan from fungal and yeast cell walls for carbon metabolism. Chitosanases may also be utilized in eukaryotic cell manipulation for intracellular delivery of molecules formulated with chitosan as well as for transformation of filamentous fungi by temporal modification of the cell wall structures. However, the chitosanases used so far in transformation and transfection experiments show optimal activity at high temperature, which is incompatible with most transfection and transformation protocols. Thus, there is a need for chitosanases, which display activity at lower temperatures. Results This paper describes the isolation of a chitosanase-producing, cold-active bacterium affiliated to the genus Janthinobacterium. The 876 bp chitosanase gene from the Janthinobacterium strain was isolated and characterized. The chitosanase was related to the Glycosyl Hydrolase family 46 chitosanases with Streptomyces chitosanase as the closest related (64% amino acid sequence identity). The chitosanase was expressed recombinantly as a periplasmic enzyme in Escherichia coli in amounts about 500 fold greater than in the native Janthinobacterium strain. Determination of temperature and pH optimum showed that the native and the recombinant chitosanase have maximal activity at pH 5-7 and at 45°C, but with 30-70% of the maximum activity at 10°C and 30°C, respectively. Conclusions A novel chitosanase enzyme and its corresponding gene was isolated from Janthinobacterium and produced recombinantly in E. coli as a periplasmic enzyme. The Janthinobacterium chitosanase displayed reasonable activity at 10°C to 30°C, temperatures that are preferred in transfection and transformation experiments. PMID:20096097
NASA Astrophysics Data System (ADS)
Chidya, Russel C. G.; Matamula, Swithern; Nakoma, Oliver; Chawinga, Charles B. J.
2016-06-01
Many people in in the Sub-Saharan region rely on groundwater for drinking and other household uses. Despite this significance, information on the chemical composition of the water in the boreholes and emperical data on groundwater quality is limited in some rural areas of Malawi. This study was conducted to evaluate the physico-chemical quality of water from boreholes (n = 20) in Zombwe Extension Planning Area (EPA), Mzimba in Northern Malawi to ascertain their safety. Desktop studies and participatory approaches were employed to assess the socio-economic activities and water supply regime in the study areas. The water samples were analysed for pH, conductivity (EC), turbidity, water temperature, nitrate (NO3-), magnesium (Mg), calcium (Ca), zinc (Zn), fluoride (F-), and sulphate (SO42-). In-situ and laboratory analyses were carried out using portable meters and standard procedures. The results were compared with national (Malawi Bureau of Standards - MBS) and international standards (World Health Organization - WHO) for drinking water. The following ranges were obtained: pH (6.00-7.80), EC (437-3128 μS/cm), turbidity (0.10-5.80 NTU), water temperature (27.0-30.60 °C), NO3- (0.30-30.00 mg/L), F- (0.10-8.10 mg/L), Mg (31.00-91.00 mg/L), Ca (20.00-197.10 mg/L), SO42- (10.20-190 mg/L), Fe (0.10-3.60 mg/L) and Zn (0.00-5.10 mg/L). Generally, some parameters tested at several sites (>80%, n = 20) complied with both MBS and WHO limits. No significant differences (p > 0.05) was observed for most parameters (>65%, n = 11). Groundwater contamination was not significant in the area despite some parameters like F-, Ca and SO42- showing higher levels at other sites. Some sites registered very hard water (244.60-757.80 mg/L CaCO3) probably due to mineralization influenced by underground rock material. Further studies are needed to ascertain the groundwater quality of other parameters (like F-, and SO42-) which registered higher levels at some sites. Routine monitoring of the groundwater in the study area and entire Malawi is needed for spatio-temporal variation assessment and to ensure good public health.
Flight evaluation of Spacelab 1 payload thermal/ECS interfaces
NASA Technical Reports Server (NTRS)
Ray, C. D.; Humphries, W. R.; Patterson, W. C.
1984-01-01
The Spacelab (SL-1) thermal/Environmental Control Systems (ECS) are discussed. Preflight analyses and flight data are compared in order to validate payload to Spacelab interfaces as well as corroborate modeling/analysis techniques. In doing so, a brief description of the Spacelab 1 payload configuration and the interactive Spacelab thermal/ECS systems are given. In particular, these interfaces address equipment cooling air, thermal and fluid conditions, humidity levels, both freon and water loop temperatures and load states, as well as passive radiant environment interfaces.
Celestino, Klecius R Silveira; Cunha, Ricardo B; Felix, Carlos R
2006-12-05
In the barley malting process, partial hydrolysis of beta-glucans begins with seed germination. However, the endogenous 1,3-1,4-beta-glucanases are heat inactivated, and the remaining high molecular weight beta-glucans may cause severe problems such as increased brewer mash viscosity and turbidity. Increased viscosity impairs pumping and filtration, resulting in lower efficiency, reduced yields of extracts, and lower filtration rates, as well as the appearance of gelatinous precipitates in the finished beer. Therefore, the use of exogenous beta-glucanases to reduce the beta-glucans already present in the malt barley is highly desirable. The zygomycete microfungus Rhizopus microsporus var. microsporus secreted substantial amounts of beta-glucanase in liquid culture medium containing 0.5% chitin. An active protein was isolated by gel filtration and ion exchange chromatographies of the beta-glucanase activity-containing culture supernatant. This isolated protein hydrolyzed 1,3-1,4-beta-glucan (barley beta-glucan), but showed only residual activity against 1,3-beta-glucan (laminarin), or no activity at all against 1,4-beta-glucan (cellulose), indicating that the R. microsporus var. microsporus enzyme is a member of the EC 3.2.1.73 category. The purified protein had a molecular mass of 33.7 kDa, as determined by mass spectrometry. The optimal pH and temperature for hydrolysis of 1,3-1,4-beta-glucan were in the ranges of 4-5, and 50-60 degrees C, respectively. The Km and Vmax values for hydrolysis of beta-glucan at pH 5.0 and 50 degrees C were 22.39 mg.mL-1 and 16.46 mg.min-1, respectively. The purified enzyme was highly sensitive to Cu+2, but showed less or no sensitivity to other divalent ions, and was able to reduce both the viscosity and the filtration time of a sample of brewer mash. In comparison to the values determined for the mash treated with two commercial glucanases, the relative viscosity value for the mash treated with the 1,3-1,4-beta-glucanase produced by R. microsporus var. microsporus. was determined to be consistently lower. The zygomycete microfungus R. microsporus var. microsporus produced a 1,3-1,4-beta-D-glucan 4-glucanhydrolase (EC 3.2.1.73) which is able to hydrolyze beta-D-glucan that contains both the 1,3- and 1,4-bonds (barley beta-glucans). Its molecular mass was 33.7 kDa. Maximum activity was detected at pH values in the range of 4-5, and temperatures in the range of 50-60 degrees C. The enzyme was able to reduce both the viscosity of the brewer mash and the filtration time, indicating its potential value for the brewing industry.
NASA Astrophysics Data System (ADS)
Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan
2016-11-01
The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.
Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.
2012-01-01
SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483
Wells, Gregory D; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J; Pritchard, Erica N; Leys, Sally P; Logothetis, Diomedes E; Boland, Linda M
2012-07-15
A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.
Wide-Temperature Electrolytes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiuyan; Jiao, Shuhong; Luo, Langli
2017-05-26
Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode andmore » graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.« less
NASA Astrophysics Data System (ADS)
Key, Thomas Stallings
The development of ferroelastic (90°) texture in addition to ferroelectric (180°) texture is essential to maximizing the piezoelectric properties of many hard tetragonal PZTs, including Piezoetechnologies K270. Ferroelastic texture results from motion of domain walls that is dependent on an individual crystals orientation. Increases in ferroelastic texture raises the maximum net polarization that can be achieved by changes in ferroelectric texture. By studying a hard PZT poled under various temperature conditions, insight was gained into factors affecting the development of ferroelastic texture and how ferroelastic texture contributes to piezoelectric properties. Depinning proved to be the major barrier to preventing ferroelastic domain wall motion where strain based domain interactions and polar defect complexes on the domain level appear to be the dominant factors. Insight into the affect of increased domain texture on the relationship between the increasing magnitude of the remnant polarization (|Pr|) and the magnitude of the coercive field (|EC|) was gained by plotting |EC| vs. |Pr| as a function of poling time for a variety of poling temperatures. At low |Pr| values, |EC| increased rapidly as a function of increases in |Pr| regardless of the poling temperature. This relationship was characteristic of samples poled at 25 °C where increases in ferroelastic texture were largely suppressed. Because increases in polarization were still observable changes in ferroelectric texture most responsible for the polarization increase and like play a strong role in the initial |EC| vs. |Pr| relationship. As |Pr| increased beyond 5 to 8 iC/cm2, the slope of |EC| vs. |Pr| decreased where the reduction in slope increased with poling temperature. This only occurred in samples poled at elevated temperatures where ferroelastic texture was know to ultimately develop during the poling process, leading to the suggestion that the change in slope was due to increases in combined ferroelectric and ferroelastic texture. Lastly, it was found that electric field induced increases in ferroelectric texture by poling at 25 °C occurs while ferroelastic domain wall motion is largely suppressed. This change in ferroelectric texture severely hinders the rate at which subsequent ferroelastic domain wall motion can be induced during poling at elevated temperatures below TC, suggesting that hard PZT samples should be preheated to the poling temperature before poling begins.
USDA-ARS?s Scientific Manuscript database
Soil salinity and sodicity can not only directly restrain crop growth by osmotic and specific ion stresses, it also may reduce grain yield indirectly by impacting plant absorption of essential nutrients. Ensuring adequate nitrogen is an important management aspect of rice production in saline-sodic ...
Hassan, Sedky H A; Van Ginkel, Steven W; Kim, Sung-Min; Yoon, Sung-Hwan; Joo, Jin-Ho; Shin, Beom-Soo; Jeon, Byong-Hun; Bae, Wookeun; Oh, Sang-Eun
2010-08-01
A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The assay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that SOB biosensor can detect toxic chemicals, such as heavy metals and CN-, in the 5-2000ppb range. One bacterium was isolated from an SOB biosensor and the 16S rRNA gene of the bacterial strain has 99% and 96% sequence similarity to Acidithiobacillus sp. ORCS6 and Acidithiobacillus caldus DSM 8584, respectively. The isolate was identified as A. caldus SMK. The SOB biosensor is ideally suited for monitoring toxic chemicals in water having the advantages of high sensitivity and quick detection.
Suresh, Arumuganainar; Choi, Hong Lim
2011-10-01
Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate.
Bedbabis, Saida; Ben Rouina, Béchir; Boukhris, Makki; Ferrara, Giuseppe
2014-01-15
In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of four years in an olive orchard planted on a sandy soil and subjected to irrigation treatments: a) rain-fed conditions (RF), as control b) well water (WW) and c) treated wastewater (TWW). In WW and TWW treatments, an annual amount of 5000 m(3) ha(-1) of water was supplied to the orchard. Soil samples were collected at the beginning of the study and after four years for each treatment. The main soil properties such as electrical conductivity (EC), pH, soluble cations, chloride (Cl(-)), sodium adsorption ratio (SAR), organic matter (OM) as well as the infiltration rate were investigated. After four years, either a significant decrease of pH and infiltration rate or a significant increase of OM, SAR and EC were observed in the soil subjected to treated wastewater treatment. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Yanagisawa, Ryota; Endo, Hisayuki; Unno, Masafumi; Morimoto, Hideyuki; Tobishima, Shin-ichi
2014-11-01
Influence of mixing organic silicon compounds into 1 M (M: mol L-1) LiPF6-ethylene carbonate (EC)/ethylmethyl carbonate (EMC) (mixing volume ratio = 3:7) mixed solvent electrolytes on charge-discharge cycling efficiencies of lithium metal negative electrodes is examined. As organic silicon compounds, polyether-modified siloxanes with polyethylene oxide chains, chlorotrimethylsilane, tetraethoxysilane, cis-tetra [isobutyl (dimethylsiloxy)] cyclotetrasiloxane and cage-type silsesquioxane are investigated. Charge-discharge cycling tests of lithium are galvanostatically carried out using stainless steel working electrodes. Charge-discharge cycling efficiencies of lithium tend to improve by mixing organic silicon compounds. A cage-type silsesquioxane, octaphenyloctasilsesquioxane (Ph8T8) exhibits the highest cycling efficiency of approximately 80% with small mixing amount of 0.02 M Ph8T8. Mechanism of enhancement of lithium cycling efficiencies by mixing organic silicon compounds is considered to be due to the suppression of excess reduction of LiPF6-EC/EMC by lithium and the growth of surface film on lithium.
Effect of detergents from laundry greywater on soil properties: a preliminary study
NASA Astrophysics Data System (ADS)
Mohamed, R. M.; Al-Gheethi, A. A.; Noramira, J.; Chan, C. M.; Hashim, M. K. Amir; Sabariah, M.
2018-03-01
Detergent compounds are classes of the organic micro-pollutants in the laundry wastewater. The disposal of these compounds into the soil has several adverse effects on their composition. In the present study, changes in the soil characteristics, which included saturated hydraulic conductivity ( K sat), EC, pH, exchangeable sodium percentage, cation exchange capacity (CEC), and sodium adsorption on ratio were examined after the irrigation with laundry wastewater. Ten clothes were washed with one full cap of powder (PLD) and liquid laundry (LLD). Laundry greywater samples were used for the irrigation of soil. The results revealed that the pH of soil increased from 3.85 to 4.42 and 4.09 after irrigation by PLD and LLD greywater, respectively. The EC of the irrigated soil increased from 50.32 to 152.5 and 147.6 μS/cm, respectively. The CEC was raised to 79.93 and 41.39 meq/100 g, while K sat was reduced to 7.38 × 10-10 and 7.11 × 10-10 cm/s, respectively. These findings highlighted the negative effects of laundry greywater discharge on soil properties.
Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection
Adeyemi, Oluwapelumi O.; Nicol, Clare
2016-01-01
ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not suitable as a vaccine. Here, we demonstrate that the ECs of type 1 PV can be stabilized by selecting heat-resistant viruses. Our data show that some capsid mutations stabilize the ECs and could be applied as candidates to synthesize stable VLPs as future genome-free poliovirus vaccines. PMID:27928008
Pore-water chemistry explains zinc phytotoxicity in soil.
Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi
2015-12-01
Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2015-11-01
Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2015-01-01
Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704
A Loose Relationship: Incomplete H+/Sugar Coupling in the MFS Sugar Transporter GlcP.
Bazzone, Andre; Zabadne, Annas J; Salisowski, Anastasia; Madej, M Gregor; Fendler, Klaus
2017-12-19
The glucose transporter from Staphylococcus epidermidis, GlcP Se , is a homolog of the human GLUT sugar transporters of the major facilitator superfamily. Together with the xylose transporter from Escherichia coli, XylE Ec , the other prominent prokaryotic GLUT homolog, GlcP Se , is equipped with a conserved proton-binding site arguing for an electrogenic transport mode. However, the electrophysiological analysis of GlcP Se presented here reveals important differences between the two GLUT homologs. GlcP Se , unlike XylE Ec , does not perform steady-state electrogenic transport at symmetrical pH conditions. Furthermore, when a pH gradient is applied, partially uncoupled transport modes can be generated. In contrast to other bacterial sugar transporters analyzed so far, in GlcP Se sugar binding, translocation and release are also accomplished by the deprotonated transporter. Based on these experimental results, we conclude that coupling of sugar and H + transport is incomplete in GlcP Se . To verify the viability of the observed partially coupled GlcP Se transport modes, we propose a universal eight-state kinetic model in which any degree of coupling is realized and H + /sugar symport represents only a specific instance. Furthermore, using sequence comparison with strictly coupled XylE Ec and similar sugar transporters, we identify an additional charged residue that may be essential for effective H + /sugar symport. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.
2007-01-01
On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.
Ambient iron-mediated aeration (IMA) for water reuse.
Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata
2013-02-01
Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi
2016-06-15
An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less
Holck, Jesper; Larsen, Dorte M; Michalak, Malwina; Li, Haiying; Kjærulff, Louise; Kirpekar, Finn; Gotfredsen, Charlotte H; Forssten, Sofia; Ouwehand, Arthur C; Mikkelsen, Jørn D; Meyer, Anne S
2014-03-25
A Trypanosoma cruzi trans-sialidase (E.C. 3.2.1.18) was cloned into Pichia pastoris and expressed. The pH and temperature optimum of the enzyme was determined as pH 5.7 and 30°C. Using casein glycomacropeptide (CGMP) and lactose as sialyl-donor and acceptor respectively, the optimal donor/acceptor ratio for the trans-sialidase catalysed 3'-sialyllactose production was found to be 1:4. Quantitative amounts of 3'-sialyllactose were produced from CGMP and lactose at a yield of 40mg/g CGMP. The 3'-sialyllactose obtained exerted a stimulatory effect on selected probiotic strains, including different Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3'-sialyl-GOS, including doubly sialylated GOS products, and 3'-sialyl-LNT, respectively. This work thus provides proof of the concept of producing 3'-sialyllactose and potentially other sialylated HMOs as well as sialylated GOS enzymatically by trans-sialidase activity, while at the same time providing valorisation of CGMP, a co-processing product from cheese manufacture. Copyright © 2013 Elsevier B.V. All rights reserved.
Dmitryjuk, M; Dopieralska, M; Łopieńska-Biernat, E; Frączek, R J
2013-06-01
Trehalose 6-phosphate (T6P) synthase (TPS; EC 2.4.1.15) was isolated from muscles of Ascaris suum by ammonium sulphate fractionation, ion-exchange DEAE SEPHACEL(TM) anion exchanger column chromatography and Sepharose 6B gel filtration. On sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), 265-fold purified TPS exhibited a molecular weight of 66 kDa. The optimum pH and temperature of the purified enzyme were 3.8-4.2 and 35°C, respectively. The isoelectric point (pI) of TPS was pH 5.4. The studied TPS was not absolutely substrate specific. Besides glucose 6-phosphate, the enzyme was able to use fructose 6-phosphate as an acceptor of glucose. TPS was activated by 10 mM MgCl2, 10 mM CaCl2 and 10 mM NaCl. In addition, it was inhibited by ethylenediaminetetra-acetic acid (EDTA), KCl, FeCl3 and ZnCl2. Two genes encoding TPS were isolated and sequenced from muscles of the parasite. Complete coding sequences for tps1 (JF412033.2) and tps2 (JF412034.2) were 3917 bp and 3976 bp, respectively. Translation products (AEX60788.1 and AEX60787.1) showed expression to the glucosyltransferase-GTB-type superfamily.
NASA Astrophysics Data System (ADS)
Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi
2016-01-01
Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.
Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.
Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova
2007-06-01
The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.
