The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Experimental study on thermal storage performance of binary mixtures of fatty acids
NASA Astrophysics Data System (ADS)
Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu
2018-02-01
We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.
Solid-solid phase change thermal storage application to space-suit battery pack
NASA Astrophysics Data System (ADS)
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
A numerical analysis of phase-change problems including natural convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Faghri, A.
1990-08-01
Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less
Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter
2017-04-24
The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.
Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food
NASA Astrophysics Data System (ADS)
Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.
2005-02-01
A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.
Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter
2017-01-01
The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘C. Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C5H12O5), erythritol (C4H10O4) and magnesiumchloride hexahydrate (MCHH, MgCl2·6H2O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl2·6H2O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘C and a phase change enthalpy of 166.9 ± 1.2 J/g with only 2.8 K supercooling at sample sizes of 100 g. The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature. PMID:28772806
Heat transfer characteristics of coconut oil as phase change material to room cooling application
NASA Astrophysics Data System (ADS)
Irsyad, M.; Harmen
2017-03-01
Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.
Compensating temperature-induced ultrasonic phase and amplitude changes
NASA Astrophysics Data System (ADS)
Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.
2016-04-01
In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.
Passive temperature control based on a phase change metasurface.
Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming
2018-05-16
In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.
NASA Astrophysics Data System (ADS)
Gunawidjaja, Ray; Anderson, Benjamin R.; Eilers, Hergen
2018-02-01
We observe temperature-dependent phase changes in a precursor of europium-doped titania (p-Eu:TiO2) that is prepared via precipitation and is laser-heated to temperatures between 473 K and 1246 K within sub-second heating durations. The phase changes are characterized using X-ray diffraction and site-selective photoluminescence spectroscopy. We find that upon heating, the initially amorphous p-Eu:TiO2 first transforms into the anatase phase and then into a mixed anatase/rutile phase. These phase transformations change the local environment of the dopant Eu3+ ions resulting in modifications to the Eu3+ ions spectroscopic properties, with the modifications occurring for calcination temperatures above approximately 573 K following sub-second durations. These results demonstrate the temperature sensing ability of p-Eu:TiO2 nanoparticles for use in sub-second heating events. Moreover, at 573 K this temperature is lower than other host materials that we have evaluated (i.e., La2O3, ZrO2 and Y2O3).
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-05-01
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.
Vibration damping and heat transfer using material phase changes
NASA Technical Reports Server (NTRS)
Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)
2009-01-01
A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.
Vibration damping and heat transfer using material phase changes
Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA
2009-03-24
A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.
Crystal growth within a phase change memory cell.
Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel
2014-07-07
In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.
Analysis of thermomechanical states in single-pass GMAW surfaced steel element
NASA Astrophysics Data System (ADS)
Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof
2017-03-01
In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.
Beeswax as phase change material to improve solar panel’s performance
NASA Astrophysics Data System (ADS)
Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.
2018-02-01
One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.
Phase change material for temperature control and material storage
NASA Technical Reports Server (NTRS)
Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)
2011-01-01
A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.
NASA Astrophysics Data System (ADS)
Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian
2017-07-01
Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.
Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan
2014-03-21
Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.
Understanding Phase-Change Memory Alloys from a Chemical Perspective
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Tominaga, J.
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
Understanding Phase-Change Memory Alloys from a Chemical Perspective.
Kolobov, A V; Fons, P; Tominaga, J
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
NASA Astrophysics Data System (ADS)
Kim, Chang Oh; Kim, Jin Heung; Chung, Nak Kyu
2007-07-01
Materials that can store low temperature latent heat are organic/inorganic chemicals, eutectic salt system and clathrate compound. Clathrate compound is the material that host compound in hydrogen bond forms cage and guest compound is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation and it has relatively high latent heat. But clathrate compound still has supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. Supercooling is the phenomenon that low temperature thermal storage material is not crystallized and existed as liquid for some time under phase change temperature. Because phase change into solid is delayed and it is existed as liquid due to this, heat transfer from low temperature thermal storage material is lowered. Therefore it is not crystallized at original phase change temperature and crystallized after cooled as much as supercooling degree and operation time of refrigerator is increased. In this study was investigated the cooling characteristics of the clathrate compound as a low temperature latent heat storage material. And additive was added to clathrate compound and its supercooling restrain effect was studied experimentally.
Investigation of the Temperature Fluctuation of Single-Phase Fluid Based Microchannel Heat Sink.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Lee, Chengkuo
2018-05-10
The temperature fluctuation in a single-phase microchannel heat sink (MCHS) is investigated using the integrated temperature sensors with deionized water as the coolant. Results show that the temperature fluctuation in single phase is not negligible. The causes of the temperature fluctuation are revealed based on both simulation and experiment. It is found that the inlet temperature fluctuation and the gas bubbles separated out from coolant are the main causes. The effect of the inlet temperature fluctuation is global, where the temperatures at different locations change simultaneously. Meanwhile, the gas bubble effect is localized where the temperature changes at different locations are not synchronized. In addition, the relation between temperature fluctuation and temperature gradient is established. The temperature fluctuation increases with the temperature gradient accordingly.
Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi
2017-12-06
Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.
Phase field modeling of rapid crystallization in the phase-change material AIST
NASA Astrophysics Data System (ADS)
Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus
2017-07-01
We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.
Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material
NASA Astrophysics Data System (ADS)
Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk
2011-02-01
The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.
NASA Technical Reports Server (NTRS)
Harf, F. H.
1981-01-01
Specimens of gamma/gamma-prime-alpha (Mo) eutectic alloy were thermally cycled or isothermally exposed at temperatures of 1075 to 1100 C. Transmission electron microscopy examination of cycled specimens indicated that even an exposure of 10 minutes effected noticeable changes in the shape of the alpha phase, and that the changes were cumulative as more cycles were added. The cross sections of fine, smooth fibers changed from rectangles to octagons, while lamellae and irregular shapes spheroidized. These effects are attributed to the differences in thermal expansion coefficients between the alpha phase and the gamma/gamma-prime matrix, and to the higher diffusion rates prevailing at elevated temperatures. Where the configuration of the alpha phase is a simple shape, such as a fiber, increasing the temperature eventually brings about a stress free interface between the alpha phase and the matrix by differential thermal expansion. Where the shape of the alpha phase is more complex, a stressed interface persists to higher temperatures where diffusion produces the more drastic morphological changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
NASA Astrophysics Data System (ADS)
Medved', Igor; Trník, Anton
2018-07-01
Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.
NASA Astrophysics Data System (ADS)
Xia, X.; Zhang, H. Y.; Deng, Y. C.
2016-08-01
Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weese, R K; Burnham, A K
Dimensional changes related to temperature cycling of the {beta} and {delta} polymorphs of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are important for a variety of applications. The coefficient of thermal expansion (CTE) of the {beta} and {delta} phases are measured over a temperature range of -20 C to 215 C by thermo-mechanical analysis (TMA). Dimensional changes associated with the phase transition were also measured, and the time-temperature dependence of the dimensional change is consistent with phase transition kinetics measured earlier by differential scanning calorimetry (DSC). One HMX sample measured by TMA during its initial heating and again three days later during a second heatingmore » showed the {beta}-to-{delta} phase transition a second time, thereby indicating back conversion from {delta}-to-{beta} phase HMX during those three days. DSC was used to measure kinetics of the {delta}-to-{beta} back conversion. The most successful approach was to first heat the material to create the {delta} phase, then after a given period at room temperature, measure the heat absorbed during a second pass through the {beta}-to-{delta} phase transition. Back conversion at room temperature follows nucleation-growth kinetics.« less
Han, Bumsoo; Bischof, John C
2004-04-01
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
NASA Astrophysics Data System (ADS)
Llamazares, J. L. Sánchez; Quintana-Nedelcos, A.; Ríos-Jara, D.; Sánchez-Valdes, C. F.; García-Fernández, T.; García, C.
2016-03-01
We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni50.6Mn36.3Sn13.1 as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L21-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures ( 3-6 K) but to a significant rise of 73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances.
Thermal insulating coating for spacecrafts
NASA Technical Reports Server (NTRS)
Kaul, Raj K. (Inventor)
2005-01-01
To protect spacecraft and their contents from excessive heat thermal protection systems are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100? F. The coating composition includes a phase change material.
Thermal Insulating Coating for Spacecrafts
NASA Technical Reports Server (NTRS)
Kaul, Raj K. (Inventor)
2005-01-01
To protect spacecraft and their contents from excessive heat thermal protection system are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100 F. The coating composition includes a phase change material.
Elevated-Confined Phase-Change Random Access Memory Cells
NASA Astrophysics Data System (ADS)
Lee; Koon, Hock; Shi; Luping; Zhao; Rong; Yang; Hongxin; Lim; Guan, Kian; Li; Jianming; Chong; Chong, Tow
2010-04-01
A new elevated-confined phase-change random access memory (PCRAM) cell structure to reduce power consumption was proposed. In this proposed structure, the confined phase-change region is sitting on top of a small metal column enclosed by a dielectric at the sides. Hence, more heat can be effectively sustained underneath the phase-change region. As for the conventional structure, the confined phase-change region is sitting directly above a large planar bottom metal electrode, which can easily conduct most of the induced heat away. From simulations, a more uniform temperature profile around the active region and a higher peak temperature at the phase-change layer (PCL) in an elevated-confined structure were observed. Experimental results showed that the elevated-confined PCRAM cell requires a lower programming power and has a better scalability than a conventional confined PCRAM cell.
2012-05-01
thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using...temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical... salts ) offering a low power density and a low thermal conductivity, leading to a limited rate of charging and discharging (4). A focus on
Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.
Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V
2016-12-13
The Ge 2 Sb 2 Te 5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge 2 Sb 2 Te 5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge 2 Sb 2 Te 5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge 2 Sb 2 Te 5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.
Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...
2015-05-15
Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less
Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.
Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris
2017-07-10
A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.
McCann, Jesse T; Marquez, Manuel; Xia, Younan
2006-12-01
We have developed a method based on melt coaxial electrospinning for fabricating phase change nanofibers consisting of long-chain hydrocarbon cores and composite sheaths. This method combines melt electrospinning with a coaxial spinneret and allows for nonpolar solids such as paraffins to be electrospun and encapsulated in one step. Shape-stabilized, phase change nanofibers have many potential applications as they are able to absorb, hold, and release large amounts of thermal energy over a certain temperature range by taking advantage of the large heat of fusion of long-chain hydrocarbons. We have focused on compounds with melting points near room temperature (octadecane) and body temperature (eicosane) as these temperature ranges are most valuable in practice. We have produced thermally stable, phase change materials up to 45 wt % octadecane, as measured by differential scanning calorimetry. In addition, the resultant fibers display novel segmented morphologies for the cores due to the rapid solidification of the hydrocarbons driven by evaporative cooling of the carrier solution. Aside from the fabrication of phase change nanofibers, the melt coaxial method is promising for applications related to microencapsulation and controlled release of drugs.
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
ERIC Educational Resources Information Center
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.
2008-01-01
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)
Thermal analysis of void cavity for heat pipe receiver under microgravity
NASA Astrophysics Data System (ADS)
Gui, Xiaohong; Song, Xiange; Nie, Baisheng
2017-04-01
Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.
NASA Technical Reports Server (NTRS)
Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.
2005-01-01
Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.
Phase Stability of a Powder Metallurgy Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita
2006-01-01
Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
NASA Astrophysics Data System (ADS)
Jost, Elliott; Jack, David; Moore, David
2018-04-01
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.
Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature
NASA Astrophysics Data System (ADS)
Mori, K.; Takeuchi, H.; Narita, F.
2018-03-01
The energy harvesting characteristics of piezoelectric/copper (BaTiO3/Cu) laminates rising from sharp temperature changes were investigated both numerically and experimentally. First, a phase field simulation was performed to determine the temperature-dependent piezoelectric coefficient and permittivity values. Then, the output voltages of the BaTiO3/Cu laminates were calculated for variations from room temperature to either a cryogenic temperature (77 K) or a higher temperature (333 K) using a 3D finite element simulation with the properties calculated from the phase field simulation. Finally, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured for the same temperature changes and were compared to the simulation results.
Change in generally accepted regularity of phase transformations of quartzite
NASA Astrophysics Data System (ADS)
Kukartsev, V. A.; Kukartsev, V. V.; Chzhan, E. A.; Tynchenko, V. S.; Stupina, A. A.
2018-05-01
The subject of this research is phasic transformations of quartzites that are under temperature treatment to remove moisture. This technology is used in enterprises operating melting furnaces. The studies have shown that using a temperature regime consisting in heating to 800° C and holding for 2 hours, after cooling, quartzite changes its color and appears a shift in the angle of the interplanar distances of the crystal lattice by 6.6% in it. The use of a temperature treatment regime consisting in heating to 200° C and holding for 4 hours does not reveal such changes. With subsequent exposure to these samples of the temperature regime corresponding to the sintering process of the liner, the following is established. In a sample pretreated with a temperature of 800° C, at a temperature of 1550° C, a tridymite phase appears. In the sample of a 200° C pretreated with temperature, a phase of cristobalite appears without tridymite.
Constant frequency pulsed phase-locked loop measuring device
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)
1993-01-01
A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.
Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.
Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B
2013-11-18
Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Farny, Caleb H.; Clement, Gregory T.
2009-01-01
Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380
The use of lipids as phase change materials for thermal energy storage
USDA-ARS?s Scientific Manuscript database
Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...
Isothermal lipid phase transitions.
Cevc, G
1991-03-01
In liotropic lipid systems phase transitions can be induced isothermally by changing the solvent concentration or composition; alternatively, lipid composition can be modified by (bio)chemical means. The probability for isothermal phase transitions increases with the decreasing transition entropy; it is proportional to the magnitude of the transition temperature shift caused by transformation-inducing system variation. Manipulations causing large thermodynamic effects, such as lipid (de)hydration, binding of protons or divalent ions and macromolecular adsorption, but also close bilayer approach are, therefore, likely to cause structural lipid change(s) at a constant temperature. Net lipid charges enhance the membrane susceptibility to salt-induced isothermal phase transitions; a large proportion of this effect is due to the bilayer dehydration, however, rather than being a consequence of the decreased Coulombic electrostatic interactions. Membrane propensity for isothermal phase transitions, consequently, always increases with the hydrophilicity of the lipid heads, as well as with the desaturation and shortening of the lipid chains. Upon a phase change at a constant temperature, some of the interfacially bound solutes (e.g. protons or calcium) are released in the solution. Membrane permeability and fusogenicity simultaneously increase. In mixed systems, isothermal phase transitions, moreover, may result in lateral phase separation. All this opens up ways for the involvement of isothermal phase transitions in the regulation of biological processes.
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2017-03-01
The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.
Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature
NASA Astrophysics Data System (ADS)
Gump, Jared
2007-06-01
Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, and ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Theoretical calculations have been performed for a variety of explosive ingredients including CL-20, but it was noted that no experimental measurements existed for comparison with the theoretical bulk modulus calculated for CL-20. Therefore, the phase stabilities of epsilon and gamma CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5GPa and 175^oC, respectively. No phase change (from the starting epsilon phase) was observed under hydrostatic compression up to 6.3 GPa at ambient temperature. Under ambient pressure the epsilon phase was determined to be stable to a temperature of 120^oC. When heating above 125^oC the gamma phase appeared and it remained stable until thermal decomposition occurred above 150^oC. The gamma phase exhibits a phase change upon compression at both ambient temperature and 140^oC. Pressure -- volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75^oC were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.
The effect of phase change materials on the frontal polymerization of a triacrylate
NASA Astrophysics Data System (ADS)
Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry
2010-06-01
The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.
NASA Astrophysics Data System (ADS)
Zhu, X.
2017-12-01
Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.
NASA Astrophysics Data System (ADS)
Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy
Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2016-09-01
A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.
Fundamental incorporation of the density change during melting of a confined phase change material
NASA Astrophysics Data System (ADS)
Hernández, Ernesto M.; Otero, José A.
2018-02-01
The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Elliott; Jack, David; Moore, David G.
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. In this paper, we present a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between amore » material’s speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. Lastly, the investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.« less
Jost, Elliott; Jack, David; Moore, David G.
2018-04-01
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. In this paper, we present a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between amore » material’s speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. Lastly, the investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.« less
A new ultrasonic temperature measurement system for air conditioners in automobiles
NASA Astrophysics Data System (ADS)
Liao, Teh-Lu; Tsai, Wen-Yuan; Huang, Chih-Feng
2004-02-01
This paper presents a microcomputer-based ultrasonic temperature sensor system to measure the temperature of an air conditioner (AC) in an automobile. It uses the ultrasonic measurement of the changes in the speed of sound in the air to determine the temperature of the environmental air. The changes in the speed of sound are calculated by combining time-of-flight (TOF) and phase shift techniques. This method can work in a wider range than using phase shift alone and is more accurate than the TOF scheme. In the proposed system, we use 40 ± 2 kHz ultrasonic transducers and adopt a single-pass operation. An 89c51 single-chip microcomputer-based binary frequency shift-keyed (BFSK) signal generator and phase detector are designed to record and calculate the TOF, phase shift of the two frequencies and temperature. These data are then sent to either an LCD display or to a PC for calibration and examination. Experimental results show that the proposed measurement system has a high accuracy of ± 0.4 °C from 0 to 80 °C and can reflect the temperature change within 100 ms.
Superfluid phase stiffness in electron doped superconducting Gd-123
NASA Astrophysics Data System (ADS)
Das, P.; Ghosh, Ajay Kumar
2018-05-01
Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.
NASA Technical Reports Server (NTRS)
Kanwischer, H.; Tamme, R.
1985-01-01
Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.
NASA Technical Reports Server (NTRS)
Wright, K. P. Jr; Badia, P.; Czeisler, C. A. (Principal Investigator)
1999-01-01
The influence of menstrual cycle phase and oral contraceptive use on neurobehavioral function and circadian rhythms were studied in healthy young women (n = 25) using a modified constant routine procedure during 24 h of sleep deprivation. Alertness and performance worsened across sleep deprivation and also varied with circadian phase. Entrained circadian rhythms of melatonin and body temperature were evident in women regardless of menstrual phase or oral contraceptive use. No significant difference in melatonin levels, duration, or phase was observed between women in the luteal and follicular phases, whereas oral contraceptives appeared to increase melatonin levels. Temperature levels were higher in the luteal phase and in oral contraceptive users compared to women in the follicular phase. Alertness on the maintenance of wakefulness test and some tests of cognitive performance were poorest for women in the follicular phase especially near the circadian trough of body temperature. These observations suggest that hormonal changes associated with the menstrual cycle and the use of oral contraceptives contribute to changes in nighttime waking neurobehavioral function and temperature level whereas these factors do not appear to affect circadian phase.
Characteristics of Nano-emulsion for Cold Thermal Storage
NASA Astrophysics Data System (ADS)
Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi
Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.
Regenerable non-venting cooler for protective suit
NASA Technical Reports Server (NTRS)
Roebelen, Jr., George J. (Inventor); Bayes, Stephen A. (Inventor)
1992-01-01
A life support back pack 14 for use during extravehicular activity in space incorporates a cooling apparatus 20 comprised of five panels 22 each of which include in layered fashion a LCG coolant heat exchange coil 32, a heat distribution plate 42, and a heat dissipation module 50A or 50B having an outer radiator surface 52. Each module 50A houses a first phase change material 55A, for example hexadecane paraffin, and each module 50B houses a second phase change material 55B, for example tetradecane paraffin, which has a phase change temperature which is less than the phase change temperature of the first phase change material 55A. The cooling apparatus 20 is equipped with a coolant heat exchange circuit provided with mode selection valves 84 and 86 which are operated by a controller 88 to selectively direct the LCG coolant to be cooled through the cooling apparatus in one of three operating modes.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
NASA Astrophysics Data System (ADS)
Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.
2015-09-01
Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.
Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Nath, Rupa
Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
Non-Toxic, Non-Flammable, -80 C Phase Change Materials
NASA Technical Reports Server (NTRS)
Cutbirth, J. Michael
2013-01-01
The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Makinen, Janice; Le, Hung V.
2016-01-01
The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.
Wang, Xiao; Rogalla, Detlef; Ludwig, Alfred
2018-04-09
The mechanical stress change of VO 2 film substrate combinations during their reversible phase transformation makes them promising for applications in micro/nanoactuators. V 1- x W x O 2 thin film libraries were fabricated by reactive combinatorial cosputtering to investigate the effects of the addition of W on mechanical and other transformation properties. High-throughput characterization methods were used to systematically determine the composition spread, crystalline structure, surface topography, as well as the temperature-dependent phase transformation properties, that is, the hysteresis curves of the resistance and stress change. The study indicates that as x in V 1- x W x O 2 increases from 0.007 to 0.044 the crystalline structure gradually shifts from the VO 2 (M) phase to the VO 2 (R) phase. The transformation temperature decreases by 15 K/at. % and the resistance change is reduced to 1 order of magnitude, accompanied by a wider transition range and a narrower hysteresis with a minimal value of 1.8 K. A V 1- x W x O 2 library deposited on a Si 3 N 4 /SiO 2 -coated Si cantilever array wafer was used to study simultaneously the temperature-dependent stress change σ( T) of films with different W content through the phase transformation. Compared with σ( T) of ∼700 MPa of a VO 2 film, σ( T) in V 1- x W x O 2 films decreases to ∼250 MPa. Meanwhile, σ( T) becomes less abrupt and occurs over a wider temperature range with decreased transformation temperatures.
NASA Astrophysics Data System (ADS)
Jiang, Zipeng; Tie, Shengnian
2017-07-01
This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.
Ahas, Rein; Aasa, Anto
2006-09-01
This paper summarises the trends of 943 phenological time-series of plants, fishes and birds gathered from 1948 to 1999 in Estonia. More than 80% of the studied phenological phases have advanced during springtime, whereas changes are smaller during summer and autumn. Significant values of plant and bird phases have advanced 5-20 days, and fish phases have advanced 10-30 days in the spring period. Estonia's average air temperature has become significantly warmer in spring, while at the same time a slight decrease in air temperature has been detected in autumn. The growing season has become significantly longer in the maritime climate area of Western Estonia. The investigated phenological and climate trends are related primarily to changes in the North Atlantic Oscillation Index (NAOI) during the winter months. Although the impact of the winter NAOI on the phases decreases towards summer, the trends of the investigated phases remain high. The trends of phenophases at the end of spring and the beginning of summer may be caused by the temperature inertia of the changing winter, changes in the radiation balance or the direct consequences of human impacts such as land use, heat islands or air pollution.
Cyclic phase change in a cylindrical thermal energy storage capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.; Mujumdar, A.S.; Weber, M.E.
1983-12-01
This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less
Acoustical experiment of yogurt fermentation process.
Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T
2006-12-22
One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the hygienization for the food manufacture industry.
Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi
2014-01-01
Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348
Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T
2017-11-01
The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acree, William; Chickos, James S.
2016-09-15
A compendium of phase change enthalpies published in 2010 is updated to include the period 1880–2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C{sub 1} to C{sub 10}. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C{sub 11} to C{sub 192}. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies frommore » the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.« less
How fragility makes phase-change data storage robust: insights from ab initio simulations
Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo
2014-01-01
Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316
Crystal structure and phase transitions of sodium potassium niobate perovskites
NASA Astrophysics Data System (ADS)
Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.
2009-02-01
This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.
Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y
2008-11-10
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.
NASA Astrophysics Data System (ADS)
Chen, Yingming; Zhang, Honghong; Gao, Weiting; Chen, Yingmin; Wang, Yifan
2018-04-01
For the problems that the phase change material apply to infrared stealth exists easy to broken, hard to control temperature, narrow infrared channel and based on the basic principles of infrared stealth technology, this paper proposed a scheme of thermal infrared composite invisibility multi-layer wrapping, which based on two sides, one is to control the material surface temperature, another is to reduce its infrared emissivity and combine with visible light pigment and electromagnetic wave absorbing material, to realize the materials' wide band compatible stealth. First, choose urea formaldehyde resin and paraffin to prepare multiphase-change microcapsules, and then combine it with the ferroferric oxide absorbing material, zinc oxide visible light pigment, to make the stealth material of wide band. The experimental results show that the new phase change capsule can realize the function of temperature control and infrared stealth in a special temperature range.
Meisner, Gregory P; Yang, Jihui
2014-02-11
Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang
2015-06-15
In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less
Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy
NASA Astrophysics Data System (ADS)
Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.
The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.
NASA Astrophysics Data System (ADS)
Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.
2013-01-01
The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.
Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira
2015-05-01
Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.
Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.
2018-01-01
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750
An experimental investigation of n-hexane at high temperature and pressure.
Qiao, Erwei; Zheng, Haifei
2018-10-05
At present, no high temperature experiments on phase change are reported. In this study, we have measured the Raman bands ν s (CH 3 ), ν s (CH 2 ), ν as (CH 3 ), and ν as (CH 2 ) of n-hexane in a hydrothermal diamond cell up to 588 K. We determined that the liquid-solid phase transition pressure of n-hexane is 1.17 GPa, and we also gave a number of high temperatures and pressures data on phase change which are not reported previously. In addition, we defined the solidus of n-hexane which can be represented by the equation P = 8.581T-1550.16, and the relation dP/dT = 8.581 which can be used to calculate the thermodynamic parameters for n-hexane in the liquid-solid phase transition. For all we know, the above two equations are presented here for the first time. Furthermore, it is the first report here in a graphic way on high-temperature phase change in n-hexane, and it is also the first to be shown in the 3-D figure. Copyright © 2018 Elsevier B.V. All rights reserved.
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
Low temperature phase of the trigonal RbIn(MoO4)2 crystal
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.; Schranz, W.; Reinecker, M.
2013-02-01
The present article is devoted to a new low-temperature phase transition found at about T pt = 84 K in the layered RbIn(MoO4)2 crystal. This phase transition is well proved by dynamical mechanical analysis through anomalies in the temperature behaviour of both real and imaginary parts of the Young's modulus. From the polarizing microscope observations it was found that below T pt the ferroelastic phase disappears. This transition has also been seen through strong changes in the shape of the electron paramagnetic resonance lines. EPR studies, performed in the liquid nitrogen temperature, yield evidence of strong rebuilding of the crystal unit cell in comparison with that of the high temperature paraelastic phase.
Metal-halide mixtures for latent heat energy storage
NASA Astrophysics Data System (ADS)
Chen, K.; Manvi, R.
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki
2009-02-26
The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
NASA Technical Reports Server (NTRS)
Lee, Robert B., III
1992-01-01
From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.
Magnetically Controlled Shape Memory Behaviour—Materials and Applications
NASA Astrophysics Data System (ADS)
Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.
2008-06-01
For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based on the ferromagnetic prototype Ni2MnGa have been discovered which offer the possibility of controlling the structural phase transition by a magnetic field, hence opening up new possible applications particularly in the field of medicine. The properties of these new materials will be presented and their suitability for applications discussed.
NASA Astrophysics Data System (ADS)
Renner, M.; Bernhofer, C.
2011-01-01
The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can not be explained by temperature alone and other causes have to be considered.
Changes in heart rate variability during the induction and decay of heat acclimation.
Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P
2014-10-01
We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p < 0.001); esophageal (χ (2) = 1069.88, p < 0.001)] and heart rate (χ (2) = 1230.17, p < 0.001). Following the decay phase, 26, 40, and 60 % of the heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p < 0.001), compared to only 47 of the 102 at the end of the decay phase. Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.
2001-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
NASA Astrophysics Data System (ADS)
Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi
2018-03-01
We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.
Critical temperature transitions in laser-mediated cartilage reshaping
NASA Astrophysics Data System (ADS)
Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart
1998-07-01
In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.
Phase transition studies in barium and strontium titanates at microwave frequencies
NASA Technical Reports Server (NTRS)
Dahiya, Jai N.
1993-01-01
The objectives were the following: to understand the phase transformations in barium and strontium titanates as the crystals go from one temperature to the other; and to study the dielectric behavior of barium and strontium titanate crystals at a microwave frequency of 9.12 GHz and as a function of temperature. Phase transition studies in barium and strontium titanate are conducted using a cylindrical microwave resonant cavity as a probe. The cavity technique is quite successful in establishing the phase changes in these crystals. It appears that dipole relaxation plays an important role in the behavior of the dielectric response of the medium loading the cavity as phase change takes place within the sample. The method of a loaded resonant microwave cavity as applied in this work has proven to be sensitive enough to monitor small phase changes of the cavity medium.
NASA Astrophysics Data System (ADS)
Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2018-04-01
Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.
NASA Astrophysics Data System (ADS)
Imai, Tadayuki; Toyoda, Seiji; Miyazu, Jun; Kobayashi, Junya; Kojima, Seiji
2014-09-01
A space-charge-controlled optical beam deflector made of a KTa1-xNbxO3 (KTN) single crystal utilizes electrons that are injected through the cathode by applying voltage. With the deflector made of lithium-doped KTN (K0.95Li0.05Ta0.73Nb0.27O3, KLTN/0.05/0.27), we observed large increases in the capacitance of the deflector when we injected electrons. The increases were not caused by changes in the electrode interface but by changes in the permittivity of the bulk crystal. In the paraelectric phase, the KLTN/0.05/0.27 crystal exhibited nonlinearity in the dielectric response with double hysteresis loops in the D-E curves. We ascribed the permittivity change to this nonlinear phenomenon. We also discuss this nonlinearity in terms of the Landau-Devonshire phenomenological theory. The coefficient g4 of the fourth power term in the expanded free energy was negative in the paraelectric phase near the phase transition temperature as it is for other materials that exhibit a first-order phase transition. However, g4 depended on the temperature and its sign became positive about 15 °C above the phase transition temperature.
Novoselova, Iuliia P; Petruhins, Andrejs; Wiedwald, Ulf; Ingason, Árni Sigurdur; Hase, Thomas; Magnus, Fridrik; Kapaklis, Vassilios; Palisaitis, Justinas; Spasova, Marina; Farle, Michael; Rosen, Johanna; Salikhov, Ruslan
2018-02-08
In 2013, a new class of inherently nanolaminated magnetic materials, the so called magnetic MAX phases, was discovered. Following predictive material stability calculations, the hexagonal Mn 2 GaC compound was synthesized as hetero-epitaxial films containing Mn as the exclusive M-element. Recent theoretical and experimental studies suggested a high magnetic ordering temperature and non-collinear antiferromagnetic (AFM) spin states as a result of competitive ferromagnetic and antiferromagnetic exchange interactions. In order to assess the potential for practical applications of Mn 2 GaC, we have studied the temperature-dependent magnetization, and the magnetoresistive, magnetostrictive as well as magnetocaloric properties of the compound. The material exhibits two magnetic phase transitions. The Néel temperature is T N ~ 507 K, at which the system changes from a collinear AFM state to the paramagnetic state. At T t = 214 K the material undergoes a first order magnetic phase transition from AFM at higher temperature to a non-collinear AFM spin structure. Both states show large uniaxial c-axis magnetostriction of 450 ppm. Remarkably, the magnetostriction changes sign, being compressive (negative) above T t and tensile (positive) below the T t . The sign change of the magnetostriction is accompanied by a sign change in the magnetoresistance indicating a coupling among the spin, lattice and electrical transport properties.
Phase-sensitive techniques applied to a micromachined vacuum sensor
NASA Astrophysics Data System (ADS)
Chapman, Glenn H.; Sawadsky, N.; Juneja, P. P.
1996-09-01
Phase sensitive AC measurement techniques are particularly applicable to micromachined sensors detecting temperature changes at a sensor caused by a microheater. The small mass produces rapid thermal response to AC signals which are easily detectable with lock-in amplifiers. Phase sensitive measurements were applied to a CMOS compatible micromachined pressure sensor consisting a polysilicon sense line, 760 microns long, on an oxide microbridge separated by 6 microns on each horizontal side from similar polysilicon heaters, all over a micromachined cavity. Sinusoidal heater signals at 32 Hz induced temperature caused sense line resistance changes at 64 Hz. The lock-in detected this as a first harmonic sense resistor voltage from a DC constant sense current. By observing the first harmonic the lock-in rejects all AC coupling of noise by capacitance or inductance, by measuring only those signals at the 64 Hz frequency and with a fixed phase relationship to the heater driver signals. This sensor produces large signals near atmospheric pressure, declining to 7 (mu) V below 0.1 mTorr. Phase measurements between 760 and 100 Torr where the air's thermal conductivity changes little, combined with amplitude changes at low pressure generate a pressure measurement accurate at 5 percent from 760 Torr to 10 mTorr, sensing of induced temperature changes of 0.001 degree C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, S.; Ding, X. J.; Zhang, J. Z.
2015-02-02
Tungsten (W) doping effects on Ge{sub 2}Sb{sub 2}Te{sub 5} (GSTW) phase change films with different concentrations (3.2, 7.1, and 10.8%) have been investigated by variable-temperature spectroscopic ellipsometry. The dielectric functions from 210 K to 660 K have been evaluated with the aid of Tauc-Lorentz and Drude dispersion models. The analysis of Tauc gap energy (E{sub g}) and partial spectral weight integral reveal the correlation between optical properties and local structural change. The order degree increment and chemical bond change from covalent to resonant should be responsible for band gap narrowing and electronic transition enhancement during the phase change process. It is foundmore » that the elevated crystalline temperature for GSTW can be related to improved disorder degree. Furthermore, the shrinkage of E{sub g} for GSTW should be attributed to the enhanced metallicity compared with undoped GST.« less
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system
NASA Astrophysics Data System (ADS)
Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.
1995-12-01
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.
NASA Astrophysics Data System (ADS)
Yang, B.; Townsend, P. D.; Fromknecht, R.
2004-11-01
Cathodoluminescence is an effective tool for investigating phase changes and relaxation processes in insulators and data are presented for strontium titanate. The results demonstrate considerable sensitivity to the origin of the samples as the detailed spectra and intensity changes with temperature are strongly dependent on the growth conditions, trace impurities and radiation induced defects. It is of particular note that in the defective surface layer the normal second-order phase transition cited near 105 K transforms into a sharply defined first-order transition because of the relaxation of the near surface layer in doped crystals. Detection of the other main relaxation stages is also straightforward via intensity and spectral changes. Secondary effects of phase changes incorporated within the surface layers are clearly evident, particularly for the 197 K sublimation of CO2 nanoparticle inclusions.
In-situ crystallization of GeTe\\GaSb phase change memory stacked films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velea, A., E-mail: alin.velea@psi.ch; National Institute of Materials Physics, RO-077125 Magurele, Ilfov; Borca, C. N.
2014-12-21
Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C,more » the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.« less
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
Force generation and temperature-jump and length-jump tension transients in muscle fibers.
Davis, J S; Rodgers, M E
1995-01-01
Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845
Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi
2016-04-01
We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1
Structural and impurity phase transitions of LiNaSO4:RE probed using cathodo-thermoluminescence
NASA Astrophysics Data System (ADS)
Maghrabi, M.; Finch, A. A.; Townsend, P. D.
2008-11-01
Spectrally resolved cathodo-thermoluminescence spectra of rare earth (RE) doped LiNaSO4 measured from 20 to 673 K reveal several anomalies in the RE emission lines and intensities. The low (20-300 K) temperature data show a discontinuous change in intensity at ~170 K that is either a marked intensity enhancement or a drop truncating the entire spectrum. Such an effect on the host luminescence has previously been assigned to a transition between cubic and hexagonal polymorphs of ice nanoparticle inclusions. Similar, but less profound anomalies are seen above room temperature (300-673 K) where the changes take the form of either a discontinuity in intensity at ~480 K or reduced intensity in the range 430-530 K. There are changes in the relative intensities of different emission lines of the same dopant in this temperature range. Such high temperature variations are ascribed to structural phase changes within the LiNaSO4 crystals. The behaviours may result from Li-poor surfaces or twin boundaries behaving like Na2SO4. This phase change is suggested in the open literature for LiNaSO4 but not yet fully documented, perhaps because the effects span a wide range of temperatures or due to experimental features inherent in most luminescence facilities.
NASA Astrophysics Data System (ADS)
Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki
2016-02-01
A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.
NASA Astrophysics Data System (ADS)
Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling
2013-01-01
The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.
The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.
NASA Astrophysics Data System (ADS)
Aziz, M. S.; Mohammed, Z.; Alip, R. I.
2018-03-01
The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
NASA Astrophysics Data System (ADS)
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Resistive switching characteristics of interfacial phase-change memory at elevated temperature
NASA Astrophysics Data System (ADS)
Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji
2018-04-01
Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
NASA Astrophysics Data System (ADS)
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
Role of valence electrons in phase transformation kinetics of thallium and its dilute alloys
NASA Technical Reports Server (NTRS)
Ahmed, R.; Ahmed, S.
1991-01-01
The kinetics of the phase transformation of thallium and its dilute alloys were investigated using XRD and calorimetry. Pure thallium exhibits a beta(bcc) to alpha(hcp) phase transformation on cooling at 508 K. With alloying additions, the crystal structure for each phase does not change, although the size of the unit cell increases. The enthalpy and the temperature of phase transformation of each alloy have been determined. The chemical free energy change associated with the phase transformation of each alloy was calculated. The valence electrons make an outstanding contribution to the chemical free energy change required for the phase change.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
El Baggari, Ismail; Savitzky, Benjamin H; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2018-02-13
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge-lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature ([Formula: see text]93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale ([Formula: see text]6 pm to 11 pm) transverse displacements, suggesting that charge-lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides. Copyright © 2018 the Author(s). Published by PNAS.
Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy
NASA Astrophysics Data System (ADS)
Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.
2018-06-01
A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0 → 5 T. The most interesting observation is the ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
NASA Astrophysics Data System (ADS)
Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.
2018-05-01
The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic → paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M = 24 J kg‑1 K‑1 at 298 K) and magnetoresistance (= ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
NASA Astrophysics Data System (ADS)
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
NASA Astrophysics Data System (ADS)
Li, W. Q.; Qu, Z. G.; He, Y. L.; Tao, Y. B.
2014-06-01
A highly efficient thermal strategy to manage a high-powered Li-ion battery package within the required safe temperature range is of great demand for electric vehicles (EVs) applications. A sandwiched cooling structure using copper metal foam saturated with phase change materials was designed. The thermal efficiency of the system was experimentally evaluated and compared with two control cases: a cooling mode with pure phase change materials and an air-cooling mode. The results showed that the thermal management with air natural convection cannot fulfill the safety demand of the Li-ion battery. The use of pure PCM can dramatically reduce the surface temperature and maintain the temperature within an allowable range due to the latent heat absorption and the natural convection of the melted PCM during the melting process. The foam-paraffin composite further reduced the battery's surface temperature and improved the uniformity of the temperature distribution caused by the improvement of the effective thermal conductivity. Additionally, the battery surface temperature increased with an increase in the porosity and the pore density of the metal foam.
Attentional validity effect across the human menstrual cycle varies with basal temperature changes.
Beaudoin, Jessica; Marrocco, Richard
2005-03-07
This study examined the correlation between covert attention and basal temperature change during menstrual cycle phase in 22 adult females. Previous work showing beneficial effects of estrogen on working memory led us to hypothesize that attentional function would be facilitated at the apparent time of ovulation. Menstrual phase was determined through questionnaires and objective measurements of basal body temperature (BBT) spikes over a 1 month period. The cued target detection (CTD) task was used to assess visuospatial attentional performance at three times during the menstrual cycle. The mean reaction times (RTs) to visual targets were measured as a function of menstrual cycle phase, cue type and target location. As predicted, the onset of ovulation showed decreased reaction times and a significant increase in the cue validity effect on the days immediately preceding and following ovulation. The magnitude of the attention validity effect was negatively correlated with the basal temperature rise. Women lacking basal temperature shifts failed to show these changes. Results support the conclusion that the natural fluctuations of body temperature, and possibly reproductive hormones, during the menstrual cycle may enhance the attentional component of cognitive performance.
