Sample records for temperature programmed oxidation

  1. Evaluation of biochars by temperature programmed oxidation/mass spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...

  2. Evaluation of biochars by temperature programmed oxidation/mass spectrometry

    Treesearch

    Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom

    2013-01-01

    Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...

  3. PRACTICAL APPLICATIONS FROM OBSERVATIONS OF MERCURY OXIDATION AND BINDING MECHANISMS

    EPA Science Inventory

    This paper describes a bench-scale program at the U.S. EPA. The goals of this program are to (a) isolate individual mechanisms of elemental mercury oxidation and oxidized mercury capture, (b) compete these mechanisms over a broad temperature range to determine which are dominant...

  4. Cyclic Oxidation Modeling Program Rewritten for MS Windows

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.

  5. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  6. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  7. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.

    PubMed

    Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang

    2012-09-01

    TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.

  8. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  9. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  10. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  11. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less

  12. [Catalytic combustion of soot on combined oxide catalysts].

    PubMed

    He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun

    2005-01-01

    Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.

  13. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2000-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  14. Severe Accident Test Station Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accidentmore » Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.« less

  15. Ambient-temperature NO oxidation over amorphous CrOx-ZrO 2 mixed oxide catalysts: Significant promoting effect of ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Guo, Yanglong; Gao, Feng

    2017-03-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures are synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. Over best performing catalysts, 100% NO conversion can be maintained up to 30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure is found to be critical for these catalysts to maintain high activity and durability. Cr/M (M=Co, Femore » and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature are important criteria for the synthesis of the highly active catalysts. This work was supported by National Basic Research Program of China (2013CB933200), National Natural Science Foundation of China (21577035, 21577034), Commission of Science and Technology of Shanghai Municipality (15DZ1205305) and 111 Project (B08021). Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle. FG and CHFP are supported by the U.S. DOE/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.« less

  16. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  17. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    PubMed

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  18. Oxidation property of SiO2-supported small nickel particle prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Yamashita, S.; Afiza, N.; Katayama, M.; Inada, Y.

    2016-05-01

    The oxidation property of SiO2-supported small Ni particle has been studied by means of the in-situ XAFS method. The Ni particle with the average diameter of 4 nm supported on SiO2 was prepared by the sol-gel method. The XANES spectrum of the small metallic Ni particle was clearly different from that of bulk Ni. The exposure of diluted O2 gas at room temperature promoted the surface oxidation of Ni(0) particle. During the temperature programmed oxidation process, the supported Ni(0) particle was quantitatively oxidized to NiO, and the oxidation temperature was lower by ca. 200 °C than that of the SiO2-supported Ni particle with the larger particle radius of 17 nm prepared by the impregnation method.

  19. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    PubMed

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  20. Thermochemical Properties of the Lattice Oxygen in W,Mn-Containing Mixed Oxide Catalysts for the Oxidative Coupling of Methane

    NASA Astrophysics Data System (ADS)

    Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.

    2018-03-01

    Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.

  1. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    PubMed Central

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-01-01

    The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674

  2. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates frommore » biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.« less

  3. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping

    2013-01-01

    The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g

  4. Influence of Temperature and Catalyst on the Decomposition of Potassium Chlorate in a Simple DTA-Apparatus.

    ERIC Educational Resources Information Center

    Wiederholt, Erwin

    1983-01-01

    DTA is a technique in which the temperature difference between sample/reference is measured as a function of temperature, while both are subject to a controlled temperature program. Use of a simple DTA-apparatus in demonstrating catalytic effects of manganese dioxide and aluminum oxide on decomposition temperature of potassium chlorate is…

  5. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  6. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  7. Computer Simulation Of Cyclic Oxidation

    NASA Technical Reports Server (NTRS)

    Probst, H. B.; Lowell, C. E.

    1990-01-01

    Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.

  8. United States Air Force Summer Faculty Research Program (1984). Program Management Report. Volume 2.

    DTIC Science & Technology

    1984-12-01

    temperature properties and thermal stability (2). Perfluorinated fluids which have excellent thermal and oxidative stabilities, have several disadvantages...fluids with improved properties, a Materials Laboratory Program has led to the development of a class of compounds called silahydrocarbons. These... compounds have excellent . . . !.vsct temperature proe operies a ifctdyi thera stbl t empraure xpec e to of 54C o 35°. Snteti hyroarbnsbasd n hdroentedp5y

  9. Particle size effect of redox reactions for Co species supported on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co{sub 3}O{sub 4} species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particlesmore » and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co{sub 3}O{sub 4} was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO{sub 2}-supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.« less

  10. On the temperature-programmed reduction of Pt-Ir/. gamma. -Al/sub 2/O/sub 3/ catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    Temperature-programed reduction of a catalyst containing 0.37% Pt and 0.37% Ir on chlorided alumina and treated as previously described for a Pt-Re bimetallic catalyst showed a single reduction peak at 105/sup 0/C, almost exactly at the midpoint between the reduction peaks of the pure platimun and pure iridium peaks treated identically. This peak remained unaltered after fairly severe oxidation treatment (350/sup 0/C). The results indicated that the catalyst formed bimetallic clusters in the reduced state which were more stable than the Pt-Re clusters and did not segregate on oxidation.

  11. Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H₂ at Room Temperature.

    PubMed

    Hong, Xiaowei; Sun, Ye; Zhu, Tianle; Liu, Zhiming

    2017-02-27

    A series of nanostructured Pt-Au/MO x -CeO₂ (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H₂) were evaluated at room temperature. The results showed that MO x promoted the CO oxidation of Pt-Au/CeO₂, but only the TiO₂ could enhance co-oxidation of CO and H₂ over Pt-Au/CeO₂. Related characterizations were conducted to clarify the promoting effect of MO x . Temperature-programmed reduction of hydrogen (H₂-TPR) and X-ray photoelectron spectroscopy (XPS) results suggested that MO x could improve the charge transfer from Au sites to CeO₂, resulting in a high concentration of Ce 3+ and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) results indicated that TiO₂ could facilitate the oxidation of H₂ over the Pt-Au/TiO₂-CeO₂ catalyst.

  12. Modified ferritic iron alloys with improved high-temperature mechanical properties and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1975-01-01

    An alloy modification program was conducted in which the compositions of two existing Fe-Cr-Al alloys (Armco 18SR and GE-1541) were changed to achieve either improved high-temperature strength or improved fabricability. Only modifications of Armco 18SR were successful in achieving increased strength without loss of fabricability or oxidation resistance. The best modified alloy, designated NASA-18T, had twice the rupture strength of Armco 18SR at 800 and 1000 C. The NASA-18T alloy also had better oxidation resistance than Armco 18SR and comparable fabricability. The nominal composition of NASA-18T is Fe-18Cr-2Al-1Si-1.25Ta. All attempted modifications of the GE-1541 alloy were unsuccessful in terms of achieving better fabricability without sacrificing high-temperature strength and oxidation resistance.

  13. Temperature effects on metal-alumina-nitride-oxide-silicon memory operations

    NASA Astrophysics Data System (ADS)

    Padovani, Andrea; Larcher, Luca; Heh, Dawei; Bersuker, Gennadi; Della Marca, Vincenzo; Pavan, Paolo

    2010-05-01

    We present a detailed investigation of temperature effects on the operation of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) memory devices. We show that not only retention but also program and erase operations are affected significantly by temperature. Using a large set of experimental data and simulations on a variety of TANOS stacks, we show that the temperature dependence of TANOS program and erase operations can be explained by accounting for that the alumina dielectric constant increases by 20%-25% over a 125 K temperature range.

  14. Toward more environmentally resistant gas turbines: Progress in NASA-Lewis programs

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Grisaffe, S. J.; Levine, S. R.

    1976-01-01

    A wide range of programs are being conducted for improving the environmental resistance to oxidation and hot corrosion of gas turbine and power system materials. They range from fundamental efforts to delineate attack mechanisms, allow attack modeling and permit life prediction, to more applied efforts to develop potentially more resistant alloys and coatings. Oxidation life prediction efforts have resulted in a computer program which provides an initial method for predicting long time metal loss using short time oxidation data by means of a paralinear attack model. Efforts in alloy development have centered on oxide-dispersion strengthened alloys based on the Ni-Cr-Al system. Compositions have been identified which are compromises between oxidation and thermal fatigue resistance. Fundamental studies of hot corrosion mechanisms include thermodynamic studies of sodium sulfate formation during turbine combustion. Information concerning species formed during the vaporization of Na2SO4 has been developed using high temperature mass spectrometry.

  15. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  16. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature.

    PubMed

    Zhang, Changbin; Li, Yaobin; Wang, Yafei; He, Hong

    2014-05-20

    Catalytic oxidation of formaldehyde (HCHO) to CO2 at ambient conditions is of great interest for indoor HCHO purification. Here, we report that sodium-doped Pd/TiO2 is a highly effective catalyst for the catalytic oxidation of HCHO at room temperature. It was observed that Na doping has a dramatic promotion effect on the Pd/TiO2 catalyst and that nearly 100% HCHO conversion could be achieved over the 2Na-Pd/TiO2 catalyst at a GHSV of 95000 h(-1) and HCHO inlet concentration of 140 ppm at 25 °C. The mechanism of the Na-promotion effect was investigated by using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), CO chemisorption, Temperature-programmed reduction by H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption of O2 (O2-TPD) methods. The results showed that Na species addition can induce and further stabilize a negatively charged and well-dispersed Pd species, which then facilitates the activation of H2O and chemisorbed oxygen, therefore resulting in the high performance of the 2Na-Pd/TiO2 catalyst for the ambient HCHO destruction.

  17. Hydrogen retention in lithium and lithium oxide films

    NASA Astrophysics Data System (ADS)

    Buzi, L.; Yang, Y.; Domínguez-Gutiérrez, F. J.; Nelson, A. O.; Hofman, M.; Krstić, P. S.; Kaita, R.; Koel, B. E.

    2018-04-01

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li2O films, measurements were made as a function of surface temperature (90-520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li2O films retained H in similar amounts as pure Li. Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.

  18. Sliding durability of two carbide-oxide candidate high temperature fiber seal materials in air to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.