Chen, Lin; Li, Xue; Wang, Ruige; Fang, Fengqin; Yang, Wanli; Kan, Wei
2016-07-01
The ribose binding protein (RBP), a sugar-binding periplasmic protein, is involved in the transport and signaling processes in both prokaryotes and eukaryotes. Although several cellular and structural studies have been reported, a description of the thermostability of RBP at the molecular level remains elusive. Focused on the hyperthermophilic Thermoytoga maritima RBP (tmRBP) and mesophilic Escherichia coli homolog (ecRBP), we applied molecular dynamics simulations at four different temperatures (300, 380, 450, and 500 K) to obtain a deeper insight into the structural features responsible for the reduced thermostability of the ecRBP. The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two homologs and the ecRBP unfolds faster than the hyperthermophilic homologs at certain temperatures in accordance with the lower thermal stability found experimentally. Essential dynamics analysis uncovers that the essential subspaces of ecRBP and tmRBP are non-overlapping and these two proteins show different directions of motion within the simulations trajectories. Such an understanding is required for designing efficient proteins with characteristics for a particular application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Michael S.; Li, Qiuyan; Li, Xing
Electrolytes of 1 M LiPF 6 (lithium hexafluorophosphate) and 0.05 M CsPF 6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data inmore » their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.« less
NASA Astrophysics Data System (ADS)
Wu, Cheng; Huang, X. H. Hilda; Ng, Wai Man; Griffith, Stephen M.; Zhen Yu, Jian
2016-09-01
Organic carbon (OC) and elemental carbon (EC) are operationally defined by analytical methods. As a result, OC and EC measurements are protocol dependent, leading to uncertainties in their quantification. In this study, more than 1300 Hong Kong samples were analyzed using both National Institute for Occupational Safety and Health (NIOSH) thermal optical transmittance (TOT) and Interagency Monitoring of Protected Visual Environment (IMPROVE) thermal optical reflectance (TOR) protocols to explore the cause of EC disagreement between the two protocols. EC discrepancy mainly (83 %) arises from a difference in peak inert mode temperature, which determines the allocation of OC4NSH, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Evidence shows that the magnitude of the EC discrepancy is positively correlated with the intensity of the biomass burning signal, whereby biomass burning increases the fraction of OC4NSH and widens the disagreement in the inter-protocol EC determination. It is also found that the EC discrepancy is positively correlated with the abundance of metal oxide in the samples. Two approaches (M1 and M2) that translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data are proposed. M1 uses direct relationship between ECNSH_TOT and ECIMP_TOR for reconstruction: M1 : ECIMP_TOR = a × ECNSH_TOT + b; while M2 deconstructs ECIMP_TOR into several terms based on analysis principles and applies regression only on the unknown terms: M2 : ECIMP_TOR = AECNSH + OC4NSH - (a × PCNSH_TOR + b), where AECNSH, apparent EC by the NIOSH protocol, is the carbon that evolves in the He-O2 analysis stage, OC4NSH is the carbon that evolves at the fourth temperature step of the pure helium analysis stage of NIOSH, and PCNSH_TOR is the pyrolyzed carbon as determined by the NIOSH protocol. The implementation of M1 to all urban site data (without considering seasonal specificity) yields the following equation: M1(urban data) : ECIMP_TOR = 2.20 × ECNSH_TOT - 0.05. While both M1 and M2 are acceptable, M2 with site-specific parameters provides the best reconstruction performance. Secondary OC (SOC) estimation using OC and EC by the two protocols is compared. An analysis of the usability of reconstructed ECIMP_TOR and OCIMP_TOR suggests that the reconstructed values are not suitable for SOC estimation due to the poor reconstruction of the OC / EC ratio.
Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian
2012-01-01
Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983
Wang, Haimiao; Chen, Yinglong; Hu, Wei; Wang, Shanshan; Snider, John L; Zhou, Zhiguo
2017-11-01
Short-term waterlogging and chronic elevated temperature occur concomitantly in the cotton (Gossypium hirsutum) growing season. While previous research about co-occurring waterlogging and elevated temperature has focused primarily on cotton fiber, no studies have investigated carbohydrate metabolism of the subtending leaf (a major source leaf for boll development) cross-acclimation to aforementioned stressors. To address this, plants were exposed to ambient (31.6/26.5°C) and elevated (34.1/29.0°C) temperatures during the whole flowering and boll formation stage, and waterlogging (0, 3, 6 days) beginning on the day of anthesis. Both waterlogging and high temperature limited boll biomass (reduced by 1.19-32.14%), but effects of different durations of waterlogging coupled with elevated temperature on carbohydrate metabolism in the subtending leaf were quite different. The 6-day waterlogging combined with elevated temperature had the most negative impact on net photosynthetic rate (Pn) and carbohydrate metabolism of any treatment, leading to upregulated GhSusA and GhSusC expression and enhanced sucrose synthase (SuSy, EC 2.4.1.13) activity for sucrose degradation. A prior exposure to waterlogging for 3 days improved subtending leaf performance under elevated temperature. Pn, sucrose concentrations, Rubisco (EC 4.1.1.39) activity, and cytosolic fructose-1,6-bisphosphatase (cy-FBPase, EC 3.1.3.11) activity in the subtending leaf significantly increased, while SuSy activity decreased under 3 days waterlogging and elevated temperature combined relative to elevated temperature alone. Thus, we concluded that previous exposure to a brief (3 days) waterlogging stress improved sucrose composition and accumulation cross-acclimation to high temperature later in development not only by promoting leaf photosynthesis but also inhibiting sucrose degradation. © 2017 Scandinavian Plant Physiology Society.
Chambers, Ute; Jones, Vincent P
2015-12-01
Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Monocarboxylate Transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer.
Latif, Ayşe; Chadwick, Amy L; Kitson, Sarah J; Gregson, Hannah J; Sivalingam, Vanitha N; Bolton, James; McVey, Rhona J; Roberts, Stephen A; Marshall, Kay M; Williams, Kaye J; Stratford, Ian J; Crosbie, Emma J
2017-01-01
Endometrial cancer (EC) is a major health concern due to its rising incidence. Whilst early stage disease is generally cured by surgery, advanced EC has a poor prognosis with limited treatment options. Altered energy metabolism is a hallmark of malignancy. Cancer cells drive tumour growth through aerobic glycolysis and must export lactate to maintain intracellular pH. The aim of this study was to evaluate the expression of the lactate/proton monocarboxylate transporters MCT1 and MCT4 and their chaperone CD147 in EC, with the ultimate aim of directing future drug development. MCT1, MCT4 and CD147 expression was examined using immunohistochemical analysis in 90 endometrial tumours and correlated with clinico-pathological characteristics and survival outcomes. MCT1 and MCT4 expression was observed in the cytoplasm, the plasma membrane or both locations. CD147 was detected in the plasma membrane and associated with MCT1 ( p = 0.003) but not with MCT4 ( p = 0.207) expression. High MCT1 expression was associated with reduced overall survival ( p = 0.029) and remained statistically significant after adjustment for survival covariates ( p = 0.017). Our data suggest that MCT1 expression is an important marker of poor prognosis in EC. MCT1 inhibition may have potential as a treatment for advanced or recurrent EC.
Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.
Linares Hernández, Ivonne; Barrera Díaz, Carlos; Valdés Cerecero, Mario; Almazán Sánchez, Perla Tatiana; Castañeda Juárez, Monserrat; Lugo Lugo, Violeta
2017-02-01
The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm -2 . Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am -2 . The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L -1 TOC and 4300 mg L -1 COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg -1 TOC and 6.66 kWh kg -1 COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.
Shin, Yong-Uk; Yoo, Ha-Young; Kim, Seonghun; Chung, Kyung-Mi; Park, Yong-Gyun; Hwang, Kwang-Hyun; Hong, Seok Won; Park, Hyunwoong; Cho, Kangwoo; Lee, Jaesang
2017-09-19
A two-stage sequential electro-Fenton (E-Fenton) oxidation followed by electrochemical chlorination (EC) was demonstrated to concomitantly treat high concentrations of organic carbon and ammonium nitrogen (NH 4 + -N) in real anaerobically digested food wastewater (ADFW). The anodic Fenton process caused the rapid mineralization of phenol as a model substrate through the production of hydroxyl radical as the main oxidant. The electrochemical oxidation of NH 4 + by a dimensionally stable anode (DSA) resulted in temporal concentration profiles of combined and free chlorine species that were analogous to those during the conventional breakpoint chlorination of NH 4 + . Together with the minimal production of nitrate, this confirmed that the conversion of NH 4 + to nitrogen gas was electrochemically achievable. The monitoring of treatment performance with varying key parameters (e.g., current density, H 2 O 2 feeding rate, pH, NaCl loading, and DSA type) led to the optimization of two component systems. The comparative evaluation of two sequentially combined systems (i.e., the E-Fenton-EC system versus the EC-E-Fenton system) using the mixture of phenol and NH 4 + under the predetermined optimal conditions suggested the superiority of the E-Fenton-EC system in terms of treatment efficiency and energy consumption. Finally, the sequential E-Fenton-EC process effectively mineralized organic carbon and decomposed NH 4 + -N in the real ADFW without external supply of NaCl.
Guzmán, Athziri; Nava, José L; Coreño, Oscar; Rodríguez, Israel; Gutiérrez, Silvia
2016-02-01
We investigated simultaneous arsenic and fluoride removal from ground water by electrocoagulation (EC) using aluminum as the sacrificial anode in a continuous filter-press reactor. The groundwater was collected at a depth of 320 m in the Bajío region in Guanajuato Mexico (arsenic 43 µg L(-1), fluoride 2.5 mg L(-1), sulfate 89.6 mg L(-1), phosphate 1.8 mg L(-1), hydrated silica 112.4 mg L(-1), hardness 9.8 mg L(-1), alkalinity 31.3 mg L(-1), pH 7.6 and conductivity 993 µS cm(-1)). EC was performed after arsenite was oxidized to arsenate by addition of 1 mg L(-1) hypochlorite. The EC tests revealed that at current densities of 4, 5 and 6 mA cm(-2) and flow velocities of 0.91 and 1.82 cm s(-1), arsenate was abated and residual fluoride concentration satisfies the WHO standard (CF < 1.5 mg L(-1)). Spectrometric analyses performed on aluminum flocs indicated that these are mainly composed of aluminum-silicates of calcium and magnesium. Arsenate removal by EC involves adsorption on aluminum flocs, while fluoride replaces a hydroxyl group from aluminum aggregates. The best EC was obtained at 4 mA cm(-2) and 1.82 cm s(-1) with electrolytic energy consumption of 0.34 KWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro
2010-05-01
Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order to evaluate the possibility of continue using, for trend analysis, the historical data set, we performed an inter-comparison between our method and an adaptation of EUSAAR-2 protocol, taking into account that this last protocol will possibly be recommended for analysing carbonaceous aerosols at European sites. In this inter-comparison we tested different types of samples (PM2,5, PM2,5-10, PM10) with large spectra of carbon loadings, with and without pre-treatment acidification. For a reduced number of samples, five replicates of each one were analysed by each method for statistical purposes. The inter-comparison study revealed that when the sample analysis were performed in similar room conditions, the two thermo-optic methods give similar results for TC, OC and EC, without significant differences at a 95% confidence level. The correlation between the methods, DAO and EUSAAR-2 for EC is smaller than for TC and OC, although showing a coefficient correlation over 0,95, with a slope close to one. For samples performed in different periods, room temperatures seem to have a significant effect over OC quantification. The sample pre-treatment with HCl fumigation tends to decrease TC quantification, mainly due to the more volatile organic fraction release during the first heating step. For a set of 20 domestic biomass burning samples analyzed by the DAO method we observed an average decrease in TC quantification of 3,7 % in relation to non-acidified samples, even though this decrease is accompanied by an average increase in the less volatile organic fraction. The indirect measurement of carbon carbonate, usually a minor carbon component in the carbonaceous aerosol, based on the difference between TC measured by TOM of acidified and non-acidified samples is not a robust measurement, considering the biases affecting his quantification. The present study show that the two thermo-optic temperature program used for OC and EC quantification give similar results, and if in the future the EUSAAR-2 protocol will be adopted the past measurement of carbonaceous fractions can be used for trend analysis. However this study demonstrates that the temperature control during post-sampling handling is a critical point in total OC and TC quantification that must be assigned in the new European protocol. References: Cavali et al., 2009, AMTD 2, 2321-2345, 2009 Chow et al., 2001, Aerosol. Sci. Technol., 34, 23-34, 2001. Pio et al., 1994, Proceedings of the Sixth European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants. Report EUR 15609/2 EN, pp. 706-711. Pio et al, 2007, J. Geophys. Res. 112, D23S02 Acknowledgement: This work was funded by the Portuguese Science Foundation through the projects POCI/AMB/60267/2004 and PTDC/AMB/65706/2006 (BIOEMI). F. Mirante acknowledges the PhD grant SFRH/BD/45473/2008.
Temporal and spatial variations of sea surface temperature in the East China Sea
NASA Astrophysics Data System (ADS)
Tseng, Chente; Lin, Chiyuan; Chen, Shihchin; Shyu, Chungzen
2000-03-01
Sea surface temperature of the East China Sea (ECS) were analyzed using the NOAA/AVHRR SST images. These satellite images reveal surface features of ECS including mainly the Kuroshio Current, Kuroshio Branch Current, Taiwan Warm Current, China coastal water, Changjiang diluted water and Yellow Sea mixed cold water. The SST of ECS ranges from 27 to 29°C in summer; some cold eddies were found off northeast Taiwan and to the south of Changjiang mouth. SST anomalies at the center of these eddies were about 2-5°C. The strongest front usually occurs in May each year and its temperature gradient is about 5-6°C over a cross-shelf distance of 30 nautical miles. The Yellow Sea mixed cold water also provides a contrast from China Coastal waters shoreward of the 50 m isobath; cross-shore temperature gradient is about 6-8°C over 30 nautical miles. The Kuroshio intrudes into ECS preferably at two locations. The first is off northeast Taiwan; the subsurface water of Kuroshio is upwelled onto the shelf while the main current is deflected seaward. The second site is located at 31°N and 128°E, which is generally considered as the origin of the Tsushima Warm Current. More quantitatively, a 2-year time series of monthly SST images is examined using EOF analysis to determine the spatial and temporal variations in the northwestern portion of ECS. The first spatial EOF mode accounts for 47.4% of total spatial variance and reveals the Changjiang plume and coastal cold waters off China. The second and third EOF modes account for 16.4 and 9.6% of total variance, respectively, and their eigenvector images show the intrusion of Yellow Sea mixed cold waters and the China coastal water. The fourth EOF mode accounts for 5.4% of total variance and reveals cold eddies around Chusan Islands. The temporal variance EOF analysis is less revealing in this study area.
Estimating the importance of factors influencing the radon-222 flux from building walls.
Girault, Frédéric; Perrier, Frédéric
2012-09-01
Radiation hazard in dwellings is dominated by the contribution of radon-222 released from soil and bedrock, but the contribution of building materials can also be important. Using a simple air mixing model in a 2-story house with an attic and a basement, it is estimated that a significant risk arises when the Wall Radon exhalation Flux (WRF) exceeds 10×10(-3) Bq·m(-2)·s(-1). WRF is studied using a multiphase advection-diffusion 3-layer analytical model with advective flow, possibly induced by a pressure deficit inside the house compared with the outside atmosphere. To first order, in most circumstances, the WRF is proportional to the wall thickness and to the radon source term, the effective radium concentration EC(Ra), which is the product of the radium-226 concentration by the emanation coefficient E. The WRF decreases with increasing material porosity and exhibits a maximum for water saturation of about 50%. For EC(Ra)=10 Bq·kg(-1), in many instances, WRF is larger than 10×10(-3) Bq·m(-2)·s(-1) and, therefore, EC(Ra)=10 Bq·kg(-1) can be considered as the typical limit not to be exceeded by building materials. An upper limit of the WRF is obtained in the purely advective regime, independent of porosity or moisture content, which can thus be used as a robust safety guideline. The sensitivity of WRF to temperature, due to the temperature sensitivity of EC(Ra) or the temperature sensitivity of radon Henry constant can be larger than 5% for the seasonal variation in the presence of slight pressure deficit. The temperature sensitivity of EC(Ra) is the dominant effect, except for moist walls. Temperature and moisture variation effects on the WRF potentially can account for most observed seasonal variations of radon concentration in houses, in addition to seasonal changes of air exchange, suggesting that the contribution of walls should be considered when designing remediation strategies and studied with dedicated experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Inactivation of Hepatitis A Virus (HAV) by Chlorine and Iodine in Water
1990-06-01
AD-A247 143 AD_ INACTIVATION OF HEPATITIS A VIRUS (HAV) SBY CHLORINE AND IODINE IN WATER ANNUAL AND FINAL REPORT Mark D. Sobsey, Ph.D. June 1990...Iodine in Water 12. PERSONAL AUTHOR(S) Mark D. Sobsey, Ph.D. 13a. TYPE OF REPORT 13b. TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 11S. PAGE...1989 C7’• ’ ;CO 5S ŗ 3•3;EC- -E ,,S C- - .•;•-, o --- - _-. . _- O’ Water ; Chlorine; Iodine; Kinetics ( 09 i 19, ABSTRACT (Continue on reverse if
Qu, Xin; Hall, Alex; DeAngelis, Anthony M.; ...
2018-01-11
Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Xin; Hall, Alex; DeAngelis, Anthony M.
Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less
Processed dairy beverages pH evaluation: consequences of temperature variation.
Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha
2009-01-01
This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.
Organic pollutant removal from edible oil process wastewater using electrocoagulation
NASA Astrophysics Data System (ADS)
Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.
2018-03-01
Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater
Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun
2012-08-01
This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.
Santofimia, Esther; López-Pamo, Enrique; Palomino, Edwin Julio; González-Toril, Elena; Aguilera, Ángeles
2017-11-01
The generation of acid rock drainage (ARD) was observed in an area of Nevado Pastoruri as a result of the oxidative dissolution of pyrite-rich lutites and sandstones. These ARDs are generated as abundant pyrite becomes exposed to atmospheric conditions as a result of glacier retreat. The proglacial zone contains lagoons, springs, streams and wetlands, scant vegetation, and intense fluvioglacial erosion. This work reports a comprehensive identification and the results of sampling of the lagoons and springs belonging to the microbasin, which is the headwaters of the Pachacoto River, as well as mapping results based on the hydrochemical data obtained in our study. The physical properties and water chemistry of 12 springs and 22 lagoons from the proglacial zone are also presented. Water springs are far from being chemically uniform, with pH and EC values ranging between 2.55-6.42 and 23-1110 μS/cm respectively, which suggests a strong geologic control on water chemistry. Fe-SO 4 -2 concentrations confirm the intense process of pyrite oxidative dissolution. Many of the lagoons are affected by ARD, with low pH (~ 3), and high EC (256-1092 μS/cm) values when compared with unaffected lagoons (EC between 7 and 59 μS/cm), indicating a high degree of mineralization. The affected lagoons show higher concentrations of SO 4 2- and SiO 2 , and elements as Fe, Al, Mg, Mn, Zn, Co, and Ni, which are related to the alteration of pyrite and the dissolution of aluminosilicate minerals. Schwertmannite-goethite appears to be the most important mineral phases controlling the Fe solubility at a pH of 2-3.5. Moreover, they act as a sorbent of trace elements (As, Sb, V, Pb, Zn, Cr), which is an efficient mechanism of natural attenuation. Despite of this, the water flowing out from the basin is acid (pH 3.1) and contains significant concentrations of Fe (0.98 mg/L) and Al (3.76 mg/L) that confer mineral acidity to water. The Pachacoto River located 5.5 km downstream from this point showed a strong natural attenuation, with a pH of 6.9 and low concentration of metals. This mitigating process is possible due to (i) the formation of precipitates that retain toxic elements and (ii) the mixing with natural waters that promote dilution, which favor the increase of pH until circumneutral conditions.