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
Characterization of Laves phase in Crofer 22 H stainless steel.
Hsiao, Zheng-Wen; Kuhn, Bernd; Chen, Delphic; Singheiser, Lorenz; Kuo, Jui-Chao; Lin, Dong-Yih
2015-07-01
This study investigated the effect of annealing temperature on the precipitation behavior of Crofer(®) 22 H at 600°C, 700°C, and 800°C. The grain size distribution, precipitate phase identification, and microstructure were analyzed using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS). The morphology of Laves phase (Fe,Cr,Si)(2)(Nb,W) precipitates having the Cr(2)Nb structure changed from strip-like to needle-shaped as the annealing temperature was increased. The precipitates of the Laves phase also shifted from the grain boundaries to the grain interiors when the temperature was increased. However, the average grain size (150 μm) of the ferritic matrix did not significantly change at 600°C, 700°C, and 800°C for 10 h. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.
Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less
Performance of a cylindrical phase-change thermal energy storage unit
NASA Astrophysics Data System (ADS)
Jacobson, D. L.; Ponnappan, R.
1983-05-01
The high-temperature performance of a eutectic salt Phase Change Material (PCM) in a cylindrical Thermal Energy Storage Container (TESC) sample is evaluated by means of an experimental apparatus with a water-circulated calorimeter. The phase change characteristics of the salt during melting and solidification were observed by monitoring the external axial temperature profile of the container, and the analysis of the phase change heat transfer in the cylindrical geometry was based on the modified heat balance integral method of Tien (1980), which provides the solidification rate and time. Melting point (983 K), freezing point (944 K), latent heat of fusion (782.26 J/gm) and thermal diffusivity (0.00799 sq cm/sec) results are in agreement with those found in the literature. The experimental and analytical results of the nondimensionalized heat transfer resistance as a function of the solidified or melted weight fraction are compared.
Phase change thermal energy storage methods for combat vehicles, phase 1
NASA Astrophysics Data System (ADS)
Lynch, F. E.
1986-06-01
Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.
Estrus- and steroid-induced changes in circadian rhythms in a diurnal rodent, Octodon degus.
Labyak, S E; Lee, T M
1995-09-01
Diurnal Octodon degus exhibited marked alterations in activity and temperature in conjunction with the 3 wk estrous cycle when housed in LD12:12 light cycle. On the day of estrus, mean daily activity increases 109%, mean core temperature rises .4 degree C, activity onset is advanced 2 h, and amplitudes of both rhythms decline compared with the 3 days prior to estrus. On the day following estrus, activity onset was delayed 4.9 h, and mean activity and core temperature fell below that of the preestrus period. Ovariectomy significantly reduced mean temperature (.98 degree C) but did not significantly alter mean activity, and eliminated cyclic effects of estrus. Estrogen replacement led to a nonsignificant elevation in mean activity and core temperature with no change in the phase angle of entrainment. Progesterone replacement significantly reduced mean core temperature and mean activity, while only the phase angle difference between temperature minimum and activity onset was significantly altered. Intact degus maintained in constant darkness displayed only transient fluctuations in activity onset and temperature minimum during and after estrus. Estrogen or progesterone treatment of ovariectomized, free-running degus altered mean temperature and activity levels, but did not influence tau. Changes in phase angle of entrainment during estrus are not the result of hormone effects on the circadian clock but likely reflect increased or decreased levels of activity.
NASA Astrophysics Data System (ADS)
Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.
2018-02-01
The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.
Programmable temperature control system for biological materials
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.
1982-01-01
A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.
Droplet evaporation and combustion in a liquid-gas multiphase system
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Irfan, Muhammad
2017-11-01
Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
Phase change studies in Se85In15-xZnx chalcogenide thin films
NASA Astrophysics Data System (ADS)
Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.
2018-03-01
This research work describes the phase change studies in Se85In15-xZnx thin films at various annealing temperatures. Glassy samples of Se85In15-xZnx were synthesized by the melt quenching method and thin films of thickness 400 nm were prepared by the vacuum evaporation technique on a glass/Si wafer substrate. The glass transition temperature (Tg) and the on-set crystallization temperature (Tc) of the prepared alloys were evaluated by non-isothermal differential scanning calorimetry studies. Thin films were annealed at three temperatures 330 K, 340 K, and 350 K (which are in between Tg and Tc of the synthesized samples) in a vacuum furnace for 2 h. High resolution X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature whereas the annealed films are of crystalline/polycrystalline in nature. Field emission scanning electron microscopy studies of thin films (as-deposited and crystallized) confirm the phase transformation in Se85In15-xZnx thin films. Optical band gaps were calculated from the Tauc's extrapolation procedure and were found to be enhanced with the Zn concentration and decrease with the increasing annealing temperature. Various optical parameters were evaluated for as-prepared and annealed Se85In15-xZnx thin films. The changes in optical parameters with annealing temperature were described on the basis of structural relaxation as well as changes in defect states and density of localized states during amorphous to crystalline phase transformation in Se85In15-xZnx thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho
2014-11-01
In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.
NASA Astrophysics Data System (ADS)
Roy, Pinku; Maiti, Tanmoy
2018-02-01
Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0 ⩽ x ⩽ 0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x = 0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane
NASA Astrophysics Data System (ADS)
Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana
2014-07-01
Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.
Near-field thermal rectification devices using phase change periodic nanostructure.
Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi
2018-01-22
We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.
Cation reordering in natural titanomagnetites and implications for paleointensity studies
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Jackson, M. J.; Gee, J. S.
2013-05-01
Successful paleointensity experiments hinge on the underlying assumption of reciprocity; the remanence acquired over a particular temperature range should be fully removed over the same temperature range, and vice versa. This means that the blocking (TB) and unblocking (TUB) temperature spectra are identical and do not change during the course of the experiment. We will present the results of recent work demonstrating that some natural titanomagnetites undergo cation reordering on laboratory timescales and at temperatures at or below the Curie temperature (TC). The bulk composition of the titanomagnetites (Fe3-xTixO4) varies between approximately 0.2 < x < 0.4, with moderate degrees of Mg and Al substitution. Although there is no attendant structural or chemical alteration, the re-distribution of ferric and ferrous iron cations results in reversible changes in Curie temperature of up to 150°C. This necessarily changes the blocking temperature spectrum as a function of prior thermal history. These changes in TC, TUB and TB clearly pose problems for all paleointensity experiments, but the effects may be most apparent during Thellier-type experiments where the sample is step-wise heated to increasingly higher temperatures. The blocking temperature distribution will be expected to change over the course of the experiment even in the absence of chemical alteration, and one can expect the experiment to fail. We will explore the effects of cation redistribution on paleointensity experiments through numerical models and by comparison with paleointensity data from pumice samples taken from the 1980 pyroclastic flows at Mt. St. Helens (MSH). In the MSH samples, two phases are typically present: a predominantly multi-domain, homogeneous titanomagnetite (associated with the cation reordering) and an oxyexsolved, single-domain to pseudo-single-domain phase with ilmenite lamellae in a magnetite-rich host. Samples that result in technically successful paleointensity experiments that give the correct field value are most likely to be dominated by the oxyexsolved phase. By contrast, samples with a considerable proportion of the homogeneous phase typically fail the paleointensity experiments and have unstable magnetization behavior at temperatures associated with cation reordering on laboratory time scales. In many samples with both phases, pTRM checks pass at both low (<300°C) and high (>500°C) temperatures, but fail in the intermediate temperature window. The composition of the titanomagnetites that exhibit this cation reordering effect are extremely common in rocks of andesitic, dacitic, and rhyolitic composition, as well as in some basalts. Cation reordering may therefore be a previously unrecognized cause for failure in paleointensity experiments.
Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre
2015-01-01
Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713
Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre
2015-01-01
Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Rong
2014-12-01
A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.
On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).
Chan, Eric J; Rae, A David; Welberry, T Richard
2009-08-01
A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.
Phase behavior of thermotropic chiral liquid crystal with wide blue phase
NASA Astrophysics Data System (ADS)
Jessy, P. J.; Radha, S.; Nainesh, Patel
2018-04-01
We modified the phase transitions of a thermotropic chiral nematic liquid crystal system with various concentrations of chiral component and investigated their phase behavior and optical properties. The study shows that coupling between chirality and nematicity of liquid crystals lead to changes in phase morphology with extended temperature window of blue phase including human body temperatures and enhanced thermochromism performance. The temperature dependent refractive index analysis in the visible spectral region reveals that the optical modulation due to pitch variation of helical pattern results in the creation of new mesophases and more pronounced chirality in mixtures leading to blue phase which can be controlled by the chiral concentration. The appearance of extended blue phases with primary colors will pave way for the development of new photonic devices.
Physical Properties of Phase Pure 4C Pyrrhotite (Fe7S8) during its Low Temperature Besnus Transition
NASA Astrophysics Data System (ADS)
Volk, M.; Feinberg, J. M.; McCalla, E.; Leighton, C.; Voigt, B.
2017-12-01
Of all magnetic minerals that play a role in recording terrestrial and extraterrestrial magnetic fields, the low temperature phase transition of monoclinic Fe7S8 is the least well understood. At room temperature an array of ordered vacancies gives rise to ferrimagnetism in pyrrhotite. The mineral's physical properties change dramatically at ≈30 K during what is known as the Besnus transition. The mechanism driving these changes, however, is not fully understood. Several explanations have been proposed, including changes in crystalline anisotropy, a transformation of the crystal symmetry, and magnetic interactions within in a two-phase (4C/5C*) system among them. To better understand the transition we studied magnetic, electric and structural properties as well as the heat capacity of a large, phase pure monoclinic crystal (Fe6.8±0.1S8). The single-phase sample shows a clear peak at 32 K in the heat capacity associated with a second order phase transition. Zero field cooling of 2.5 T saturating isothermal remanent magnetizations acquired at 300 and 20 K, as well electrical conductivity exhibit sudden changes between 30-33 K. Susceptibility shows a secondary peak within the same temperature interval. These phenomena can be related to the peak in heat capacity, indicating that the changes are related to the phase transition. In-field measurements show that the magnetic and electric transitions are mildly field dependent. Repeated measurements on different instruments show that the transition temperature for susceptibility is 1 K higher when measured parallel to the crystallographic c-axis as compared to within the c-plane. Similar trends could be found in magnetoresistivity, which is negative (≈ -2%) in the c-plane and larger and positive (≈ 5%) along the c-axis. While this comprehensive data set is not able to unambiguously explain the mechanism driving the transition, it indicates the coupling of structural and magnetocrystalline properties and suggests that the Besnus transition is an intrinsic phenomenon for pure 4C pyrrhotite.
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Structural properties of zirconia - in-situ high temperature XRD characterization
NASA Astrophysics Data System (ADS)
Kurpaska, Lukasz
2018-07-01
In this work, the effect of high temperature on structural properties of pure zirconium have been investigated. In-situ X-ray diffraction analysis of the oxide layer formed at temperature window 25-600 °C on pure zirconium were performed. Conducted experiment aimed at investigation of the zirconia phases developed on surface of the metallic substrate. Based on the conducted studies, possible stress state (during heating, continuous oxidation and cooling), cell parameters and HWHM factor were analyzed. A tetragonal and monoclinic phases peak shifts and intensities change were observed, suggesting that different phases react in different way upon temperature effect.
Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.
Tasaki, Yuiko; Okada, Tetsuo
2011-12-15
A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.
The influence of using heat storage with PCM on inlet and outlet temperatures in substation in DHS
NASA Astrophysics Data System (ADS)
Nogaj, Kinga; Turski, Michał; Sekret, Robert
2017-11-01
The main objective of this article is to indicate the direction of development of new generation heating systems that use phase change materials, and the important criteria needed when choosing a phase change material. The work contains a detailed classification of materials using the latent heat of organic and inorganic PCM. This references the technical possibilities of existing heat storage technologies. A specific objective was adopted to determine the effect of using heat storage with PCM on inlet and outlet temperatures in substation in district heating systems. The scope of the study included determining the parameters of the heat distribution network as a function of an outdoor air temperature within the range of -20°C to + 12°C. The object of analysis was chosen to be the heating system parameters: supply 120°C and return 60°C. It is located on the surface of 160km2, and supplies heat to 240,000 residents. The total length of the district heating network is 170 km. Based on the study, it was found that the most advantageous material that accumulates heat depends on the return temperature in the heating network. For the above analyzed case, the return temperature was in the range of 46°C to 57°C. The analysis showed that the most preferred materials using heat of phase change, have possible applications in heating networks and received a return temperature including salt hydrates, such as MgSO4·7H2O and Na2S2O3·5H2. The introduction of stored heat for the district heating system with the phase change material in the form of salt hydrates, allows the return temperature in the district heating to remain at temperatures compatible with the adopted regulatory table for temperatures outside the standard heating season.
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.
Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay
2017-12-12
The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14 cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.
Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation
NASA Astrophysics Data System (ADS)
Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn
2016-04-01
Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.
Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato
2016-07-01
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
A surface phase transition of supported gold nanoparticles.
Plech, Anton; Cerna, Roland; Kotaidis, Vassilios; Hudert, Florian; Bartels, Albrecht; Dekorsy, Thomas
2007-04-01
A thermal phase transition has been resolved in gold nanoparticles supported on a surface. By use of asynchronous optical sampling with coupled femtosecond oscillators, the Lamb vibrational modes could be resolved as a function of annealing temperature. At a temperature of 104 degrees C the damping rate and phase changes abruptly, indicating a structural transition in the particle, which is explained as the onset of surface melting.
Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.
Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki
2008-02-01
We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.
Extreme low temperature tolerance in woody plants
Strimbeck, G. Richard; Schaberg, Paul G.; Fossdal, Carl G.; Schröder, Wolfgang P.; Kjellsen, Trygve D.
2015-01-01
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions. PMID:26539202
Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...
2016-02-11
Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less
Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3
NASA Astrophysics Data System (ADS)
Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta
2018-03-01
Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...
2015-08-07
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Phase Change Energy Storage Material Suitable for Solar Heating System
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa
2018-01-01
Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.
Phase change thermal energy storage material
Benson, David K.; Burrows, Richard W.
1987-01-01
A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.
NASA Astrophysics Data System (ADS)
Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena
2018-01-01
Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-09
Transition metal dichalcogenide MoTe 2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe 2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric T d phase from vibrational spectroscopy, and suggest MoTe 2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-01-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition. PMID:27934874
NASA Astrophysics Data System (ADS)
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B
2011-12-01
Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.
A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet
2003-01-01
A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.
NASA Astrophysics Data System (ADS)
Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores
2018-05-01
Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
Nagaraju, G P C; Borst, D W
2008-09-01
Carcinus maenas males have two major color phases. Green-phase males molt frequently and tend to live in brackish estuaries during the summer. After becoming red-phase males, they molt infrequently, have higher mating success, and live in cooler, deeper water. We found profound differences between these two phases in the way salinity and temperature affect hemolymph levels of methyl farnesoate (MF), a hormone that affects crustacean reproduction. Few green-phase males (<10%) had detectable MF in 33 ppt seawater (SW) at 11 or 18 degrees C. By contrast, about 30% of the red-phase males had detectable MF at either temperature. After transfer to 5 ppt SW, none of the green-phase males had detectable MF at 11 degrees C whereas 100% of green-phase males did at 18 degrees C. By contrast, 100% of the red-phase males had detectable MF in 5 ppt SW at either temperature. At 11 degrees C, green-phase males had detectable MF after eyestalk ablation (ESA), showing that they can produce MF. There was no additional increase in MF levels when ESA animals of either color phase were transferred to 5 ppt SW, suggesting that the eyestalk is the primary regulator of the MF response to low salinity. MF levels of green-phase males were increased by injecting MF, by ESA, or by exposure to 5 ppt SW at 18 degrees C. The testicular index of these treated animals nearly doubled after two weeks. Our results strongly suggest that environmental conditions such as temperature and salinity, affect testicular development in this crab by changing its MF levels.
The dry-heat loss effect of melt-spun phase change material fibres.
Tjønnås, Maria Suong; Færevik, Hilde; Sandsund, Mariann; Reinertsen, Randi E
2015-01-01
Phase change materials (PCM) have the ability to store latent heat when they change phases, a property that gives clothing that incorporates PCM its cooling effect. This study investigated the effect of dry-heat loss (cooling) of a novel melt-spun PCM fibre on the basis of the area covered, mass, the latent heat of fusion and melting temperature, compared to a known PCM clothing product. PCM fibres with melting temperatures of 28.4 and 32.0°C and PCM packs with melting temperatures of 28.0 and 32.0°C were studied. The results showed that the PCM fibres had a larger initial peak cooling effect than that of the PCM packs. The duration of the cooling effect of PCM fibres was primarily dependent on the PCM mass and the latent heat of fusion capacity, and secondly on the covered area and melting temperature of the PCM. This study investigates the cooling effect of PCM fibres on a thermal manikin. The PCM fibres had a high but short-lasting cooling effect. This study contributes to the knowledge of how the body's temperature regulation may be affected by the cooling properties of clothing that incorporates PCM.
Thermodynamic properties and interactions of salt hydrates used as phase change materials
NASA Astrophysics Data System (ADS)
Braunstein, J.
1982-12-01
The state-of-the-art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed with the objective of recommending research that would result in more practicable use of these materials. Areas for review included phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrates.
NASA Astrophysics Data System (ADS)
Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-01
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-28
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
NASA Astrophysics Data System (ADS)
Gärtner, S.; Gundlach, B.; Headen, T. F.; Ratte, J.; Oesert, J.; Gorb, S. N.; Youngs, T. G. A.; Bowron, D. T.; Blum, J.; Fraser, H. J.
2017-10-01
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peigong; Fan, Caimei, E-mail: fancm@163.com; Wang, Yawen
Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► Themore » tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.« less
Effects of heat treating PM Rene' 95 slightly below the gamma' solvus
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1977-01-01
An investigation was performed on as-hot-isostatically-pressed (As-HIP) Rene' 95 to obtain additional information on the variation of the amount of gamma prime with solutioning temperatures near the gamma prime solvus temperature and the resulting effects on tensile and stress rupture strength of As-HIP Rene' 95. The amount of gamma prime phase was found to increase at a rate of about 0.5% per degree Celsius as the temperature decreased from the solvus temperature to about 50 C below the gamma prime solvus temperature. The change in the amount of gamma prime phase with decreasing solutioning temperature was observed to be primarily associated with decreasing solubilities of Al+Ti+Nb and increasing solubility of Cr in the gamma phase.
On the roles of solid wall in the thermal analysis of micro heat pipes
NASA Astrophysics Data System (ADS)
Hung, Yew Mun
Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly, analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.
Review of Phase Change Materials Based on Energy Storage System with Applications
NASA Astrophysics Data System (ADS)
Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.
2017-05-01
The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.
Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles
NASA Astrophysics Data System (ADS)
Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.
2018-02-01
The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films
NASA Astrophysics Data System (ADS)
Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.
2012-08-01
Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.
NASA Astrophysics Data System (ADS)
Brock, Jeffrey; Khan, Mahmud
2018-05-01
The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.
NASA Astrophysics Data System (ADS)
Deng, Y. C.; Zhang, H. Y.; Xia, X.