  19. Atom probe tomography analysis of high dose MA957 at selected irradiation temperatures

    NASA Astrophysics Data System (ADS)

    Bailey, Nathan A.; Stergar, Erich; Toloczko, Mychailo; Hosemann, Peter

    2015-04-01

    Oxide dispersion strengthened (ODS) alloys are meritable structural materials for nuclear reactor systems due to the exemplary resistance to radiation damage and high temperature creep. Summarized in this work are atom probe tomography (APT) investigations on a heat of MA957 that underwent irradiation in the form of in-reactor creep specimens in the Fast Flux Test Facility-Materials Open Test Assembly (FFTF-MOTA) for the Liquid Metal Fast Breeder Reactor (LMFBR) program. The oxide precipitates appear stable under irradiation at elevated temperature over extended periods of time. Nominally, the precipitate chemistry is unchanged by the accumulated dose; although, evidence suggests that ballistic dissolution and reformation processes are occurring at all irradiation temperatures. At 412 °C-109 dpa, chromium enrichments - consistent with the α‧ phase - appear between the oxide precipitates, indicating radiation induced segregation. Grain boundaries, enriched with several elements including nickel and titanium, are observed at all irradiation conditions. At 412 °C-109 dpa, the grain boundaries are also enriched in molecular titanium oxide (TiO).

  20. Alloy formation and metal oxide segregation on Pt-Re/. gamma. -Al/sub 2/O/sub 3/ catalysts as investigated by temperature-programmed reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    Catalysts resembling reforming catalysts were prepared to contain finely dispersed 0.75% Pt, 0.7% Re, or 0.35% Pt plus 0.1-2% Re on chlorided ..gamma..-alumina. The catalysts were dried in an oxidizing atmosphere and studied by temperature-programed reduction. Up to a Re/Pt ratio of 0.6:1 the metals were completely reduced in hydrogen below 255/sup 0/C, i.e., the platinum catalyzed rhenium reduction. A small amount of added water (< 50 ppm) also promoted rhenium reduction. Segregation of the metals occurred in oxygen above 200/sup 0/C, but at 100/sup 0/C, the rate of segregation was slow. These results suggested that under reforming conditions, Pt-Remore » catalysts are completely reduced bimetallic clusters. The mechanisms of reduction, cluster formation, and oxidative segregation are discussed.« less

  1. 40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.223-94 Oxides of...

  2. Stable White Coatings

    NASA Technical Reports Server (NTRS)

    Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.

    1965-01-01

    In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).

  3. SpalLoop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian; Wright, Ian

    Boiler tubes in steam power plants experience tube blockages due to exfoliation of oxide grown on the inner side of the tubes. In extreme cases, significant tube blockages can lead to forced power plant outages. It is thus desired to predict through modeling the amount of tube blockage in order to inform power plant operators of possible forced outages. SpalLoop solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages for the entire boiler tube length. At each operational outage, i.e., temperature excursions down to room temperature, the amount of exfoliated areamore » for the entire tube loop is estimated the amount of tube blockage is predicted based assumed blockage geometry and site. The SpaLLoop code contains modules developed for oxide growth, stress analysis, tube loop geometry, blockage area by taking into account the following phenomena and features, (a) Plant operation schedule with periodic alternate full-load and partial-load regimes and shut-downs, i.e., temperature excursions from high-load to room temperature, (b) axisymmetric formulation for cylindrical tubes, (c) oxide growth in a temperature gradient with multiple oxide layers, (d) geometry of a boiler tube with a single tube loop or two tube loops, (e) temperature variation along the tube length based on hot gas temperature distribution outside the tube and inlet steam temperature, (f) non-uniform oxide growth along the tube length according to the local steam tube temperature, (g) exfoliated area module: at each operational outage considered, the amount of exfoliated area and exfoliated volume along the tube is estimated, (h) blockage module: at each operational outage considered, the exfoliated volume/mass for each tube loop is estimated from which the amount of tube blockage is predicted based on given blockage geometry (length, location, and geometry). The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less

  4. Alloy formation and metal oxide segregation in Pt-Re/. gamma. -Al/sub 2/O/sub 3/ catalysts as investigated by temperature-programmed reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    Temperature-programmed reduction has been used to characterize the finely dispersed metal compounds in a series of Pt-Re/..gamma..-Al/sub 2/O/sub 3/ catalysts. Strong evidence has been obtained that zerovalent Pt and Re atoms are in intimate contact with each other after catalyst reduction. The formation of bimetallic clusters supports the alloy explanation for the improved performance of this type of bimetallic reforming catalyst. Treatment of the reduced catalysts with oxygen above about 200/sup 0/C causes segregation of platinum and rhenium oxides. Adsorption of oxygen at temperatures up to 100/sup 0/C leaves the bimetallic clusters largely intact, but subsequent high-temperature treatment in themore » absence of extra oxygen leads to segregation of Pt and Re species. This suggests that in the presence of adsorbed oxygen the Pt-Re clusters are thermodynamically unstable, but that under mild conditions the rate of segregation is slow. 10 figures, 4 tables.« less

  5. Hydrogen retention in lithium and lithium oxide films

    DOE PAGES

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.; ...

    2018-02-09

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  6. Hydrogen retention in lithium and lithium oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  7. Structure Characterization and Catalytic Properties of Cr2O3 Doped with MgO Supported on MgF2

    NASA Astrophysics Data System (ADS)

    Goslar, J.; Wojciechowska, M.; Zieliński, M.; Tomska-Foralewska, I.; Przystajko, W.

    2006-08-01

    A characterization of double oxide systems containing Cr2O3 doped with MgO and supported on MgF2 was carried out. The catalysts were prepared by impregnation and co-impregnation methods and characterized by the Brunauer-Emmett-Teller method, EPR, and temperature programmed reduction. The results proved the interactions between supported oxides and the presence of spinel-like phase after treatment at 400 ºC. Magnesium oxide clearly influences the catalytic activity as well as selectivity of chromium catalysts supported on MgF2. The MgO-Cr2O3/MgF2 systems were active and selective in the reaction of CO oxidation at the room temperature and in the dehydrogenation of cyclohexene.

  8. Manganese Oxide Nanoarray-Based Monolithic Catalysts: Tunable Morphology and High Efficiency for CO Oxidation

    DOE PAGES

    Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; ...

    2016-03-08

    In this work, a generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K 2Cr 2O 7, KClO 3, and K 2S 2O 8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn 2+) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivitymore » of carbon monoxide (CO) oxidation. K 2Cr 2O 7 and KClO 3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. Finally, the straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.« less

  9. Iron oxide nanoparticles supported on ultradispersed diamond powders: Effect of the preparation procedure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Momtchil; Ivanova, Ljubomira; Paneva, Daniela; Tsoncheva, Tanya; Stavrev, Stavry; Mitov, Ivan; Minchev, Christo

    2009-01-01

    The state of the iron oxide nanoparticles, supported on ultradispersed diamond (UDD) powders is studied by X-ray diffraction, nitrogen physisorption, temperature-programmed reduction, FTIR and Mössbauer spectroscopy. Methanol decomposition to hydrogen and CO is used as a catalytic test. The peculiarities of the iron oxide species strongly depend on the detonation procedure used for the UDD powders preparation as well as on the iron modification procedure.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less

  11. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  12. Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate.

    PubMed

    Zhou, Ling; Madix, Robert J

    2010-11-02

    The promotion roles of nitrate, carbonate, sulfite, and sulfate in oxidation of styrene on Ag(110) have been studied by means of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). While isolated nitrate leads only to the secondary oxidation of styrene, a surface co-covered by nitrate, oxygen, and 0.1 ML cesium promotes a low-temperature epoxidation pathway. XPS indicates that adsorbed surface oxygen is the oxidant in this selective reaction pathway, and, though it affects the reactivity of the surface oxygen, nitrate is a spectator. Carbonate acts as an oxygen transfer agent and exhibits similar reactivity and selectivity as an oxidant for styrene as does atomic oxygen on Ag(110). The reactivities of sulfite and sulfate are strongly dependent on their surface structures, the c(6 × 2) sulfite showing the capacity to transfer oxygen to styrene.

  13. Soot oxidation and NO{sub x} reduction over BaAl{sub 2}O{sub 4} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, He; Li, Yingjie; Shangguan, Wenfeng

    2009-11-15

    This study addresses soot oxidation and NO{sub x} reduction over a BaAl{sub 2}O{sub 4} catalyst. By XRD analysis, the catalyst was shown to be of spinel structure. Temperature Programmed Oxidation (TPO) and Constant Temperature Oxidation (CTO) at 673 K show that the presence of O{sub 2} decreases the ignition temperature of soot, and it enhances the conversion of NO{sub x} to N{sub 2} and N{sub 2}O. The kinetic features of soot oxidation in the TPO test are similar to that in the TG-DTA analysis. Analysis by Diffuse Reflectance Fourier Infrared Transform Spectroscopy (DRIFTS) indicates that the nitrates formed from NO{submore » x} adsorption and the C(O) intermediates from soot oxidation are the key precursors of the redox process between soot and NO{sub x} over surfaces of the BaAl{sub 2}O{sub 4} catalyst. Moreover, DRIFTS tests suggest that nitrates act as the principal oxidants for C(O) oxidation, through which nitrates are reduced to N{sub 2} and N{sub 2}O. The O{sub 2} in the gas mixture presents a positive effect on the conversion of NO{sub x} to N{sub 2} and N{sub 2}O by promoting the oxidation of nitrites into nitrates species. (author)« less

  14. 77 FR 34149 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... soot. Since this burning can involve extra heat and/or oxygen or oxygen- containing compounds, this... fuel consumption. This loss in performance may be noticed by the vehicle operator in terms of poor... excessive amounts of trapped PM begin to oxidize at high temperatures (i.e., DPF regeneration temperatures...

  15. COREST: A FORTRAN computer program to analyze paralinear oxidation behavior and its application to chromic oxide forming alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. E.; Presler, A. F.

    1976-01-01

    A FORTRAN computer program (COREST) was developed to analyze the high-temperature paralinear oxidation behavior of metals. It is based on a mass-balance approach and uses typical gravimetric input data. COREST was applied to predominantly Cr2O3-forming alloys tested isothermally for long times. These alloys behaved paralinearly above 1100 C as a result of simultaneous scale formation and scale vaporization. Output includes the pertinent formation and vaporization constants and kinetic values of interest. COREST also estimates specific sample weight and specific scale weight as a function of time. Most importantly, from a corrosion standpoint, it estimates specific metal loss.