Weinberg, Z G; Chen, Y; Volchinski, V; Sela, S; Ogunade, I M; Adesogan, A
2016-07-01
Previous studies have shown that silages treated with lactic acid bacteria (LAB) inoculants enhance ruminants' performance. The objective of the current experiments was to develop an in vitro model to study interactions between LAB silage inoculants and inoculated silages and Escherichia coli (EC) in rumen fluid (RF). Our hypothesis was that some inoculants inhibit EC in RF. For that purpose buffered RF was incubated under anaerobic conditions at 39°C with commercial strains of LAB silage inoculants or with laboratory corn and wheat silages treated with these LAB, an EC strain and with various ruminant feed ingredients. The EC strain was originally isolated from cattle manure and tagged with a plasmid expressing the green fluorescence protein and kanamycin and streptomycin resistance. Results indicate that the LAB or the treated silages did not suppress EC numbers in the RF. When the pH of the RF decreased below 5·0 the EC disappeared. We conclude that both LAB inoculants for silage and EC survived in RF for several days; however, the inoculants and silages treated with such inoculants did not inhibit EC in RF in vitro. Forage crops, silage and hay are initial stages of the food chain for humans. Cattle harbours and sheds enterobacteria regularly, some strains of which are pathogens. These can contaminate forage crops through field fertilization with cattle manure. The objective of this study was to develop an in vitro model to test whether lactic acid bacteria, which are used in silage inoculants, alone or in treated silages can inhibit Escherichia coli in rumen fluid. This study presents safety aspects and it is also part of a broad research effort aimed at finding out how LAB silage inoculants and inoculated silages enhance ruminant performance or exert probiotic effects in ruminants. © 2016 The Society for Applied Microbiology.
U.S. EPA, Pesticide Product Label, FLIGHT BRAND TOXAPHENE-METHYL PARATHION EC 6-3, 06/04/1973
2011-04-14
I \\ " I'll )( 1 II \\ " " ! II.:. \\ I \\ I i J '1< I \\ I \\ 1 i :\\ : ( \\I I IIlH)' .. I'll' Sf(i \\ '\\ 1'(" "4)'\\1:\\(, \\ I Il' r I " S'\\1I'141'\\\\ \\ II \\ II l \\ \\' \\ \\ I( "t' \\ PH" H) I' \\!( \\ 1"" SIt 1.\\", \\ II BII \\ )\\\\ ...
Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence
USDA-ARS?s Scientific Manuscript database
Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-yr effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and catio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pobegalov, Georgii, E-mail: george.pobegalov@nanobio.spbstu.ru; Cherevatenko, Galina; Alekseev, Aleksandr
2015-10-23
Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differencesmore » from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA. - Highlights: • We investigate Deinococcus radiodurans RecA interactions with long double-stranded DNA at the single-molecule level. • At physiological pH D. radiodurans RecA forms nucleoprotein filaments significantly faster relative to Escherichia coli RecA. • D. radiodurans RecA-dsDNA nucleoprotein filaments are more flexible and slightly shorter compared to those of E. coli RecA.« less
Sparrow, Rosemary L; Sran, Amrita; Healey, Geraldine; Veale, Margaret F; Norris, Philip J
2014-01-01
Background Saline-Adenine-Glucose-Mannitol (SAGM) and a variant solution, AS-1 have been used for over 30 years to preserve red blood cells (RBCs). Reputedly these RBC components have similar quality, although no paired study has been reported. To determine whether differences exist, a paired study of SAGM-RBCs and AS-1-RBCs was conducted to identify membrane changes, including microparticle (MP) quantitation and in vitro RBC-endothelial cell (EC) interaction. Study Design and Methods Two whole blood packs were pooled-and-split and RBCs prepared (n=6 pairs). One pack was suspended in SAGM and one in AS-1. Samples were collected during 42 days of refrigerated storage. RBC shape/size, glycophorin A (GPA)+ and phosphatidylserine (PS)+ MPs were measured by flow cytometry. RBC adhesion to ECs was determined by an in vitro flow perfusion assay. Routine parameters (pH, hemolysis) were also measured. Results Compared to SAGM-RBCs, AS-1-RBCs had lower hemolysis (p<0.04), lower GPA+ MPs (p<0.03) and lower PS+ MPs (p<0.03) from day 14 onwards. AS-1-RBCs had higher (p<0.02) side scatter from day 28 onwards, compared to SAGM-RBCs. SAGM-RBCs were more adherent to ECs at day 28 of storage compared to AS-1 RBCs (p=0.04), but reversed at day 42 (p=0.02). No significant differences in forward scatter or pH were found. Conclusion SAGM-RBCs lose more membrane during storage. SAGM-RBCs had increased adherence to ECs at day 28 of storage, while AS-1-RBCs were more adherent at day 42. The effect of these differences on the function and survival of SAGM-RBCs and AS-1-RBCs following transfusion remains to be determined. PMID:23869602
NASA Astrophysics Data System (ADS)
Johan, Mohd Rafie; Ibrahim, Suriani
2012-01-01
In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.
Pectate hydrolases of parsley (Petroselinum crispum) roots.
Flodrová, Dana; Dzúrovä, Mária; Lisková, Desana; Mohand, Fairouz Ait; Mislovicová, Danica; Malovícová, Anna; Voburka, Zdenek; Omelková, Jirina; Stratilová, Eva
2007-01-01
The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, T.K.; Anderson, J.L.; Condie, K.G.
Experiments designed to investigate surface dryout in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2, WSR, and ECS-2cE series of tests. These experiments were conducted to examine the onset of wall thermal excursion for a range of flow, inletmore » fluid temperature, and annulus outlet pressure. Hydraulic boundary conditions on the test section represent flowrates (0.1--1.4 1/s), inlet fluid temperatures (293--345 K), and outlet pressures (-18--139.7 cm of water relative to the bottom of the heated length (61--200 cm of water relative to the bottom of the lower plenum)) expected to occur during the Emergency Coolant System (ECS) phase of postulated Loss-of-Coolant Accident in a production reactor. The onset of thermal excursion based on the present data is consistent with data gathered in test rigs with flat axial power profiles. The data indicate that wall dryout is primarily a function of liquid superficial velocity. Air entrainment rate was observed to be a strong function of the boundary conditions (primarily flowrate and liquid temperature), but had a minor effect on the power at the onset of thermal excursion for the range of conditions examined. 14 refs., 33 figs., 13 tabs.« less
Optimized Carbonate and Ester-Based Li-Ion Electrolytes
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2008-01-01
To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.
Calvo, Luis; Toldrá, Fidel; Rodríguez, Ana I; López-Bote, Clemente; Rey, Ana I
2017-01-01
This study evaluates the effect of organic (Se-enriched yeast; SeY) versus inorganic selenium (sodium selenite; SeS) supplementation and the different response of selenium source according to muscle pH on pork meat quality characteristics. Pigs ( n = 30) were fed the Se-supplemented diets (0.3 mg/kg) for 65 days. Neither electric conductivity (EC) nor drip loss were affected by the selenium source. The SeY group had lower TBARS in muscle samples after day 7 of refrigerated storage and higher a * values on days 1 and 7 than the SeS group. The effect of dietary selenium source on some meat quality characteristics was affected by muscle pH. Hence, as the muscle pH increases, the drip loss decreases but this effect is more marked with the dietary organic Se enrichment. Muscle pH seems to modulate the action of selenium in pork, especially some meat characteristics such as drip loss.
Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji
2017-07-01
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Zhongqin; Wang, Yanwei; Liu, Wei; Wang, Jingya; Chen, Haixia
2017-02-01
The neutrase (EC 3.4.24.4) and papain (EC 3.4.22.2) were together immobilized ascross-linked enzyme aggregates (N-P-CLEAs) and their properties were characterized. The influence of the precipitant, cross-linking ratio of glutaraldehyde and cross-linking time were investigated. Ethanol was selected as the more efficient precipitant compared with ammonium sulfate. The proper cross-linking ratio of enzyme and glutaraldehyde was 1:5 (v/v) and the optimized cross-linking time was 4h. N-P-CLEAs showed obvious improvement in thermal stability and pH stability than the free enzyme (P<0.05) and could hold relatively high activity retention in nonpolar and hydrophilic solvents and without activity loss at 4°C for more than six months. The cross-linking reaction had been appeared in N-P-CLEAs and more orderly microscopic surface morphology of N-P-CLEAs was observed. The molecular weight and thermal denaturation temperature of N-P-CLEAs were increased while the isoelectric point was decreased compared with those of the free enzymes. Application of N-P-CLEAs in bean proteins and zein showed a higher degree of hydrolysis, such as the hydrolysis degree of mung bean protein hydrolyzed by N-P-CLEAs was 12%, increased by approximately 4.5% compared to that of free enzyme. The results demonstrated that the N-P-CLEAs was suitable for application in food protein hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Shi, Yuping; Huang, Limin; Soh, Ai Kah; Weng, George J; Liu, Shuangyi; Redfern, Simon A T
2017-09-11
Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆S max ) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆S max = 300 kJ/(K.m 3 ) is obtained for Pb 0.8 Ba 0.2 ZrO 3 . The ∆S max in antiferroelectric Pb 0.95 Zr 0.05 TiO 3 , Pb 0.8 Ba 0.2 ZrO 3 and polymeric ferroelectrics scales proportionally with V cr -2.2 , owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆S max in relaxor and normal ferroelectrics scales as ∆S max ~ V cr -0.37 , which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.
Zhang, Wei; Parniak, Michael A.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Graebing, Phillip W.; Rohan, Lisa C.
2014-01-01
4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a novel nucleoside analog of great interest because of its superior activity against wild-type and multidrug-resistant HIV-1 strains, and favorable safety profiles in vitro and in vivo. The aim of this work was to provide preformulation information of EFdA important for delivery system development. A simple, accurate and specific reverse-phase high performance liquid chromatographic (RP-HPLC) method with UV detection was developed for quantification of EFdA. In addition, physicochemical characterizations including pH solubility profile, octanol/water partition coefficient (Log Po/w), DSC analysis, field emission scanning electron microscopy, and stability studies under various conditions were conducted. EFdA existed in planar or flake shape, with a melting point of ~130 °C, and had a pH dependent solubility. The log Po/w value of EFdA was −1.19. The compound was stable upon exposure to pH levels from 3 to 9 and showed good stability at elevated temperature (65 °C). In vitro cytotoxicity assessments were performed in two different epithelial cell lines. In cell-based studies, the EFdA selectivity index (50% cytotoxic concentration [CC50] values/50% effective concentration [EC50]) was found to be greater than 1 × 103. Permeability studies using cell- and tissue-based models showed that EFdA had an apparent permeability coefficient (Papp) <1 × 10−6cm/s and that the paracelluar pathway was the dominant transport route for EFdA. Overall, EFdA possesses favorable characteristics for further formulation development. PMID:23841536
Recycling of hazardous waste from tertiary aluminium industry in a value-added material.
Gonzalo-Delgado, Laura; López-Delgado, Aurora; López, Félix Antonio; Alguacil, Francisco José; López-Andrés, Sol
2011-02-01
The recent European Directive on waste, 2008/98/EC seeks to reduce the exploitation of natural resources through the use of secondary resource management. Thus the main objective of this study was to explore how a waste could cease to be considered as waste and could be utilized for a specific purpose. In this way, a hazardous waste from the tertiary aluminium industry was studied for its use as a raw material in the synthesis of an added-value product, boehmite. This waste is classified as a hazardous residue, principally because in the presence of water or humidity, it releases toxic gases such as hydrogen, ammonia, methane and hydrogen sulfide. The low temperature hydrothermal method developed permits the recovery of 90% of the aluminium content in the residue in the form of a high purity (96%) AlOOH (boehmite). The method of synthesis consists of an initial HCl digestion followed by a gel precipitation. In the first stage a 10% HCl solution is used to yield a 12.63 g L(-1) Al( 3+) solution. In the second stage boehmite is precipitated in the form of a gel by increasing the pH of the acid Al(3+) solution by adding 1 mol L(-1) NaOH solution. Several pH values were tested and boehmite was obtained as the only crystalline phase at pH 8. Boehmite was completely characterized by X-ray diffraction, Fourier transform infrared and scanning electron microscopy. A study of its thermal behaviour was also carried out by thermogravimetric/differential thermal analysis.
Zhang, Wei; Parniak, Michael A; Mitsuya, Hiroaki; Sarafianos, Stefan G; Graebing, Phillip W; Rohan, Lisa C
2014-08-01
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a novel nucleoside analog of great interest because of its superior activity against wild-type and multidrug-resistant HIV-1 strains, and favorable safety profiles in vitro and in vivo. The aim of this work was to provide preformulation information of EFdA important for delivery system development. A simple, accurate and specific reverse-phase high performance liquid chromatographic (RP-HPLC) method with UV detection was developed for quantification of EFdA. In addition, physicochemical characterizations including pH solubility profile, octanol/water partition coefficient (Log Po/w), DSC analysis, field emission scanning electron microscopy, and stability studies under various conditions were conducted. EFdA existed in planar or flake shape, with a melting point of ∼130 °C, and had a pH dependent solubility. The log Po/w value of EFdA was -1.19. The compound was stable upon exposure to pH levels from 3 to 9 and showed good stability at elevated temperature (65 °C). In vitro cytotoxicity assessments were performed in two different epithelial cell lines. In cell-based studies, the EFdA selectivity index (50% cytotoxic concentration [CC50] values/50% effective concentration [EC50]) was found to be greater than 1 × 10(3). Permeability studies using cell- and tissue-based models showed that EFdA had an apparent permeability coefficient (Papp) <1 × 10(-6)cm/s and that the paracelluar pathway was the dominant transport route for EFdA. Overall, EFdA possesses favorable characteristics for further formulation development.
Pork Quality Traits According to Postmortem pH and Temperature in Berkshire
Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk
2016-01-01
This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661
Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2006-01-01
Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.
NASA Astrophysics Data System (ADS)
Ahmed, Tanveer
Elemental or black carbon (EC or BC) aerosols produced during incomplete combustion strongly absorb solar radiation and contribute to global warming, and cause cardiopulmonary disease. Long-term atmospheric EC measurements, [EC]atm, are needed to validate global climate models to estimate the impact of EC on earth's temperature. Such data is sparse. In this work, a new technique was developed to retrieve the historical record of [EC]atm in the Northeastern US for the past two centuries. Measurements of [EC]atm were made in the monthly composites of daily filters collected over ˜30 yr at Whiteface Mountain (WFM), NY using the thermal optical method. Bottom sediment cores were collected from four lakes near WFM. They were sliced in horizontal sections, freeze dried, and their ages determined 210Pb dating technique. EC in sediments was chemically separated and its concentration determined using the same thermal-optical method. It was shown that [EC]sed = K [EC]atm where K is constant (m3/g). Measurements of [EC]atm and [EC]sed for the ˜1978 to 2005 period was used to determine the value for K. The value of K and [EC]sed for periods before 1978 were used to determine [EC]atm for the past ˜100 yrs. [EC]atm in the preindustrial period in US, ˜1850, varied between 38 and 73 ng/m3, with a mean value of 56 +/- 14 ng/m3. [EC]atm was found to increase sharply with rapid industrialization and reached its maximum value of 751 +/- 265 ng/m3 during 1920s, which was a factor of ˜12 higher compared to the mean preindustrial level. The [EC]atm declined gradually until ˜1980 and then decreased sharply. Directly measured values of [EC]atm are only ˜25% higher compared to the mean preindustrial level. Model US EC emissions estimates of Novakov et al. (2003), based on energy consumptions, reproduce our [EC]sed trends quite well for the ˜1900 to 1930 period. Subsequently, the model EC values drop-off more rapidly than our [EC]atm. To extend the technique where long tern [EC]atm are not available, a new generalized mathematical model expression to determine K was developed. The value of K calculated using the model agreed within +/-30% with the measurements.
Jegede, O O; Owojori, O J; Römbke, J
2017-06-01
In order to assess the influence of temperature on pesticide toxicity to soil fauna, specimens of the predatory mite Hypoaspis aculeifer and the springtail Folsomia candida were exposed in artificial soil spiked with different concentrations of three pesticides (dimethoate, chlorpyrifos and deltamethrin) at 20°C vs 28°C for the mites and 20°C vs 26°C for the springtails. All tests were carried out according to OECD guidelines. In the mite tests, the toxic effects of dimethoate and chlorpyrifos on survival was about two orders of magnitude more at 28°C than at 20°C. Mite reproduction decreased in the tests with chlorpyrifos and deltamethrin by about four to five orders of magnitude at 28°C than at 20°C. (EC50 28 ° C =1.42 and 2.52mg/kg vs EC50 20 ° C =6.18 and 10.09mg/kg) In the collembolan tests, the toxicity of dimethoate on survival was higher at 26°C than at 20°C (LC50 26 ° C =0.17mg/kg vs LC50 20 ° C =0.36mg/kg), while the opposite was detected for deltamethrin (LC50 26 ° C =11.27mg/kg vs LC50 20 ° C =6.84mg/kg). No difference was found in the test with chlorpyrifos. Effects of dimethoate and chlorpyrifos on reproduction were higher at 26°C than at 20°C (EC50 26 ° C =0.11 and 0.018mg/kg vs EC50 20 ° C =0.29 and 0.031mg/kg respectively), but in the case of deltamethrin the opposite was observed (EC50 26 ° C =12.85mg/kg vs EC50 20 ° C =2.77mg/kg). A preliminary risk assessment of the three pesticides at the two temperature regimes based on the Toxicity Exposure Ratio (TER) approach of the European Union, shows that in general there are few different outcomes when comparing data gained at different temperatures. However, in the light of the few comparisons made data gained in temperate regions should be used with caution in the tropics. Copyright © 2017 Elsevier Inc. All rights reserved.
Ge, Xiaoxia; Gunner, M R
2016-05-01
Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long-range proton translocation between the central (the retinal Schiff base SB216, D85, and D212) and exit clusters (E194 and E204) remains elusive. To obtain a dynamic view of the key factors controlling proton translocation, a systematic study using molecular dynamics simulation was performed for eight bacteriorhodopsin models varying in retinal isomer and protonation states of the SB216, D85, D212, and E204. The side-chain orientation of R82 is determined primarily by the protonation states of the residues in the EC. The side-chain reorientation of R82 modulates the hydrogen-bond network and consequently possible pathways of proton transfer. Quantum mechanical intrinsic reaction coordinate calculations of proton-transfer in the methyl guanidinium-hydronium-hydroxide model system show that proton transfer via a guanidinium group requires an initial geometry permitting proton donation and acceptance by the same amine. In all the bacteriorhodopsin models, R82 can form proton wires with both the CC and the EC connected by the same amine. Alternatively, rare proton wires for proton transfer from the CC to the EC without involving R82 were found in an O' state where the proton on D85 is transferred to D212. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gu, X.; Shao, J.; Cui, Y.