2016-08-01
Phase change materials are of great interest in energy storage and energy management applications due to their high latent heat and excellent cycling stability. In this paper, the thermal characteristics of phase change materials (PCM) for thermal management of cylindrical 18650 lithium-ion battery (LIB) were experimentally investigated. A commercial paraffin wax with a melting temperaturerange between 47 - 53.8oC was used in this study. A metal cylinder with a heater was used to emulate the heat generation from a battery, which was surrounded with the paraffin PCM and containted in a metal housing. The experiment was conducted in an environmental test chamber with controlled ambient temperatures and power inputs. Both the battery temperature and the housing wall temperature were measured during steady-state heating and cyclic heating conditions. Since PCM has low thermal conductivity, thermal enhancement techniques were investigated by adding metal foams (MFs) or combining metallic foam and fins into the PCM to enhance the thermal conductivity. The battery temperatures were measured for all the cases and the results were analyzed and discussed.
Katsumata, Etsuko; Furuta, Chie; Katsumata, Hiroshi; Watanabe, Gen; Taya, Kazuyoshi
2006-02-01
The relationship between basal body temperature and circulating progesterone levels were investigated in a female beluga. Body temperature and serum concentrations of progesterone were measured daily and at 2-4 week intervals respectively, in a female beluga that was in captivity for 7 years between 1996 and 2003. The beluga first ovulated in April, 2000 (13 years old). Thereafter, serum concentrations of progesterone showed cyclic changes, indicating that the ovulatory cycle had started. Serum concentrations of progesterone ranged from 0.1 ng/ml to 15.7 ng/ml. Body temperature also showed cyclic changes during the estrous cycle. Body temperature ranged from 34.9 to 35.9 C, and tended to reach the peak during the high progesterone phase. Mating behavior was observed during the low body temperature phase. The changes in body temperature positively correlated with the circulating progesterone levels. The length of the estrous cycle was 36.7 +/- 3.9 (mean +/- SEM) days based on the intervals between the days of mating behavior. This is the first report demonstrating that body temperature clearly changes during the estrous cycle in a captive female beluga. The present finding suggests that measurement of body temperature is a useful method for detecting the ovarian cycle of the beluga in captivity.
Temperature-dependent μ-Raman investigation of struvite crystals.
Prywer, Jolanta; Kasprowicz, D; Runka, T
2016-04-05
The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
Solidification of high temperature molten salts for thermal energy storage systems
NASA Technical Reports Server (NTRS)
Sheffield, J. W.
1981-01-01
The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.
2004-02-01
Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...
2017-06-13
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, J. C.
2011-09-01
It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from amore » small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.« less
In situ investigations of the phase change behaviour of tungsten oxide nanostructures.
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W 18 O 49 nanowires and WO 3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO 3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO 3 ; however, W 18 O 49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO 3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm -1 as the fingerprint band for the phase transition from γ- to β-phase of the WO 3 nanoparticle. Furthermore, WO 3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W 18 O 49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
In situ investigations of the phase change behaviour of tungsten oxide nanostructures
NASA Astrophysics Data System (ADS)
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W18O49 nanowires and WO3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO3; however, W18O49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm-1 as the fingerprint band for the phase transition from γ- to β-phase of the WO3 nanoparticle. Furthermore, WO3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W18O49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
Magnetostructural phase transformations in Tb 1-x Mn 2
Zou, Junding; Paudyal, Durga; Liu, Jing; ...
2015-01-16
Magnetism and phase transformations in non-stoichiometric Tb 1-xMn 2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at T N, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn 2.
Phase Change Fabrics Control Temperature
NASA Technical Reports Server (NTRS)
2009-01-01
Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.
Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry
2009-05-31
inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter
Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen
2017-01-01
To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990
Klemm, Matthias; Horn, Siegfried; Woydt, Mathias
2011-01-01
Summary Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. PMID:21977416
Numerical modelling of phase-change material used for PV panels cooling
NASA Astrophysics Data System (ADS)
Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed
2017-12-01
Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.
Sb7Te3/Ge multilayer films for low power and high speed phase-change memory
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Wu, Weihua; Zhai, Jiwei; Song, Sannian; Song, Zhitang
2017-06-01
Phase-change memory has attracted enormous attention for its excellent properties as compared to flash memories due to their high speed, high density, better date retention and low power consumption. Here we present Sb7Te3/Ge multilayer films by using a magnetron sputtering method. The 10 years’ data retention temperature is significantly increased compared with pure Sb7Te3. When the annealing temperature is above 250 °C, the Sb7Te3/Ge multilayer thin films have better interface properties, which renders faster crystallization speed and high thermal stability. The decrease in density of ST/Ge multilayer films is only around 5%, which is very suitable for phase change materials. Moreover, the low RESET power benefits from high resistivity and better thermal stability in the PCM cells. This work demonstrates that the multilayer configuration thin films with tailored properties are beneficial for improving the stability and speed in phase change memory applications.
Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase
NASA Astrophysics Data System (ADS)
Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration
With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
NASA Astrophysics Data System (ADS)
Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.
2017-11-01
Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-01-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures. PMID:27604551
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism.
Seifitokaldani, Ali; Gheribi, Aïmen E; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-08
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
NASA Astrophysics Data System (ADS)
Tran, N.; Kim, D. H.; Phan, T. L.; Dang, N. T.; Bach, T. N.; Manh, D. H.; Lee, B. W.
2018-03-01
Our studies on the crystal characterization and magnetic property of CoFe2O4 nanoparticles (NPs) point out their instability in a specific temperature range. While as-prepared NPs exhibit single phase in a cubic spinel structure, annealing at temperatures T=673-1273 K leads to the development of an impurity phase of Fe2O3. Interestingly, annealing at higher temperatures re-creates the single phase of NPs. This strongly influences their magnetic property. The magnetic inhomogeneity and/or multiple phase exist in as-prepared NPs and in those annealed below 1273 K, better magnetic property is found in the samples with annealing temperature (Tan) higher than 1273 K. Ferromagnetic-paramagnetic phase transition temperatures of these samples are located around 815-850 K, and are less dependent on Tan. At room temperature, their saturation magnetization is located in the range of 41-55 emu/g, while the coercivity can be changed from 600 to 3200 Oe. These results are related to microstructures, structural phases, and exchange interactions between Fe and Co ions situated in the A and B sites of the spinel structure, which are modified by heat treatment.
NASA Astrophysics Data System (ADS)
Singh, Anar; Patel, Jay Prakash; Pandey, Dhananjai
2009-10-01
We present here results of a powder x-ray diffraction study on the multiferroic 0.8BiFeO3-0.2BaTiO3 in the temperature range of 300-925 K. Our results provide unambiguous evidence for paraelectric cubic phase. We do not find any evidence for intermediate β-phase in our studies. The rhombohedral to cubic phase transition is shown to be of first order as revealed by the coexistence of cubic and rhombohedral phases over 100 K range and a discontinuous change in the unit cell volume. An anomaly in the unit cell volume at the magnetic transition temperature indicative of the magnetoelastic coupling is also reported.
Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction
NASA Astrophysics Data System (ADS)
Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.
2014-12-01
This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.
NASA Astrophysics Data System (ADS)
Zhou, Yang; Lu, Youyu; Yang, Ben; Jiang, Jing; Huang, Anning; Zhao, Yong; La, Mengke; Yang, Qing
2016-11-01
Linear regression is used to explore the relationship between the Madden-Julian oscillation (MJO) and 2 m air temperature (T2M) over central Asia in boreal winter during 1979-2012. During MJO phases 3 and 4 (7 and 8), T2M anomalies exhibit a significantly strong, negative (positive) response to the MJO from the Arabian Sea to northwestern China. The anomalies of T2M are essentially influenced by surface net downward long (Ldown) and shortwave radiations, which are caused by the changes in total cloud cover (TCC) and low-level tropospheric air temperature. The anomalies of Ldown that are caused by TCC account for 20-65% of total Ldown. The remaining anomalies of total Ldown are explained by low-level air temperature changes. The 850 hPa air temperature (T850) tendency is mainly affected by the vertical motion over central Asia during MJO phases 1, 2, 4-6, and 8, as well as over northern India during phases 3 and 7. Over Saudi Arabia, Afghanistan, Pakistan, Kazakhstan, and northwestern China, the anomalies of T850 tendency are mainly explained by the temperature advection during phases 3 and 7. TCC and vertical motion are affected by the evolution of the MJO event. The cyclonic (anticyclonic) circulation related to the MJO over central Asia during phases 3 and 4 (7 and 8) causes the transport of cold (warm) air over central Asia. The MJO can be a useful intraseasonal signal to predict winter T2M over central Asia, where temperatures would be colder (warmer) than normal during MJO phases 3 and 4 (7 and 8).
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
The Role of Phase Changes in TiO2/Pt/TiO2 Filaments
NASA Astrophysics Data System (ADS)
Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István
2018-04-01
This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.
Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan
2014-03-19
The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.
Modeling and impacts of the latent heat of phase change and specific heat for phase change materials
NASA Astrophysics Data System (ADS)
Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.
2018-05-01
We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.
NASA Astrophysics Data System (ADS)
Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai
2018-03-01
For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in the BF-x BT system. While our results on the two spin-glass transitions support the theoretical predictions, they also raise several open questions, which need to be addressed by revisiting the existing theories of spin-glass transitions after taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.
Ao, Takashi; Matsumoto, Mitsuhiro
2017-10-24
We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.
Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.
2016-01-01
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342
Characteristics of phase-change materials containing oxide nano-additives for thermal storage.
Teng, Tun-Ping; Yu, Chao-Chieh
2012-11-06
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.
NASA Astrophysics Data System (ADS)
Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.
2016-12-01
The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.
NASA Astrophysics Data System (ADS)
McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.
2017-12-01
The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.
Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates
NASA Astrophysics Data System (ADS)
Karpus, John Francis
In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gärtner, S.; Fraser, H. J.; Gundlach, B.
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K.more » By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought.« less
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.
Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke
2015-11-02
In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less
Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1997-01-01
A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.
Djordjevic, N M; Fitzpatrick, F; Houdiere, F
2001-04-01
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.
Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun
2016-05-01
In this study, the controllable effective refractive index modulation of Sb70Te30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Kai; Wang, Yang, E-mail: ywang@siom.ac.cn; Jiang, Minghui
2016-05-07
In this study, the controllable effective refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.
Direct coupling of microbore HPLC columns to MS systems
NASA Technical Reports Server (NTRS)
Mcnair, H. M.
1985-01-01
A detailed investigation using electron microscopy was conducted which examined the conditions of materials used in the construction of stable, high performance microbore liquid chromatography (LC) columns. Small details proved to be important. The effects of temperature on the elution of several homologous series used as probe compounds was examined in reverse phase systems. They showed that accessible temperature changes provide roughly half the increase in solvent strength that would be obtained going from a 100% aqueous to a 100% organic mobile phase, which is sufficient to warrant their use in many analyses requiring the use of gradients. Air circulation temperature control systems provide the easiest means of obtaining rapid, wide range changes in column temperature. However, slow heat transfer from the gas leads to thermal nonuniformity in the column and a decrease in resolution as the temperature program progresses.
Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia
Symonds, R.
1993-01-01
Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author
T-p phase diagrams and the barocaloric effect in materials with successive phase transitions
NASA Astrophysics Data System (ADS)
Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.
2017-09-01
An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .
a Thermal Conduction Switch Based on Low Hysteresis Nitife Shape Memory Alloy Helical Springs
NASA Astrophysics Data System (ADS)
Krishnan, V. B.; Bewerse, C.; Notardonato, W. U.; Vaidyanathan, R.
2008-03-01
Shape memory alloy (SMA) actuators possess an inherent property of sensing a change in temperature and delivering significant force against external loads through a shape change resulting from a temperature-induced phase transformation. The utilization of a reversible trigonal (R-phase) to cubic phase transformation in NiTiFe SMAs allows for this strain recovery to occur with reduced hysteresis between the forward and reverse transformations. However, the magnitude of the strain recovery associated with the R-phase transformation is lower than that of the monoclinic to cubic phase transformation. The use of helical springs can compensate for this design constraint as they produce significant stroke when compared to straight elements such as thin strips and wires. This work reports on the development and implementation of NiTiFe helical springs in a low-hysteresis thermal conduction switch for advanced spaceport applications associated with NASA's requirements for future lunar and Mars missions. Such a low-hysteresis thermal conduction switch can provide on-demand heat transfer between two reservoirs at different temperatures.
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2016-01-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashley, Jason C1; Heffner, Robert H; Llobet, A
2008-01-01
Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].
NASA Astrophysics Data System (ADS)
Jiang, Yajun; Liu, Chi; Li, Dong; Yang, Dexing; Zhao, Jianlin
2018-04-01
A novel method for simultaneous measurement of temperature and strain using a single phase-shifted fiber Bragg grating (PS-FBG) is proposed. The PS-FBG is produced by exposing the fusion-spliced fiber with a femtosecond laser and uniform phase mask. Due to the non-uniform structure and strain distribution in the fusion-spliced region, the phase-shift changes with different responses during increases to the temperature and strain; by measuring the central wavelengths and the loss difference of two transmission dips, temperature and strain can be determined simultaneously. The resolutions of this particular sensor in measuring temperature and strain are estimated to be ±1.5 °C and ±12.2 µɛ in a range from -50 °C to 150 °C and from 0 µɛ to 2070 µɛ.
NASA Astrophysics Data System (ADS)
Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao
2018-06-01
Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4.0 °C at most stations. The results of this study provide information for climate change research and hydrological process simulations in the SRB, as well as provide reference information for discriminating precipitation phase in other regions.
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-equilibrium phase transitions in a liquid crystal
NASA Astrophysics Data System (ADS)
Dan, K.; Roy, M.; Datta, A.
2015-09-01
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the anisotropy, goes to zero from nematic to isotropic phase. To a point below the transition temperature, the order parameter is constant but decreases linearly with increase in temperature below that indicating the dependence of nematic ordering on the initial temperature during heating consistent with the non-equilibrium nature of nematic-isotropic phase transition.
Changes in the relationship NAO-Northern hemisphere temperature due to solar activity
NASA Astrophysics Data System (ADS)
Gimeno, Luis; de la Torre, Laura; Nieto, Raquel; García, Ricardo; Hernández, Emiliano; Ribera, Pedro
2003-01-01
The influence of the North Atlantic Oscillation (NAO) on wintertime Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship has different sign according to the phase of the solar cycle. For solar maximum phases NAO and NHT are positively correlated - a result assumed up to the moment - but for solar minimum phases correlations are not significant or even negative. This result is in agreement with the different extension of the NAO for solar cycle phases [Kodera, Geophys. Res. Lett. 29 (2002) 14557-14560] - almost hemispheric for maximum phases and confined to the eastern Atlantic for minimum phases.
Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.
2011-01-15
The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.
Phase diagram and thermal expansion measurements on the system URu 2–xFe xSi 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Sheng; Wolowiec, Christian T.; Jeon, Inho
Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu 2–xFe xSi 2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at x c≈more » 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.« less
Phase diagram and thermal expansion measurements on the system URu 2–xFe xSi 2
Ran, Sheng; Wolowiec, Christian T.; Jeon, Inho; ...
2016-11-08
Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu 2–xFe xSi 2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at x c≈more » 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.« less
NASA Astrophysics Data System (ADS)
Qin, Tongran; Grigoriev, Roman
2017-11-01
We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.
NASA Astrophysics Data System (ADS)
Le Du, Mathieu
The use of phase change materials (PCMs) allows to store and release large amounts of energy in reduced volumes by using latent heat storage through melting and solidifying at specific temperatures. Phase change materials received a great interest for reducing energy consumption by easing the implementation of passive solar heating and cooling. They can be integrated to buildings as wallboards to improve the heat storage capacity. In this study, an original experimental device has allowed to characterize the thermophysical proprieties of a composite wallboard constituted of PCMs. Generally, PCMs are characterized by calorimetric methods which use very small quantities of material. The device used can characterize large sample's dimensions, as they could be used in real condition. Apparent thermal conductivity and specific heat have been measured for various temperatures. During phase change process, total and latent heat storage capacities have been evaluated with the peak melting and freezing temperatures. Results are compared to the manufacturer's data and data from literature. Incoherencies have been found between sources. Despite several differences with published data, overall results are similar to the latest information, which allow validate the original experimental device. Thermal disturbances due to hysteresis have been noticed and discussed. Results allow suggesting recommendations on thermal procedure and experimental device to characterize efficiently this kind of materials. Temperature's ranges and heating and freezing rates affect results and it must be considered in the characterization. Moreover, experimental devices have to be designed to allow similar heating and freezing rates in order to compare results during melting and freezing.
Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi
2014-10-20
The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weese, R K; Burnham, A K; Maienschein, J L
Dimensional changes related to temperature cycling of the beta and delta polymorphs of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are important for a variety of applications. The coefficient of thermal expansion (CTE) of the beta and delta phases are measured and reported in this work over a temperature range of -20 C to 215 C. In addition, dimensional changes associated with the phase transition were measured, both through the transition and back down. Initially, differential scanning calorimetry (DSC) was used to investigate back conversion of the delta phase to the beta phase polymorph. The most successful approach was first to measure the amount ofmore » the beta to delta conversion, then after a given cooling period a repeat analysis, to measure the heat consumed by a second pass through the beta to delta phase transition. In addition, TMA is used to measure the dimensional change of a 0.20-gram sample of HMX during its initial heating and then three days later during a 2nd heating. This HMX shows the beta to delta phase transition a second time, thereby confirming the back conversion from delta to beta phase HMX.« less
Gruwez, R; De Frenne, P; De Schrijver, A; Leroux, O; Vangansbeke, P; Verheyen, K
2014-02-01
Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.
Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K.
2014-01-01
Background and Aims Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. Methods In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Key Results Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Conclusions Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur. PMID:24284814
Non-isothermal processes during the drying of bare soil: Model Development and Validation
NASA Astrophysics Data System (ADS)
Sleep, B.; Talebi, A.; O'Carrol, D. M.
2017-12-01
Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.
Realization of memory effect in smectic X* phase
NASA Astrophysics Data System (ADS)
Kishor, Murthynedi Hari; Madhu Mohan, M. L. N.
2018-09-01
Homologous series of DTA + nBA (where n varies from 2 to 8) comprises of seven homologues, out of which DTA+4BA alone exhibits a new smectic ordering labelled as smectic X*. Hence DTA+4BA is chosen to investigate various chemical, thermal optical and electrical studies. DSC thermograms reveal the transition temperature and enthalpy values of smectic X* phase. FTIR spectroscopy confirms the formation of hydrogen bonding. Variation of tilt angle with temperature is studied and fitted to a power law confirming the Mean field theory predicted value. An interesting feature of this work is the observation of memory effect in smectic X* phase. When an external field is applied to the mesogen in smectic X* phase, the texture undergoes a change and remains invariant even after the field is removed, further the texture of the phase can be erased only by taking it to isotropic temperature. Another proof for memory effect is the dielectric hysteresis in smectic X* recorded with field. Helix in smectic X* is reported. Yet another interesting observation is the identification of parachromatism in smectic X* phase namely the textures remain the same while the colour of the textures changes completely with decrement in the temperature of the mesogen. Dielectric relaxations in Goldstone mode are studied and analyzed with Cole-Cole plots. The relaxation is suppressed on application of field indicative of Arrhenius in nature.
NASA Astrophysics Data System (ADS)
Ma, Liyuan; Hong, Yan; Ma, Zeyu; Kaittanis, Charalambos; Perez, J. Manuel; Su, Ming
2009-07-01
We describe a multiplexed highly sensitive method to detect cancer biomarkers using silica encapsulated phase change nanoparticles as thermal barcodes. During phase changes, nanoparticles absorb heat energy without much temperature rise and show sharp melting peaks (0.6 °C). A series of phase change nanoparticles of metals or alloys can be synthesized in such a way that they melt between 100 and 700 °C, thus the multiplicity could reach 1000. The method has high sensitivity (8 nM) that can be enhanced using materials with large latent heat, nanoparticles with large diameter, or reducing the grafting density of biomolecules on nanoparticles.
Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials
NASA Astrophysics Data System (ADS)
Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang
2018-04-01
The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.
Inelastic x-ray scattering measurements of phonon dynamics in URu 2Si 2
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu 2Si 2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations inmore » the low temperature phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Hui, S W
1981-01-01
The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707
NASA Astrophysics Data System (ADS)
Yanina, I. Yu.; Volkova, E. K.; Zaharevich, A. M.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.
2017-03-01
The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis.
NASA Astrophysics Data System (ADS)
Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming
2017-06-01
Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.
The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
Temperature induced phase transition of CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, Maria, E-mail: maria.p.orlova@gmail.com; Perfler, Lukas; Tribus, Martina
2016-03-15
In this work we investigated the structural behaviour of a CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3}. Due to the presence of divalent Mn{sup 2+} cations this compound can possess interesting luminescence properties. It was recently understood that this phosphate undergoes a temperature induced irreversible phase transition in the range of 800–875 °C. It has also been shown that the 3d–3d luminescence of Mn{sup 2+} increases 10 fold for the high temperature polymorph. To determine the Mn environment structural investigations of both phases have been performed by the X-ray powder diffraction and Raman spectroscopy methods. The low temperature modification adopts the trigonalmore » NZP structure type with a slightly lower symmetry (space group R32, a=8.7850(2) Å, c=22.6496(7) Å, V=1514.8(1) Å{sup 3}). The high temperature form in turn has orthorhombic symmetry (space group Pnma, a=6.2350(3) Å, b=6.6281(3) Å, c=14.4731(6) Å, V=598.13(5) Å{sup 3}). Both structures were solved ab-initio from powder data and structural analysis was performed. In-situ and RT Raman spectra are consistent with the XRD derived structural model. Mn{sup 2+} cations occupy different types of positions in these structures and a change in Mn coordination number (6 for LT phase, 7 for HT phase) results in different Mn–O bond lengths. These differences may explain the change in the optical properties between the polymorphs. - Graphical abstract: The compound CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} was synthesized in order to create a material with enhanced luminescent properties. The goal of present studies is to define Mn{sup 2+} environment and its changes due to the structural transformations of the phosphate along phase transition at the T range of 800–875 °C. It was found that LT modification adopts the trigonal NZP structure type, sp.gr. R32, the HT form in turn exhibits orthorhombic symmetry sp.gr. Pnma. Mn2+ cations occupy different types of positions in those structures and a change in coordination number of Mn (6 for LT phase, 7 for HT phase) results in a change in Mn–O bond lengths.« less
Phase coexistence and electric-field control of toroidal order in oxide superlattices.
Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
NASA Astrophysics Data System (ADS)
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...
2017-08-07
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less
Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.
Du, Haibo; Liu, Jie; Li, Mai-He; Büntgen, Ulf; Yang, Yue; Wang, Lei; Wu, Zhengfang; He, Hong S
2018-03-01
Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics. © 2017 John Wiley & Sons Ltd.
Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
2014-01-13
We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less
NASA Astrophysics Data System (ADS)
Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.
2017-12-01
Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
NASA Technical Reports Server (NTRS)
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
NASA Astrophysics Data System (ADS)
Alfieri, Silvia Maria; De Lorenzi, Francesca; Missere, Daniele; Buscaroli, Claudio; Menenti, Massimo
2013-04-01
Extremely high and extremely low temperature may have a terminal impact on the productivity of fruit tree if occurring at critical phases of development. Notorious examples are frost during flowering or extremely high temperature during fruit setting. The dates of occurrence of such critical phenological stages depend on the weather history from the start of the yearly development cycle in late autumn, thus the impact of climate extremes can only be evaluated correctly if the phenological development is modeled taking into account the weather history of the specific year being evaluated. Climate change impact may lead to a shift in timing of phenological stages and change in the duration of vegetative and reproductive phases. A changing climate can also exhibit a greater climatic variability producing quite large changes in the frequency of extreme climatic events. We propose a two-stage approach to evaluate the impact of predicted future climate on the productivity of fruit trees. The phenological development is modeled using phase - specific thermal times and variety specific thermal requirements for several cultivars of pear, apricot and peach. These requirements were estimated using phenological observations over several years in Emilia Romagna region and scientific literature. We calculated the dates of start and end of rest completion, bud swell, flowering, fruit setting and ripening stages , from late autumn through late summer. Then phase-specific minimum and maximum cardinal temperature were evaluated for present and future climate to estimate how frequently they occur during any critically sensitive phenological phase. This analysis has been done for past climate (1961 - 1990) and fifty realizations of a year representative of future climate (2021 - 2050). A delay in rest completion of about 10-20 days has been predicted for future climate for most of the cultivars. On the other hand the predicted rise in air temperature causes an earlier development of crops thus a reduction in the length of the different phenological stages. Despite the earlier timing of phenological phases may expose the crops to frost hazard, the mean increase of air temperature avoids relevant impacts on crops. The frequency of air temperatures higher than the cardinal temperatures is expected to increase by 5% compared with the reference 1961 - 1990 climate. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
2016-02-27
In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li 0.5(Ni 1-y-zMn yCo z)O 2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li 0.5(Ni 1-y-zMn yCo z)O 2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni 1-y-zMn yCo z) 2O 4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1974-01-01
The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.
Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.
2017-02-01
The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beran, L.; Cejpek, P.; Kulda, M.
Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibitedmore » significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.« less
Ma, Biao; Zhou, Xue-yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-feng
2016-01-01
Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are −18 °C–7 °C, 7 °C–25 °C and 25 °C–44 °C, respectively, and that of the asphalt mixture are −18 °C~10 °C, −10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method. PMID:28773510
Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng
2016-05-19
Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.
Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature
NASA Astrophysics Data System (ADS)
Trushin, Egor; Görling, Andreas
2018-04-01
We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.
Espeau, Philippe; Céolin, René; Tamarit, Josep-Lluis; Perrin, Marc-Antoine; Gauchi, Jean-Pierre; Leveiller, Franck
2005-03-01
The thermodynamic relationships between the two known polymorphs of paracetamol have been investigated, and the subsequent pressure-temperature and temperature-volume phase diagrams were constructed using data from crystallographic and calorimetric measurements as a function of the temperature. Irrespective of temperature, monoclinic Form I and orthorhombic Form II are stable phases at ordinary and high pressures, respectively. The I and II phase regions in the pressure-temperature diagram are bordered by the I-II equilibrium curve, for which a negative slope (dp/dT approximately -0.3 MPa x K(-1)) was determined although it was not observed experimentally. This curve goes through the I-II-liquid triple point whose coordinates (p approximately 234 MPa, T approximately 505 K) correspond to the crossing point of the melting curves, for which dp/dT values of +3.75 MPa x K(-1) (I) and +3.14 MPa x K(-1) (II) were calculated from enthalpy and volume changes upon fusion. More generally, this case exemplifies how the stability hierarchy of polymorphs may be inferred from the difference in their sublimation curves, as topologically positioned with respect to each other, using the phase rule and simple inferences resorting to Gibbs equilibrium thermodynamics. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles
NASA Astrophysics Data System (ADS)
Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.
2018-07-01
A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.
NASA Astrophysics Data System (ADS)
Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2015-03-01
Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-01-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
NASA Astrophysics Data System (ADS)
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-03-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.
NASA Astrophysics Data System (ADS)
Sajjadi, Amir Y.; Carp, Stefan A.; Manstein, Dieter
2017-02-01
Monitoring phase transition in adipose tissue and formation of lipid crystals is important in Cryo-procedures such as cryosurgery or Selective Cryolipolysis (SC). In this work, we exploited a Near-Infrared Spectroscopy (NIRS) method to monitor the onset of fat freezing/melting. Concurrent measurements using frequency domain NIRS and MR Spectroscopy during cooling/heating were performed on an in vitro porcine skin sample with a thick subcutaneous fat layer in a human MR scanner. The NIRS probe was placed on the skin measuring the average optical scattering of the fatty layer. Two fiber optic temperature probes were inserted in the area of the MRS and NIRS measurements. To further investigate the microscopic features of the phase-transition, an identical cooling/heating procedure was replicated on the same fat tissue while being imaged by Optical Coherence Tomography. The temperature relationships of optical scattering, MRS peak characteristics and OCT reflection intensity were analyzed to find signatures related to the onset of phase transition. The optical scattering in the fatty tissues decreases during the heating and increases by cooling. However, there is an inflexion in the rate of change of the scattering while the phase transition happens in the fatty layer. The methylene fat peaks on the MR Spectrum are also shown to be broadened during the cooling. OCT intensity displays a sharp increase at the transition temperature. The results from multiple samples show two transition points around 5-10 ˚C (cooling) and 15-20 ˚C (heating) through all three methods, demonstrating that adipose tissue phase change can be monitored non-invasively.
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K xFe 2-ySe 2 and nonsuperconducting K 0.8Fe 1.8Co 0.2Se 2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K 0.8Fe 1.8Co 0.2Se 2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-inducedmore » anharmonic effects. It is shown that change of Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A 1g mode energy near T C was observed in K xFe 2-ySe 2 , whereas it is absent in K 0.8Fe 1.8Co 0.2Se 2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.« less
Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).
Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W
2015-07-01
Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heat transfer degradation during condensation of non-azeotropic mixtures
NASA Astrophysics Data System (ADS)
Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col
2017-11-01
International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.
Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá
Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael
2014-01-01
Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503
Tischer, Alexander; Auton, Matthew
2013-01-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497
Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L
2014-07-22
Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.
NASA Astrophysics Data System (ADS)
Song, Young-Sun; Kim, Jeongwoo; Jhi, Seung-Hoon
2018-05-01
Ge-Sb-Te (GST) compounds exhibit substantial electrical and optical contrast between the amorphous and crystalline phases. Despite extensive studies of GST compounds, the underlying mechanism for fast transitions between the amorphous and crystalline phases is yet to be revealed. In this paper, we study the properties of phonons and a long-ranged p -orbital network of hexagonal GST compounds using first-principles calculations. By investigating volume-dependent phonon dispersions, we observe the structural instability at elevated temperature due to the spontaneous softening of a specific in-plane vibrational mode (Eu ). We find that the atomic distortion by the Eu mode is associated with weakening of delocalized p bonding inducing large structural and electrical changes. We also discuss how to manipulate the Eu mode to control the device performance. Our finding helps deepen the understanding of the phase-change mechanism and improve the device performance, especially the switching power and operating temperature.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.
Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco
2013-12-19
Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.
Subsampling phase retrieval for rapid thermal measurements of heated microstructures.
Taylor, Lucas N; Talghader, Joseph J
2016-07-15
A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2014-09-01
Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.
NASA Astrophysics Data System (ADS)
Newell, Reginald E.; Wu, Zhong-Xiang
1992-03-01
Fields of sea surface temperature anomalies from the Global Ocean Surface Temperature Atlas (GOSTA) and microwave sounding measurements (MSU) of temperature in the troposphere are examined separately and together for the 1979-1988 period. Global correlation patterns of both sets of fields are investigated at a range of leads and lags up to 6 months and exhibit a wide range of correlation structure. There are regions, such as the tropical eastern Pacific, where sea surface temperature anomalies persist for several months and are associated with local air temperature anomalies; in this particular example, about 0.7°C air temperature change is associated with a 1.0°C sea temperature change. By contrast, some ocean regions and many atmospheric regions, mostly in middle and high latitude, show only local spatial correlations that disappear completely in a month or two. The most persistent and extensive spatial correlation patterns are quite different for the sea and the air. In the sea the "butterfly" pattern of the Pacific is the most important and reverses sign between the eastern equatorial Pacific and the western Pacific and subtropics. In the warm phase the temperature anomalies associated with this pattern are similar to the correlation pattern. For the atmosphere the main correlation pattern is an equatorial belt with no sign changes in the tropics; this pattern is linked to the oceanic El Niño mode. In the warm phase the temperature anomalies show peak values on both sides of the equator in the eastern and central Pacific. Based mainly on the results from the spatial patterns, certain regions are selected for intercomparison of time series. In the tropical eastern Pacific the sea leads the air by about a month while in the Gulf Stream and Kuroshio regions the sequence is reversed.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Estrella, N.; Menzel, A.
2009-04-01
The 4th assessment report of the IPCC confirms that there is already a change in biological and physical systems in the expected direction due to climate change. Even the human influence could be verified in these changes. Plant phenological observations provide a good tool to track the quality and quantity of plant reactions to temperature. In Europe, in particular, there has been a long tradition of collecting onset dates for various plant phenological phases. We analysed a huge phenological data set collected during the COST 725 Action ‘Establishing a European Phenological Data Platform for Climatological Applications' containing more than 36,000 phenological time series (between 1971-2000) for Europe. This dataset was analysed by Menzel et al. (2006) on a national basis and they discovered that there was a extensive and apparent change in phenology over the three decades towards earlier start for spring phases and a slightly delayed beginning of leaf colouring in autumn. In contrast to the Menzel et al (2006) study we examined pan-European differences in the behaviour of phenological phases on the basis of station time series. We focussed on the temperature response of phenological phases and their regional patterns and the relationship between local temperature and phenological trends as well as the influence of human population density. The temperature information was derived from a high-resolution climate grid of Europe (0.5° x 0.5° grid CRU TS 2.1 (Mitchell & Jones 2005)). The data on population density were downloaded from Euro Stat. The results of our analyses confirm differences in behaviour between annual and perennial plants in Europe; the temperature response of perennial plants was greater (-4.2 days/°C) than that of annual agricultural crops (-3.0 days/°C). The correlation between the temperature trend and the phenology trend was strongest for leaf unfolding of fruit and deciduous trees (r=-0.63 and r=-0.46 respectively). Geographical coordinates (latitude and longitude) alone only had little impact on the mean onset of the group of phases, including altitude there was an influence for some groups. We could show that human population density influenced the mean onset date of the group of phases.
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V
2018-01-01
Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys
NASA Astrophysics Data System (ADS)
Canay, M.; Danón, C. A.; Arias, D.
2000-08-01
The influence of small composition changes on the phase transformation temperature of Zr-1Nb-1Sn-0.2(0.7)Fe alloys was studied in the present work, by electrical resistivity measurements and metallographic techniques. For the alloy with 0.2 at.% Fe we have determined Tα↔α+β=741°C and Tα+β↔β=973°C, and for the 0.7 at.% Fe the transformation temperatures were T α↔α+β=712°C and T α+β↔β=961°C. We have verified that the addition of Sn stabilized the β phase.
Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen
2010-05-01
The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.
Method of energy load management using PCM for heating and cooling of buildings
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.
Method of energy load management using PCM for heating and cooling of buildings
Stovall, Therese K.; Tomlinson, John J.
1996-01-01
A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.
Method of energy load management using PCM for heating and cooling of buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less
Characteristics of phase-change materials containing oxide nano-additives for thermal storage
2012-01-01
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu
2016-07-15
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less
Temperature Changes in the United States. Chapter 6
NASA Technical Reports Server (NTRS)
Vose, R. S.; Easterling, D. R.; Kunkel, K. E.; LeGrande, A. N.; Wehner, M. F.
2017-01-01
Temperature is among the most important climatic elements used in decision-making. For example, builders and insurers use temperature data for planning and risk management while energy companies and regulators use temperature data to predict demand and set utility rates. Temperature is also a key indicator of climate change: recent increases are apparent over the land, ocean, and troposphere, and substantial changes are expected for this century. This chapter summarizes the major observed and projected changes in near-surface air temperature over the United States, emphasizing new data sets and model projections since the Third National Climate Assessment (NCA3). Changes are depicted using a spectrum of observations, including surface weather stations, moored ocean buoys, polar-orbiting satellites, and temperature-sensitive proxies. Projections are based on global models and downscaled products from CMIP5 (Coupled Model Intercomparison Project Phase 5) using a suite of Representative Concentration Pathways (RCPs; see Ch. 4: Projections for more on RCPs and future scenarios).
Thermal properties and phase transition in the fluoride, (NH{sub 4}){sub 3}SnF{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartashev, A.V.; Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk; Gorev, M.V.
2016-05-15
Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH{sub 4}){sub 3}SnF{sub 7} for a wide range of temperatures and pressures. Large entropy (δS{sub 0}=22 J/mol K) and elastic deformation (δ(ΔV/V){sub 0}=0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS{sub 0}=32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH{sub 4}){sub 3}TiF{sub 7}, undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the highmore » temperature Pm-3m phase in (NH{sub 4}){sub 3}SnF{sub 7}, contrary to (NH{sub 4}){sub 3}TiF{sub 7}, characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH{sub 4}){sub 3}SnF{sub 7} was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH{sub 4}){sub 3}SnF{sub 7} is associated with very large total entropy change of ΔS{sub 0}=32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH{sub 4}){sub 3}TiF{sub 7} undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH{sub 4}){sub 3}SnF{sub 7} undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC{sub p} and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH{sub 4}){sub 3}SnF{sub 7}. • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.« less
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qing; Xia, Yangyang; Zheng, Yonghui
Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less
NASA Astrophysics Data System (ADS)
Elefsiniotis, A.; Becker, Th.; Schmid, U.
2014-06-01
Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
NASA Technical Reports Server (NTRS)
Labbe, J.; Friedel, J.
1977-01-01
Equations assuming a Jahn-Teller type effect for the d band electrons in V3Si compounds are given, and the results of free-energy change calculations by using some approximations based on these equations are depicted. The tetragonal structure is converted to cubic as the temperature rises past T sub m which is calculated as 13 K. by the Batterman-Barrett method and is measured to be 20-5 K. Other parameters such as change of C sub p with temperature are predicted better.
NASA Technical Reports Server (NTRS)
Jones, R. A. (Inventor)
1974-01-01
The square root of the product of thermophysical properties q, c and k, where p is density, c is specific heat and k is thermal conductivity, is determined directly on a test specimen such as a wind tunnel model. The test specimen and a reference specimen of known specific heat are positioned at a given distance from a heat source. The specimens are provided with a coating, such as a phase change coating, to visually indicate that a given temperature was reached. A shutter interposed between the heat source and the specimens is opened and a motion picture camera is actuated to provide a time record of the heating step. The temperature of the reference specimen is recorded as a function of time. The heat rate to which both the test and reference specimens were subjected is determined from the temperature time response of the reference specimen by the conventional thin-skin calorimeter equation.
NASA Technical Reports Server (NTRS)
Duffy, J. F.; Dijk, D. J.; Hall, E. F.; Czeisler, C. A.
1999-01-01
BACKGROUND: Morningness-eveningness refers to interindividual differences in preferred timing of behavior (i.e., bed and wake times). Older people have earlier wake times and rate themselves as more morning-like than young adults. It has been reported that the phase of circadian rhythms is earlier in morning-types than in evening types, and that older people have earlier phases than young adults. These changes in phase have been considered to be the chronobiological basis of differences in preferred bed and wake times and age-related changes therein. Whether such differences in phase are associated with changes in the phase relationship between endogenous circadian rhythms and the sleep-wake cycle has not been investigated previously. METHODS: We investigated the association between circadian phase, the phase relationship between the sleep-wake cycle and circadian rhythms, and morningness-eveningness, and their interaction with aging. In this circadian rhythm study, 68 young and 40 older subjects participated. RESULTS: Among the young subjects, the phase of the melatonin and core temperature rhythms occurred earlier in morning than in evening types and the interval between circadian phase and usual wake time was longer in morning types. Thus, while evening types woke at a later clock hour than morning types, morning types actually woke at a later circadian phase. Comparing young and older morning types we found that older morning types had an earlier circadian phase and a shorter phase-wake time interval. The shorter phase-waketime interval in older "morning types" is opposite to the change associated with morningness in young people, and is more similar to young evening types. CONCLUSIONS: These findings demonstrate an association between circadian phase, the relationship between the sleep-wake cycle and circadian phase, and morningness-eveningness in young adults. Furthermore, they demonstrate that age-related changes in phase angle cannot be attributed fully to an age-related shift toward morningness. These findings have important implications for understanding individual preferences in sleep-wake timing and age-related changes in the timing of sleep.