  16. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a temperature-dependent quantum efficiency term, and is directly driven by bulk photocatalyst crystal parameters: maximum phonon energy and the number of phonons allowed per unit cell. This analysis extends to multiple photocatalysts and can explain experimental observations of photocatalytic oxidation rates with varied reactant concentrations. Lastly, this dissertation applies this knowledge to a thermo-catalytic reaction (CO-oxidation) using a Au/TiO 2 catalyst. The combined photo/thereto-catalytic reaction showed a 10-25% increase in CO conversion during a temperature programmed reaction experiment.

  17. Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.

    PubMed

    Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz

    2018-05-29

    The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.

  18. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    NASA Technical Reports Server (NTRS)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  19. Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts

    NASA Astrophysics Data System (ADS)

    Kaden, William E.; Kunkel, William A.; Roberts, F. Sloan; Kane, Matthew; Anderson, Scott L.

    2014-03-01

    Model catalysts containing size-selected Pdn (n = 1,2,4,7,10,16,20,25) deposited on rutile TiO2(110) deactivate during repeated CO oxidation temperature-programmed reaction (TPR) cycles, and the deactivation process has been probed using a combination of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low-energy ion scattering (ISS), temperature-dependent ion scattering (TD-ISS), annealing experiments, and temperature-programmed desorption following exposure to CO and O2 reactants. Results from such experiments suggest the cluster deactivation proceeds via an alloy-like, strong metal-support interaction (SMSI) effect that chemically modifies the clusters via electronic interactions between the supported metal atoms and Ti from the support. Threshold measurements show that this effect detrimentally affects CO-oxidation activity prior to the formation of an encapsulating overlayer by severely weakening the COPd bond strengths for binding configurations on top of the clusters. Oxidation appears to provide means of partially restoring the clusters to their initial state, but after sufficient exposure to reducing environments and elevated temperatures, all Pdn become covered by an overlayer and begin to electronically and chemically resemble freshly deposited atoms, which are completely inactive towards the probe reaction. In addition, we find evidence of oxygen spillover induced by co-adsorbed CO during TPRs for all active Pdn clusters.

  20. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  1. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  3. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  4. Temperature-programmed reduction of Pt-Ir/. gamma. -Al/sub 2/O/sub 3/ catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    An intriguing feature of the evidence for the existence of Pt-Re clusters in the reduced state of the catalyst, Pt-Re/..gamma..-Al/sub 2/O/sub 3/ was the segregation of Pt and Re oxides observed after oxidation of the bimetallic clusters at temperatures above about 200/sup 0/C. Evidently, the oxide moieties are immiscible on the scale of the small clusters (up to 10 to 15 atoms) in the case of these metals. The present results for Pt-Ir/..gamma..-Al/sub 2/O/sub 3/ represent an example of a supported, highly dispersed system in which the intimacy of the metals remains intact even after fairly severe oxidation treatments. Studymore » of other bimetallic system on alumina by TPR should yield further valuable information on this interesting aspect of metal cluster behavior. 1 figure.« less

  5. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    PubMed

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  6. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  7. Comparative study on the effect of H2 pre-adsorption on CO oxidation in O2-poor atmosphere over Au/TiO2 and TiO2: Temperature programmed surface reaction by a multiplexed mass spectrometer testing

    NASA Astrophysics Data System (ADS)

    Si, Ruiru; Liu, Junfeng; Zhang, Yujuan; Chen, Xun; Dai, Wenxin; Fu, Xianzhi

    2016-11-01

    The behaviors of H2 pre-adsorption on CO oxidation in an O2-poor stream containing a trace H2O over Au/TiO2 and TiO2 have been investigated by a temperature programmed surface reaction testing, respectively. It was found that the H2 pre-adsorption could keep CO oxidation without H2O consumption over Au/TiO2, but suppress CO oxidation over TiO2. The chemisorption testing showed that the H2 adsorption at Au/TiO2 could benefit to the formation of Ti-bonded hydroxyl species (Ti4+-OH), while the H2 adsorption at TiO2 would consume the Ti-bonded hydroxyl species and form the bridge hydroxyl species (Ti4+-OH-Ti4+). These results show that only the Ti-bonded hydroxyl species (not all kinds of hydroxyl species) could act as the active species of oxidizing CO. Furthermore, it is suggested that the dissociative hydrogen adsorbed at Au sites could activate the lattice oxygen of TiO2 to form the active Ti-bonded hydroxyl species (hydrogen spillover from Au to TiO2), which exhibit a strong reducibility than the H directly adsorbed at TiO2.

  8. Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra

    1997-01-01

    Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.

  9. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  10. Relative sliding durability of two candidate high temperature oxide fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1991-01-01

    A test program to determine the relative sliding durability of two candidate ceramic fibers for high temperature sliding seal applications is described. Pin on disk tests were used to evaluate potential seal materials. Friction during the tests and fiber wear, indicated by the extent of fibers broken in a test bundle or yarn, was measured at the end of a test. In general, friction and wear increase with test temperature. This may be due to a reduction in fiber strength, a change in the surface chemistry at the fiber/counterface interface due to oxidation, adsorption and/or desorption of surface species and, to a lesser extent, an increase in counterface surface roughness due to oxidation at elevated temperatures. The relative fiber durability correlates with tensile strength indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A simple model developed using dimensional analysis shows that the fiber durability is related to a dimensionless parameter which represents the ratio of the fiber strength to the fiber stresses imposed by sliding.

  11. Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.

    NASA Astrophysics Data System (ADS)

    Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip

    2006-03-01

    Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.

  12. Temperature-Centric Evaluation of Sensor Transients

    NASA Astrophysics Data System (ADS)

    Ayhan, Tuba; Muezzinoglu, Kerem; Vergara, Alexander; Yalcin, Mustak

    2011-09-01

    Controllable sensing conditions provide the means for diversifying sensor response and achieving better selectivity. Modulating the sensing layer temperature of metal-oxide sensors is a popular method for multiplexing the limited number of sensing elements that can be employed in a practical array. Time limitations in many applications, however, cannot tolerate an ad-hoc, one-size-fits-all modulation pattern. When the response pattern is itself non-stationary, as in the transient phase, a temperature program also becomes infeasible. We consider the problem of determining and tuning into a fixed optimum temperature in a sensor array. For this purpose, we present an empirical analysis of the temperature's role on the performance of a metal-oxide gas sensor array in the identification of odorants along the response transient. We show that the optimal temperature in this sense depends heavily on the selection of (i) the set of candidate analytes, (ii) the time-window of the analysis, (iii) the feature extracted from the sensor response, and (iv) the computational identification method used.

  13. COI oxidation on a single Pd atom supported on magnesia.

    PubMed

    Abbet, S; Heiz, U; Häkkinen, H; Landman, U

    2001-06-25

    The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass spectrometry and infrared spectroscopy. In one-heating-cycle experiments, CO(2), formed from O(2) and CO preadsorbed at 90 K, is detected at 260 and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)(2)O(2) and PdCO(3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.

  14. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  15. High temperature thruster technology for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1991-01-01

    A technology program intended to develop high-temperature oxidation-resistant thrusters for spacecraft applications is considered. The program will provide the requisite material characterizations and fabrication to incorporate iridium coated rhenium material into small rockets for spacecraft propulsion. This material increases the operating temperature of thrusters to 2200 C, a significant increase over the 1400 C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20-25 seconds higher than niobium chambers. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines.

  16. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  17. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  18. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  19. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    PubMed

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  20. Structural and surface properties of CuO-ZnO-Cr{sub 2}O{sub 3} catalysts and their relationship with selectivity to higher alcohol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.

    1995-10-01

    A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less

  1. Improved method for producing catalytic carbon and the potential for increasing its use in commercial applications

    USGS Publications Warehouse

    Kruse, C.W.; Lizzio, A.A.; DeBarr, J.A.; Feizoulof, C.A.

    1997-01-01

    This paper describes an improved method for producing a catalytic carbon, which was first produced in the late 1960s. The new activated carbon (AC) removes and destroys organic pollutants in aqueous solutions. To determine the effects of altering the pore structure and surface chemistry of activated carbons, carbons differing in the amount of functional groups on their surfaces were prepared in three steps: (1) oxidizing AC with boiling nitric acid, (2) washing oxidized AC with water to remove the acid, and (3) heating oxidized AC to temperatures beteween 100 and 925 ??C. The surfaces of the products were characterized by determining the amount of CO2 and CO evolved during temperature-programmed desorption. Depending on the desorption temperature, these modified carbons showed enhanced adsorptive and/or catalytic properties that included (1) carbon molecular sieves for separating oxygen from nitrogen, (2) increased capacity for adsorbing sulfur dioxide, (3) stronger adsorption of p-nitrophenol from water, and (4) catalysis of dehydrochlorination reactions. A dehydrohalogenation catalyst produced by the oxidation/ desorption steps was found to be similar to one prepared in the 1960s by oxidizing AC with air at 500-700 ??C. The dehydrohalogenation catalyst produced by either the old method or the new method involves an oxidized surface that has been exposed to a 500-700 ??C temperature range. This carbon catalyst retains modified adsorptive properties of the AC from which it is produced. It can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products.

  2. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.

    PubMed

    Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu

    2015-10-01

    Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. Copyright © 2015. Published by Elsevier B.V.

  3. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  4. Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230

    DOE PAGES

    Duan, R.; Jalowicka, Aleksandra; Unocic, Kinga A.; ...

    2016-10-18

    Using alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950–1050 °C in static air. The studies focused on thin specimens (0.2–0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up tomore » 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. As a result, the time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams.« less

  5. Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, R.; Jalowicka, Aleksandra; Unocic, Kinga A.

    Using alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950–1050 °C in static air. The studies focused on thin specimens (0.2–0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up tomore » 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. As a result, the time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams.« less

  6. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  7. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  8. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    PubMed

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  9. Nuclear Electric Magnetohydrodynamic Propulsion for Submarine

    DTIC Science & Technology

    1989-05-01

    develop - ment strategies for the future. The base program includes the development of the LMFBR, and HTGR to...events. Oxide fuel is -134- being retained as a backup, pending the outcome of the metal fuel development program . The design allows for a quick fuel ... HTGR plants can be developed with much higher source temperature and core power density. High efficiency and low power den- sity characteristics

  10. Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application

    NASA Astrophysics Data System (ADS)

    Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran

    2017-11-01

    A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.

  11. Transformations of C2-C4 alcohols on the surface of a copper catalyst

    NASA Astrophysics Data System (ADS)

    Magaeva, A. A.; Lyamina, G. V.; Sudakova, N. N.; Shilyaeva, L. P.; Vodyankina, O. V.

    2007-10-01

    The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.