2017-12-01
In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.
Cupi, Denisa; Hartmann, Nanna B; Baun, Anders
2016-05-01
In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. Copyright © 2016 Elsevier Inc. All rights reserved.
Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang
2012-06-01
Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
The Influence of pH on Prokaryotic Cell Size and Temperature
NASA Astrophysics Data System (ADS)
Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.
2015-12-01
The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.
Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria.
Nishimune, T; Watanabe, Y; Okazaki, H; Akai, H
2000-06-01
A fairly high activity of a relatively heat-resistant thiaminase was detected and characterized from the pupae of an African silkworm Anaphe spp. which had been the putative cause of a seasonal ataxia and impaired consciousness in Nigerians. The thiaminase in the buffer extract of Anaphe pupae was type I (thiamin: base 2-methyl-4-aminopyrimidine methyl transferase EC 2.5.1.2), and the optimal temperature and pH were 70 degrees C and 8.0-8.5, respectively. Based on gel filtration chromatography, the molecules were estimated to be 200 kDa. Second substrates which could be utilized by the thiaminase were pyridoxine, amino acids, glutathione, taurine and 4-aminopyridine. Thiamin phosphate esters were inactive as substrates. This is the first report describing an insect thiaminase. Our results indicate the necessity of thorough heat treatment for the detoxification of the African silkworm, making the worm a safe source of high-quality protein.
Effects of bean dregs and crab shell powder additives on the composting of green waste.
Zhang, Lu; Sun, Xiangyang
2018-07-01
Composting is an effective and economic technology for the recycling of organic waste. In this study, bean dregs (BD) (at 0, 35, and 45%) and crab shell powder (CSP) (at 0, 15, and 25%) were evaluated as additives during the two-stage composting of green waste (GW). The GW used in this experiment mainly consisted of branch cuttings collected during the maintenance of the urban green landscape. Combined additions of BD and CSP improved composting conditions and compost quality in terms of composting temperature, specific surface area, average pore diameter, pH and EC values, carbon dioxide release, ammonia and nitrous oxide emissions, E 4 /E 6 ratio, elemental composition and atomic ratios, organic matter degradation, microbial numbers, enzyme activities, compost phytotoxicity, and environmental and economic benefits. The combined addition of 35% BD and 25% CSP to the two-stage composting of GW resulted in the highest quality compost product in only 22 days. Copyright © 2018 Elsevier Ltd. All rights reserved.
Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide
2017-01-01
We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Common amino acid domain among endopolygalacturonases of ascomycete fungi.
Keon, J P; Waksman, G
1990-01-01
The endopolygalacturonase (EC 3.2.1.15) enzymes produced in vitro by three ascomycete fungi, Aspergillus niger, Sclerotinia sclerotiorum, and Colletotrichum lindemuthianum were studied by using thin-layer isoelectric focusing and activity stain overlay techniques. The polygalacturonases from A. niger and S. sclerotiorum consisted of numerous isoforms, whereas the endopolygalacturonase from C. lindemuthianum consisted of a single protein species. The most abundant endopolygalacturonase isoform produced by each of these organisms was purified and characterized. Biochemical parameters, including molecular weight, isoelectric point, kinetic parameters, temperature and pH optima, and thermal stability, were determined. Considerable differences in physical and chemical properties were demonstrated among these fungal polygalacturonases. Antibodies raised against individual proteins exhibited little cross-reaction, suggesting that these enzymes differ structurally as well as biochemically. In contrast, the analysis of the N-terminal amino acid sequences of the three proteins showed extensive homology, particularly in a region labeled domain 1 in which 84% of the amino acids were conserved. Images PMID:2403258
2008-07-01
Leachate . ................................ 56 xi Table 24. Smelter Site Soil Lettuce Germination Percentage...sand soil (Table 22). This discovery was contrary to the hypothesized results. Archived samples of leachate from each treatment were examined...but after further investigation ,the pH and EC of the New Jersey leachate showed no remarkable differences between the unamended or sand unamended
Asthir, Bavita; Duffus, Carol M; Smith, Rachel C; Spoor, William
2002-04-01
The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.
NASA Astrophysics Data System (ADS)
Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan
2017-08-01
Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.
Assessing phytotoxicity of heavy metals in remediated soil.
Branzini, A; Zubillaga, M S
2010-01-01
Copper (Cu), zinc (Zn) and chromium (Cr) are pollutants that usually are accumulated in soils. Their toxicity can be decreased by applying amendments. We proposed to evaluate changes in Cu, Zn, and Cr availability, due to the application of amendments, through chemical analysis and phytotoxicity tests. The phytotoxicity test was carried out using species belonging to Sesbania genus; plant parameters were measured 48, 72, 96, and 168 hours after the start of incubation. The treatments included enriched soil, in addition to biosolid compost and triple superphosphate. Cu and Zn amounts were higher in treatments without amendments, indicating immobilization on the part of these. The amounts of Cr tended to decrease with amendments application. The amendments increased pH values and decreased EC; however, this had no impact on the results. No relationship was found among pH, EC, and plant parameters. Different behaviors were observed. S. virgata showed germination seed delay. In addition, while in S. virgata the IG increased during the assay, in S. punicea it diminished. The application of compost, fertilizer or both combined could be of interest for contaminated soils remediation. The use of chemical analysis and phytotoxicity tests allowed to estimate heavy metal availability and the effect on both Sesbania species.
Li, Taiping; Yuan, Songhu; Wan, Jinzhong; Lin, Li; Long, Huayun; Wu, Xiaofeng; Lu, Xiaohua
2009-08-01
This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.
Yadav, Veena; Kaur, Pervinder; Kaur, Paawan
2017-11-06
The present study was conducted to determine the effect of light conditions and chemical properties of water on dissipation of glyphosate. The residues of glyphosate and aminomethylphosphonic acid (AMPA) were quantified using fluorescence spectrophotometer after derivatization with 9-fluoroenylmethoxycarbonyl chloride (FMOC-Cl) and orthopthaldehyde (OPA). Average percent recoveries of glyphosate and AMPA from distilled, tap, and ground water ranged from 87.5 to 94.9, 87.3 to 93.7, and 80.6 to 92.0, respectively, with relative standard deviation less than 10%. The limit of detection and limit of quantification of glyphosate and AMPA from different water matrices ranged from 0.001 to 0.03 μg mL -1 and 0.003 to 0.01 μg mL -1 , respectively. The dissipation of glyphosate followed the first-order kinetics, and half-life varied from 1.56 to 14.47 and 13.14 to 42.38 days under UV and sunlight, respectively. The pH and electrical conductivity (EC) of water has differential influence on dissipation of glyphosate, and it increased with increase in pH and EC.
Electrochemical Formation of Germanene: pH 4.5
Ledina, M. A.; Bui, N.; Liang, X.; ...
2017-05-27
Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structuremore » is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm -1, predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen.« less
Purification of peroxidase from Horseradish (Armoracia rusticana) roots.
Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B
2010-08-11
Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-01-01
l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-02-01
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.
Kumar, Mukesh; Singh, Amrinder; Beniwal, Vikas; Salar, Raj Kumar
2016-12-01
Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.
Determining the Pollution Parameters of Degirmendere Stream (Trabzon, NE TURKEY)
NASA Astrophysics Data System (ADS)
Sunnetci, M. O.; Hatipoglu, E.; Firat Ersoy, A.; Gultekin, F.
2013-12-01
The pollution parameters of Degirmendere Stream (Trabzon, TURKEY) are determined in this study. The study area is located between Maçka, 26 km to the south of Trabzon city, and the Black Sea. The area consists of Late Cretaceous volcano-sedimentary rocks, dacite, and basalt, overlain by Eocene volcanic rocks. Quaternary alluvium overlay all geological units following Degirmendere Stream bed. In-situ physical parameter measurements, anion-cation analysis, and heavy and pollutant element analysis on water samples were carried out for four months at four different locations on the stream. The stream's water temperature values were between 4.7 and 9.7oC, pH values were between 6.01 and 7.98, dissolved oxygen (DO) values were between 7.03 and 12.38 mg/l, electrical conductivity (EC) values were between 86 and 254 μS/cm. According to the Piper diagram, the stream water is classified as Ca-HCO3 type water. In the Schoeller diagram, the lines combining mek/l values of the ions in stream water are parallel. Al concentration in the stream water varied from 0.06 to 0.22 mg/l, Mn concentration varied from 0.1 to 0.36 mg/l, and Fe concentration varied from 0.01 to 0.12 mg/l. The stream water is classified as first class in point of temperature, pH, DO, total dissolved solids (TDS), NO3-, P, Pb, Fe, and Al; first and second class in point of NH4+; second class in point of Cu; and third class in point of NO2-, according to the Water Pollution Control Regulation of the Turkish Republic's Criteria for Inland Surface Water Classification. Results indicate waters of the Degirmendere Stream is very good-good for irrigation use according to the Wilcox diagram.
Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment.
Rodriguez, Jackson; Stopić, Srećko; Krause, Gregor; Friedrich, Bernd
2007-11-01
Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.
Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity.
Kranabetter, J M; Hawkins, B J; Jones, M D; Robbins, S; Dyer, T; Li, T
2015-12-01
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β-diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N-related niche by quantifying net fluxes of NH4+, NO3- and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance-decay curve) on species assemblages. Species turnover was significant (β(1/2) = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m(2)/s for Tomentella species. The lowest uptake rates of NH4+ were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m(2)/s), followed by Cortinarius species (60 nmol/m(2)/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m(2)/s). These results suggest NH4+ uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology. © 2015 John Wiley & Sons Ltd.
The initial freezing point temperature of beef rises with the rise in pH: a short communication.
Farouk, M M; Kemp, R M; Cartwright, S; North, M
2013-05-01
This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Christopher M. Gough; John R. Seiler
2004-01-01
While the effect of soil temperature and rnoisture on soil C02 efflux (Ec) has becn widely investigated, the relationship between Ec and soil carbon (C). root, and stand parameters has not been comprehensively examined or quantified across extensive spatial and temporal scales. Wle measured E
NASA Astrophysics Data System (ADS)
Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Lin, Neng-Huei; Sheu, Guey-Rong; Wang, Jia-Lin; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Chi, Kai Hsien; Young, Chea-Yuan; Huang, Hill; Chen, Horng-Wen; Weng, Guo-Hau; Lai, Sin-Yu; Hsu, Shao-Peng; Chang, Yu-Jia; Chang, Jia-Hon; Wu, Xyue-Chang
2014-06-01
Eight carbonaceous fractions from aerosols were resolved using the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Chow et al., 1993). The aerosols were collected at the Mountain Lulin Atmospheric Background Station (Mt. Lulin, 2862 m a.s.l.) in Central Taiwan from April 2003 to April 2012. The monthly and yearly levels of organic carbon (OC) and elemental carbon (EC) varied consistently with PM2.5 mass concentrations during biomass burning (BB) period. The highest monthly carbonaceous content was observed in March and the highest yearly carbonaceous concentration was observed in 2007. This finding is consistent with the BB activity in Indochina and indicates that carbonaceous content is a major component of BB aerosols. Lee et al. (2011) classified four trajectory groups from the air masses transported to Mt. Lulin during the aerosol collection period. For the air masses transported from the BB area (the BB group) in Indochina, the carbonaceous content was greater than the water-soluble ions in PM2.5, and the OC/EC ratio (4.8 ± 1.5) was high. With EC as the indicator of primary emission sources, the air masses of the BB group were found to contain more primary than secondary OC. The Anthropogenic group (from the local and free troposphere below the 700-hPa pressure level over the Asian continent) probably contained more secondary than primary OC or the sources of OC and EC could be quite diverse. The average char-EC/soot-EC (low-temperature EC/high-temperature EC) ratios were 3.9 ± 3.5, 0.4 ± 0.4, 0.9 ± 0.8, and 0.3 ± 0.4 for the trajectory groups BB, SNBB (from BB source areas during the non-BB period), Anthropogenic, and FT (from the oceanic area and the free troposphere above the 700-hPa pressure level over the Asian continent), respectively. The presence of a high char-EC/soot-EC ratio confirmed the correct classification of the BB group, whereas the low ratios from the other groups indicated the strong influence of vehicle exhaust. It is noted that higher OC and EC levels were obtained at Mt. Lulin as compared with those obtained at other high-elevation sites. This difference suggested that the Indochina BB plume exhibited a more serious climatic impact on the background air in East Asia than in other places in Asia and Europe. On the basis of the carbonaceous levels of the SNBB and FT groups, the background OC and EC levels of approximately 3000 m in the West Pacific are around 1.33 μg m-3 and 0.35 μg m-3, respectively.
NASA Astrophysics Data System (ADS)
Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn
2018-04-01
Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.
NASA Astrophysics Data System (ADS)
Chen, Tianran; Shklovskii, B. I.
2013-04-01
In the recent paper, we explained why the maximum bulk resistivity of topological insulators (TIs) such as Bi2Se3 is so small [B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.176801 109, 176801 (2012)]. Using the model of completely compensated semiconductor we showed that when the Fermi level is pinned in the middle of the gap the activation energy of resistivity is Δ=0.3(Eg/2), where Eg is the semiconductor gap. In this paper, we consider a strongly compensated n-type semiconductor. We find the position of the Fermi level μ calculated from the bottom of the conduction band Ec and the activation energy of resistivity Δ as a function of compensation K, and show that Δ=0.3(Ec-μ) holds at any 0<1-K≪1. In the same range of relatively high temperatures, the Peltier energy (heat) Π is even smaller: Π≃Δ/2=0.15(Ec-μ). We also show that at low temperatures, the activated conductivity crosses over to variable range hopping (VRH) and find the characteristic temperature of VRH, TES, as a function of K.
Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions
Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.
2015-01-01
Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data. PMID:25894766
Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots.
Li, Xian; Kushad, Mosbah M
2005-06-01
Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.
Lassen, Søren F.; Breinholt, Jens; Østergaard, Peter R.; Brugger, Roland; Bischoff, Andrea; Wyss, Markus; Fuglsang, Claus C.
2001-01-01
Phytases catalyze the hydrolysis of phosphomonoester bonds of phytate (myo-inositol hexakisphosphate), thereby creating lower forms of myo-inositol phosphates and inorganic phosphate. In this study, cDNA expression libraries were constructed from four basidiomycete fungi (Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens) and screened for phytase activity in yeast. One full-length phytase-encoding cDNA was isolated from each library, except for the Ceriporia sp. library where two different phytase-encoding cDNAs were found. All five phytases were expressed in Aspergillus oryzae, purified, and characterized. The phytases revealed temperature optima between 40 and 60°C and pH optima at 5.0 to 6.0, except for the P. lycii phytase, which has a pH optimum at 4.0 to 5.0. They exhibited specific activities in the range of 400 to 1,200 U · mg, of protein−1 and were capable of hydrolyzing phytate down to myo-inositol monophosphate. Surprisingly, 1H nuclear magnetic resonance analysis of the hydrolysis of phytate by all five basidiomycete phytases showed a preference for initial attack at the 6-phosphate group of phytic acid, a characteristic that was believed so far not to be seen with fungal phytases. Accordingly, the basidiomycete phytases described here should be grouped as 6-phytases (EC 3.1.3.26). PMID:11571175
Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J
2015-02-01
Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.
D-propranolol attenuates lysosomal iron accumulation and oxidative injury in endothelial cells.
Mak, I Tong; Chmielinska, Joanna J; Nedelec, Lucie; Torres, Armida; Weglicki, William B
2006-05-01
The influence of selected beta-receptor blockers on iron overload and oxidative stress in endothelial cells (ECs) was assessed. Confluent bovine ECs were loaded with iron dextran (15 muM) for 24 h and then exposed to dihydroxyfumarate (DHF), a source of reactive oxygen species, for up to 2 h. Intracellular oxidant formation, monitored by fluorescence of 2',7'-dichlorofluorescin (DCF; 30 microM), increased and peaked at 30 min; total glutathione decreased by 52 +/- 5% (p < 0.01) at 60 min. When the ECs were pretreated 30 min before iron loading with 1.25 to 10 microM d-propranolol, glutathione losses were attenuated 15 to 80%, with EC(50) = 3.1 microM. d-Propranolol partially inhibited the DCF intensity increase, but atenolol up to 10 microM was ineffective. At 2 h, caspase 3 activity was elevated 3.2 +/- 0.3-fold (p < 0.01) in the iron-loaded and DHF-treated ECs, and cell survival, determined 24 h later, decreased 47 +/- 6% (p < 0.01). Ten micromoles of d-propranolol suppressed the caspase 3 activation by 63% (p < 0.05) and preserved cell survival back to 88% of control (p < 0.01). In separate experiments, 24-h iron loading resulted in a 3.6 +/- 0.8-fold increase in total EC iron determined by atomic absorption spectroscopy; d-propranolol at 5 microM reduced this increase to 1.5 +/- 0.4-fold (p < 0.01) of controls. Microscopic observation by Perls' staining revealed that the excessive iron accumulated in vesicular endosomal/lysosomal structures, which were substantially diminished by d-propranolol. We previously showed that propranolol could readily concentrate into the lysosomes and raise the intralysosomal pH; it is suggested that the lysosomotropic properties of d-propranolol retarded the EC iron accumulation and thereby conferred the protective effects against iron load-mediated cytotoxicity.
Contamination of the Conchos River in Mexico: does it pose a health risk to local residents?
Rubio-Arias, Hector; Quintana, César; Jimenez-Castro, Jorge; Quintana, Ray; Gutierrez, Melida
2010-05-01
Presently, water contamination issues are of great concern worldwide. Mexico has not escaped this environmental problem, which negatively affects aquifers, water bodies and biodiversity; but most of all, public health. The objective was to determine the level of water contamination in six tributaries of the Conchos River and to relate their levels to human health risks. Bimonthly samples were obtained from each location during 2005 and 2006. Physical-chemical variables (temperature, pH, electrical conductivity (EC), Total solids and total nitrogen) as well as heavy metals (As, Cr, Cu, Fe, Mn, Ni, V, Zn, and Li) were determined. The statistical analysis considered yearly, monthly, and location effects, and their interactions. Temperatures differed only as a function of the sampling month (P < 0.001) and the pH was different for years (P = 0.006), months (P < 0.001) and the interaction years x months (P = 0.018). The EC was different for each location (P < 0.001), total solids did not change and total nitrogen was different for years (P < 0.001), months (P < 0.001) and the interaction years x months (P < 0.001). The As concentration was different for months (P = 0.008) and the highest concentration was detected in February samples with 0.11 mg L(-1). The Cr was different for months (P < 0.001) and the interaction years x months (P < 0.001), noting the highest value of 0.25 mg L(-1). The Cu, Fe, Mn, Va and Zn were different for years, months, and their interaction. The highest value of Cu was 2.50 mg L(-1); for Fe, it was 16.36 mg L(-1); for Mn it was 1.66 mg L(-1); V was 0.55 mg L(-1); and Zn was 0.53 mg L(-1). For Ni, there were differences for years (P = 0.030), months (P < 0.001), and locations (P = 0.050), with the highest Ni value being 0.47 mg L(-1). The Li level was the same for sampling month (P < 0.001). This information can help prevent potential health risks in the communities established along the river watershed who use this natural resource for swimming and fishing. Some of the contaminant concentrations found varied from year to year, from month to month and from location to location which necessitated a continued monitoring process to determine under which conditions the concentrations of toxic elements surpass existing norms for natural waters.