High-frequency thermal-electrical cycles for pyroelectric energy conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna
2014-11-21
We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cyclesmore » are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.« less
NASA Astrophysics Data System (ADS)
Stadnyk, V. Yo.; Andriyevsky, B. V.; Gaba, V. M.; Kogut, Z. A.
2016-06-01
Temperature dependences of optical path difference δΔi and the relative changes in thickness δ l i/ l of TGS crystals doped with L-valine are studied. Temperature dependences of the relative changes in refractive indices δ n i/( n-1) are calculated. The anisotropy coefficients of refractive indices An-1(T) and linear expansion Aα(T) are calculated, and a characteristic minimum of these dependences is found near the phase transition temperature.
Measurement of temperature changes in cooling dead rats using magnetic resonance thermometry.
Kuribayashi, Hideto; Cui, Fanlai; Hirakawa, Keiko; Kanawaku, Yoshimasa; Ohno, Youkichi
2011-11-01
Magnetic resonance imaging thermometry has been introduced as a technique for measurement of temperature changes in cooling dead rats. Rat pelvic magnetic resonance images were acquired sequentially more than 2h after euthanasia by halothane overdose. A series of temperature difference maps in cooling dead rats was obtained with calculating imaging phase changes induced by the water proton frequency shift caused by temperature changes. Different cooling processes were monitored by the temperature difference maps in the rats. Magnetic resonance imaging thermometry applied in the study of laboratory animals could theoretically reproduce a variety of causes of death with different environmental conditions. Outcomes from experimental animal studies could be translated into a temperature-based time of death estimation in forensics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
I describe a new property of soft X-ray line fluxes observed during the decay phase of solar flares and a technique for using this property to determine the plasma temperature and emission measure as functions of time. The soft X-ray line fluxes analyzed in this paper were observed during the decay phase of the 1980 November 5 flare by the X-Ray Polychromator (XRP) instrument on board the Solar Maximum Mission (SMM). The resonance, intercombination, and forbidden lines of Ne IX, Mg XI, Si XIII, S XV, Ca XIX, and Fe XXV, as well as the Lyman-..cap alpha.. line of Omore » VIII and the resonance lines of Fe XIX, were observed. The rates at which the observed line fluxes decayed were not constant. For all but the highest temperature lines observed, the rate changed abruptly, causing the fluxes to fall at a more rapid rate later in the flare decay. These changes occurred at earlier times for lines formed at higher temperatures. This behavior is proposed to be due to the decreasing temperature of the flare plasma tracking the rise and subsequent fall of each line emissivity function. This explanation is used to empirically model the observed light curves and to estimate the temperature and the change in emission measure of the plasma as a function of time during the decay phase. Estimates are made of various plasma parameters based on the model results.« less
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi
2016-01-01
The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.
Tamasi, Alison L.; Cash, Leigh J.; Mullen, William Tyler; ...
2016-07-05
Changes in the visual characteristics of uranium oxide surfaces and morphology following storage under different conditions of temperature and relative humidity may provide insight into the history of an unknown sample. Sub-samples of three α-U 3O 8 materials—one that was phase-pure and two that were phase-impure—were stored under controlled conditions for two years. We used scanning electron microscopy to image the oxides before and after storage, and a morphology lexicon was used to characterize the images. Finally, temporal changes in morphology were observed in some sub-samples, and changes were greatest following exposure to high relative humidity.
Phase Change Material Thermal Power Generator
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2013-01-01
An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.
Temperature Oscillations in Loop Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)
2000-01-01
Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.
NASA Astrophysics Data System (ADS)
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.
2013-03-01
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.
In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2016-12-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H
2013-03-09
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free, low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.
Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.
2014-01-01
Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C. PMID:25426269
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
Students’ profile of heat and temperature using HTCE in undergraduate physics
NASA Astrophysics Data System (ADS)
Arya Nugraha, Dewanta; Suparmi, A.; Winarni, Retno; Suciati
2017-11-01
Understanding heat and temperature are important to make strong fundamental of physics before understanding the other subject materials. This research aims to describe the students’ conception of heat and temperature using Heat and Temperature Conceptual Evaluation (HTCE) developed by Thornton and Sokoloff. This research subjects are 10 students of 3rd semester and 24 students of 5th semester Bachelor of Physics. The data collection methods are test and interview. The result are the students’ conception of heat and temperature, rate of cooling, calorimetry, rate of heat transfer, perception of hotness, specific heat capacity, change of phase, thermal conductivity. Students are getting difficult on understanding the concept of heat and temperature especially the concept of rate of cooling, change of phase, and rate of heat transfer. The average students’ correct answer is 44.88% of 34 students. The lowest mean score is the concept of RHT with the percentage of 17.65%. This research could be used to develop learning media on basic physics course.
Liang, Yingchun; Su, Ruifeng; Lu, Lihua; Liu, Haitao
2014-08-10
The temperature nonuniformity occurring during the cooling process of a KDP crystal is studied, along with its effects on the second-harmonic generation (SHG) of a high-average-power laser. A comprehensive model is proposed incorporating principles of thermodynamics, mechanics, and optics, and it is applied to investigate the temperature nonuniformity and its effects. The temperature rise caused by linear absorption is calculated, while the temperature nonuniformity occurring during the cooling process is analyzed using the finite-element method (FEM). The stress induced by the nonuniformity is then studied using the FEM, and the trend of its change is determined. Moreover, the changes in refractive index caused by the stress are calculated, the results of which are used to determine the variations in the induced phase mismatch. The SHG efficiency considering the phase mismatch is eventually obtained by solving the coupling wave equations. The results demonstrate that the temperature nonuniformity has negative effects on the SHG efficiency.
VO2 microcrystals as an advanced smart window material at semiconductor to metal transition
NASA Astrophysics Data System (ADS)
Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip
2017-11-01
Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.
NASA Astrophysics Data System (ADS)
Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck
2014-12-01
Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.
The high-temperature phases of WO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, T.; Woodward, P.M.; Hunter, B.A.
1999-04-01
High-temperature, high-resolution neutron powder diffraction experiments were performed to investigate the phases of WO{sub 3} between room temperature and 850 C. Two phases were found and characterized by Rietveld refinements: orthorhombic {beta}-WO{sub 3} (Pbcn, a = 7.3331(2), b = 7.5733(2), c = 7.7401(3) {angstrom} at 350 C, tilt system a{sup 0}b{sup +}c{sup {minus}}) and tetragonal {alpha}-WO{sub 3} (P4/ncc, a = 5.27659(1), b = 5.2759(1), c = 7.8462(3) {angstrom} at 800 C, tilt system a{sup 0}a{sup 0}c{sup {minus}}). The sequence of temperature-induced phase transitions in WO{sub 3} can be rationalized in terms of changes in the octahedral tilt systems and/or displacementsmore » of the tungsten out of the center of the WO{sub 6} octahedron. Above room temperature the two phase transitions are driven by successive softening of phonon modes, M{sub 3} at the {alpha}- to {beta}-transition and R{sub 25} at the {beta}- to {gamma}-transition.« less
Reciprocity Between Robustness of Period and Plasticity of Phase in Biological Clocks
NASA Astrophysics Data System (ADS)
Hatakeyama, Tetsuhiro S.; Kaneko, Kunihiko
2015-11-01
Circadian clocks exhibit the robustness of period and plasticity of phase against environmental changes such as temperature and nutrient conditions. Thus far, however, it is unclear how both are simultaneously achieved. By investigating distinct models of circadian clocks, we demonstrate reciprocity between robustness and plasticity: higher robustness in the period implies higher plasticity in the phase, where changes in period and in phase follow a linear relationship with a negative coefficient. The robustness of period is achieved by the adaptation on the limit cycle via a concentration change of a buffer molecule, whose temporal change leads to a phase shift following a shift of the limit-cycle orbit in phase space. Generality of reciprocity in clocks with the adaptation mechanism is confirmed with theoretical analysis of simple models, while biological significance is discussed.
Phase transformations of siderite ore by the thermomagnetic analysis data
NASA Astrophysics Data System (ADS)
Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.
2017-02-01
Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys
NASA Astrophysics Data System (ADS)
Vinod, E. M.; Ramesh, K.; Sangunni, K. S.
2015-01-01
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.
Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...
2016-05-07
Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe 45Mn 26Ga 29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe 45Mn 26Ga 29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. Themore » atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less
Raman studies of phase transitions in ferroelectric [C2H5NH3]2ZnCl4
NASA Astrophysics Data System (ADS)
Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2017-03-01
The present paper accounted for the synthesis, differential scanning calorimetric and vibrational spectroscopy of [C2H5NH3]2ZnCl4grown at room temperature. Differential scanning calorimetric (DSC) disclosed five phase transitions at T1=231 K, T2=234 K, T3=237 K, T4=247 K and T5=312 K. The temperature dependence of the dielectric constant at different temperatures proved that this compound is ferroelectric below 238 K. Raman spectra as function temperature have been used to characterize these transitions and their nature, which indicates a change of the some peak near the transitions phase. The analysis of the wavenumber and the line width based on the order-disorder model allowed to obtain information relative to the thermal coefficient and the activation energy near the transitions phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoun, Bouchaib, E-mail: manounb@gmail.com; Tamraoui, Y.; Lazor, P.
2013-12-23
Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550 °C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100 °C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300 °C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) tomore » the cubic (Fm-3m) structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh
Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less
NASA Astrophysics Data System (ADS)
Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.
2018-05-01
It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.
Microfabricated therapeutic actuators
Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.
1999-01-01
Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.
Microfabricated therapeutic actuators
Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.
1999-06-15
Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.
Release mechanism utilizing shape memory polymer material
Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.
2000-01-01
Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.
Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.
Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E
2016-08-10
The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.
NASA Astrophysics Data System (ADS)
Abebe, Mulualem; Brajesh, Kumar; Singh Malhotra, Jaskaran; Ranjan, Rajeev
2018-05-01
We carried out a Rayleigh analysis of the dielectric permittivity of a lead-free piezoceramic system (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3 across the composition and temperature induced polymorphic phase transformations to determine the trend in the reversible and irreversible domain wall motion across the composition and temperature induced structural changes. Experiments were carried out on three representative compositions x = 0.10, 0.2, and 0.25 exhibiting rhombohedral, orthorhombic, and tetragonal phases at room temperature. While confirming that the irreversible Rayleigh parameter is large in the orthorhombic phase, we discuss a correspondence between the reduction in the coercive field and the corresponding increase in the irreversible Rayleigh parameter. We also show how the proximity of the Curie point to the polymorphic phase boundary greatly undermines this correspondence.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.
Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk
2014-12-01
The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.
Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias
2017-01-01
Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-09
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.
Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer
Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less
Bi-directional phase transition of Cu/6H-SiC(0 0 0 1) system discovered by positron beam study
NASA Astrophysics Data System (ADS)
Zhang, J. D.; Weng, H. M.; Shan, Y. Y.; Ching, H. M.; Beling, C. D.; Fung, S.; Ling, C. C.
2002-06-01
The slow positron beam facility at the University of Hong Kong has been used to study the Cu/6H-SiC(0 0 0 1) system. The S- E data show the presence of the Cu/SiC interface buried at a depth of 30 nm. Keeping the beam energy fixed and sweeping the sample temperature, sharp discontinuities are noted in the S-parameter at both ˜17 and ˜250 K. The S-parameter transitions, which are in opposite directions, are indicative of sharp free volume changes that come as a result of the sudden changes in the structure at the Cu/SiC interface accompanying some phase transition. Energy dispersive X-ray spectroscopy (EDXS) room temperature scans reveal the presence of O in addition to Cu, C, Si at the interface, and thus copper oxide phases should be considered in interpreting this new phenomenon. It is suggested that TEM investigation together with temperature dependent X-ray diffraction spectroscopy may be able to shed further light on the nature of this interesting bi-directional phase transition.
Quasi-equilibrium size distribution of subcritical nuclei in amorphous phase change AgIn-Sb2Te
NASA Astrophysics Data System (ADS)
Darmawikarta, Kristof; Lee, Bong-Sub; Shelby, Robert M.; Raoux, Simone; Bishop, Stephen G.; Abelson, John R.
2013-07-01
We investigate the effect of low temperature annealing or of extended storage at room temperature on the subsequent nucleation behavior of amorphous AgIn-incorporated Sb2Te (AIST), a material for phase change memories. Time-resolved reflectivity measurements during pulsed laser crystallization reveal the rates of solid-phase transformation, while fluctuation transmission electron microscopy detects the nanoscale order in the amorphous phase prior to crystallization. The nanoscale order is postulated to consist of subcritical nuclei that coarsen upon annealing at temperatures ranging from 25 °C (for months) or 100 °C (for hours). Samples that have been annealed remain fully amorphous as evaluated by conventional diffraction experiments. Shorter nucleation times are consistently associated with the observation of increased nanoscale order. The effect of annealing is observed to saturate: there is no further reduction in nucleation time or increase in nanoscale order for annealing at 100 °C beyond three hours. This result supports the general prediction of classical nucleation theory that the size distribution of subcritical nuclei increases from the as-deposited state to a quasi-equilibrium.
NASA Astrophysics Data System (ADS)
Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.
2018-03-01
In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.
Pressure Vessel with Impact and Fire Resistant Coating and Method of Making Same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and hear absorption.
Pressure vessel with impact and fire resistant coating and method of making same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.
Polymerase chain reaction with phase change as intrinsic thermal control
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei
2013-04-01
This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.
Interlayer Communication in Aurivillius Vanadate to Enable Defect Structures and Charge Ordering.
Zhang, Yaoqing; Yamamoto, Takafumi; Green, Mark A; Kageyama, Hiroshi; Ueda, Yutaka
2015-11-16
The fluorite-like [Bi2O2](2+) layer is a fundamental building unit in a great variety of layered compounds. Here in this contribution, we presented a comprehensive study on an unusual Aurivillius phase Bi3.6V2O10 with respect to its defect chemistry and polymorphism control as well as implications for fast oxide ion transport at lower temperatures. The bismuth oxide layer in Bi4V2O11 is found to tolerate a large number of Bi vacancies without breaking the high temperature prototype I4/mmm structure (γ-phase). On cooling, an orthorhombic distortion occurs to the γ-phase, giving rise to a different type of phase (B-phase) in the intermediate temperature region. Cooling to room temperature causes a further transition to an oxygen-vacancy ordered A-phase, which is accompanied by the charge ordering of V(4+) and V(5+) cations, providing magnetic (d(1)) and nonmagnetic (d(0)) chains along the a axis. This is a novel charge ordering transition in terms of the concomitant change of oxygen coordination. Interestingly, upon quenching, both the γ- and B-phase can be kinetically trapped, enabling the structural probing of the two phases at ambient temperature. Driven by the thermodynamic forces, the oxide anion in the γ-phase undergoes an interlayer diffusion process to reshuffle the compositions of both Bi-O and V-O layers.
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
NASA Astrophysics Data System (ADS)
Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu
2018-03-01
There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene
NASA Astrophysics Data System (ADS)
Krawczyk, J.; Mayer, J.; Natkaniec, I.; Nowina Konopka, M.; Pawlukojć; Steinsvoll, O.; Janik, J. A.
2005-05-01
The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10 K to room temperature (phase III and phase II) for momentum transfer 1.9 Å -1. The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9 Å -1 were measured at T=20, 100 and 130 K for energy transfer up to 200 meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117 K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6 kJ/mol. The fitted mean time between instantaneous 120° jumps of CH 3 groups changes from 10 -11 s at T=130 K to 2×10 -13 s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH 3 groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule.
NASA Astrophysics Data System (ADS)
Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.
2017-01-01
A numerical investigation on Latent Heat Thermal Energy Storage System (LHTESS) based on a phase change material (PCM) is accomplished. The PCM is a pure paraffin wax with a low thermal conductivity. An aluminum metal foam is employed to enhance the PCM thermal behaviors. The geometry is a vertical shell-and-tube LHTESS made with two concentric aluminum tubes. The internal surface of the hollow cylinder is assumed at a constant temperature above the melting temperature of the PCM to simulate the heat transfer from a hot fluid. The external surface is assumed adiabatic. The phase change of the PCM is modelled with the enthalpy porosity theory while the metal foam is considered as a porous media in Darcy-Forchheimer assumption and the Boussinesq approximation is employed. Local thermal non-equilibrium (LTNE) model is assumed. The results are compared in terms of melting time and temperature fields as a function of time for the charging and discharging phases for different porosities and an assigned pore per inch. Results show that the metal foam improves significantly the heat transfer in the LHTESS giving a faster phase change process with respect to pure PCM, reducing the melting time more than one order of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun
2013-11-21
We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less
NASA Astrophysics Data System (ADS)
Kim, Chang-Bok; Dong, Kyung-Rae; Yu, Young; Chung, Woon-Kwan; Cho, Jae-Hwan; Joo, Kyu-Ji
2013-09-01
This study examined the change in the heat generated during radiofrequency ablation (RFA) using a self-manufactured phantom and used magnetic resonance imaging (MRI) to analyze the change in the temperature of the core body and the tissues surrounding the phantom. In this experiment, the image and the phase image were obtained simultaneously from a gradient echo-based sequence using 1.5-Tesla MRI equipment and a 12-channel head coil. The temperature mapping technique was used to calculate the change in temperature. The regions of interest (ROIs) (ROI 1 - ROI 6) were set with a focus on the area where the RFA was performed, according to the temperature distribution, before monitoring the temperature change for one hour in time intervals of five minutes. The results showed that the temperature change in the ROI with time was largest in the ROI 1 and smallest in the ROI 5. In addition, after the RFA procedure, the temperature decreased from the initial value to 0 °C in one hour. The temperature changes in the core body and the surrounding tissues were confirmed by MRI temperature mapping, which is a noninvasive method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.
2012-08-15
The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hailong; She, Guangwei, E-mail: shegw@mail.ipc.ac.cn; Mu, Lixuan
Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires.more » Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T
2015-03-26
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
Constant volume gas cell optical phase-shifter
Phillion, Donald W.
2002-01-01
A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.
Wang, Guojian; Cai, Wenju
2013-01-01
The positive phase of the El Niño-Southern Oscillation (ENSO) increases global mean temperature, and contributes to a negative phase of the Southern Annular Mode (SAM), the dominant mode of climate variability in the Southern Hemisphere. This interannual relationship of a high global mean temperature associated with a negative SAM, however, is opposite to the relationship between their trends under greenhouse warming. We show that over much of the 20th century this relationship undergoes multidecadal fluctuations depending on the intensity of ENSO. During the period 1925–1955, subdued ENSO activities weakened the relationship. However, a similar weakening has occurred since the late 1970s despite the strong ENSO. We demonstrate that this recent weakening is induced by climate change in the Southern Hemisphere. Our result highlights a rare situation in which climate change signals emerge against an opposing property of interannual variability, underscoring the robustness of the recent climate change. PMID:23784087
NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet
2008-03-01
We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.
NASA Astrophysics Data System (ADS)
Jauhari, Mrinal; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.
2017-12-01
We present results obtained from a combination of dielectric and x-ray diffraction measurements for compositional design of (1 -x )NaNb O3-x BaTi O3(NNBT x ) , which can induce interferroelectric phase transitions. Anomalies are observed in dielectric measurements performed for various compositions at 300 K, as well as at different temperatures for NNBT03. We observed the appearance(disappearance) of the superlattice reflections along with change in the intensities of the main perovskite peaks in the powder x-ray diffraction data, which provide clear evidences for structural phase transitions with composition and temperature. We found that increasing the concentration of BaTi O3 leads to the suppression of out-of-phase rotation of octahedra and an increment in tetragonality (c /a ratio), which promotes the polar mode at room temperature. The temperature-dependent powder diffraction study shows that the ferroelectric rhombohedral phase of pure sodium niobate gets suppressed for the composition x =0.03 , and the monoclinic phase C c gets stabilized at low temperature. The monoclinic phase is believed to provide for a flexible polarization rotation and is considered to be directly linked to the high-performance piezoelectricity in materials due to presence of more easy axes for spontaneous polarizations than the rhombohedral phase.