  12. High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hair, Lucy; Magno, Scott

    This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports aremore » typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.« less

  13. Deuterium sputtering of Li and Li-O films

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  14. Study on the poisoning effect-of non-vanadium catalysts by potassium

    NASA Astrophysics Data System (ADS)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  15. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    PubMed

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  16. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  17. Asymptotic Slavery in the Copper Oxide High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Phillips, Philip

    2004-05-01

    Vast progress in theoretical solid state physics has been made by constructing models which mimic the low-energy properties of solids. Essential to the success of this program is the separability of the high and low energy degrees of freedom. While it is hoped that a high energy reduction can be made to solve the problem of high temperature superconductivity in the copper oxide materials, I will show that no consistent theory is possible if the high energy scale is removed. At the heart of the problem is the mixing of all energy scales (that is, UV-IR mixing) in the copper-oxide materials. Optical experiments demonstrate that the number of low-energy degrees of freedom is derived from a high energy scale. The implications of the inseparability of the high and low energy degrees of freedom on the phase diagram of the cuprates is discussed.

  18. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts

    NASA Astrophysics Data System (ADS)

    Cai, Sixiang; Zhang, Dengsong; Shi, Liyi; Xu, Jing; Zhang, Lei; Huang, Lei; Li, Hongrui; Zhang, Jianping

    2014-06-01

    In this work, we successfully in situ decorated nickel foam with porous Ni-Mn oxide nanosheets (3DH-NM/NF) as 3D hierarchical monolith de-NOx catalysts via a simple hydrothermal reaction and calcination process. The catalysts were carefully examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption measurements. The results indicated that the nanosheets are composed of a Ni6Mn1O8 spinel and the metal species are uniformly dispersed in bi-metal oxides. As a result, the strong synergistic effects between the Mn and Ni species have been observed. The active oxygen species, reducible species and acidity are enhanced by the in situ formation of the nanosheets on the surface of nickel foam. These desirable features of 3DH-NM/NF catalysts bring about the excellent de-NOx performance. Moreover, the 3DH-NM/NF catalysts also present good stability and H2O resistance. Based on these favorable properties, 3DH-NM/NF could be considered as a promising candidate for the monolith de-NOx catalysts.In this work, we successfully in situ decorated nickel foam with porous Ni-Mn oxide nanosheets (3DH-NM/NF) as 3D hierarchical monolith de-NOx catalysts via a simple hydrothermal reaction and calcination process. The catalysts were carefully examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption measurements. The results indicated that the nanosheets are composed of a Ni6Mn1O8 spinel and the metal species are uniformly dispersed in bi-metal oxides. As a result, the strong synergistic effects between the Mn and Ni species have been observed. The active oxygen species, reducible species and acidity are enhanced by the in situ formation of the nanosheets on the surface of nickel foam. These desirable features of 3DH-NM/NF catalysts bring about the excellent de-NOx performance. Moreover, the 3DH-NM/NF catalysts also present good stability and H2O resistance. Based on these favorable properties, 3DH-NM/NF could be considered as a promising candidate for the monolith de-NOx catalysts. Electronic supplementary information (ESI) available: Experimental details and catalytic performance of the NM/cordierite catalysts, SEM image and EDX analysis of the NF and 3DH-N/NF catalysts, N2 selectivity and catalytic performance under different gas hourly space velocities of the 3DH-NM/NF catalysts. See DOI: 10.1039/c4nr00475b

  19. Long Term Degradation of Resin for High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Patekar, Kaustubh A.

    2000-01-01

    The durability of polymer matrix composites exposed to harsh environments is a major concern. Surface degradation and damage are observed in polyimide composites used in air at 125 to 300 C. It is believed that diffusion of oxygen into the material and oxidative chemical reactions in the matrix are responsible. Previous work has characterized and modeled diffusion behavior, and thermogravimetric analyses (TGAs) have been carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. However, the model developed using these data was not able to capture behavior seen in isothermal tests, especially those of long duration. A test program that focuses on lower temperatures and makes use of isothermal tests was undertaken to achieve a better understanding of the degradation reactions under use conditions. A new low-cost technique was developed to collect chemical degradation data for isothermal tests lasting over 200 hr in the temperature range 125 to 300 C. Results indicate complex behavior not captured by the previous TGA tests, including the presence of weight-adding reactions. Weight gain reactions dominated in the 125 to 225 C temperature range, while weight loss reactions dominated beyond 225 C. The data obtained from isothermal tests was used to develop a new model of the material behavior. This model was able to fully capture the behavior seen in the tests up to 275 C. Correlation of the current model with both isothermal data at 300 C and high rate TGA test data is mediocre. At 300 C and above, the reaction mechanisms appear to change. Attempts (which failed) to measure non-oxidative degradation indicate that oxidative reactions dominate the degradation at low temperatures. Based on this work, long term isothermal testing in an oxidative atmosphere is recommended for studying the degradation behavior of this class of materials.

  20. Below-Room-Temperature C–H Bond Breaking on an Inexpensive Metal Oxide: Methanol to Formaldehyde on CeO 2(111)

    DOE PAGES

    Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana; ...

    2017-11-14

    C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less

  1. Below-Room-Temperature C–H Bond Breaking on an Inexpensive Metal Oxide: Methanol to Formaldehyde on CeO 2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana

    C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less

  2. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.

    2000-01-12

    The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less

  3. Experimental clean combustor program, phase 3

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A.; Greene, W.

    1977-01-01

    A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine.

  4. Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry.

    PubMed

    Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail

    2018-02-05

    Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.

  5. Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation

    NASA Astrophysics Data System (ADS)

    Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina

    2011-04-01

    Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.

  6. Practical field repair of fused slurry silicide coating for space shuttle t.p.s.

    NASA Technical Reports Server (NTRS)

    Reznik, B. D.

    1971-01-01

    Study of short-time high-temperature diffusion treatments as part of a program of development of methods of reapplying fused slurry silicide coating in the field. The metallographic structure and oxidation behavior of R512E applied to Cb-752 coated under simulated field repair conditions was determined. Oxidation testing in reduced pressure environment has shown that performance equivalent to furnace-processed specimens can be obtained in a two-minute diffusion at 2700 F.

  7. Kinetic and catalytic analysis of mesoporous Co3O4 on the oxidation of morin

    NASA Astrophysics Data System (ADS)

    Xaba, Morena. S.; Meijboom, Reinout

    2017-11-01

    Herein we report on the synthesis, characterization and catalytic evaluation of mesoporous cobalt oxides on the oxidation of morin. These mesoporous cobalt oxides were synthesized using an inverse surfactant micelle method, they are connected, well-defined with intra-particle voids. These materials were calcined to different final heating temperatures of 150, 250, 350, 450 and 550 °C, and each mesoporous cobalt oxide catalyst showed unique physical properties and catalytic behavior. Morin oxidation was used as a model reaction in the presence of hydrogen peroxide to evaluate the kinetic and catalytic activity of calcined mesoporous cobalt oxides. The adsorption-desorption equilibrium rate constants of morin and hydrogen peroxide were found to be inversely proportional to the crystallite size of the mesoporous cobalt oxide, and the characteristic path length in which the mass transfer takes place was found to be directly proportional to the crystallite size. The materials were characterized using powder X-Ray Diffraction (p-XRD), N2-sorption isotherms (BET), hydrogen temperature programmed reduction (H2-TPR) and High Resolution-Transmission Electron Microscopy (HR-TEM). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of morin at λmax = 410 nm. The surface reaction in this system is described in terms of the well-established Langmuir-Hinshelwood model. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability is demonstrated.

  8. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  9. Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.

    PubMed

    Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg

    2017-05-02

    We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.

  10. Atomic-Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving Assemblies

    DTIC Science & Technology

    2015-06-01

    AFRL-OSR-VA-TR-2015-0166 Atomic-Scale Tuning of Layered Binary Metal OxideS ASHLIE MARTINI UNIVERSITY OF CALIFORNIA MERCED Final Report 06/01/2015...Assemblies 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0221 5c.  PROGRAM ELEMENT NUMBER 6.  AUTHOR(S) ASHLIE MARTINI 5d.  PROJECT NUMBER 5e...ABSTRACT UU 18.  NUMBER        OF        PAGES 19a.  NAME OF RESPONSIBLE PERSON ASHLIE MARTINI Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

  11. Mössbauer study of iron-based perovskite-type materials as potential catalysts for ethyl acetate oxidation

    NASA Astrophysics Data System (ADS)

    Paneva, D.; Dimitrov, M.; Velinov, N.; Kolev, H.; Kozhukharov, V.; Tsoncheva, T.; Mitov, I.

    2010-03-01

    La-Sr-Fe perovskite-type oxides were prepared by the nitrate-citrate method. The basic object of this study is layered Ruddlesden-Popper phase LaSr3Fe3O10. The phase composition and structural properties of the obtained materials are investigated by Mössbauer spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and temperature programmed reduction (TPR). The preliminary catalytic tests show a high potential of these materials for volatile organic compounds (VOCs) elimination as they possess high conversion ability and selectivity to total oxidation of ethyl acetate. Catalytic performance of LaSr3Fe3O10 is depended on the stability of structure and Fe4+-oxidation state.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  13. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  14. In situ correlative measurements for the ultraviolet differential absorption lidar and the high spectral resolution lidar air quality remote sensors: 1980 PEPE/NEROS program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.

    1981-01-01

    In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.

  15. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    NASA Astrophysics Data System (ADS)

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah

    2013-08-01

    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.

  16. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    NASA Astrophysics Data System (ADS)

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  17. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures.

    PubMed

    Blagojević, Dusko P

    2007-01-01

    Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.

  18. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  19. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    NASA Astrophysics Data System (ADS)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  20. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE PAGES

    Zhang, Zihao; Yang, Qiwei; Chen, Hao; ...

    2017-10-13

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  1. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zihao; Yang, Qiwei; Chen, Hao

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  2. Control for NO(x) Emissions from Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Maria E.

    2001-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote R&D that could contribute to solve the problems of air, soil and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phases 1 and 2 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the 10-week summer program. During this period, support has been given to implement the modifications suggested for Phase 3 of the project, which focus on oxidation reactions carried at lower to medium temperatures using UV lights as a source for the hydrogen peroxide dissociation and the effect on the NO conversion.

  3. Control for NOx Emissions from Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Maria E.; Collins, Michelle M.

    2000-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote research and development (R&D) that could contribute to solve the problems of air, soil, and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phase 1 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the ten-week summer program. During this period, support has been given to implement the modifications suggested for Phase 2 of the project, which focus on oxidation reactions carried at lower temperatures using an ultraviolet source. The redesign and assembly of the modifications for the scrubbing system was the main objective of this research.