Contamination of the Conchos River in Mexico: Does It Pose a Health Risk to Local Residents?
Rubio-Arias, Hector; Quintana, César; Jimenez-Castro, Jorge; Quintana, Ray; Gutierrez, Melida
2010-01-01
Presently, water contamination issues are of great concern worldwide. Mexico has not escaped this environmental problem, which negatively affects aquifers, water bodies and biodiversity; but most of all, public health. The objective was to determine the level of water contamination in six tributaries of the Conchos River and to relate their levels to human health risks. Bimonthly samples were obtained from each location during 2005 and 2006. Physical-chemical variables (temperature, pH, electrical conductivity (EC), Total solids and total nitrogen) as well as heavy metals (As, Cr, Cu, Fe, Mn, Ni, V, Zn, and Li) were determined. The statistical analysis considered yearly, monthly, and location effects, and their interactions. Temperatures differed only as a function of the sampling month (P < 0.001) and the pH was different for years (P = 0.006), months (P < 0.001) and the interaction years x months (P = 0.018). The EC was different for each location (P < 0.001), total solids did not change and total nitrogen was different for years (P < 0.001), months (P < 0.001) and the interaction years x months (P < 0.001). The As concentration was different for months (P = 0.008) and the highest concentration was detected in February samples with 0.11 mg L−1. The Cr was different for months (P < 0.001) and the interaction years x months (P < 0.001), noting the highest value of 0.25 mg L−1. The Cu, Fe, Mn, Va and Zn were different for years, months, and their interaction. The highest value of Cu was 2.50 mg L−1; for Fe, it was 16.36 mg L−1; for Mn it was 1.66 mg L−1; V was 0.55 mg L−1; and Zn was 0.53 mg L−1. For Ni, there were differences for years (P = 0.030), months (P < 0.001), and locations (P = 0.050), with the highest Ni value being 0.47 mg L−1. The Li level was the same for sampling month (P < 0.001). This information can help prevent potential health risks in the communities established along the river watershed who use this natural resource for swimming and fishing. Some of the contaminant concentrations found varied from year to year, from month to month and from location to location which necessitated a continued monitoring process to determine under which conditions the concentrations of toxic elements surpass existing norms for natural waters. PMID:20623012
Effects of Cultivar and Maternal Environment on Seed Quality in Vicia sativa
Li, Rong; Chen, Lijun; Wu, Yanpei; Zhang, Rui; Baskin, Carol C.; Baskin, Jerry M.; Hu, Xiaowen
2017-01-01
Production of high quality seeds is of fundamental importance for successful crop production. However, knowledge of the effects of increased temperature resulting from global warming on seed quality of alpine species is limited. We investigated the effect of maternal environment on seed quality of three cultivars of the leguminous forage species Vicia sativa, giving particular attention to temperature. Plants of each cultivar were grown at 1700 and 3000 m a.s.l., and mass, germination, electrical conductivity (EC) of leakage and longevity were determined for mature seeds. Seeds of all three cultivars produced at the low elevation had a significantly lower mass and longevity but higher EC of leachate than those produced at the high elevation, suggesting that increased temperatures decreased seed quality. However, seed viability did not differ between elevations. The effects of maternal environment on seed germination strongly depended on cultivar and germination temperature. At 10 and 15°C, seeds of “Lanjian 3” produced at high elevation germinated to higher percentages and rates than those produced at low elevation, but the opposite trend was observed at 20°C. However, for seeds of “Lanjian 1” and “Lanjian 2,” no significant effect of elevation was observed in germination percentage. Our results indicate that the best environment for the production of high quality seeds (e.g., high seed mass, low EC, high seed longevity) of V. sativa is one in which temperatures are relatively low during seed development. PMID:28861096
Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da
2018-04-01
The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50 = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50 = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50 = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered secondary effluent ADMI color below local discharge limits. Benefits of the HT/Fe/TiO 2 1 catalyst compared to TiO 2 include its lower bandgap energy (2.34 eV vs 3.25 eV), higher ADMI color removal and its magnetic nature that facilitated its recovery and would reduce treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-05-01
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j
Elimination of cannibalistic denaturation by enzyme immobilization or inhibition
Wu, Hua-Lin; Lace, Daniel A.; Bender, Myron L.
1981-01-01
The cannibalistic denaturation of α-chymotrypsin (EC 3.4.21.1) around neutral pH can be eliminated by immobilization (insolubilization) of the enzyme or by inhibition by specific reversible inhibitors, but the high-pH denaturation cannot be. The denaturation of the immobilized enzyme at high pH follows first-order kinetics, just as the denaturation of the soluble enzyme does. These results lend credence to the description of the denaturation of chymotrypsin as cannibalistic around neutrality and due to a hydroxide ion reaction at high pH; this interpretation followed from kinetic arguments given in the previous article [Wu, H.-L., Wastell, A. & Bender, M. L. (1981) Proc. Natl. Acad. Sci. USA 78, 4116-4117]. Elimination of denaturation around neutrality by immobilization may be the reason why membrane-bound enzymes are so common in vivo. PMID:16593052
Ewert, Jacob; Glück, Claudia; Strasdeit, Henry; Fischer, Lutz; Stressler, Timo
2018-03-01
The aminopeptidase A (PepA; EC 3.4.11.7) belongs to the group of metallopeptidases with two bound metal ions per subunit (M1M2(PepA)) and is specific for the cleavage of N-terminal glutamic (Glu) and aspartic acid (Asp) and, in low amounts, serine (Ser) residues. Our group recently characterized the first PepA from a Lactobacillus strain. However, the characterization was performed using synthetic para-nitroaniline substrates and not original peptide substrates, as was done in the current study. Prior to the characterization using original peptide substrates, the PepA purified was converted to its inactive apo-form and eight different metal ions were tested to restore its activity. It was found that five of the metal ions were able to reactivate apo-PepA: Co 2+ , Cu 2+ , Mn 2+ , Ni 2+ and Zn 2+ . Interestingly, depending on the metal ion used for reactivation, the activity and the pH and temperature profile differed. Exemplarily, MnMn(PepA), NiNi(PepA) and ZnZn(PepA) had an activity optimum using MES buffer (50mM, pH 6.0) and 60°C, whereas the activity optimum changed to Na/K-phosphate-buffer (50mM, pH 7.0) and 55°C for CuCu(PepA). However, more important than the changes in optimum pH and temperature, the kinetic properties of PepA were affected by the metal ion used. While all PepA variants could release N-terminal Glu or Asp, only CoCo(PepA), NiNi(PepA) and CuCu(PepA) could release Ser from the particular peptide substrate. In addition, it was found that the enzyme efficiency (V max /K M ) and catalytic mechanism (positive cooperative binding (Hill coefficent; n), substrate inhibition (K IS )) were influenced by the metal ion. Exemplarily, a high cooperativity (n>2),K IS value >20mM and preference for N-terminal Glu were detected for CuCu(PepA). In summary, the results suggested that an exchange of the metal ion can be used for tailoring the properties of PepA for specific hydrolysis requirements. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gobara, Mohamed; Zaghloul, Basem; Baraka, Ahmad; Elsayed, Mohamed; Zorainy, Mahmoud; Mokhtar Kotb, Mohamed; Elnabarawy, Hany
2017-04-01
Extract of Corchorus olitorius stems (ECS) was used as a green inhibitor for the inhibition of mild steel corrosion in 0.5 M H2SO4 solution. GC/MS was used for both qualitative and quantitative analysis of the extract. The corrosion performance of the extract was evaluated using electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss. The results showed that ECS is a mixed-type inhibitor which reduces both anodic and cathodic reactions and the inhibition efficiency was reached up to 93%. Adsorption isotherm data was recorded at different temperatures and analyzed by selected adsorption isotherm models to reveal characteristics of inhibition. Thermodynamic calculations showed that the inhibition efficiency increases with increasing inhibitor concentration, and decreases with increasing temperature. Adsorption of ECS on the mild steel surface was found to be spontaneous and exothermic. Adsorption is suggested to be physisorption according to El-Awady isotherm model. Also, the scanning electron microscopy (SEM) was used to investigate the surface morphology to confirm the corrosion results.
Kosmowska, Amanda; Żelazny, Mirosław; Małek, Stanisław; Siwek, Joanna Paulina; Jelonkiewicz, Łukasz
2016-10-15
The purpose of the study was to identify the factors affecting stream water chemistry in the small mountain catchments deforested to varying degrees, from 98.7 to 14.1%, due to long-term acid deposition. Water samples were collected monthly in 2013 and 2014 from 17 streams flowing across three distinct elevation zones in the Skrzyczne massif (Poland): Upper, Middle and Lower Forest Zone. Chemical and physical analyses, including the pH, electrical conductivity (EC), total mineral content (Mt), water temperature, and the concentrations of Ca(2+), Mg(2+), Na(+), K(+), HCO3(-), SO4(2-), Cl(-), and NO3(-), were conducted. Based on Principal Component Analysis (PCA), the most important factor affecting water chemistry was human impact associated with changes in pH, SO4(2-) concentration, and the concentration of most of the main ions. The substantial acidity of the studied environment contributed to the exclusion of natural factors, associated with changes in discharge, from the list of major factors revealed by PCA. All of the streams were characterized by very low EC, Mt, and low concentrations of the main ions such as Ca(2+) and HCO3(-). This is the effect of continuous leaching of solutes from the soils by acidic precipitation. The lowest parameter values were measured for the streams situated in the Upper Forest Zone, which is associated with greater acid deposition at the higher elevations. In the streams located in the Upper Forest Zone, a higher percentage of SO4(2-) occurred than in the streams situated in the Middle and Lower Forest Zones. However, the largest share of SO4(2-) was measured in the most deforested catchment. The saturation of the studied deforested catchment with sulfur compounds is reflected by a positive correlation between SO4(2-) and discharge. Hence, a forest acts as a natural buffer that limits the level of acidity in the natural environment caused by acidic atmospheric deposition. Copyright © 2016 Elsevier B.V. All rights reserved.
Stream water quality in the context of payments for environmental services in Southeastern Brazil
NASA Astrophysics Data System (ADS)
Piccolo, M. C.; Reis, L. D. C.; Figueiredo, R. D. O.; Camargo, P. B. D.; Costa, C. F. G. D.; Zuccari, M. L.; Green, T. R.
2015-12-01
Public policy of payment for environmental services (PES) was established in 2007 to face the challenge of recuperatingwater resources at one of the headwater areas of the Jaguari River Basin, which supplies an important reservoir for the metropolitan region of São Paulo, Brazil. Such effort consists of reforestation of riparian zones and spring lands at the hills of selected catchments, including the Ribeirão das Posses (RP) catchment. Since 2012 the University of São Paulo has developed research at RP to monitor the benefits of these practices on stream water quality, and identified a few parameters as good indicators to follow up the results of this PES program. The present study has the objective to show results of the monthly monitoring in2015,including 13 sampling stations at RP catchment distributed as follows: one in a spring forested area, three in spring areas of different ages of reforestation (3, 5 and 8 years), and nine at reaches of RP streamlocated in a way to contemplate the effects of the first order streams that comes from the studied spring areas entering RP. We established two additional stations at the Jaguari River, upstream and downstream of RP outlet. In situ measurements include temperature, pH, electric conductivity (EC) and dissolved oxygen (DO), and collect water samples to bring to the laboratory for analyses of dissolved organic and inorganic carbon (DOC and DIC), total nitrogen (TN) and alkalinity. Also, sediments (fine fraction: >0.45 μm; and coarse fraction: >63 μm) are collected for isotopic carbon analyses. Preliminary results show pH values ranging from 5.5 to 7.8, while DO ranges from 5.8 to 8.9 mg L-1. As for EC, the mean at the spring forested station was 34.6 μS cm-1, while at spring areas of 3, 6 and 8 years of reforestation they were 53.3, 73.8 and 34.8 μS cm-1, respectively. We expected that by the end of this annual monitoring the benefits of reforestation will be affirmed.
NASA Astrophysics Data System (ADS)
Hoko, Zvikomborero
Zimbabwe generally receives an average rainfall of 675 mm per annum of which only a maximum of 10% finds its way to rivers as runoff. Gokwe, Nkayi, Lupane and Mwenezi are some of the driest districts in Zimbabwe having mean annual runoffs (MAR) in the range 17-70 mm. River flows especially in Nkayi and Lupane are seasonal and often dry in the period June to November every year. The Kalahari sands predominantly found in such areas as Gokwe, Nkayi, and Lupane promote rapid percolation of rainwater leaving little runoff. The main source of water for domestic purposes in these areas is groundwater with very little reliance on surface water. This study analyzed the water quality of water points in Gokwe South, Nkayi, Lupane, and Mwenezi districts. Parameters analyzed were pH, temperature, dissolved oxygen (DO), turbidity and electrical conductivity (EC). Water quality perceptions from the villagers and the research team were investigated and possible correlations studied. Water quality perceptions included, taste and soap consumption and colour. The uses of the water at domestic level as well as available alternatives to borehole water were investigated. The pH generally ranged from 6.5 to 8.0, which is within the Canadian guidelines. DO was 0.3-5.9 mg/l while turbidity ranged from 0 to 259 NTU with Mwenezi having the highest turbidity value. Conductivity ranged from 70 to 9800 μS/cm with the lowest and highest values recorded in Gokwe and Mwenezi. It was found out that the water quality in terms of taste and odour was 97% satisfactory for Gokwe South, 85% Nkayi, 64% Lupane, and 62% for Mwenezi. High soap consumption which is related to hardness was perceived to be least in Lupane (14%) and highest in Mwenezi with 81%. In general taste complaints also corresponded to high soap consumption but the opposite was not true. It was observed that there was no clear correlation between the quality parameters studied and perceived quality as for example satisfactory taste responses were obtained at EC values higher than the threshold minimum value for objection.
Seal, Rebecca P.; Shigeri, Yasushi; Eliasof, Scott; Leighton, Barbara H.; Amara, Susan G.
2001-01-01
Excitatory amino acid transporters (EAATs) buffer and remove synaptically released l-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in both the forward and reverse directions without affecting activation of the anion conductance. EC50s for l-glutamate and sodium are significantly lower after modification, consistent with kinetic models of the transport cycle that link anion channel gating to an early step in substrate translocation. Also, decreasing the pH from 7.5 to 6.5 decreases the EC50 for l-glutamate to activate the anion conductance, without affecting the EC50 for the entire transport cycle. These findings demonstrate for the first time a structural separation of transport and the uncoupled anion flux. Moreover, they shed light on some controversial aspects of the EAAT transport cycle, including the kinetics of proton binding and anion conductance activation. PMID:11752470
Yang, B; Arai, K; Kusu, F
2000-07-15
The title determination was conducted by HPLC with electrochemical detection using an ODS column and a mobile phase of acetonitrile: 0.1 M phosphate buffer (pH 2.5) (15:85, v/v). The eight catechins, gallocatechin (GC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCg), gallocatechin gallate (GCg), epicatechin gallate (ECg), and catechin gallate (Cg), were detected at 0.6 V vs Ag/AgCl. Good linear relationships between current and amount were noted for 0.5-250 pmol of each catechin, with a correlation coefficient of 0.999 in each case. The detection limit for any one was 0.5 pmol (signal to noise ratio, S/N = 3). After the ingestion of 340 ml canned green tea, GC, EGC, C, and EC, mostly in conjugated form, were determined in urine samples. Conjugated catechins were hydrolyzed by enzymes using sulfatase and beta-glucuronidase. The time courses of the above four catechins showed a maxima at 1-3 h after tea ingestion. (+), (-)-EC and (+), (-)-C were present in canned tea.
Lhoste, E F; Mouzon, B; Andrieux, C; Gueugneau, A M; Fiszlewicz, M; Corring, T; Szylit, O
1998-01-01
Pea proteins have been considered for the introduction into the human diet only recently. This protein source was tested on nutritional and digestive parameters in heteroxenic male Fischer rats inoculated with a human faecal microflora from a methane producer. Compared to soybean proteins, pea proteins have similar effects on the rat's endogenous and bacterial digestive patterns. Compared to the pea proteins, a diet containing a standard meat meal enhanced the pH and the production of ammonia, while a lyophilized beef meat enhanced that of urea. The diet containing the standard meat decreases short-chain fatty acids and modifies the ratio of caecal short-chain fatty acids. Both animal diets decreased the specific activities of pancreatic proteases such as chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and carboxypeptidase A (EC 3.4.17.1) when compared to the diet containing the pea isolate. In conclusion, the whole composition of the diet, more than the origin of the dietary protein, influences the rat's digestive pattern.
A new crystal form of a hyperthermophilic endocellulase
Kataoka, Misumi; Ishikawa, Kazuhiko
2014-01-01
The hyperthermophilic glycoside hydrolase family endocellulase 12 from the archaeon Pyrococcus furiosus (EGPf; Gene ID PF0854; EC 3.2.1.4) catalyzes the hydrolytic cleavage of the β-1,4-glucosidic linkage in β-glucan in lignocellulose biomass. A crystal of EGPf was previously prepared at pH 9.0 and its structure was determined at an atomic resolution of 1.07 Å. This article reports the crystallization of EGPf at the more physiologically relevant pH of 5.5. Structure determination showed that this new crystal form has the symmetry of space group C2. Two molecules of the enzyme are observed in the asymmetric unit. Crystal packing is weak at pH 5.5 owing to two flexible interfaces between symmetry-related molecules. Comparison of the EGPf structures obtained at pH 9.0 and pH 5.5 reveals a significant conformational difference at the active centre and in the surface loops. The interfaces in the vicinity of the flexible surface loops impact the quality of the EGPf crystal. PMID:25005081
Susceptibility of ectomycorrhizal fungi to soil heating.
Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas
2010-01-01
Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping
2015-01-01
Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin
2007-07-01
By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.
Transport temperatures observed during the commercial transportation of animals.