Kryshtal, R G; Medved, A V
2014-02-01
Application of surface acoustic wave resonators with a phase format of an output signal as the thermometric "magnifying glass" is suggested. Possibilities of monitoring and measuring of small changes of temperature from 0.001 K to 0.3 K of objects having thermal contact with the resonator's substrate are shown experimentally.
A search for solar related changes in tropospheric weather
NASA Technical Reports Server (NTRS)
Mohanakumar, K.
1989-01-01
The possibility that solar variations associated with the 11-year solar cycle may be the cause of the changes in tropospheric weather and climate has been the subject to scientific investigation for several decades. Meteorologists are greatly concerned with the changes in tropospheric phenomena. An attempt was made to find solar activity related changes in tropospheric weather, by the modulation of the quasi-biennial oscillation (QBO) of zonal wind at 50 mb. Rainfall and surface temperature data for a period of about three solar cycles, 1953 to 1988, from various stations in the Indian subcontinent were utilized. By extension, a possible teleconnection was looked for between the temperature changes in middle atmospheric levels and surface temperature when the data are stratified according to east or west phase of the QBO. The temperature data were averaged for January and February to represent the winter temperature and for July and August to represent the summer temperature.
NASA Astrophysics Data System (ADS)
Gaertner, Sabrina; Gundlach, Bastian; Headen, Thomas F.; Ratte, Judy; Oesert, Joachim; Gorb, Stanislav N.; Youngs, Tristan G. A.; Bowron, Daniel T.; Blum, Jürgen; Fraser, Helen
2018-06-01
Models and observations suggest that particle aggregation at and beyond the snowline is aided by water ice. As icy particles play such a crucial role in the earliest stages of planet formation, many laboratory studies have exploited their collisional properties across a wide range of parameters (particle size, impact velocity, temperature T, and pressure P).However, not all of these parameters have always been varied systematically, leading to apparently contradictory results on collision outcomes. Previous experiments only agreed that a temperature dependence set in above ≈210 K. Open questions remain as to what extent the structural properties of the particles themselves dictate collision outcomes. The P–T gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. To understand how effectively collision experiments reproduce protoplanetary disk conditions, environmental impacts on particle structure need to be investigated.We characterized the bulk and surface structure of icy particles used in collision experiments, exploiting the unique capabilities of the NIMROD neutron scattering instrument. Varying temperature at a constant pressure of around 30 mbar, we studied structural alterations to determine which of the observed properties matches the temperature dependencies observed in collisional behaviour.Our icy grains are formed under liquid nitrogen and heated from 103 to 247 K. As a result, they undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) suggests increased molecular mobility at temperatures above ≈210 K.Because none of the other changes ties in with the temperature trends in collisional outcomes, we conclude that the diffuse interface plays a key role in collision experiments at these temperatures. Consequently, the P–T environment may have a larger influence on collision outcomes than previously thought.
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
Low temperature synthesis of monolithic transparent Ta2O5 gels from hydrolysis of metal alkoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1993-01-01
Tantalum oxide gels in the form of transparent monoliths and powder were prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5:C2H50H:H20:HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide:water:HCl ratio, time of gel formation increased with the alcohol to alkoxide mole ratio. Thermal evolution of the physical and structural changes in the gel was monitored by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. On heating to approximately 400 C, the amorphous gel crystallized into the low temperature orthorhombic phase Beta-Ta2O5, which transformed into the high temperature tetragonal phase Alpha-Ta2O5 when further heated to approximately 1450 C. The volume fraction of the crystalline phase increased with the firing temperature. The Alpha-Ta205 converted back into the low temperature phase, Beta-Ta2O5, on slow cooling through the transformation temperature of 1360 C indicating a slow but reversible transformation.
Analytical study of the liquid phase transient behavior of a high temperature heat pipe. M.S. Thesis
NASA Technical Reports Server (NTRS)
Roche, Gregory Lawrence
1988-01-01
The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.
Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers
NASA Technical Reports Server (NTRS)
Mess, Derek
2003-01-01
yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced proportions of scandia. The criterion used to judge these specimens was whether they retained the non-transformable tetragonal phase after a severe heat treatment of 140 hours at 1,400 C.
Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng
2018-05-14
Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.
Tischer, Alexander; Auton, Matthew
2013-09-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. © 2013 The Protein Society.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes
Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina
2010-01-01
The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329
Phase separation kinetics in immiscible liquids
NASA Technical Reports Server (NTRS)
Ng, Lee H.; Sadoway, Donald R.
1987-01-01
The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.
Phase separation kinetics in immiscible liquids
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1986-01-01
The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.
NASA Astrophysics Data System (ADS)
Shaysultanov, D. G.; Stepanov, N. D.; Salishchev, G. A.; Tikhonovsky, M. A.
2017-06-01
High-entropy alloys CoCrFeNiMnVKharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 (Kharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 = 0.25, 0.5, 0.75, 1) were prepared by vacuum arc melting. The structure and microhardness of the alloys have been studied in the cast state and after annealing at temperatures of 700-1100°C. It has been found that the alloys consist of the fcc (γ) solid solution and intermetallic sigma (σ) phase. The volume fraction of the σ phase increases with increasing vanadium content. As a result of annealing, phase transformations occur, including the precipitation of σ particles from the γ phase and, vice versa, the precipitation of γ particles from the σ phase. It has been shown that the change in the volume fraction of the σ phase upon annealing occurs due to the changes in the total content of σ-forming elements, chromium and vanadium, in accordance with the lever rule. With increasing temperature, the volume fraction of the σ phase varies nonmonotonically; first, it increases, then it decreases. The microhardness of the alloys correlates well with the change in the volume fraction of the σ phase. The mechanisms of the phase transformations and quantitative relationships between chemical and phase compositions of the alloys and their hardness are discussed.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Šćepanović, M.
2015-11-16
Polarized Raman scattering spectra of superconducting K x Fe2-y Se2 and non-superconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in the temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in the frequency range from 150 to 325 cm-1 in both compounds, suggesting that the K0.8Fe1.8Co0.2Se2 single crystal also has a two-phase nature. The temperature dependence of the Raman mode energy is analyzed in terms of lattice thermal expansion and phonon–phonon interaction. The temperature dependence of the Raman mode linewidth is dominated by temperature-induced anharmonic effects. It is shown that the change in Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. An abrupt change of the A1g mode energy nearmore » $${{T}_{\\text{C}}}$$ was observed in K x Fe2-y Se2, whereas it is absent in non-superconducting K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below the critical temperature.« less
Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian
2012-09-01
The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.
Lattice misfits in four binary Ni-Base γ/γ1 alloys at ambient and elevated temperatures
NASA Astrophysics Data System (ADS)
Kamara, A. B.; Ardell, A. J.; Wagner, C. N. J.
1996-10-01
High-temperature X-ray diffractometry was used to determine the in situlattice parameters, a γ and a γ', and lattice misfits, δ = ( a γ', - a γ)/ a γ, of the matrix (γ) and dispersed γ'-type (Ni3X) phases in polycrystalline binary Ni-Al, Ni-Ga, Ni-Ge, and Ni-Si alloys as functions of temperature, up to about 680 °C. Concentrated alloys containing large volume fractions of the γ' phase (˜0.40 to 0.50) were aged at 700 °C to produce large, elastically unconstrained precipitates. The room-temperature misfits are 0.00474 (Ni-Al), 0.01005 (Ni-Ga), 0.00626 (Ni-Ge), and -0.00226 (Ni-Si), with an estimated error of ± 4 pct. The absolute values of the lattice constants of the γ and γ' phases, at compositions corresponding to thermodynamic equilibrium at about 700 °C, are in excellent agreement with data from the literature, with the exception of Ni3Ga, the lattice constant of which is much larger than expected. In Ni-Ge alloys, δ decreases to 0.00612 at 679 °C, and in Ni-Ga alloys, the decrease is to 0.0097. In Ni-Si and Ni-Al alloys, δ exhibits a stronger temperature dependence, changing to-0.00285 at 683 °C (Ni-Si) and to 0.00424 at 680 °C (Ni-Al). Since the times required to complete the high-temperature X-ray diffraction (XRD) scans were relatively short (2.5 hours at most), we believe that the changes in δ observed are attributable to differences between the thermal expansion coefficients of the γ and γ' phases, because the compositions of the phases in question reflect the equilibrium compositions at 700 δC. Empirical equations are presented that accurately describe the temperature dependences of a γ, a γ', and δ over the range of temperatures of this investigation.
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
NASA Astrophysics Data System (ADS)
Solomon, Laura
2013-01-01
Encapsulated phase change materials (EPCM) have a great deal of potential for the storage of thermal energy in a wide range of applications. The present work is aimed at developing encapsulated phase change materials capable of storing thermal energy at temperatures above 700°C for use in concentrated solar power (CSP) systems. EPCM with a phase change material (PCM) with both a salt (sodium chloride) and a metal (aluminum) are considered here. Sodium chloride and aluminum are effective storage mediums because of their high melting points and large latent heats of fusion, 800°C and 660°C and 430kJ/kg and 397kJ/kg, respectively. Based on the heat capacities and the latent heat of fusion, for a 100 degree temperature range centered on the melting point of the PCM, 80% of the energy stored by the sodium chloride PCM can be attributed to the latent heat and 79% for the aluminum PCM. These large fractions attributed to latent heat have the potential for making EPCM based thermal energy storage devices smaller and less expensive. To study the performance of the candidate PCMs considered here, a specialized immersion calorimeter was designed, calibrated, and used to evaluate the storage capabilities of sodium chloride and aluminum based EPCMs. Additionally, the EPCMs were studied to ensure no loss of capacity would occur over the lifetime of the EPCM. While no reduction in the storage capacity of the sodium chloride EPCMs was found after repeated thermal cycles, there was a decrease in the storage capacity of the aluminum EPCMs after prolonged exposure to high temperatures.
NASA Astrophysics Data System (ADS)
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson
2018-05-01
The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024; Ma, Xuefu
2016-01-15
The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarizationmore » components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.« less
East Asian winter temperature variation associated with the combined effects of AO and WP pattern
NASA Astrophysics Data System (ADS)
Park, Hye-Jin; Ahn, Joong-Bae
2016-04-01
The combined effects of the Arctic Oscillation (AO) and Western Pacific (WP) teleconnection pattern on the East Asian winter monsoon (EAWM) over the last 56 years (1958/59-2013/2014) were investigated using NCEP/NCAR reanalysis data (Park and Ahn, 2015). The study results revealed that the effect of the AO on winter temperature in East Asia could be changed depending on the phases of the WP pattern in the North Pacific. The negative relationship between the EAWM and the AO increased when the AO and WP were in-phase with each other. Hence, when winter negative (positive) AO was accompanied by negative (positive) WP, negative (positive) temperature anomalies were dominant across the entire East Asia region. Conversely, when the AO and WP were of-of-phase, the winter temperature anomaly in East Asia did not show distinct changes. Furthermore, from the perspective of stationary planetary waves, the zonal wavenumber-2 patterns of sea level pressure and geopotential height at 500hPa circulation strengthened when the AO and WP were in-phase but were not significant for the out-of-phase condition. It explained the possible mechanism of the combined effects of the AO and WP on the circulation related to EAWM. Reference Park, H.-J., and J.-B. Ahn (2015) Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature, Clim. Dyn. DOI:10.1007/s00382-015-2763-2. Acknowledgements This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA2015-2081.
Phase change references for in-flight recalibration of orbital thermometry
NASA Astrophysics Data System (ADS)
Topham, T. S.; Latvakoski, H.; Watson, M.
2013-09-01
Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.
Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming
2010-06-01
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Jacqmin, David A.
1998-01-01
Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.
Free energy change of off-eutectic binary alloys on solidification
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.
1991-01-01
A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.
Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa.
Geballe, Z M; Raju, S V; Godwal, B K; Jeanloz, R
2013-10-16
We use x-ray diffraction in a resistively heated diamond anvil cell to extend the melting curve of AuGa2 beyond its minimum at 5.5 GPa and 720 K, and to constrain the high-temperature phase boundaries between cubic (fluorite structure), orthorhombic (cottunite structure) and monoclinic phases. We document a large change in Clapeyron slope that coincides with the transitions from cubic to lower symmetry phases, showing that a structural transition is the direct cause of the change in slope. In addition, moderate (~30 K) to large (90 K) hysteresis is detected between melting and freezing, from which we infer that at high pressures, AuGa2 crystals can remain in a metastable state at more than 5% above the thermodynamic melting temperature.
Order-disorder phase transition in the peroxidovanadium complex NH4[VO(O2)2(NH3)].
Schwendt, Peter; Gyepes, Róbert; Chrappová, Jana; Němec, Ivan; Vaněk, Přemysl
2018-07-05
Complex NH 4 [VO(O 2 ) 2 (NH 3 )] (1) undergoes an order-disorder phase transition at T c ~258K. This transition is accompanied by change in the space group of the orthorhombic lattice and also by significant structural rearrangements of the constituent molecules, which are pertinent mostly to their NH 4 + ions and their ammonia ligands. The low-temperature solid state IR and Raman spectra of 1 were corroborated by solid-state computations that employed Gaussian functions as the basis set. Results of these computations yielded excellent agreement with experimental data. On the curves of temperature dependence of vibrational modes, the phase transition is expressed by an abrupt change of the slope above T c . Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.
2015-05-01
Optical and magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.
Tailoring of the thermomechanical performance of VO2 nanowire bimorph actuators by ion implantation
NASA Astrophysics Data System (ADS)
Karl, H.; Peyinghaus, S. C.
2015-12-01
Vanadium dioxide VO2 nanowire bimorph actuators work on the basis of the large abrupt length change at the metal-insulator phase transition (MIT). A key parameter for the bimorph performance and efficiency is the bending curvature and the width of the temperature hysteresis of the MIT which is inherently large for single domain VO2 metal side coated nanowires. In this work we present single-clamped Ir side coated VO2 bimorphs which show unprecedented high bending curvatures of up to 105 m-1 and new type of side ion-implanted VO2 nanowire bimorph actuators with a nearly completely suppressed temperature hysteresis. It is assumed that ion-beam induced radiation defects in the VO2 crystal structure act as nucleation sites for the MIT. Moreover it will be shown that mechanical strain intentionally built-in during VO2 nanowire bimorph fabrication allows to direct phase transformation via a strain stabilized metastable phase and thus allows to control bending response on temperature change.
Fekete, Szabolcs; Horváth, Krisztián; Guillarme, Davy
2013-10-11
In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon
2014-11-26
We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.
Time-dependent local and average structural evolution of δ-phase 239Pu-Ga alloys
Smith, Alice I.; Page, Katharine L.; Siewenie, Joan E.; ...
2016-08-05
Here, plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase 239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.
High-pressure and high-temperature study of the phase transition in anhydrite
NASA Astrophysics Data System (ADS)
Ma, Y. M.; Zhou, Q.; He, Z.; Li, F. F.; Yang, K. F.; Cui, Q. L.; Zou, G. T.
2007-10-01
The high-pressure and high-temperature behaviors of anhydrite (CaSO4) are studied up to 53.5 GPa and 1800 K using double-sided laser heating Raman spectroscopy and x-ray diffraction in diamond anvil cells. The evidence of phase transition from an anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. Another phase transition and a change in color of the sample from transparent to black have been also observed at a pressure of 33.2 GPa after laser heating. The new phase after laser heating persists to 53.5 GPa and 1800 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul
2016-04-19
CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less
NASA Astrophysics Data System (ADS)
Šulic, D.; Nina, A.; Sreckovic, V.
2010-07-01
Electron density and temperature changes in the D-region of the ionosphere are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth-ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. We analyze Lightning-induced electron precipitation (LEP) events during period 2008 - 2009 at Belgrade station on subionospheric VLF signals from four transmitters (DHO/23.4 kHz, Germany; GQD/22.1 kHz, UK; NAA/24.0 kHz USA and ICV/20.9 kHz Italy).
Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang
2017-08-16
A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.
Heat transfer characteristics of building walls using phase change material
NASA Astrophysics Data System (ADS)
Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.
2017-03-01
Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.
Microstructure and electrical properties of Sb2Te phase-change material
NASA Astrophysics Data System (ADS)
Liu, Guangyu; Wu, Liangcai; Li, Tao; Rao, Feng; Song, Sannian; Liu, Bo; Song, Zhitang
2016-10-01
Phase Change Memory (PCM) has great potential for commercial applications of next generation non-volatile memory (NVM) due to its high operation speed, high endurance and low power consumption. Sb2Te (ST) is a common phase-change material and has fast crystallization speed, while thermal stability is relatively poor and its crystallization temperature is about 142°C. According to the Arrhenius law, the extrapolated failure temperature is about 55°C for ten years. When heated above the crystallization temperature while below the melting point, its structure can be transformed from amorphous phase to hexagonal phase. Due to the growth-dominated crystallization mechanism, the grain size of ST film is large and the diameter of about 300 nm is too large compared with Ge2Sb2Te5 (GST), which may deteriorate the device performance. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were employed to study the microstructures and the results indicate that the crystal plane is {110}. In addition, device cells were manufactured and their current-voltage (I-V) and resistance-voltage characteristics were tested, and the results reveal that the threshold voltage (Vth) of ST film is 0.87 V. By researching the basic properties of ST, we can understand its disadvantages and manage to improve its performance by doping or other proper methods. Finally, the improved ST can be a candidate for optical discs and PCM.
Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7
NASA Astrophysics Data System (ADS)
Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.
2018-06-01
The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.
Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming
2015-04-01
Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.
Prediction of Thermodynamic Equilibrium Temperature of Cu-Based Shape-Memory Smart Materials
NASA Astrophysics Data System (ADS)
Eskİl, Murat; Aldaş, Kemal; Özkul, İskender
2015-01-01
The thermodynamic equilibrium temperature ( T 0) is an important factor in the austenite and martensitic phases. In this study, the effects of alloying elements and heat treatments on T 0 temperature were investigated using Genetic Programming (GP) which has become one of the tools used in the study of condensed matter. Due to the changes in T 0, it is possible to analyze the changes in the entropy of the phase transitions. The data patterns of the GP formulation are based on well-established experimental results from the literature. The results of the GP-based formulation were compared with experimental results and found to be reliable with a very high correlation ( R 2 = 0.965 for training and R 2 = 0.952 for testing).
NASA Astrophysics Data System (ADS)
Downey, Brian P.; Wheeler, Virginia D.; Meyer, David J.
2017-06-01
We demonstrate the thermally actuated phase change of VO2 films formed by atomic layer deposition and subsequent thermal annealing on InAlN/AlN/GaN heterostructures. To locally raise the device temperature above the VO2 semiconductor-metal transition temperature, a two-dimensional electron gas formed within the InAlN/AlN/GaN heterostructure was used as an integrated resistive heater. An ON/OFF resistance ratio of nearly 103 was achieved for 50 nm VO2 films over a temperature range of 25 to 105 °C. The time required to switch the VO2 film from high- to low-resistance states was shown to depend on the applied heater power, with sub-microsecond transition times achieved.
VO 2 thin films synthesis for collaborators and various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raegan Lynn; Clem, Paul G.
2016-11-01
Vanadium dioxide (VO 2) is an attractive material for a variety of applications due to its metal-to-insulator transition (MIT) observed at modest temperatures. This transition takes VO 2 from its low temperature insulating monoclinic phase to a high temperature (above 68°C) metallic rutile phase. This transition gives rise to a change in resistivity up to 5 orders of magnitude and a change in complex refractive index (especially at IR wavelengths), which is of interest for radar circuit protection and tunable control of infrared signature. Recently, collaborations have been initiated between CINT scientists and external university programs. The Enhanced Surveillance fundsmore » help fund this work which enabled synthesis of VO 2 films for several collaborations with internal and external researchers.« less
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.