  4. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  5. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    NASA Astrophysics Data System (ADS)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.

  6. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  7. Surface characterizations of oxides synthesized by successive ionic layer deposition

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas I.

    Successive ionic layer deposition (SILD) is an aqueous technique for depositing thin oxide films on a surface in a layer-by-layer fashion through a series of chemical reactions. This dissertation examines empirical aspects of the SILD technique by characterizing thin oxide films synthesized on model planar supports and then extends the SILD technique to synthesize supported oxide nanostructures on three dimensional supports of interest to catalysis. Atomic force microscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy provided insight into the SILD of zirconia, alumina, and barium oxide thin films on silicon wafers. The SILD conditions that most affected the surface morphology of the thin oxide films were the selection of aqueous metal salt precursors comprising the SILD solutions and the total number of SILD cycles. Recent studies suggest that a highly dispersed phase of barium oxide supported on alumina interacts differently with NO2 than a bulk-like phase of barium oxide SILD was used to synthesize disperse nanoislands or rafts of barium oxide on larger rafts of alumina supported on a silicon wafer. The SILD method was then extended to deposit barium oxide on an alumina powder support comprised of dense 150 nm spherical crystallites fused together into 1-2 pm particles. Equally weight loaded samples of barium oxide on the fused alumina powder were prepared by SILD and wet impregnation. The NO2 storage behavior of the barium oxide, evaluated by thermogravimetric analysis during NO2 temperature programmed desorption (TPD) experiments, provided insight into the dispersion of barium oxide that resulted from each of the loading techniques. The highly dispersed barium oxide rafts synthesized by SILD on fused alumina released NO2 at temperatures below 500°C during TPD. By comparison, the barium oxide loaded by wet impregnation showed a higher temperature desorption feature above 500°C indicative of bulk-like barium oxide nanoparticles. The NO2 weight loss curves were also used to calculate the relative percentages of BaO in the dispersed phase and bulk-like phase for each loading technique. The ability of SILD to synthesize highly disperse and uniform, conformal oxide coatings on three dimensional supports provides fundamental insight into the interactions between catalysts and supports.

  8. Molten salt electrodeposition of high temperature superconductors. Final report, 7 September 1990-30 November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tench, D.M.; Kendig, M.W.; Jeanjaquet, S.

    1993-06-01

    The overall objective of this project was to develop a process for direct electrodeposition of Y-Ba-Cu superconducting oxides from a molten salt at relatively low temperatures (300-550 deg C). An important finding was that cathodic deposition of metallic oxides, rather than free metals, generally occurs from nitrate melts, apparently via reduction of metal nitrato complexes. Oxide deposition was confirmed for Cu as CuO, Y as Y2O3, and Co as Co3O4, and apparently also occurs for Ba. Deposition of mixed Ba-Y-Cu oxides was demonstrated on both Cu and Pt substrates. Data were compiled that provide a good basis for designing schemesmore » for deposition of various mixed oxides from nitrate melts. A sequential anodic injection method was conceived for depositing ultrathin mixed oxide layers, which can be viewed as an analog of molecular beam epitaxy. Results obtained with this approach were encouraging but were inconclusive because of contamination with Gd from the Y injection anode. Based on the results of this program and literature studies, cathodic metal oxide deposition from nitrate melts is a general phenomenon that could ultimately prove to be a practical means of preparing a variety of single and mixed anhydrous metal oxide films. It is recommended that future work focus initially on deposition of perovskite materials, which are of considerable practical interest and involve only two metallic components so that the required deposition schemes are inherently simpler.« less

  9. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  10. Introduction of low-temperature swirl technology of burning as a way of increase in ecological of low power boilers

    NASA Astrophysics Data System (ADS)

    Trinchenko, A. A.; Paramonov, A. P.

    2017-10-01

    Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.

  11. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  12. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  13. Synthesis and design of silicide intermetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has amore » number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.« less

  14. Adsorption of NO on alumina-supported oxides and oxide-hydroxides of manganese.

    PubMed

    Spasova, I; Nikolov, P; Mehandjiev, D

    2005-10-15

    The adsorption capacity for NO of alumina-supported oxides and oxide-hydroxides of manganese have been studied. Two series of samples have been prepared by precipitation on gamma-alumina and appropriate thermal treatment. The samples have been characterized by adsorption methods, magnetic methods, electronic paramagnetic resonance (EPR), transient response technique, and temperature-programmed desorption (TPD). The influence of the concentration of the initial manganese-containing solution has been investigated. The sample, prepared with a solution with Mn concentration of 4 g/100 ml, has been shown to be the best adsorbent for NO under the conditions of the experiment. It has been found that the presence mainly of Mn3+ ions on the surface of the support is probably responsible for the enhanced adsorption capacity.

  15. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  16. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.

  17. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects in the neat resin, and anisotropic diffusion effects in the composites, are identified through the use of specimens with different aspect ratios. The data is used with the model to determine reaction coefficients and effective diffusion coefficients. The empirical and analytical correlations confirm the preliminary model results which suggest that mass loss at lower temperatures is dominated by oxidative reactions and that these reaction are limited by diffusion of oxygen from the surface. The mechanism-based model is able to successfully capture the basic physics of the degradation phenomena under a wide range of test conditions. The analysis-based test design is successful in separating out oxidative, thermal, and diffusion effects to allow the determination of material coefficients. This success confirms the basic picture of the process; however, a more complete understanding of some aspects of the physics are required before truly predictive capability can be achieved.

  18. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less

  19. Study of the thermal degradation mechanism of a composite propellant. [using electron microscopes

    NASA Technical Reports Server (NTRS)

    Schmidt, W. G.

    1975-01-01

    The current experimental program was designed to systematically investigate the role of the oxidizer in the thermal degradation process of composite propellants. The scanning electron microscope (SEM) was used to examine the failure sites in thermally degraded propellant samples. The formulation variables tested were oxidizer purity, oxidizer particle size, and oxidizer to binder bonding agent. The binder, a saturated hydrocarbon, was kept constant throughout the experiments. The oxidizers were: AP, chlorate-doped AP, arsenate-doped AP, and phosphate-doped AP. The oxidizer particle size distribution was 60% of the large fraction and 40% of the small fraction. The bonding agent, when present, was used at the 0.15% level. The data showed that both the oxidizer purity and particle size had an important affect on the thermal degradation process. The affect of the oxidizer particle size was more noticeable at the higher temperature and stress levels. An examination of the failure site, by SEM, of propellants subject to these latter conditions indicated that the fracturing of the large oxidizer particles led to the propellant cracking.

  20. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Uz, M.

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO{sub 2} in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1more » {times} 10{sup {minus}6} to 1 {times} 10{sup {minus}1} torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO{sub 2} environments, and for oxidation in pure O{sub 2} at 760 torr was much lower than in low-pO{sub 2} environments. X-ray diffraction analysis of the specimens showed that VO{sub 2} was the dominant phase in low-pO{sub 2} environments, while V{sub 2}O{sub 5} was dominant in air and in pure oxygen at 76f0 torr.« less

  1. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-07

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High temperature barrier coatings for refractory metals

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Walech, T.

    1995-01-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined; (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  3. Initial oxidation of pure and K doped NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Tollefsen, H.; Raaen, S.

    2009-06-01

    Initial oxidation of pure and K doped nitinol has been studied by photoelectron spectroscopy. The composition of the TiOx layer that forms on the surface is found to depend on the temperature during oxidation. The oxidation at high temperatures results in enhanced formation of lower oxides, whereas TiO2 predominates for oxidation at lower temperatures, e.g., 70 °C. Submonolayer coverage of K on NiTi enhances the formation of TiO2 on the expense of lower oxides, which is of consequence for formation of a protective oxide layer and biocompatibility. Oxidation in the martensitic phase was found to be independent of temperature for temperatures between -40 and 10 °C, whereas in the austenitic phase the oxide growth is thermally activated.

  4. Oxidation of CO by NO on planar and faceted Ir(210)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenhua; Bartynski, Robert A.; Kaghazchi, Payam

    2012-06-11

    Oxidation of CO by pre-adsorbed NO has been studied on planar Ir(210) and nanofaceted Ir(210) with average facet sizes of 5 nm and 14 nm by temperature programmed desorption (TPD). Both surfaces favor oxidation of CO to CO 2, which is accompanied by simultaneous reduction of NO with high selectivity to N 2. At low NO pre-coverage, the temperature (T i) for the onset of CO 2 desorption as well as CO 2 desorption peak temperature (T p) decreases with increasing CO exposure, and NO dissociation is affected by co-adsorbed CO. At high NO pre-coverage, T i and T pmore » are independent of CO exposure, and co-adsorbed CO has no influence on dissociation of NO. Moreover, at low NO pre-coverage, planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2: T i and T p are much lower on planar Ir(210) than that on faceted Ir(210). In addition, faceted Ir(210) with an average facet size of 5 nm is more active for oxidation of CO to CO 2 than faceted Ir(210) with an average facet size of 14 nm, i.e., oxidation of CO by pre-adsorbed NO on faceted Ir(210) exhibits size effects on the nanometer scale. In comparison, at low O pre-coverage planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2 but no evidence has been found for size effects in oxidation of CO by pre-adsorbed oxygen on faceted Ir(210) for average facet sizes of 5 nm and 14 nm. The TPD data indicate the same reaction pathway for CO 2 formation from CO + NO and CO + O reactions on planar Ir(210). Lastly, the adsorption sites of CO, NO, O, CO + O, and CO + NO on Ir are characterized by density functional theory.« less

  5. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Accomplishments in the DOE program include: continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbine diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; construction of four diode module completed; favorable results obtained from TAM combustor-gas turbine system analyses; and obtained a FERP work function of 2.3 eV with the W(100)-O-Zr-C electrode. JPL program accomplishments include: the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 20 eV (WHK).

  6. Composites of low-density trialuminides: Particulate and long fiber reinforcements

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1992-01-01

    An examination of the ternary L1(sub 2) trialuminides, Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 in compression, bending, and tension revealed that none of these compounds exhibited a desirable balance of strength, ductility, and oxidation resistance. Subsequently, specific quaternary and quinary compositions were cast, homogenized, and isothermally forged. Both, the monolithic material and its particulate reinforced counterparts were examined in compression, three point bend, and tension as a function of temperature, and at high temperatures as a function of strain rate. An alternate approach that was examined in this program to enhance the low temperature damage tolerance of these materials was to incorporate long refractory metal wires in the matrix. In summary, it appears that of the various matrix compositions examined, ternary Al66Ti25Mn9 exhibits the best balance in strength, ductility, and oxidation resistance. Although the idea of refractory metal wire reinforcement is an attractive one, a successful combination remains to be identified.