Fiore, Gianluca; Hofherr, Johann; Natale, Fabrizio; Mainetti, Sergio; Ruotolo, Espedito
2012-01-01
Current temperature standards and those proposed by the European Food Safety Authority (EFSA) were compared with the actual practices of commercial transport in the European Union. Temperature and humidity records recorded for a year on 21 vehicles over 905 journeys were analysed. Differences in temperature and humidity recorded by sensors at four different positions in the vehicles exceeded 10°C between the highest and lowest temperatures in nearly 7% of cases. The number and position of temperature sensors are important to ensure the correct representation of temperature conditions in the different parts of a vehicle. For all journeys and all animal categories, a relatively high percentage of beyond threshold temperatures can be observed in relation to the temperature limits of 30°C and 5°C. Most recorded temperature values lie within the accepted tolerance of ±5°C stipulated in European Community Regulation (EC) 1/2005. The temperature thresholds proposed by EFSA would result in a higher percentage of non-compliant conditions which are more pronounced at the lower threshold, compared to the thresholds laid down in Regulation (EC) 1/2005. With respect to the different animal categories, the non-compliant temperature occurrences were more frequent in pigs and sheep, in particular with regard to the thresholds proposed by EFSA.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-07-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-03-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kee Sung; Rajput, Nav Nidhi; Persson, Kristin A.
Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by {sup 1}H and {sup 19}F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0–50 °C and for various concentrations (0.25–1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in allmore » solvents. Since TFSI{sup −} has fluoromethyl groups (CF{sub 3}), D{sub TFSI} could be measured separately and the values found are larger than those for D{sub Fc1N112} in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D{sub PC} < D{sub EC} < D{sub EMC}), and both a higher E{sub a} for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112{sup +}, which is a relatively stronger interaction than that between Fc1N112{sup +} and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D{sub PC} = D{sub EC} = D{sub EMC} and Fc1N112{sup +} and all components of the EC/PC/EMC solution have the same E{sub a} for translational motion, while the ratio D{sub EC/PC/EMC}/D{sub Fc1N112} is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112{sup +} transference numbers lie around 0.4 and increase slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.« less
Climate system properties determining the social cost of carbon
NASA Astrophysics Data System (ADS)
Otto, Alexander; Todd, Benjamin J.; Bowerman, Niel; Frame, David J.; Allen, Myles R.
2013-06-01
The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations.
Rocha-Guzman, N E; Gallegos-Infante, J A; Gonzalez-Laredo, R F; Bello-Perez, A; Delgado-Licon, E; Ochoa-Martinez, A; Prado-Ortiz, M J
2008-09-01
The physical properties of extruded products from three Mexican common bean cultivars were investigated. Common bean cultivars Flor de Mayo, Pinto Villa and Bayo Victoria from the same harvesting season (2006) were used in this work. Beans were milled and the flour was hydrated to 24, 26 and 28 g of water/100 g of dry weight. Two temperatures, 130 degrees C and 165 degrees C at the end of the extruder barrel without die, were experimented. Common bean flour extrudates were evaluated for water absorption index (WAI), water absorption capacity (WAC), oil absorption capacity (OAC), and emulsifying capacity (EC). Flor de Mayo extrudates showed the highest WAC and WAI values. Thus starch from Flor de Mayo beans showed minor restricted water availability. In all cases, the OAC of extruded products was lower than the crude bean flour. The EC for Bayo Victoria flour increased as a consequence of the extrusion process. The EC for Flor de Mayo was higher at lower temperature and lower moisture content than Pinto Villa and Bayo Victoria beans. EC behavior of Pinto Villa was similar to Bayo cultivar. These results indicate that it is possible to produce new extruded products with good physical properties from these common bean cultivars.
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-06-07
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.
pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs
NASA Astrophysics Data System (ADS)
Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.
2008-03-01
We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.
Probability-based nitrate contamination map of groundwater in Kinmen.
Liu, Chen-Wuing; Wang, Yeuh-Bin; Jang, Cheng-Shin
2013-12-01
Groundwater supplies over 50% of drinking water in Kinmen. Approximately 16.8% of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 (-)-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate-N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate-N in residential well water using logistic regression (LR) model. A probability-based nitrate-N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate-N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7%. The highest probability of nitrate-N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC-pH-probability curve of nitrate-N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate-N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate-N contamination zones.
Pereira, Paulo; Cerda, Artemi; Martin, Deborah; Úbeda, Xavier; Depellegrin, Daniel; Novara, Agata; Martínez-Murillo, Juan F; Brevik, Eric C; Menshov, Oleksandr; Comino, Jesus Rodrigo; Miesel, Jessica
2017-02-01
Spring grassland fires are common in boreal areas as a consequence of slash and burn agriculture used to remove dry grass to increase soil nutrient properties and crop production. However, few works have investigated fire impacts on these grassland ecosystems, especially in the immediate period after the fire. The objective of this work was to study the short-term impacts of a spring grassland fire in Lithuania. Four days after the fire we established a 400m 2 sampling grid within the burned area and in an adjacent unburned area with the same topographical, hydrological and pedological characteristics. We collected topsoil samples immediately after the fire (0months), 2, 5, 7 and 9months after the fire. We analysed soil pH, electrical conductivity (EC), major nutrients including calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), and the minor elements aluminium (Al), manganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but increased EC, Ca, Mg, and K,. There was no effect on Na, Fe, and Zn. There was a decrease of EC, Ca, Mg, and Na from 0months after the fire until 7months after the fire, with an increase during the last sampling period. Fire did not significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al increased after the fire, reducing the potential effects of Al on plants. Overall, fire impacts were mainly limited to the immediate period after the fire. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermodynamic System Drift in Protein Evolution
Hart, Kathryn M.; Harms, Michael J.; Schmidt, Bryan H.; Elya, Carolyn; Thornton, Joseph W.; Marqusee, Susan
2014-01-01
Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (Tm) by 20°C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the Tms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in Tm, we measured the thermodynamic basis for stabilization—ΔCp and other thermodynamic parameters—for each of the ancestors. We observed that, while the Tm changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call “thermodynamic system drift.” This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways. PMID:25386647
Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters
Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.
2009-01-01
Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.
Africa’s oesophageal cancer corridor - do hot beverages contribute?
Munishi, Michael Oresto; Hanisch, Rachel; Mapunda, Oscar; Ndyetabura, Theonest; Ndaro, Arnold; Schüz, Joachim; Kibiki, Gibson; McCormack, Valerie
2016-01-01
Purpose Hot beverage consumption has been linked to oesophageal squamous cell cancer (EC) but its contribution to the poorly-understood East African EC corridor is not known. Methods In a cross-sectional study of general-population residents in Kilimanjaro, North Tanzania, tea drinking temperatures and times were measured. Using linear regression models, we compared drinking temperatures to those in previous studies, by socio-demographic factors and tea type (“milky tea” which can be 50% or more milk and water boiled together vs “black tea” which has no milk). Results Participants started drinking at a mean of 70.6°C (standard deviation 3.9, n=188), which exceeds that in all previous studies (p≤0.01 for each). Tea type, gender and age were associated with drinking temperatures. After mutual adjustment for each other, milky tea drinkers drank their tea 1.9°C (95% confidence interval: 0.9, 2.9) hotter than drinkers of black tea, largely because black tea cooled twice as fast as milky tea. Men commenced drinking tea 0.9°C (−0.2, 2.1) hotter than women did, and finished their cups 30 (−9, 69) seconds faster. 70% and 39% of milky and black tea drinkers, respectively, reported a history of tongue burning. Conclusions Hot tea consumption, especially milky tea, may be an important and modifiable risk factor for EC in Tanzania. The contribution of this habit to EC risk needs to be evaluated in this setting, jointly with that of the many risk factors acting synergistically in this multi-factorial disease. PMID:26245249
We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...
Hubel, F.; Beck, E.
1996-01-01
Three phytase (EC 3.1.3.26) isoforms from the roots of 8-d-old maize (Zea mays L. var Consul) seedlings were separated from phosphatases and purified to near homogeneity. The molecular mass of the native protein was 71 kD, and the isoelectric points of the three isoforms were pH 5.0, 4.9, and 4.8. Each of the three isoforms consisted of two subunits with a molecular mass of 38 kD. The temperature and pH optima (40[deg]C, pH 5.0) of these three isoforms, as well as the apparent Michaelis constants for sodium inositol hexakisphosphate (phytate) (43, 25, and 24 [mu]M) as determined by the release of inorganic phosphate, were only slightly different. Phytate concentrations higher than 300 [mu]M were inhibitory to all three isoforms. In contrast, the dephosphorylation of 4-nitrophenyl phosphate was not inhibited by any substrate concentration, but the Michaelis constants for this substrate were considerably higher (137-157 [mu]M). Hydrolysis of phytate by the phytase isoforms is a nonrandom reaction. D/L-Inositol-1,2,3,4,5- pentakisphosphate was identified as the first and D/L-inositol-1,2,5,6-tetrakisphosphate as the second intermediate in phytate hydrolysis. Phytase activity was localized in root slices. Although phosphatase activity was present in the stele and the cortex of the primary root, phytase activity was confined to the endodermis. Phytate was identified as the putative native substrate in maize roots (45 [mu]g P g-1 dry matter). It was readily labeled upon supplying [32P]phosphate to the roots. PMID:12226456
Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J.
2003-01-01
Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 → Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 → Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626
Santana, A; Salido, E; Torres, A; Shapiro, L J
2003-06-10
Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.
NASA Astrophysics Data System (ADS)
Ozeki, K.; Aoki, H.; Masuzawa, T.
2010-09-01
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized under hydrothermal conditions at 110-170 °C at pH values of 7.0 and 9.5. The crystallite size, the remnant film thickness, and the surface morphology of the films were observed using X-ray diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The crystallite size increased with the process temperature, and reached 123.6 nm (pH 9.5 and 170 °C) after 24 h. All of the crystallite sizes of the film treated at pH 9.5 were higher than those treated at pH 7.0 at each process temperature. The film treated at pH 9.5 retained more than 90% of the initial film thickness at any process temperature. The ratio of the film treated at pH 7.0 did not reached 90% at less than 150 °C, and tended to increase with the process temperature.
Chen, Yunyun; Xing, Dongming; Wang, Wei; Ding, Yi; Du, Lijun
2007-06-01
The determination of adenine nucleotides and energy charge (EC) has great importance in the characterization of cerebral ischemic injury and post-ischemic recovery. An IP-HPLC method was developed for the quantification of AMP, ADP, ATP and EC in cerebral ischemia and hypoxia of the Neuro-2a cell line. The chromatographic conditions were: a Zorbax SB-C18 reversed-phase column; mobile phase 100 mM KH(2)PO(4), 1 mM tetrabutylammonium hydroxide, and 2.5% acetonitrile, brought to pH 7.0 with potassium hydroxide (4 M), filtered through a 0.45 microm Millipore filter and degassed prior to use. The flow-rate was 1.0 mL/min. The injection volume was 20 microL. Detection was performed at a wavelength of 254 nm under a constant temperature (27 +/- 1 degrees C). The method was validated by means of linearity, using calibration curves constructed with five concentration levels of each compound. The limit of detection was also determined. The system precision was calculated as the coefficient of variation for five injections for each compound tested. Cerebral tissue was homogenized (4 degrees C) in 1 mL of an ice-cold 6% trichloroacetic acid that contained ATPase inhibitor and obtained good recovery (>90%). The results show that the described method for the determination of adenine nucleotides by HPLC has good linearity, limit of detection, precision and specificity, and is simple and rapid to perform. Copyright 2007 John Wiley & Sons, Ltd.
Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele
2004-07-25
The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.
Lei, Tao; Guo, Xianghong; Sun, Xihuan; Ma, Juanjuan; Zhang, Shaowen; Zhang, Yong
2018-05-01
Quantitative prediction of soil urea conversion is crucial in determining the mechanism of nitrogen transformation and understanding the dynamics of soil nutrients. This study aimed to establish a combinatorial prediction model (MCA-F-ANN) for soil urea conversion and quantify the relative importance degrees (RIDs) of influencing factors with the MCA-F-ANN method. Data samples were obtained from laboratory culture experiments, and soil nitrogen content and physicochemical properties were measured every other day. Results showed that when MCA-F-ANN was used, the mean-absolute-percent error values of NH 4 + -N, NO 3 - -N, and NH 3 contents were 3.180%, 2.756%, and 3.656%, respectively. MCA-F-ANN predicted urea transformation under multi-factor coupling conditions more accurately than traditional models did. The RIDs of reaction time (RT), electrical conductivity (EC), temperature (T), pH, nitrogen application rate (F), and moisture content (W) were 32.2%-36.5%, 24.0%-28.9%, 12.8%-15.2%, 9.8%-12.5%, 7.8%-11.0%, and 3.5%-6.0%, respectively. The RIDs of the influencing factors in a descending order showed the pattern RT > EC > T > pH > F > W. RT and EC were the key factors in the urea conversion process. The prediction accuracy of urea transformation process was improved, and the RIDs of the influencing factors were quantified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.
Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta
2017-10-01
Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.
Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot
2005-06-01
This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.
Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland
NASA Astrophysics Data System (ADS)
Vesala, T.; Launiainen, S.; Kolari, P.; Pumpanen, J.; Sevanto, S.; Hari, P.; Nikinmaa, E.; Kaski, P.; Mannila, H.; Ukkonen, E.; Piao, S. L.; Ciais, P.
2010-01-01
We analyzed the dynamics of carbon balance components: gross primary production (GPP) and total ecosystem respiration (TER), of a boreal Scots pine forest in Southern Finland. The main focus is on investigations of environmental drivers of GPP and TER and how they affect the inter-annual variation in the carbon balance in autumn (September-December). We used standard climate data and CO2 exchange measurements collected by the eddy covariance (EC) technique over 11 years. EC data revealed that increasing autumn temperature significantly enhances TER: the temperature sensitivity was 9.5 gC m-2 °C-1 for the period September-October (early autumn when high radiation levels still occur) and 3.8 gC m-2 °C-1 for November-December (late autumn with suppressed radiation level). The cumulative GPP was practically independent of the temperature in early autumn. In late autumn, air temperature could explain part of the variation in GPP but the temperature sensitivity was very weak, less than 1 gC m-2 °C-1. Two models, a stand photosynthesis model (COCA) and a global vegetation model (ORCHIDEE), were used for estimating stand GPP and its sensitivity to the temperature. The ORCHIDEE model was tested against the observations of GPP derived from EC data. The stand photosynthesis model COCA predicted that under a predescribed 3-6 °C temperature increase, the temperature sensitivity of 4-5 gC m-2 °C-1 in GPP may appear in early autumn. The analysis by the ORCHIDEE model revealed the model sensitivity to the temporal treatment of meteorological forcing. The model predictions were similar to observed ones when the site level 1/2-hourly time step was applied, but the results calculated by using daily meteorological forcing, interpolated to 1/2-hourly time step, were biased. This is due to the nonlinear relationship between the processes and the environmental factors.
Li, Guicai; Yang, Ping; Liao, Yuzhen; Huang, Nan
2011-04-11
To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.
Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming
2018-08-15
Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.
Karmali, Amin; Coelho, José
2011-04-01
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O₂ producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H₂O₂. It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H₂O₂ acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO₂ at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 °C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E (a)) was 32.08 kJ mol⁻¹ and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 U mg⁻¹ protein, 2.95 mM, 30.81 s⁻¹ and 10,444.06 s⁻¹ M⁻¹, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
NASA Astrophysics Data System (ADS)
Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.
2017-12-01
In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi
2015-04-01
It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the <2 mm mesh in order to remove the coarse material. Subsequently were placed in petri dishes and exposed to a controlled laboratory environment (temperature of 20C and 50% of air relative humidity) for one week to avoid potential impacts of the atmospheric conditions on SWR (Doerr, 1998). The persistence of SWR was measured using the water drop penetration time (WDPT) (Wessel, 1998). The classification of WDPT was according to Bisdom et al. (1993) <5 (wettable), 5-60 (slightly water repellent), 60-600 (strongly water repellent), 600-3600 (severely water repellent) and >3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, p<0.001). The WDPT soil median values collected under Pine, Birch, Penduculate Oak, forest trails and soils from planted grass were significantly higher than Platanus soil. The soils from Pine, Birch, Penduculate Oak, forest trails and planted grass were majorly severely water repellent, while Platanus soils were mostly strong water repellent. Soil water repellency of Pine soils had a significant negative correlation with pH (-0.52, p<0.05) and a significant negative correlation with SOM (0.69, p<0.01) and EC (0.53, p<0.05). In relation to Birch soils, SWR had a significant negative correlation with pH (-0.88, p<0.001) and significant positive correlation with SOM (0.78, p<0.001). In relation to the other species no significant correlations were observed between SWR and pH, EC and SOM. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998) On standardising the "Water Drop Penetration Time" and the "Molarity of an Ethanol Droplet" techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Process and Landforms, 23, 663-668. Mataix-Solera, J., Arcenegui, V., Zavala, L., Perez-Bejarano, A., Jordan, A., Morugan-Coronado, A., Barcenas-Moreno, G., Jimenez-Pinilla, P., Lozano, E., Granjed, A.J.P., Gil-Torres, J. (2014) Small variations of soil properties control fire induced water repellency, Spanish Journal of Soil Science, 4, 51-60. Urbanek., E., Hallet, P., Feeney, D., Horn, R. (2007) Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 140, 147-155. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13, 555-265.
Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F
2017-12-01
To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.
Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng
2014-04-25
Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range. Copyright © 2014. Published by Elsevier B.V.
Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy
2014-09-07
The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.
Scott, David E.; Willis, Sean D.; Gabbert, Seth; Johnson, Dave A.; Naylor, Erik; Janle, Elsa M.; Krichevsky, Janice E.; Lunte, Craig E.; Lunte, Susan M.
2015-01-01
The development of an on-animal separation-based sensor that can be employed for monitoring drug metabolism in a freely roaming sheep is described. The system consists of microdialysis sampling coupled directly to microchip electrophoresis with electrochemical detection (MD-ME-EC). Separations were accomplished using an all-glass chip with integrated platinum working and reference electrodes. Discrete samples from the microdialysis flow were introduced into the electrophoresis chip using a flow-gated injection approach. Electrochemical detection was accomplished in-channel using a two-electrode isolated potentiostat. Nitrite was separated by microchip electrophoresis using reverse polarity and a run buffer consisting of 50 mM phosphate at pH 7.4. The entire system was under telemetry control. The system was first tested with rats to monitor the production of nitrite following introduction of nitroglycerin into the subdermal tissue using a linear probe. The data acquired using the on-line MD-ME-EC system was compared to that obtained off-line analysis by liquid chromatography with electrochemical detection (LC-EC), using a second microdialysis probe implanted parallel to the first probe in the same animal. The MD-ME-EC device was then used on-animal to monitor the subdermal metabolism of nitroglycerin in sheep. The ultimate goal is to use this device to simultaneously monitor drug metabolism and behavior in a freely roaming animal. PMID:25697221
Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel
2016-01-01
Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. PMID:26755708
Feierabend, Jürgen; Schaan, Cornelia; Hertwig, Birgit
1992-01-01
Severe photoinactivation of catalase (EC 1.11.1.6) and a decline of variable fluorescence (Fv), indicating photoinhibition of photosynthesis, were observed as rapid and specific symptoms in leaves exposed to a high heat-shock temperature of 40°C as well as in leaves exposed to low chilling temperatures in white light of only moderately high photosynthetic photon flux density of 520 μE m−2 s−1. Other parameters, such as peroxidase (EC 1.11.1.7), glycolate oxidase (EC 1.1.3.1), glutathione reductase (EC 1.6.4.2), or the chlorophyll content, were hardly affected under these conditions. At a compatible temperature of 22°C, the applied light intensity did not induce severe photoinactivations. In darkness, exposures to high or low temperatures did not affect catalase levels. Also, decline of Fv in light was not related to temperature sensitivity in darkness. The effective low-temperature ranges inducing photoinactivation of catalase differed significantly for chilling-tolerant and chilling-sensitive plants. In leaves of rye (Secale cereale L.) and pea (Pisum sativum L.), photoinactivation occurred only below 15°C, whereas inactivation occurred at 15°C in cucumber (Cucumis sativus L.) and maize (Zea mays L.). The behavior of Fv was similar, but the difference between chilling-sensitive and chilling-tolerant plants was less striking. Whereas the catalase polypeptide, although photoinactivated, was not cleaved at 0 to 4°C, the D1 protein of photosystem II was greatly degraded during the low-temperature treatment of rye leaves in light. Rye leaves did not exhibit symptoms of any major general photodamage, even when they were totally depleted of catalase after photoinactivation at 0 to 4°C, and catalase recovered rapidly at normal temperature. In cucumber leaves, the decline of catalase after exposures to bright light at 0 to 4°C was accompanied by bleaching of chlorophyll, and the recovery observed at 25°C was slow and required several days. Similar to the D1 protein of photosystem II, catalase differs greatly from other proteins by its inactivation and high turnover in light. Inasmuch as catalase and D1 protein levels depend on continuous repair synthesis, preferential and rapid declines are generally to be expected in light whenever translation is suppressed by stress actions, such as heat or chilling, and recovery will reflect the repair capacity of the plants. Images Figure 2 Figure 5 PMID:16653157
Simultaneous wireless assessment of intra-oral pH and temperature.
Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D
2016-08-01
Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observational constraints on mixed-phase clouds imply higher climate sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
Observational constraints on mixed-phase clouds imply higher climate sensitivity
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
Observational constraints on mixed-phase clouds imply higher climate sensitivity.
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. Copyright © 2016, American Association for the Advancement of Science.
Salt Content Determination for Bentonite Mine Spoil: Saturation Extracts Versus 1:5 Extracts
Marguerite E. Voorhees; Daniel W. Uresk
2004-01-01
The reliability of estimating salt content in saturated extracts from 1:5 (1spoil:5water) extract levels for bentonite mine spoil was examined by regression analyses. Nine chemical variables were examined that included pH, EC, Ca++, Mg++, Na+, K+, HCO3-, SO4-, and Cl-. Ion concentrations from 1:5 extracts were estimated with high predictability for Ca++, Mg++, Na+, SO4...
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.
2014-03-01
We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.
Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise
2016-03-01
Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.
Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran
2014-01-10
Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.
Soil properties affecting wheat yields following drilling-fluid application.
Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D
2005-01-01
Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.
Martínková, Ludmila; Veselá, Alicja Barbara; Rinágelová, Anna; Chmátal, Martin
2015-11-01
The purpose of this study is to summarize the current knowledge of the enzymes which are involved in the hydrolysis of cyanide, i.e., cyanide hydratases (CHTs; EC 4.2.1.66) and cyanide dihydratases (CynD; EC 3.5.5.1). CHTs are probably exclusively produced by filamentous fungi and widely occur in these organisms; in contrast, CynDs were only found in a few bacterial genera. CHTs differ from CynDs in their reaction products (formamide vs. formic acid and ammonia, respectively). Several CHTs were also found to transform nitriles but with lower relative activities compared to HCN. Mutants of CynDs and CHTs were constructed to study the structure-activity relationships in these enzymes or to improve their catalytic properties. The effect of the C-terminal part of the protein on the enzyme activity was determined by constructing the corresponding deletion mutants. CynDs are less active at alkaline pH than CHTs. To improve its bioremediation potential, CynD from Bacillus pumilus was engineered by directed evolution combined with site-directed mutagenesis, and its operation at pH 10 was thus enabled. Some of the enzymes have been tested for their potential to eliminate cyanide from cyanide-containing wastewaters. CynDs were also used to construct cyanide biosensors.
Evaggelopoulou, Evaggelia N; Samanidou, Victoria F
2013-01-15
A confirmatory high pressure liquid chromatographic method for the determination of seven quinolone antibiotics in tissue of Atlantic salmon (Salmo salar L.) was developed. Ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL) and flumequine (FLU) were separated on a Perfectsil ODS-2 120 (250 mm × 4 mm, 5 μm) column by gradient elution with a mobile phase consisting of 0.1% trifluoroacetic acid (pH=1), acetonitrile and methanol at 25°C within 22 min. Analytes were monitored at 255 nm (for the determination of OXO, NAL and FLU) and 275 nm (for CIP, DAN, ENR and SAR) by means of photodiode array detector. Examined quinolones were isolated from salmon tissue by extraction with citrate buffer solution (pH=4.7) and purified by solid phase extraction using Oasis HLB (200mg/6 mL) cartridges. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity according to the European Union Decision 2002/657/EC. The accuracy of the method was additionally proved by its application to certified reference material of salmon tissue (BCR® 725). Copyright © 2012 Elsevier Ltd. All rights reserved.
Description of the docking module ECS for the Apollo-Soyuz Test Project.
NASA Technical Reports Server (NTRS)
Guy, W. W.; Jaax, J. R.
1973-01-01
The role of the Docking Module ECS (Environmental Control System) to be used on the Apollo-Soyuz Test mission is to provide a means for crewmen to transfer safely between the Apollo and Soyuz vehicles in a shirtsleeve environment. This paper describes the Docking Module ECS and includes the philosophy and rationale used in evaluating and selecting the capabilities that are required to satisfy the Docking Module's airlock function: (1) adjusting the pressure and composition of the atmosphere to effect crew transfer and (2) providing a shirtsleeve environment during transfer operations. An analytical evaluation is given of the environmental parameters (including CO2 level, humidity, and temperature) during a normal transfer timeline.
[Phosphatase activity in Amoeba proteus at pH 9.0].
Sopina, V A
2007-01-01
In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).
Mid-late Holocene variability of TEX86 temperature on the inner shelf of the East China Sea
NASA Astrophysics Data System (ADS)
Wu, X.; Xing, L.; Zhang, T.; Li, L.
2017-12-01
To understand the long-term environmental evolution of the East China Sea (ECS) and adjacent areas, decadal sea surface temperature (SST) induced by TEX86 (tetraether index of tetraethers consisting of 86 carbons) index was reconstructed in Core T08 on the inner shelf of the ECS over the past 3725 years. Core-top TEXH86 temperature was 23.2 °, close to the mean annual SST 22.9 ° at Site T08. BIT (branched and isopreniod tetraether) index and GDGT-0/GDGT-5 ratio indicated that the influences of terrestrial input and methanogens were negligible on TEX86 index, respectively. During the period of 3725-2000 yr BP, TEXH86 temperature had low values, fluctuating around 20 °, which suggested the weakened Kuroshio Current (KC) or the eastward shifting of the KC axis. From 2000 to 750 yr BP, TEXH86 temperature gradually increased to 23 °, indicating enhanced KC influence on Site T08. Significant reduction of TEXH86 temperature around 400 yr BP corresponded to Little Ice Age (LIA). Spectral analysis reveals that TEXH86 temperature series exhibit 175, 80, and 68-year periodicities, consistent with the characteristic periodicities of solar activity.
NASA Astrophysics Data System (ADS)
Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef
2016-04-01
Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy flux measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible heat flux by two turbulent transport techniques, namely, Flux-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean air temperature and air velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency air temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for flux measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible heat flux measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible heat fluxes, was just above the screen. CT value at optimal height was 2.64 and 1.52 for the shading and insect-proof screenhouses, respectively, with R2 = 0.73 in both types of structures. FV data analysis of the temperature signal at frequencies lower than 10 Hz showed that R2 of these regressions was insensitive to the data analysis frequency up to 0.5 Hz. This suggests that turbulent transport in the screenhouses was governed by large scale vortices. Regressions between EC and HTD sensible heat fluxes resulted with R2 which slightly decreased with height and had values between 0.3 and 0.4 for both screenhouses. The regression slopes also decreased with height and had values between 0.4 and 0.6. We conclude that in screenhouses the FV technique provides a more reliable estimate of the sensible heat flux than the HTD; however, the latter is simpler and more robust in terms of equipment, operation and data analysis and hence may be more attainable for day-to-day use by the growers.
NASA Astrophysics Data System (ADS)
Huzaizi, Rahmatina Mohd; Tahir, Syuhada Mohd; Mahbor, Kamisah Mohamad
2017-12-01
Waste cooking oil-based polyol was synthesized using epoxidation and hydroxylation methods. The polyol was combined with 4,4-diphenylmethane diisocyanate to produce polyurethane (PU) to be used as polymer host in solid polymer electrolyte. 30 wt% LiClO4 was added as doping salt and two types of plasticizers were used; ethylene carbonate (PU-EC) and polyethylene glycol (PU-PEG). The SPE films were characterized using Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The highest conductivity achieved was 8.4 x 10-8 S cm-1 upon addition of 10 wt% EC. The XRD results showed a decrease of crystalline peaks in PU-EC and the increase in PU-PEG. DSC results revealed that the films; PU, PU-EC and PU-PEG had glass transition temperatures of 159.7, 106.0 and 179.7 °C, respectively. The results showed that the addition of EC increased the amorphous region and the free volume in the SPE structure, thus resulted in higher ionic conductivity.
Activation of Phosphorylase Kinase by Physiological Temperature.
Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M
2015-12-29
In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.
Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe
2012-07-01
In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.
Choi, J E; Loke, C; Waddell, J N; Lyons, K M; Kieser, J A; Farella, M
2015-08-01
To describe a novel approach for continuous measurement of intra-oral pH and temperature in individuals carrying out normal daily activities over 24 h. We designed, validated and constructed a custom-made appliance fitted with a pH probe and a thermocouple. Six subjects wore the appliance over a 24-h period for two non-consecutive days, while the intra-oral pH and temperature were measured continuously and recorded. Intra-oral pH and temperature were very similar across different recording days, the difference being not statistically significant (P ≥ 0.14). There was a noticeable difference in the pattern of variation of pH between day and night. During the day, the mean pH was 7.3 (±0.4) and dropped markedly only after consumption of acidic food and drinks. The intra-oral pH decreased slowly during sleep with an average pH of 6.6 (±0.4) being recorded. The difference between day and night was statistically significant (P = 0.002). The mean intra-oral temperature was 33.9 °C (±0.9) during daytime and 35·9 °C (±0·5) during sleep (P = 0.013) with minor fluctuations occurring over 24 h. The continuous and simultaneous intra-oral pH and temperature measurement system described in this report is reliable, easy to construct, able to measure variables over a sustained period and may serve as a future diagnostic tool in a number of applications. © 2015 John Wiley & Sons Ltd.
Delineation of submarine groundwater discharge (SGD) in a large-scaled reclaimed land
NASA Astrophysics Data System (ADS)
Lee, B.; Park, S.; Hwang, J.; Song, S.; Choi, J.; Nam, K.
2010-12-01
The Saemangeum reclaimed land in Korea is currently under construction for an eco-friendly multifunctional complex including agriculture, eco-tourism, business, and renewable energy industry. Regarding water supply for the reclaimed land, groundwater is the sustainable water resource and submarine groundwater discharge (SGD), subsurface fluids flowing from land to the sea, is considered as an alternative one. This study was conducted to identify SGD below a southeastern part of the reclaimed land and to delineate its pathway by investigating groundwater chemistry and electrical resistivity distribution of subsurface. Thirty four groundwater samples were collected from shallow agricultural wells placed along the past coast line (~5 km length) of the southeastern part in May and October, 2009. Field parameters including pH, EC, temperature, and ORP were measured using a portable multi-sensor and alkalinity by titration. They were analyzed for stable isotopes (δ18O and δ2H), cations (Na, K, Ca, Mg, Si, and NH4), anions (Cl, NO3, SO4, and PO4), and metals (Fe and Mn). Mean EC value was 1,163 µS/cm, corresponding to the appropriate crop growth because the criteria of crop yield is less 2,000 µS/cm. Stable isotopes results were plotted on the local meteoric water line, indicating lighter than those from sea water. It implied that the groundwater originated from inland precipitation and occurred as SGD along the coast line. From the groundwater compositions showing various water types including Na-HCO3, Ca-Cl, and Na-Cl, it could be concluded that small-scale SGD and seawater intrusion have great influences on the groundwater quality. From correlation analysis of EC-pH, Cl-HCO3, NO3-SO4, NO3-Cl, and (Fe, Mn)-NH4, spatial distributions of SGD were identified. A small catchment (0.2 km2) in the reclaimed land was selected to delineate a SGD flow path by two-dimensional electrical resistivity survey. The longitudinal and transverse lines were 760 and 275 m, respectively. The spacing of electrodes was 5 m and a modified pole-pole array was applied. The high resistivity zone more than 110 ohm-m was identified in a weathered rock aquifer below mud flat of ~18 m thickness and this zone was turned out to be a main pathway of SGD. Based on results of electrical resistivity survey, four screened monitoring wells (boring depth: 23, 30, 34, and 77 m) were developed in the aquifer. Automatic data loggers measuring groundwater level, EC, and temperature every one hour were placed in each well. Groundwater level fluctuations ranged from -0.5 to -2.5 m below mean sea level due to tidal effect and precipitation. From the vertical EC profiling, the transition zone between groundwater and sea water was identified from -35 m to -50 m at a 77 m depth well, showing that SGD may occur within -35 m near the well. Groundwater samples with depth are being analyzed for chemical constituents to exhibit change of groundwater quality in the well. And the aquifer properties will be investigated by pumping- and tracer-test, and the capacity of SGD storage will be determined by model simulation.
Tang, Jiahuan; Liu, Ting; Yuan, Yong
2014-01-01
In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343
Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.
Zhang, R H; Zhang, X T; Hu, S M
2008-04-15
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.
NASA Astrophysics Data System (ADS)
Leinov, E.; Jackson, M.
2013-12-01
Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is evident. Moreover, the contribution of the exclusion potential increases as the permeability of the rock samples decreases. Our results demonstrate that the relative contribution of exclusion and diffusion potentials, expressed in terms of the macroscopic Hittorf transport number, is the same regardless of whether ion transport is in response to temperature or concentration gradients. Hence, it is possible to predict the contribution of TE potentials from EC potential measurements, and vice-versa. Moreover, it is often not valid to ignore the contribution of exclusion potentials, as has been assumed in previous studies; the relative contribution of exclusion and diffusion potentials depends upon the surface charge, the mobility contrast between the co- and counter ions, and the thickness of the electrical double layer relative to the pore-radius, and is predicted reasonably well by the simple model of Westermann-Clark and Christoforou [1986]. Finally, EC and TE potentials may be large in magnitude and make a significant contribution to the measured SP in many natural settings. Westermann-Clark, G.B. and C.C. Christoforou, (1986), The exclusion-diffusion potential in charged porous membranes, J. Electroanal. Chem. 198, 213-231.
Wingeyer, Ana; Mamo, Martha; Schacht, Walter; McCallister, Dennis; Sutton, Pamela
2018-05-01
As a precautionary principle, the National Pollutant Discharge Elimination System (NPDES) permit establishes that the primary pollutant in concrete grinding residue (CGR) is its alkalinity and restricts CGR roadside discharge to 11 Mg ha or the agronomic liming rate, whichever is lower. We evaluated the effect of CGR application on roadside soil chemical properties, existing vegetation, and rainfall runoff. Five CGR rates (0, 11, 22, 45, and 90 dry Mg ha) were tested on roadsides slopes at two different locations in eastern Nebraska. Vegetation, soil, and runoff characteristics were evaluated before CGR application and 30 d and 1 yr after CGR application. Soil pH of control plots averaged 8.3 and 8.5 for each site respectively, across depths and slope positions, thus not requiring any liming for agronomic purposes. Soil electrical conductivity (EC, 1:1) averages of control plots were 0.79 and 1.24 dS m across depths and slope positions. In the short term (30 d) the highest CGR application affected the 0- to 7.5-cm soil depth by increasing soil extractable Ca (21 and 25% for each site, respectively), soil pH (0.2, south site), and soil EC (0.2 dS m) compared with the control. However, these changes in soil did not persist 1 yr after CGR application. The pH buffering capacity of soil prevented post-CGR-application pH from exceeding 8.9, even at the highest application rate. Application of CGR did not produce any differences in biomass production, botanical composition, and runoff characteristics at either site. From our study, CGR up to ?90 dry Mg ha-about the amount produced during diamond grinding operations-can be one-time applied to roadside soils of similar characteristics on already established vegetation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
2-Keto-3-fluoroglutarate: a useful mechanistic probe of 2-keto-glutarate-dependent enzyme systems.
Grissom, C B; Cleland, W W
1987-12-18
2-Keto-3-fluoroglutaric acid prepared by acid hydrolysis of its diethyl ester is stable, as the free acid in aqueous solution at pH 2, and can be stored at -20 degrees C for several years. Both enantiomers are reduced by NADH in the presence of glutamate dehydrogenase (EC 1.4.1.2) to the two diastereomers of 3-fluoro-L-glutamate, which are stable at neutral pH and at high pH unless heated. 2-Keto-3-fluoroglutarate exists in solution almost entirely as a hydrate both at low and neutral pH. Both enantiomers of ketofluoroglutarate react with the pyridoxamine forms of aspartate, alanine and 4-aminobutyrate transaminases to give fluoride release. 2 mol of cosubstrate amino acid react for each mol of ketofluoroglutarate (KFG) when starting from the pyridoxamine form of the enzyme: 2 RCHNH2COOH + KFG + H2O----F- + NH4+ + glutamate + 2 RCOCOOH. Both diastereomers of fluoroglutamate are decarboxylated by glutamate decarboxylase (EC 4.1.1.15) with fluoride release: KFG + H2O----CO2 + F- + HCOCH2CH2COOH. By contrast, only one isomer of fluoroglutamate will react with the pyridoxal form of glutamate-oxalacetate transaminase to give fluoride release: HOOCCHNH2CHFCH2COOH + H2O----4F- + NH4+ + HOOCCOCH2CH2COOH. The enzymatic decarboxylation of 3-fluoroisocitrate produces only one enantiomer of ketofluoroglutarate, which is reduced to threo (2R,3R)-3-fluoroglutamate by NADH and glutamate dehydrogenase: [2R,3S]-HOOCCH(OH)CF(COOH)CH2COOH + NADP+----[3R]-KFG + CO2 + NADPH + H+. The proton, 13C, and 19F-NMR parameters of ketofluoroglutarate and the two fluoroglutamate diastereomers are presented. These molecules are useful probes of enzymatic mechanisms thought to involve carbanion intermediates.
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.
2014-10-01
We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.