2014-03-01
We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.
Synthetic biological membrane with self organizing properties
Firestone, Millicent A.; Tiede, David M.
2003-01-01
A mixture is provided which manifests a gel phase at a temperature higher than that in which the mixture manifests a liquid phase. The mixture is a combination of a lipid, a polymer-grafted phospholipid and a surfactant. It is biomimetic in nature and changes phases when subjected to one or a plurality of environmental stimuli.
Phase transitions in the (Ni,Zn)TiF 6 · 6H 2O system
NASA Astrophysics Data System (ADS)
Lichti, R. L.; Jan, I.-Yuan; Casey, K. G.
1989-02-01
Measurements of the transformation rates and the characteristic temperatures of the trigonal ≡ monoclinic structural change in (Ni 1- xZn x)TiF 6 · 6H 2O show a double transition up to x = 0.5. The relationships between the phase changes generally observed in the ABF 6 · 6H 2O system and the internal motions of the octahedral ionic complexes are discussed, and a phase diagram for the mixed nickel/zinc fluorotitanate is established.
Role of electronic excitation in the amorphization of Ge-Sb-Te alloys.
Li, Xian-Bin; Liu, X Q; Liu, Xin; Han, Dong; Zhang, Z; Han, X D; Sun, Hong-Bo; Zhang, S B
2011-07-01
First-principles molecular dynamics simulation reveals the effects of electronic excitation in the amorphization of Ge-Sb-Te. The excitation makes the phase change an element-selective process, lowers the critical amorphization temperature considerably, for example, to below 700 K at a 9% excitation, and reduces the atomic diffusion coefficient with respect to that of melt by at least 1 order of magnitude. Noticeably, the resulting structure has fewer wrong bonds and significantly increased phase-change reversibility. Our results point to a new direction in manipulating ultrafast phase-change processes with improved controllability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin
2014-06-01
Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visiblemore » light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.« less
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing
2015-05-01
Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.
Analysis of wallboard containing a phase change material
NASA Astrophysics Data System (ADS)
Tomlinson, J. J.; Heberle, D. P.
Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.
27Al-NMR studies of the structural phase transition in LaPd2Al2
NASA Astrophysics Data System (ADS)
Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára
2018-05-01
We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.
Guerra, Alexandra; Leite, Nuno; Marques, João Carlos; Ford, Alex T; Martins, Irene
2014-01-01
Understanding the environmental parameters that constrain the distribution of a species at its latitudinal extremes is critical for predicting how ecosystems react to climate change. Our first aim was to predict the variation in the amphipod populations of Echinogammarus marinus from the southernmost limit of its distribution under global warming scenarios. Our second aim was to test whether sex-ratio fluctuations - a mechanism frequently displayed by amphipods - respond to the variations in populations under altered climate conditions. To achieve these aims, scenarios were run with a validated model of E. marinus populations. Simulations were divided into: phase I - simulation of the effect of climate change on amphipod populations, and phase II - simulation of the effect of climate change on populations with male and female proportions. In both phases, temperature (T), salinity (S) and temperature and salinity (T-S) were tested. Results showed that E. marinus populations are highly sensitive to increases in temperature (>2 °C), which has adverse effects on amphipod recruitment and growth. Results from the climate change scenarios coupled with the sex-ratio fluctuations depended largely on the degree of female bias within population. Temperature increase of 2 °C had less impact on female-biased populations, particularly when conjugated with increases in salinity. Male-biased populations were highly sensitive to any variation in temperature and/or salinity; these populations exhibited a long-term decline in density. Simulations in which temperature increased more than 4 °C led to a continuous decline in the E. marinus population. According to this work, E. marinus populations at their southernmost limit are vulnerable to global warming. We anticipate that in Europe, temperature increases of 2 °C will incite a withdrawal of the population of 5°N from the amphipod species located at southernmost geographical borders. This effect is discussed in relation to the distribution of E. marinus along the Atlantic coast. © 2013 Elsevier B.V. All rights reserved.
Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping
2012-10-01
It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calorimetric study of phase transitions in nanocomposites of quantum dots and a liquid crystal
NASA Astrophysics Data System (ADS)
Kalakonda, P.; Iannacchione, G. S.
2015-06-01
The complex specific heat is measured over a wide temperature range for the liquid crystal (LC) 4-cyano-4-octylbiphenyl (8CB) and cadmium sulfate quantum dots (QDs) composites as a function of QD concentration. The thermal scans were performed under near-equilibrium conditions for all samples having QDs weight percent (φw) from 0 to 3wt% over a wide range of temperature well above and below the two transitions in pure 8CB. Isotropic (I) to nematic (N) and nematic to smectic-A (SmA) phase transitions evolve in character and their transition temperatures offset by (∼2.3 to 2.6 K) lower for all composite samples as compared to that in pure 8CB. The enthalpy change associated with I-N phase transitions shows slightly different behavior on heating and cooling and it also shows crossover behavior at lower and higher QD content. The enthalpy change associated with N-SmA phase transitions is independent of QD loading and thermal treatment. Given the homogeneous and random distribution of QD in these nanocomposites, we interpret that these results as arising that the nematic phase imposes self-assembly on QDs to form one-dimensional arrays leading to QDs and induces net local disordering effect in LC media.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Abby E. Fuhrman; Donald A. Larsen; Ashley Steel; Graham Young; Brian R. Beckman
2017-01-01
Water temperature can have a profound influence on development and distribution of aquatic species. Salmon are particularly vulnerable to temperature changes because their reproductive and early development life phases are spent in freshwater river systems where temperature fluctuates widely both daily and seasonally. Flow regulation downstream of dams can also cause...
Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.
Lee, Sangwook; Cheng, Chun; Guo, Hua; Hippalgaonkar, Kedar; Wang, Kevin; Suh, Joonki; Liu, Kai; Wu, Junqiao
2013-03-27
The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.
Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation
NASA Astrophysics Data System (ADS)
Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun
2018-04-01
A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.
Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming.
Parrenin, F; Masson-Delmotte, V; Köhler, P; Raynaud, D; Paillard, D; Schwander, J; Barbante, C; Landais, A; Wegner, A; Jouzel, J
2013-03-01
Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee
2015-03-01
Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.
The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.
NASA Astrophysics Data System (ADS)
Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn
2018-05-01
Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.
Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining
2015-10-05
The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie; Ritter, Eglof; Schade, Ulrich
2016-09-01
The stability of the high-pressure CaCO3 calcite (cc)-related polymorphs was studied in experiments that were performed in conventional diamond anvil cells (DAC) at room temperature as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) at pressures and temperatures up to 20 GPa and 800 K. To probe structural changes, we used Raman and FTIR spectroscopy. For the latter, we applied conventional and synchrotron mid-infrared as well as synchrotron far-infrared radiation. Within the cc-III stability field (2.2-15 GPa at room temperature, e.g., Catalli and Williams in Phys Chem Miner 32(5-6):412-417, 2005), we observed in the Raman spectra consistently three different spectral patterns: Two patterns at pressures below and above 3.3 GPa were already described in Pippinger et al. (Phys Chem Miner 42(1):29-43, 2015) and assigned to the phase transition of cc-IIIb to cc-III at 3.3 GPa. In addition, we observed a clear change between 5 and 6 GPa that is independent of the starting material and the pressure path and time path of the experiments. This apparent change in the spectral pattern is only visible in the low-frequency range of the Raman spectra—not in the infrared spectra. Complementary electronic structure calculations confirm the existence of three distinct stability regions of cc-III-type phases at pressures up to about 15 GPa. By combining experimental and simulation data, we interpret the transition at 5-6 GPa as a re-appearance of the cc-IIIb phase. In all types of experiments, we confirmed the transition from cc-IIIb to cc-VI at about 15 GPa at room temperature. We found that temperature stabilizes cc-VI to lower pressure. The reaction cc-IIIb to cc-VI has a negative slope of -7.0 × 10-3 GPa K-1. Finally, we discuss the possibility of the dense cc-VI phase being more stable than aragonite at certain pressure and temperature conditions relevant to the Earth's mantle.
Augustyńska, D; Burda, K; Jemioła-Rzemińska, M; Strzałka, K
2016-08-25
We examined the influence of temperature on lipid intermolecular interactions and the organization of bilayers within multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. We also investigated the effect of 0.5 mol% β-carotene, a non-polar carotenoid, on the adhesive properties of these liposomes. Atomic force microscopy (AFM) and differential scanning calorimetry (DSC) were used to correlate the changes in the physical properties of the liposomal systems with their thermotropic behaviour. Using DSC we detected two transitions in pure DPPC vesicles and in those containing 0.5 mol% β-carotene. In both systems the pretransition occurred at 34.5(1)°C and the main phase transition at 41.4 °C during heating. Upon cooling, the temperatures of the pretransition and the main transition decreased by about 6 °C and 1 °C, respectively. Changes in enthalpy and entropy were also similar in the two investigated systems. Data obtained in parallel AFM force experiments show that the adhesive forces between the liposomal systems and AFM probe strongly depend on the loading rate. Moreover, their characteristic monotonic changes and discontinuities are sensitive to temperature. In the range of temperatures from 27 °C to 31 °C, i.e. below the temperature of phase transition from gel to ripple phase, the adhesive forces measured in a water environment are about an order of magnitude higher in the presence of β-carotene than in pure DPPC liposomes. The observed variable dependence of adhesion on the loading rate suggests that there are changes in the long- and short-range interactions between lipids, and that these may be related to the occurrence of some clustering effects. In addition, the simultaneous existence of different subphases was found in the gel phase of DPPC liposomes. The presence of β-carotene at a level of 0.5 mol% stimulates the structural reorganization of DPPC multilamellar vesicles and enhances the bifurcation phenomenon detected in these systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kowalski, M E; Jin, J M
2003-03-07
A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.
Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation
NASA Astrophysics Data System (ADS)
Luo, Dehai; Chen, Yanan; Dai, Aiguo; Mu, Mu; Zhang, Renhe; Ian, Simmonds
2017-12-01
In this paper, we analyze observational and reanalysis data to demonstrate that the Atlantic Multidecadal Oscillation (AMO) significantly modulates winter Eurasian surface air temperature through its impact on the shape, frequency and persistence of Ural blocking (UB) events that last for 10-20 d. This impact results from changes in mid-high latitude westerly winds over Eurasia associated with the warming in the Barents-Kara Seas (BKS) through the AMO-driven high sea surface temperature and sea-ice decline and resultant weakening in meridional temperature gradients. The BKS warming has a strongest positive correlation with the AMO at a time lag of about 14 years. During the recent positive AMO phase, more persistent northwest-southeast (NW-SE) oriented UB events are favored by weakened westerly winds in Eurasian mid-high latitudes. Through cold atmospheric advection and radiative cooling, such UB events produce a strong, persistent and widespread cooling over Eurasia and enhance BKS warming during 1999-2015. However, the positive AMO phase cannot directly produce the Eurasian cooling if the UB is absent. Thus, we conclude that the recent AMO phase change is a major cause of the recent winter cooling over Eurasia through its impact on BKS temperature and sea ice, which in turn affect the meridional temperature gradient, the westerly winds and the UB events.
Phase transition in lithium ammonium sulphate doped with cesium metal ions
NASA Astrophysics Data System (ADS)
Gaafar, M.; Kassem, M. E.; Kandil, S. H.
2000-07-01
Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition
NASA Astrophysics Data System (ADS)
Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan
The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.
NASA Astrophysics Data System (ADS)
He, Meizhi; Yang, Luwei; Zhang, Zhentao
2018-01-01
By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.
Thermomechanical behavior of shape memory elastomeric composites
NASA Astrophysics Data System (ADS)
Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2012-01-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.
Tuning phase transition temperature of VO2 thin films by annealing atmosphere
NASA Astrophysics Data System (ADS)
Liu, Xingxing; Wang, Shao-Wei; Chen, Feiliang; Yu, Liming; Chen, Xiaoshuang
2015-07-01
A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof.
Marsh, Susan A; Jenkins, David G
2002-01-01
Fluctuations in estrogen and progesterone during the menstrual cycle can cause changes in body systems other than the reproductive system. For example, progesterone is involved in the regulation of fluid balance in the renal tubules and innervation of the diaphragm via the phrenic nerve. However, few significant changes in the responses of the cardiovascular and respiratory systems, blood lactate, bodyweight, performance and ratings of perceived exertion are evident across the cycle. Nevertheless, substantial evidence exists to suggest that increased progesterone levels during the luteal phase cause increases in both core and skin temperatures and alter the temperature at which sweating begins during exposure to both ambient and hot environments. As heat illness is characterised by a significant increase in body temperature, it is feasible that an additional increase in core temperature during the luteal phase could place females at an increased risk of developing heat illness during this time. In addition, it is often argued that physiological gender differences such as oxygen consumption, percentage body fat and surface area-to-mass ratio place females at a higher risk of heat illness than males. This review examines various physiological responses to heat exposure during the menstrual cycle at rest and during exercise, and considers whether such changes increase the risk of heat illness in female athletes during a particular phase of the menstrual cycle.
Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.
2013-09-01
Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.
NASA Astrophysics Data System (ADS)
Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang
Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.
Stable room-temperature ferromagnetic phase at the FeRh(100) surface
Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; ...
2016-03-03
Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less
NASA Technical Reports Server (NTRS)
Silk, J. K.; Kahler, S. W.; Krieger, A. S.; Vaiana, G. S.
1976-01-01
The X-ray flare of 9 August 1973 was characterized by a spatially small kernel structure which persisted throughout its duration. The decay phase of this flare was observed in the objective grating mode of the X-ray telescope aboard the Skylab. Data analysis was carried out by scanning the images with a microdensitometer, converting the density arrays to energy using laboratory film calibration data and taking cross sections of the energy images. The 9 August flare shows two distinct periods in its decay phase, involving both cooling and material loss. The objective grating observations reveal that the two phenomena are separated in time. During the earlier phase of the flare decay, the distribution of emission measure as a function of temperature is changing, the high temperature component of the distribution being depleted relative to the cooler body of plasma. As the decay continues, the emission measure distribution stabilizes and the flux diminishes as the amount of material at X-ray emitting temperatures decreases.
Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions
Rojas, Edith C.; Staton, Jennifer A.; John, Vijay T.; Papadopoulos, Kyriakos D.
2009-01-01
A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 °C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein. PMID:18543998
Temperature-driven Topological Phase Transition in MoTe2
NASA Astrophysics Data System (ADS)
Notis Berger, Ayelet; Andrade, Erick; Kerelsky, Alex; Cheong, Sang-Wook; Li, Jian; Bernevig, B. Andrei; Pasupathy, Abhay
The discovery of several candidates predicted to be weyl semimetals has made it possible to experimentally study weyl fermions and their exotic properties. One example is MoTe2, a transition metal dichalcogenide. At temperatures below 240 K it is predicted to be a type II Weyl semimetal with four Weyl points close to the fermi level. As with most weyl semimetals, the complicated band structure causes difficulty in distinguishing features related to bulk states and those related to topological fermi arc surface states characteristic of weyl semimetals. MoTe2 is unique because of its temperature-driven phase change. At high temperatures, MoTe2 is monoclinic, with trivial surface states. When cooled below 240K, it undergoes a first order phase transition to become an orthorhombic weyl semimetal with topologically protected fermi arc surface states. We present STM and STS measurements on MoTe2 crystals in both states. In the orthorhombic phase, we observe scattering that is consistent with the presence of the Fermi-arc surface states. Upon warming into the monoclinic phase, these features disappear in the observed interference patterns, providing direct evidence of the topological nature of the fermi arcs in the Weyl phase
Protein Denaturation on p-T Axes--Thermodynamics and Analysis.
Smeller, László
2015-01-01
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
Effects of heat treating PM Rene' 95 slightly below the gamma-prime solvus
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1977-01-01
An investigation was performed on As-HIP Rene' 95 to obtain additional information on the variation of the amount of gamma-prime with solutioning temperatures near the gamma-prime solvus temperature and the resulting effects on tensile and stress rupture strengths of As-HIP Rene' 95. The amount of gamma-prime phase was found to increase at a rate of about 0.5% per degree Celsius as the temperature decreased from the solvus temperature to about 50 C below the gamma-prime solvus temperature. The change in the amount of gamma-prime phase with decreasing solutioning temperature was observed to be primarily associated with decreasing solubilities of Al+Ti+Nb and increasing solubility of Cr in the gamma phase. For As-HIP Rene' 95 solutioned at either 1107 or 1135 C and subsequently water-quenched and double aged for 4 hours at 815 C followed by 24 hours at 650 C, the higher solution temperature resulted in significantly greater yield strengths at room temperature and 650 C as well as a greater room-temperature ultimate strength. Also, longer stress rupture lives at 650 C were associated with the higher solution temperature.
Alumina ceramic based high-temperature performance of wireless passive pressure sensor
NASA Astrophysics Data System (ADS)
Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin
2016-12-01
A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.
NASA Astrophysics Data System (ADS)
Yuan, Jiaonan; Ji, Guangfu; Chen, Xiangrong; Wei, Dongqing; Zhao, Feng; Wu, Qiang
2016-01-01
In present letter, based on density functional theory plus dispersion (DFT-D) and a self-consistent charge density-functional tight-binding (SCC-DFTB) method, the structural and electronic properties are reported, and the phase transition are investigated by analyzing its thermodynamics properties and IR spectrum of RDX. The anisotropy of α- and γ-RDX were discussed at 010 GPa. By fitting the third-order BirchMurnaghan equation of states, the bulk modulus and its pressure derivative of RDX were determined. The α-RDX phase is found stable at ambient condition, however, under pressures, both the values of lattice constants a, b, c and the οEvdw at around 4 GPa show abrupt changes which indicate a structural transition occurred. By analyzing the linear compressibility of a, b, c axes at 08 GPa, one clearly see that the molecules in α-RDX phase underwent rotations and translational motion to their position in the γ-RDX phase at about 4 GPa, which validates the αγ phase transition. The IR spectra of α-form and γ-form RDX was calculated by analyzing the trajectory of molecules motion, which also show the phase transition from the spectra changes. Employing the quasi-harmonic Debye model, the enthalpy and specific heat were investigated at various pressures of both phases. The condition of equal enthalpies in both phases also indicates the phase transition of α-form to γ-form at around 4 GPa. The variation of specific heat with temperature approaches to the classical DulongPetit's law at high temperature, while at low-temperature it obeys the Debye's T3 law.
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Guseva, V. B.; Fokin, A. V.; Potapov, A. P.; Artyomov, M. Yu.
2011-04-01
Abrupt changes in resonance positions, hysteretic temperature behavior, and coexistence of phases, which indicate a first-order phase transition, have been revealed from measurements of temperature dependences of the EPR spectra of Gd3+ and Mn4+ centers in the vicinity of the structural transition of lanthanum gallate. The transformation of monoclinic Gd3+ centers into trigonal Gd3+ centers upon the phase transition has been used to estimate the adequacy of two approximations of the superposition model for parameters of the zero-field splitting of the ground state.
Order-disorder phenomena in the low-temperature phase of BaTiO3
NASA Astrophysics Data System (ADS)
Völkel, G.; Müller, K. A.
2007-09-01
X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Preparation and characterization of novel anion phase change heat storage materials.
Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong
2013-10-01
In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.
Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
NASA Astrophysics Data System (ADS)
Li, Qing; Zhou, P.; Yan, H. J.
2017-12-01
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.
2015-03-01
We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.
Solid-liquid critical behavior of water in nanopores.
Mochizuki, Kenji; Koga, Kenichiro
2015-07-07
Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.