  7. Effect of ultrasonic treatment of palygorskite on the catalytic performance of Pd-Cu/palygorskite catalyst for room temperature CO oxidation in humid circumstances.

    PubMed

    Wang, Yongzhao; Wang, Yongning; Li, Xiao; Liu, Zhaotie; Zhao, Yongxiang

    2018-03-01

    Pd-Cu/palygorskite catalysts were prepared by a wet impregnation method using palygorskite (PC/N-Pal) and ultrasonic-treated palygorskite (PC/U-Pal) as the support. Their catalytic activities toward CO oxidation at room temperature and in humid circumstances were investigated. PC/U-Pal exhibits much higher catalytic activity and stability than PC/N-Pal under the conditions of 1.0 vol.% CO and 3.3 vol.% H 2 O in the feed gas. The X-ray diffraction results indicate that quartz impurities were eliminated from the Pal after the ultrasonic treatment, and more copper species exist in the form of Cu 2 Cl(OH) 3 in PC/U-Pal. The temperature-programmed reduction results suggest that there is an enhanced reducibility of PC/U-Pal after ultrasonic treatment. Furthermore, the ultrasonic treatment can properly decrease the hydrophilicity of the support and catalyst, which may also contribute to the excellent catalytic performance.

  8. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  9. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower crust is being exhumed. Additionally, IODP U1473A and ODP 1105A had similar correlation values of 0.11 (on a scale of -1 to 1), whereas ODP Hole 735B had double the correlation value of 0.24. Since ODP Hole 735B has older rocks than the other two holes, it may have recorded more deformation comparatively speaking.

  10. International Space Station Alpha trace contaminant control subassembly life test report

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    1995-01-01

    The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).

  11. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  12. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    PubMed Central

    Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.

    2012-01-01

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  13. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo2O4 for control of CO-CH4 emissions from CNG vehicles.

    PubMed

    Trivedi, Suverna; Prasad, Ram

    2018-03-01

    Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.

  14. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heatmore » and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.« less

  15. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  16. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.

  17. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  18. Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.

    1979-01-01

    An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.

  19. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  20. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  1. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  2. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  3. Conversion of 1,2-Propylene Glycol on Rutile TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Li, Zhenjun; Smith, R. Scott

    2014-07-17

    We have studied the reactions of 1,2-propylene glycol (1,2-PG), DOCH(CH3)CH2OD, on partially reduced, hydroxylated and oxidized TiO2(110) surfaces using temperature programmed desorption. On reduced TiO2(110), propylene, propanal, and acetone are identified as primary carbon-containing products. While the propylene formation channel dominates at low 1,2-PG coverages, all of the above-mentioned products are observed at high coverages. The carbon-containing products are accompanied by the formation of D2O and D2. The observation of only deuterated products shows that the source of hydrogen (D) is from the 1,2-PG hydroxyls. The role of bridging oxygen vacancy (VO) sites was further investigated by titrating them viamore » hydroxylation and oxidation. The results show that hydroxylation does not change the reactivity because the VO sites are regenerated at 500 K, which is a temperature lower than the 1,2-PG product formation temperature. In contrast, surface oxidation causes significant changes in the product distribution, with increased acetone and propanal formation and decreased propylene formation. Additionally D2 is completely eliminated as an observed product at the expense of D2O formation.« less

  4. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  5. Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Auping, J. V.

    2004-01-01

    Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms. COSP is a computer program that models the growth and spallation processes of cyclic oxidation on the basis of a few elementary assumptions that were discussed in COSP: A Computer Model of Cyclic Oxidation, Oxidation of Metals, vol. 36, numbers 1 and 2, 1991, pages 81-112. Inputs to the model include the selection of an oxidation-growth law and a spalling geometry, plus oxide-phase, growth-rate, cycle-duration, and spall-constant parameters. (The spalling fraction is often shown to be a constant factor times the existing amount of scale.) The output of COSP includes the net change in weight, the amounts of retained and spalled oxide, the total amounts of oxygen and metal consumed, and the terminal rates of weight loss and metal consumption.

  6. High temperature oxidation-resistant thruster research

    NASA Technical Reports Server (NTRS)

    Wooten, John R.; Lansaw, P. Tina

    1990-01-01

    A program was conducted for NASA-LeRC by Aerojet Propulsion Division to establish the technology base for a new class of long-life, high-performance, radiation-cooled bipropellant thrusters capable of operation at temperatures over 2200 C (4000 F). The results of a systematic, multi-year program are described starting with the preliminary screening tests which lead to the final material selection. Life greater than 15 hours was demonstrated on a workhorse iridium-lined rhenium chamber at chamber temperatures between 2000 and 2300 C (3700 and 4200 F). The chamber was fabricated by the Chemical Vapor Deposition at Ultramet. The program culminated in the design, fabrication, and hot-fire test of an NTO/MMH 22-N (5-lbF) class thruster containing a thin wall iridium-lined rhenium thrust chamber with a 150:1 area ratio nozzle. A specific impulse of 310 seconds was measured and front-end thermal management was achieved for steady state and several pulsing duty cycles. The resulting design represents a 20 second specific impulse improvement over conventional designs in which the use of disilicide coated columbium chambers limit operation to 1300 C (2400 F).

  7. Control For NO(x) Emissions From Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Marie E.

    2001-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote R&D that could contribute to solve the problems of air, soil and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phases 1 and 2 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the 10-week summer program. During this period, support has been given to implement the modifications suggested for Phase 3 of the project, which focus on oxidation reactions carried at lower temperatures using a microwave source. The redesign of the flue gas inlet and optimization for the scrubbing system was the main objective of this research.

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  10. Effects of Potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Kim, Do Heui

    2014-03-31

    The effects of K loading and thermal aging on the structural properties and high temperature performance of Pt/K/Al2O3 lean NOx trap (LNT) catalysts were investigated using in situ X-ray diffraction (XRD), temperature-programmed decomposition/desorption of NOx (NOx-TPD), transmission electron microscopy (TEM), NO oxidation and NOx storage tests. In situ XRD results demonstrate that KNO3 becomes extremely mobile on the Al2O3 surface, and experiences complex transformations between orthorhombic and rhombohedral structures, accompanied by sintering, melting and thermal decomposition upon heating. NOx storage results show an optimum K loading around 10% for the best performance at high temperatures. At lower K loadings wheremore » the majority of KNO3 stays as a surface layer, the strong interaction between KNO3 and Al2O3 promotes KNO3 decomposition and deteriorates high-temperature performance. At K loadings higher than 10%, the performance drop is not caused by NOx diffusion limitations as for the case of barium-based LNTs, but rather from the blocking of Pt sites by K species, which adversely affects NO oxidation. Thermal aging at 800 ºC severely deactivates the Pt/K/Al2O3 catalysts due to Pt sintering. However, in the presence of potassium, some Pt remains in a dispersed and oxidized form. These Pt species interact strongly with K and, therefore, do not sinter. After a reduction treatment, these Pt species remain finely dispersed, contributing to a partial recovery of NOx storage performance.« less

  11. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of thesemore » gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.« less

  12. Boiler materials for ultra-supercritical coal power plants - steamside oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Sarver, J.; Tanzosh, J.M.

    2006-06-15

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. Themore » third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.« less

  13. Boiler materials for ultra-supercritical coal power plants—Steamside oxidation

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Sarver, J.; Tanzosh, J. M.

    2006-06-01

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. The third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.

  14. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  15. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    NASA Astrophysics Data System (ADS)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  16. Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air: I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, N.; Shahid, K.A.; Rahman, S.

    1994-04-01

    Four commercial alloys - Hastelloy C-4, alloy 1.4306S (SS 304L), Incoloy 800H, and Incoloy 825 - were studied for their oxidation behavior at elevated temperatures. Specimens were exposed to air from 600 to 1200[degree]C for 1 to 400 hr. Reaction kinetics of oxidation were determined, and the morphology of the surface-oxide scales was investigated. Hastelloy C-4 showed better resistance to oxidation for exposure temperatures up to 1000[degree]C in comparison with the other three alloys. In this temperature range, it follows a cubic rate law of oxidation due to formation of uniform, protective, and adherent oxide scales. The latter three alloysmore » obeyed the parabolic rate law at 1000[degree]C and 1200[degree]C, but for lower temperatures a mixed behavior was shown. The oxide layer developed on the alloy 1.4306S was always in the form of stratified nodules/warts. For longer exposures the nodules joined each other to form continuous but discrete layers. Incoloy 800H and Incoloy 825 behaved in an almost identical manner, their reaction kinetics being governed by the parabolic rate law throughout the temperature range. Oxide spalling was observed at all temperatures. In contrast to Incoloy 800H the Incoloy 825 was totally oxidized for longer exposures at 1200[degree]C. 16 refs., 12 figs., 1 tab.« less

  17. Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace

    NASA Astrophysics Data System (ADS)

    Zhubrin, S.; Glazov, V.; Guzhov, S.

    2017-11-01

    A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.

  18. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  19. Continued development of abradable gas path seals. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1975-01-01

    Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.

  20. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    NASA Astrophysics Data System (ADS)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  1. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less

  2. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

    PubMed

    Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2014-01-28

    We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, M.S.; Antal, M.J. Jr.

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbonmore » mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.« less

  4. High temperature oxidation behavior of ODS steels

    NASA Astrophysics Data System (ADS)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  5. Time-resolved in situ XAS study of the preparation of supported gold clusters.