Value of eddy-covariance data for individual-based, forest gap models
NASA Astrophysics Data System (ADS)
Roedig, Edna; Cuntz, Matthias; Huth, Andreas
2014-05-01
Individual-based forest gap models simulate tree growth and carbon fluxes on large time scales. They are a well established tool to predict forest dynamics and successions. However, the effect of climatic variables on processes of such individual-based models is uncertain (e.g. the effect of temperature or soil moisture on the gross primary production (GPP)). Commonly, functional relationships and parameter values that describe the effect of climate variables on the model processes are gathered from various vegetation models of different spatial scales. Though, their accuracies and parameter values have not been validated for the specific model scales of individual-based forest gap models. In this study, we address this uncertainty by linking Eddy-covariance (EC) data and a forest gap model. The forest gap model FORMIND is applied on the Norwegian spruce monoculture forest at Wetzstein in Thuringia, Germany for the years 2003-2008. The original parameterizations of climatic functions are adapted according to the EC-data. The time step of the model is reduced to one day in order to adapt to the high resolution EC-data. The FORMIND model uses functional relationships on an individual level, whereas the EC-method measures eco-physiological responses at the ecosystem level. However, we assume that in homogeneous stands as in our study, functional relationships for both methods are comparable. The model is then validated at the spruce forest Waldstein, Germany. Results show that the functional relationships used in the model, are similar to those observed with the EC-method. The temperature reduction curve is well reflected in the EC-data, though parameter values differ from the originally expected values. For example at the freezing point, the observed GPP is 30% higher than predicted by the forest gap model. The response of observed GPP to soil moisture shows that the permanent wilting point is 7 vol-% lower than the value derived from the literature. The light response curve, integrated over the canopy and the forest stand, is underestimated compared to the measured data. The EC-method measures a yearly carbon balance of 13 mol(CO2)m-2 for the Wetzstein site. The model with the original parameterization overestimates the yearly carbon balance by nearly 5 mol(CO2)m-2 while the model with an EC-based parameterization fits the measured data very well. The parameter values derived from EC-data are applied on the spruce forest Waldstein and clearly improve estimates of the carbon balance.
NASA Astrophysics Data System (ADS)
Armour, K.
2017-12-01
Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.
NASA Astrophysics Data System (ADS)
Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San
2018-06-01
In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.
Global Warming Estimation from MSU: Correction for Drift and Calibration Errors
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.
2000-01-01
Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the error ec on the global temperature trend. In one path the entire error ec is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by approximately 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+/-) 0.04 K/decade during 1980 to 1998.
NASA Astrophysics Data System (ADS)
Nicolosi, E. M. G.; Quincey, P.; Font, A.; Fuller, G. W.
2018-02-01
The Attenuation Versus Evolved Carbon (AVEC) plot is a new way to represent thermal-optical organic carbon/elemental carbon (OC/EC) analysis data. The accumulated carbon concentration is plotted against the attenuation (ln (I0/I)). Unlike the thermogram, it provides information about the sample properties rather than the instantaneous instrument sensor status. The plot can be used to refine the determination of OC and EC split point, either from consideration of laser instability or transit time within the instrument; to investigate the optical properties of the particles; and to spot the early evolution of pyrolysed carbon (PC) and/or EC during the inert phase. 168 samples from three sites were studied. The gradient of the AVEC plot curve in the oxygenated phase provides information about the mass absorption cross section (σ) of the particles leaving the filter. The σ of the PC generated in the higher temperature Quartz protocol was greater than the PC generated in the lower temperature EUSAAR_2 protocol. Also, in both cases the PC evolved at a lower temperature in the oxygenated phase than the native EC. To minimise the shadowing effect, σ was also measured for the particles leaving the filter at the end of the analysis. These σ values, which are expected to be a combination of inherent σ together with fixed instrumental factors, were consistent between the different sites (45 ± 10 m2 g-1 in rural samples, 42 ± 8 m2 g-1 in urban samples and 35 ± 14 m2 g-1 in roadside samples). The AVEC plot can be generated from the data routinely produced by the analytical instrument using the R-code supplied in the supplementary material.
NASA Astrophysics Data System (ADS)
Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao
2006-09-01
The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Doddridge, B. G.; Dickerson, R. R.; Dickerson, R. R.
2001-05-01
As part of Maryland Aerosol Research and Characterization (MARCH-Atlantic) study, a long-term monitoring of ambient elemental and organic carbon (EC and OC) aerosols has been made at Fort Meade, MD (39.16° N 76.51° W; elevation 46 m MSL), a suburban site within the Baltimore-Washington (B-W) corridor, since July 1999. 24-hr average EC and OC are measured every day during the season-representative months (July 1999, October 1999, January 2000, April 2000 and July 2000). Carbon monoxide (CO) was also measured nearly continuously over the period. Strong correlation between EC and CO (r = 0.7 ~ 0.9) in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope, however, varies in different seasons and is found to increase nonlinearly with the ambient temperature. EC source strength may peak in summer. OC shows strong correlation with EC (r ~ 0.95) only in winter, suggesting that OC is also of the same primary sources during wintertime. The Interagency Monitoring of Protected Visual Environments (IMPROVE) network has been measuring EC and OC around the United States since 1988. The FME data during July 1999 are also compared with simultaneous measurements at nearby IMPROVE sites, showing B-W corridor could be a major contributor to the carbonaceous aerosols in the Mid-Atlantic region. A decreasing trend of EC level is found in three IMPROVE sites in this region. This actually agrees with the decreasing trend of CO observed previously at Big Meadow, Shenandoah National Park if CO and EC are both influenced by traffic emissions.
NASA Astrophysics Data System (ADS)
Gillman, M. A.; Lamoureux, S. F.; Lafrenière, M. J.
2017-09-01
The Stream Temperature, Intermittency, and Conductivity (STIC) electrical conductivity (EC) logger as presented by Chapin et al. (2014) serves as an inexpensive (˜50 USD) means to assess relative EC in freshwater environments. This communication demonstrates the calibration of the STIC logger for quantifying EC, and provides examples from a month long field deployment in the High Arctic. Calibration models followed multiple nonlinear regression and produced calibration curves with high coefficient of determination values (R2 = 0.995 - 0.998; n = 5). Percent error of mean predicted specific conductance at 25°C (SpC) to known SpC ranged in magnitude from -0.6% to 13% (mean = -1.4%), and mean absolute percent error (MAPE) ranged from 2.1% to 13% (mean = 5.3%). Across all tested loggers we found good accuracy and precision, with both error metrics increasing with increasing SpC values. During 10, month-long field deployments, there were no logger failures and full data recovery was achieved. Point SpC measurements at the location of STIC loggers recorded via a more expensive commercial electrical conductivity logger followed similar trends to STIC SpC records, with 1:1.05 and 1:1.08 relationships between the STIC and commercial logger SpC values. These results demonstrate that STIC loggers calibrated to quantify EC are an economical means to increase the spatiotemporal resolution of water quality investigations.
Ogunade, I M; Jiang, Y; Pech Cervantes, A A; Kim, D H; Oliveira, A S; Vyas, D; Weinberg, Z G; Jeong, K C; Adesogan, A T
2018-03-01
The first objective of this study was to examine effects of adding Escherichia coli O157:H7 with or without chemical or microbial additives on the bacterial diversity and composition of alfalfa silage. The second objective was to examine associations between the relative abundance of known and unknown bacterial species and indices of silage fermentation quality. Alfalfa forage was harvested at 54% dry matter, chopped to a theoretical length of cut of 19 mm, and ensiled in quadruplicate in laboratory silos for 100 d after the following treatments were applied: (1) distilled water (control); (2) 1 × 10 5 cfu/g of E. coli O157:H7 (EC); (3) EC and 1 × 10 6 cfu/g of Lactobacillus plantarum (EC+LP); (4) EC and 1 × 10 6 cfu/g of Lactobacillus buchneri (EC+LB); and (5) EC and 0.22% propionic acid (EC+PA). After 100 d of ensiling, the silage samples were analyzed for bacterial diversity and composition via the Illumina MiSeq platform (Illumina Inc., San Diego, CA) and chemically characterized. Overall, Firmicutes (74.1 ± 4.86%) was the most predominant phylum followed by Proteobacteria (20.4 ± 3.80%). Relative to the control, adding E. coli O157:H7 alone at ensiling did not affect bacterial diversity or composition but adding EC+LP or EC+LB reduced the Shannon index, a measure of diversity (3.21 vs. 2.63 or 2.80, respectively). The relative abundance of Firmicutes (69.2 and 68.8%) was reduced, whereas that of Proteobacteria (24.0 and 24.9%) was increased by EC+LP and EC+PA treatments, relative to those of the control (79.5 and 16.5%) and EC+LB (77.4 and 18.5%) silages, respectively. Compared with the control, treatment with EC+LP increased the relative abundance of Lactobacillus, Sphingomonas, Pantoea, Pseudomonas, and Erwinia by 426, 157, 200, 194, and 163%, respectively, but reduced those of Pediococcus, Weissella, and Methylobacterium by 5,436, 763, and 250%, respectively. Relative abundance of Weissella (9.19%) and Methylobacterium (0.94%) were also reduced in the EC+LB silage compared with the control (29.7 and 1.50%, respectively). Application of propionic acid did not affect the relative abundance of Lactobacillus, Weissella, or Pediococcus. Lactate concentration correlated positively (r = 0.56) with relative abundance of Lactobacillus and negatively (r = -0.41) with relative abundance of Pediococcus. Negative correlations were detected between ammonia-N concentration and relative abundance of Sphingomonas (r = -0.51), Pantoea (r = -0.46), Pseudomonas (r = -0.45), and Stenotrophomonas (r = -0.38). Silage pH was negatively correlated with relative abundance of Lactobacillus (r = -0.59), Sphingomonas (r = -0.66), Pantoea (r = -0.69), Pseudomonas (r = -0.69), and Stenotrophomonas (r = -0.50). Future studies should aim to speciate, culture, and determine the functions of the unknown bacteria detected in this study to elucidate their roles in silage fermentation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive
NASA Astrophysics Data System (ADS)
Marvel, K.; Pincus, R.; Schmidt, G. A.
2017-12-01
An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.
140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak
NASA Astrophysics Data System (ADS)
Nowak, S.; Airoldi, A.; Bruschi, A.; Buratti, P.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Panaccione, L.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Tudisco, O.; Zerbini, M.
1999-09-01
Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.
Soil variability effects on canopy temperature in a limited irrigation experiment
USDA-ARS?s Scientific Manuscript database
Canopy temperature was monitored on a continuous basis in a limited irrigation maize experiment, with 12 separate irrigation treatments and 4 replicates of each treatment. Soil electroconductivity (EC) was measured and mapped to quantify variation in soil texture throughout the plots, and was correl...
NASA Astrophysics Data System (ADS)
Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye
2010-05-01
For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved the accuracy of the soil water content predictions considerably. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in VZJ (09/2009).
Ugwuanyi, J Obeta; Harvey, L M; McNeil, B
2005-04-01
Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.
Hoshijima, Umihiko; Wong, Juliet M; Hofmann, Gretchen E
2017-01-01
The Antarctic pteropod, Limacina helicina antarctica , is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that p CO 2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.
Hoshijima, Umihiko; Wong, Juliet M
2017-01-01
Abstract The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change—environmentally relevant temperature treatments (−0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at −0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at −0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas. PMID:29218223
NASA Astrophysics Data System (ADS)
Qian, Cheng
2016-01-01
Observational evidence of the impacts of land use/land cover change (LULCC) on changes in surface solar radiation (SSR) in eastern China (EC) during 1979-2008 are identified by using diurnal temperature range as a proxy of SSR and by using observation minus reanalysis approach to disentangle these effects. For the period 1979-2008, the impact of LULCC is shown as a reduction in SSR in most stations in EC, whereas SSR in the reanalysis data has increased at nearly every location. The competition of the dimming effect of LULCC with the brightening effect in the reanalysis results in an observed dipole pattern of SSR with slightly decreasing (increasing) trends in most stations north (south) of the Yangtze River and statistically significant decreasing trends in central EC. In terms of EC area mean, this competition has resulted in a slightly dimming trend in the observed SSR during 1979-2008, although a transition from an apparent dimming to a general leveling off near 1990 is identified. For the period 1990-2008, LULCC has significantly reduced SSR in central EC and southern China. This dimming effect of LULCC competes with the apparent brightening effect in the reanalysis to result in the general leveling off in the observed SSR in terms of EC area mean and a sandwich spatial pattern in the observed SSR in EC where parts of central EC show significant dimming. The impact of LULCC on the changes in SSR may be through both biogeophysical and biogeochemical processes.
Palomo, Marta; Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel
2016-03-31
Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. © 2016 by The American Society of Hematology.
Electrical conductivity and total dissolved solids in urine.
Fazil Marickar, Y M
2010-08-01
The objective of this paper is to study the relevance of electrical conductivity (EC) and total dissolved solids (TDS) in early morning and random samples of urine of urinary stone patients; 2,000 urine samples were studied. The two parameters were correlated with the extent of various urinary concrements. The early morning urine (EMU) and random samples of the patients who attended the urinary stone clinic were analysed routinely. The pH, specific gravity, EC, TDS, redox potential, albumin, sugar and microscopic study of the urinary sediments including red blood cells (RBC), pus cells (PC), crystals, namely calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), uric acid (UA), and phosphates and epithelial cells were assessed. The extent of RBC, PC, COM, COD, UA and phosphates was correlated with EC and TDS. The values of EC ranged from 1.1 to 33.9 mS, the mean value being 21.5 mS. TDS ranged from 3,028 to 18,480 ppm, the mean value being 7,012 ppm. The TDS levels corresponded with EC of urine. Both values were significantly higher (P < 0.05) in the EMU samples than the random samples. There was a statistically significant correlation between the level of abnormality in the urinary deposits (r = +0.27, P < 0.05). In samples, where the TDS were more than 12,000 ppm, there were more crystals than those samples containing TDS less than 12,000 ppm. However, there were certain urine samples, where the TDS were over 12,000, which did not contain any urinary crystals. It is concluded that the value of TDS has relevance in the process of stone formation.
A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.
Robitaille, Line; Hoffer, L John
2016-04-21
In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.
Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.
Luthra, Pratibha Mehta; Singh, Satendra
2010-05-01
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.
Agarwal, Pragati; Dubey, Swati; Singh, Mukta; Singh, Rajesh P.
2016-01-01
Tyrosinase (EC 1.14.18.1) a copper-containing monooxygenase, isolated from a fungal isolate Aspergillus niger PA2 was subjected for immobilization onto a composite consisting of chitosan and gelatin biopolymers. The homogeneity of the chitosan-gelatin biocomposite film was characterized by X-ray diffraction analyses. To evaluate immobilization efficiency, chitosan-gelatin-Tyr bio-composite films were analyzed by field emission scanning electron microscopy, atomic force microscopy and UV-spectroscopy. The rough morphology of the film led to a high loading of enzyme and it could retain its bioactivity for a longer period. The enzyme adsorbed onto the film exhibited 72% of its activity after 10 days and exhibited good repeatability for up to nine times, after intermittent storage. Moreover, the immobilized enzyme exhibited broader pH and temperature profile as compared to free counterpart. Immobilized enzyme was further evaluated for the synthesis of L-DOPA (2,4-dihydroxy phenylalanine) which is a precursor of dopamine and a potent drug for the treatment of Parkinson's disease and for myocardium neurogenic injury. PMID:28066399
Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E
2012-07-01
Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Lu; Sun, Xiangyang
2016-02-01
A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Groundwater quality and hydrogeochemical properties of Torbali Region, Izmir, Turkey.
Tayfur, Gokmen; Kirer, Tugba; Baba, Alper
2008-11-01
The large demand for drinking, irrigation and industrial water in the region of Torbali (Izmir, Turkey) is supplied from groundwater sources. Almost every factory and farm has private wells that are drilled without permission. These cause the depletion of groundwater and limiting the usage of groundwater. This study investigates spatial and temporal change in groundwater quality, relationships between quality parameters, and sources of contamination in Torbali region. For this purpose, samples were collected from 10 different sampling points chosen according to their geological and hydrogeological properties and location relative to factories, between October 2001 and July 2002. Various physical (pH, temperature, EC), chemical (calcium, magnesium, potassium, sodium, chloride, alkalinity, copper, chromium, cadmium, lead, zinc) and organic (nitrate, nitrite, ammonia, COD and cyanide) parameters were monitored. It was observed that the groundwater has bicarbonate alkalinity. Agricultural contamination was determined in the region, especially during the summer. Nitrite and ammonia concentrations were found to be above drinking water standard. Organic matter contamination was also investigated in the study area. COD concentrations were higher than the permissible limits during the summer months of the monitoring period.
Gomes Júnior, J E; Souza, D S L; Nascimento, R M; Lima, A L M; Melo, J A T; Rocha, T L; Miller, R N G; Franco, O L; Grossi-de-Sa, M F; Abreu, L R D
2010-04-01
A beta-N-Acetylhexosaminidase (EC 3.2.1.52) was purified from hepatic extracts of Sotalia fluviatilis, order Cetacea. The protein was purified by using ammonium sulfate fractionation and four subsequent chromatographies (Biogel A 1.5 m, Chitin, Deae-Biogel and hydroxyapatite resins). After these purification steps, the enzyme was purified 380.5-fold with an 8.4% yield. The molecular mass (10 kDa) was estimated by SDS-PAGE and MALDI-TOF analysis. A Km of 2.72 mM and Vmax 9.5 x 10(-6) micromol/(min x mg) were found for this enzyme, determined by p-nitrophenyl-beta-D: -hexosaminide substrate digestion. Optimal pH and temperature for beta-N-Acetylhexosaminidase activity were 5.0 and 60 degrees C, respectively. Enzyme activity was inhibited by sodium selenate (Na(2)SeO(4)), mercuric chloride (HgCl(2)) and sodium dodecyl sulfate (C(12)H(25)SO(4)Na), and activated by zinc, calcium, barium and lithium ions. Characterization of the beta-N-Acetylhexosaminidase in Sotalia fluviatilis can be a basis for physiological studies in this species.
Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto
2015-10-01
L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.
[Microplate luminometry for toxicity bioassay of chemicals on luciferase].
Ge, Hui-Lin; Liu, Shu-Shen; Chen, Fu; Luo, Jin-Hui; Lü, Dai-Zhu; Su, Bing-Xia
2013-10-01
A new microplate luminometry for the toxicity bioassay of chemicals on firefly luciferase, was developed using the multifunctional microplate reader (SpectraMax M5) to measure the luminous intensity of luciferase. Efects of luciferase concentration, luciferin concentration, ATP concentration, pH, temperature, and reaction time on the luminescence were systematically investigated. It was found that ATP exerted a biphasic response on the luciferase luminescence and the maximum relative light units (RLU) occurred at an ATP concentration of 1.1 x 10(-4) mol x L(-1). The method was successfully employed in the toxic effect test of NaF, NaCl, KBr and NaBF4 on luciferase. Using nonlinear least square technique, the dose-response curves (DRC) of the 4 chemicals were accurately fitted with the coefficient of determination (R2) between the fitted and observed responses being greater than 0.99. The median effective concentration (EC50) of the 4 chemicals were accurately measured from the DRC models. Compared with some literatures, the bioassay is a fast easy-operate and cost-effective method with high accuracy.