    PubMed

    Bus, Eveline; Prins, Roel; van Bokhoven, Jeroen A

    2007-07-07

    Incipient-wetness impregnation of gamma-Al(2)O(3) with HAuCl(4) and subsequent removal of chlorine with NaOH, and deposition-precipitation of HAuCl(4) on TiO(2) at pH 7 resulted in supported Au(3+) species. Time-resolved in situ XAS at the Au L(3) edge showed that the Al(2)O(3)-supported oxidic or hydroxidic species were reduced in hydrogen at 440 K to yield small metallic gold clusters. The Au(3+) precursor decomposed to metallic gold in inert atmosphere at 573 K and in oxidizing atmosphere above 623 K. In all atmospheres, initially small clusters were formed that gradually grew with increasing temperature. The TiO(2)-supported species were considerably less stable. In hydrogen and carbon monoxide, Au(0) clusters of 1 to 1.5 nm were formed at room temperature, which was the lowest temperature studied. In inert and oxidizing atmosphere, the Au(3+) precursor decomposed fully to metallic gold at 530 K, as shown by XAS and temperature-programmed experiments. Large clusters were obtained already in the initial stage of reduction. Residual chlorine inhibited the reduction and led to sintering of the gold clusters. Exposure of the TiO(2)-supported catalyst precursor to light or the X-ray beam led to partial reduction, and STEM showed that storage of the reduced gold clusters under ambient conditions led to agglomeration and bimodal cluster-size distributions.

  6. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.

  7. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.

    2013-02-01

    The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a

  8. Method for in-situ restoration of plantinum resistance thermometer calibration

    DOEpatents

    Carroll, Radford M.

    1989-01-01

    A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.

  9. Method for in-situ restoration of platinum resistance thermometer calibration

    DOEpatents

    Carroll, R.M.

    1987-10-23

    A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.

  10. Oxidation and low cycle fatigue life prediction

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1984-01-01

    When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours.

  11. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Treidel, L A; Carter, A W; Bowden, R M

    2016-02-01

    Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.

  12. New investigation of the isothermal oxidation of extra virgin olive oil: determination of free radicals, total polyphenols, total antioxidant capacity, and kinetic data.

    PubMed

    Amati, Lucia; Campanella, Luigi; Dragone, Roberto; Nuccilli, Adriano; Tomassetti, Mauro; Vecchio, Stefano

    2008-09-24

    As a follow-up of the research programs carried out by our group concerning the artificial isothermal rancidification process in extra virgin olive oil (EVOO), in the present work the trends of both the total antioxidant capacity and the total polyphenols concentration as well as the main kinetic parameters of the process during the thermal oxidation of EVOO were studied and compared. In addition, the possibility of evaluating the increase in radicals concentration during the thermal oxidation process using a superoxide dismutase biosensor was also studied. The present investigation concerning this important food product is highly topical as it refers to the state of alteration of the EVOO used for cooking or frying, as a function of the temperature reached.

  13. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  14. FLUIDS, LUBRICANTS, FUELS AND RELATED MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaus, E.E.; Fenske, M.R.; Tewksbury, E.J.

    1961-01-01

    Work was carried out on a continuing program to characterize the capabilities of hydraulic fluids, lubricants, and functional fluids for aeronautic and astronautic applications under extreme environmental conditions. The effects of solvent type and solvent to oil ratio on the deep dewaxing process are shown. The yield and viscosity-temperature properties of the deep dewaxed oil are related to the type and degree of refining of the mineral oil fraction. The preparation of large volumes of super-refined mineral oil formulations for ""mock-up'' testing is reponted. Extensive technical liaison on processing, properties, and application is discussed. Physical and chemical stability of basemore » stocks, additives, and finished hydraulic fluid and lubricant formulations after 5 to 17 years in storage is described. A sample of hydraulic fluid taken from the "Lady Be Good" B-25 Bomber after 16 years in the North African desert is discussed. The design, construction, and preliminary testing of a versatile capillary pressure viscometer is reported. The use of this viscometer to measure the effect of gas solubility on viscosity and the analysis of flow profile in a capillary viscometer are discussed. The use of the pressure unit with a modified Lipkin pycnometer for the measure of bulk modulus is suggested. The thermal stability of esters is contrasted and compared as a function of chemical structure. Quantitative evaluations of the gas produced and the liquid phase are used to illustrate the effect of metal catalysts. The effects of fluid type, viscosity, vapor pressure, oxidation mechanism, oxidation inhibitor, and gaseous environment on evaporation are presented. The use of evaporation tests in studying the mechanism of oxidation is suggested. The relative lubricity properties of a series of high-temperature-bearing materials are reported. The relative effects of fluid volatility on lubricity are discussed. The similarities between high-temperature and the lowtemperatare lubricity properties of the residual fluids after high-temperature oxidation and thermal tests are pointed out. The wear properties of mineral oils and esters with and without lubricity additives are compared and contrasted with silicons and silicate fluids at 167 to 700 deg F. A simple, versatile, quantitative oxidation test is described for use with a variety of high-temperature oxidation tests. (auth)« less

  15. Effect of pretreatment on a platinized tin oxide catalyst used for low-temperature CO-oxidation

    NASA Technical Reports Server (NTRS)

    Drawdy, Jean E.; Hoflund, Gar B.; Gardner, Steven D.; Yngvadottir, Eva; Schryer, David R.

    1990-01-01

    A commercial platinized tin oxide catalyst used for low-temperature CO oxidation has been characterized using ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES) and Electron Spectroscopy for Chemical Analysis (ESCA) before and after reduction in 40 Torr of CO for 1 hour at various temperatures from 75 to 175 C. The reduction results in loss of surface oxygen, formation of metallic tin, conversion of platinum oxides to Pt-O-Sn and Pt(OH)2 and a small amount of metallic Pt which alloys with the tin. These results should be useful in understanding how the pretreatment temperature affects the catalytic activity of platinized tin oxide toward CO oxidation.

  16. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Hawk, J.; Schwant, R.

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that needmore » to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.« less

  17. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  18. Effects of Soot Structure on Soot Oxidation Kinetics

    DTIC Science & Technology

    2011-06-01

    information from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of...from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of temperature, O2, and...systematic studies of these effects under the temperatures and times of interest to soot oxidation in gas turbine engines. Studies have shown that soot

  19. Interface Engineering with MoS2 -Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory.

    PubMed

    Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling

    2018-01-01

    Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  1. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Terrani, Kurt A.

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  4. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C. Y.

    1977-01-01

    A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance.

  5. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  6. Fabrication of InGaZnO Nonvolatile Memory Devices at Low Temperature of 150 degrees C for Applications in Flexible Memory Displays and Transparency Coating on Plastic Substrates.

    PubMed

    Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin

    2016-05-01

    We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.

  7. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (<700 K) air oxidation related to fuel storage or high-temperature (>1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  8. Computational and Physical Analysis of Catalytic Compounds

    NASA Astrophysics Data System (ADS)

    Wu, Richard; Sohn, Jung Jae; Kyung, Richard

    2015-03-01

    Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Y.F.; Thomas, K.M.

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved inmore » the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.« less

  10. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    PubMed

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  11. Oxidation of U-20 at% Zr alloy in air at 423 1063 K

    NASA Astrophysics Data System (ADS)

    Matsui, Tsuneo; Yamada, Takanobu; Ikai, Yasushi; Naito, Keiji

    1993-01-01

    The oxidation behavior of U 0.80Zr 0.20 alloy (two-phase mixture of U and UZr 2 below 878 K and single solid solution above 1008 K) was studied by thermogravimetry in the temperature range from 423 to 1063 K in air. During oxidation in the low temperature region (423-503 K), the sample kept its initial shape (a rectangular rod) and the surface of the sample was covered by a black thin adherent UO2 + x oxide layer. On the other hand, by oxidation in the middle temperature region, the sample broke to several pieces of thin plates and blocks, and fine powder at 643-723 K and entirely to fine powder at 775-878 K, all of which were analyzed to be a mixture of U 3O 8 and ZrO 2. By oxidation in the high temperature region (1008-1063 K) the sample broke to very fine powder, which consisted of U 3O 8 and ZrO 2. Based on the sample shape, the oxide phase identified after oxidation and the slope value of the bilogarithmic plots of the weight gain against time, the oxidation kinetics was analyzed with a paralinear equation in the low temperature region below 503 K and a linear equation in the middle and high temperature regions above 643 K. Oxidation rates of U 0.80Zr 0.20 (two-phase mixture) in the low and middle temperature regions were smaller than those of uranium metal. A discontinuity in the plot of the linear oxidation rate constant versus reciprocal temperature was found to be present between 723 and 838 K, similarly to the case of uranium metal previously reported. The linear rate constants of single-phase solid solution in the high temperature region above 1008 K seemed to be a little smaller than those estimated by the extrapolation of the values in the middle temperature region.

  12. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  13. Eutectic superalloys strengthened by sigma, Ni3CB lamellae and gamma prime, Ni3Al precipitates

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.

    1973-01-01

    By means of a screening and solidification optimization study of certain alloys located on the gamma-sigma liquidus surface within the Ni-Cb-Cr-Al system, alloys with high temperature properties superior to those of all known superalloys were defined. One alloy, Ni - 19.7w/o Cb - 6.0w/o Cr - 2.5w/o Al, directionally solidified at 3 cm/hr met or exceeded each program goal. A second alloy, Ni-21.75 w/o Cb-2.55 w/o Al, although deficient in its inherent oxidation resistance, met the other program goals and combined a remarkable insensitivity of composite microstructure to solidification parameters with excellent low temperature toughness. This investigation demonstrated that useful properties for gas turbine airfoil application have been achieved by reinforcing a strong and tough gamma solid solution matrix containing precipitated gamma prime by a lamellar intermetallic compound Ni3 Cb having greater strength at elevated temperature.

  14. Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations.

    PubMed

    Weon, S Y; Lee, S I; Koopman, B

    2004-11-01

    Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.

  15. Dynamic investigation of the role of the surface sulfates in NO{sub x} reduction and SO{sub 2} oxidation over V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orsenigo, C.; Lietti, L.; Tronconi, E.

    1998-06-01

    Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less

  16. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE PAGES

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon; ...

    2017-10-20

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  17. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  18. Structural & oxidation behavior of TiN & AlxTi1-xN coatings deposited by CA-PVD technique

    NASA Astrophysics Data System (ADS)

    Thorat, Nirmala; Mundotia, Rajesh; Varma, Ranjana; Kale, Ashwin; Mhatre, Umesh; Patel, Nainesh

    2018-04-01

    Coatings with thermal stability at elevated temperatures are prerequisite for various high speed machining and high temperature applications. The present work compares the oxidation behavior of the AlxTi1-xN coating prepared with different Al composition. Coated samples were tested at different temperatures in the range of 400 - 800 C to study their oxidation behavior. Percentage weight gain of all the samples were evaluated using high accuracy weighing balance. The depth of oxide layers were studied using Calo-test instrument. The XRD analysis was carried out to specify the phase structure. Higher oxidation rate was observed for TiN coating at all the oxidation temperatures. Oxidation rate was higher for Al13Ti87N and Al70Ti30N coatings compared to Al60Ti40N and Al50Ti50N coatings which exhibits better oxygen diffusion barrier at all the temperature.

  19. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Washton, Nancy M.; Wang, Yilin

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation,more » ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  20. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  1. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation.

    PubMed

    Do, Hyojin; Lim, Juntaek; Shin, Seung Gu; Wu, Yi-Ju; Ahn, Johng-Hwa; Hwang, Seokhwan

    2008-11-01

    For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.

  2. NO 2 oxidation reactivity and burning mode of diesel particulates

    DOE PAGES

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; ...

    2016-03-24

    The NO 2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O 2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activationmore » energy measured, specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO 2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O 2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  3. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  4. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature

    NASA Astrophysics Data System (ADS)

    Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue

    2018-04-01

    High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.

  5. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    PubMed

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  7. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  8. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...

  9. 40 CFR 63.4967 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...

  10. 40 CFR 63.4967 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...

  11. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...

  12. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  13. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less

  14. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Progress in the utilization of an oxide-dispersion-strengthened alloy for small engine turbine blades

    NASA Technical Reports Server (NTRS)

    Beatty, T. G.; Millan, P. P.

    1984-01-01

    The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.

  16. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  17. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less

  18. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  19. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirablemore » and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic regime. At temperatures below 1173 K, the rate of oxidation of the Inconel 718 surface was found to decrease markedly with time; the parabolic oxidation rate coefficient was not a constant but decreased with time. This was taken to indicate that the oxide film on the surface was having a passivating effect on oxygen transport through the oxide to the underlying metal. For temperatures in the range 1173 K to 1573 K, the time-dependent rate of oxidation as determined once again by weight-gain measurements was found to display the classical parabolic rate behavior, indicating that the rate of transport of reactants through the oxide was controlled by diffusion through the growing oxide layer. Parabolic rate coefficients were determined by least-squares analysis of time-dependent mass-gain data at 1173 K, 1273 K, 1373 K, 1473 K and 1573 K. At temperatures above 1540 K, post test examination of the oxidized samples revealed that the Inconel 718 began to lose strength and to deform. At 1540 K, samples which were suspended from their ends during testing began to demonstrate axial curvature as they lost strength and bowed under their own weight. As the temperatures of the tests were increased, rivulets were seen to appear on the surfaces of the test specimens; damage became severe at 1560 K. Although melting was never observed in any of these tests even up to. 1620 K, it was concluded from these data that the Inconel 718 clad should not be expected to protect the underlying tungsten at temperatures above 1540 K.« less

  20. X-ray photoelectron spectroscopy study of the stability of Fomblin Z25 on the native oxide of aluminum

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.

    1992-01-01

    Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum, and onto sapphire surfaces, and their behavior at different temperatures was studied using X-ray photoelectron spectroscopy and temperature desorption spectroscopy (TDS). The interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on the clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. The native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At higher temperatures (150 C), degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formation of a debris layer.

  1. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  2. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE PAGES

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.; ...

    2014-10-29

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  3. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  4. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    NASA Astrophysics Data System (ADS)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  5. 40 CFR 63.361 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oxidation control device or at the exhaust point from the combustion chamber of a thermal oxidation control... scrubber achieves at least 99-percent control of ethylene oxide emissions. Oxidation temperature means the temperature at the outlet point of a catalytic oxidation unit control device or at the exhaust point from the...

  6. Oxidation characteristics of MgF2 in air at high temperature

    NASA Astrophysics Data System (ADS)

    Chen, H. K.; Jie, Y. Y.; Chang, L.

    2017-02-01

    High temperature oxidation properties of MgF2 in air were studied. The changes of phase composition, macro surface morphology, weight and elemental composition of MgF2 samples with temperature were investigated by using XRD, EDS and gravimetric analyses. The results show that the oxidation reaction of MgF2 converted to MgO occurred at high temperature, and the reaction was accelerated by the increase of temperature and the presence of impurities. This result clarifies the understanding of the high temperature oxidation behavior of MgF2 in air, and provides a theoretical basis for the reasonable application of MgF2 in optical coating materials, electronic ceramic materials and magnesium melt protection.

  7. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state: CLOUD ACTIVATION BY AGED ORGANIC AEROSOL

    DOE PAGES

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...

    2017-02-04

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less

  8. Ultrasonic Al₂O₃ Ceramic Thermometry in High-Temperature Oxidation Environment.

    PubMed

    Wei, Yanlong; Gao, Yubin; Xiao, Zhaoqian; Wang, Gao; Tian, Miao; Liang, Haijian

    2016-11-11

    In this study, an ultrasonic temperature measurement system was designed with Al₂O₃ high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C-1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.

  9. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  10. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B.

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  11. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.

  12. A measurement system of high-temperature oxidation environment with ultrasonic Ir0.6Rth0.4 alloy thermometry.

    PubMed

    Wei, Yanlong; Wang, Gao; Gao, Yubin; Liu, Zhengguang; Xu, Lin; Tian, Miao; Yuan, Dongfang; Ren, Haiping; Zhou, Hanchang; Yang, Lu; Shi, Xueshun; Xiao, Zhaoqian

    2018-04-03

    Iridium-rhodium is generally applied as a thermocouple material, with max operating temperature about 2150 °C. In this study, a ultrasonic temperature measurement system was designed by using Iridium-rhodium (60%Ir-40%Rh) alloy as an acoustic waveguide sensor material, and the system was preliminarily tested in a high-temperature oxidation environment. The result of ultrasonic temperature measurement shows that this system can indeed work stably in high-temperature oxidation environments. The relationship between temperature and delay time of ultrasonic thermometry up to 2200 °C was illustrated. Iridium-rhodium materials were also investigated in order to fully elucidate the proposed waveguide sensor's performance in a high-temperature oxidation environment. This system lays a foundation for further application of high-temperature measurement. Copyright © 2018. Published by Elsevier B.V.

  13. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    NASA Technical Reports Server (NTRS)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  14. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration.

    PubMed

    Avrahami, Sharon; Bohannan, Brendan J M

    2007-02-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.

  15. Response of Nitrosospira sp. Strain AF-Like Ammonia Oxidizers to Changes in Temperature, Soil Moisture Content, and Fertilizer Concentration▿

    PubMed Central

    Avrahami, Sharon; Bohannan, Brendan J. M.

    2007-01-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature. PMID:17158615

  16. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Wang, Ting; Zhu, Li; Jia, Ai-Pin; Lu, Ji-Qing; Luo, Meng-Fei

    2018-06-01

    A Pt catalyst supported on CuO-CrOx composite oxide (Pt/CuCrOx) was prepared and tested for CO oxidation in the presence of CO2 and H2O. It was found that the catalyst was stable in the realistic reaction conditions and the catalytic activity was improved in the presence of CO2 and H2O compared to that in dry condition. Kinetic investigation and temperature - programmed desorption of CO results revealed that the addition of CO2 in the feed resulted in the competitive adsorption of CO/CO2 and the formation of surface carbonate species, which consequently deactivated the catalyst. In contrast, although the presence of H2O also inhibited the adsorption of CO, the possible formation of surface hydroxyl groups may trigger a new and more facile reaction route for CO oxidation, which could explain the promoting effect of H2O. Therefore, the current findings makes the catalyst promising in CO oxidation under realistic reaction conditions.

  18. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Stephen S.; White, Josh; Hosemann, Peter

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  19. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE PAGES

    Parker, Stephen S.; White, Josh; Hosemann, Peter; ...

    2017-11-03

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  20. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    NASA Astrophysics Data System (ADS)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  1. Critical temperature determination of detectable Cr diffusion enhancement by nanostructure through structural evolution analysis of the oxide films at 25-450 °C on 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Gui, Y.; Meng, X. B.; Zheng, Z. J.; Gao, Y.

    2017-10-01

    The structural evolution of the oxide films at 25-450 °C on nanocrystalline (NC) and coarse crystalline (CC) 304 stainless steels (SS) was investigated. The structure of the oxide film on both NC and CC SSs was observed to undergo transient processes from a bi-layer to a single-layer and then back to a bi-layer when the temperature changed from the low range (25-150 °C) to the medium range (150-300 °C) and subsequently to the high range (300-450 °C), respectively. These formation mechanisms of the oxide films on SS were attributed to the different diffusion properties of Cr and Fe in the three temperature ranges. The thickness of the oxide films was similar between the NC and CC SSs below 300 °C due to their similar Crox/Feox concentration ratios in their oxide films at this temperature. Above 300 °C, Cr diffusion enhancement in the NC matrix led to a higher Crox/Feox ratio and better compactness of the oxide film, which resulted in a slower atomic diffusion rate in the oxide film and a thinner oxide film. Therefore, the temperature of 300 °C was concluded to be the critical temperature of the detectable Cr diffusion enhancement in the NC SS compared to the CC SS.

  2. An Overview of INEL Fusion Safety R&D Facilities

    NASA Astrophysics Data System (ADS)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demicheli, M.C.; Duprez, D.; Barbier, J.

    The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formationmore » of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.« less

  4. Effect of flame stabilizer design on performance and exhaust pollutants of a two-row 72-module swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Biaglow, J. A.; Trout, A. M.

    1976-01-01

    A test program was conducted to evaluate the effects of four flame stabilizer designs on the performance and gaseous pollutant levels of an experimental full-annular swirl-can combustor. Combustor operating parameters, including inlet-air temperature, reference velocity, and fuel-air ratio, were set to simulate conditions in a 30:1 pressure ratio engine. Combustor inlet total pressure was held constant at 6 atm due to the facility limit. Combustor performance and gaseous pollutant levels were strongly affected by the geometry and resulting total pressure loss of the four flame stabilizer designs investigated. The addition of shrouds to two designs produced an 18 to 22% decrease in the combustion chamber pressure loss and thus resulted in doubling the exit temperature pattern factor and up to 42% higher levels of oxides of nitrogen. A previously developed oxides of nitrogen correlating parameter agreed with each model within an emission index of plus or minus 1 but was not capable of correlating all models together.

  5. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    NASA Astrophysics Data System (ADS)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  6. Auger electron spectroscopy and depth profile study of oxidation of modified 440C steel

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1974-01-01

    Auger electron spectroscopy (AES) and sputtering were used to study selective oxidation of modified 440C steel. The sample was polycrystalline. Oxidation was performed on initially clean surfaces for pressures ranging from 1 x 10 to the minus 7th power to 1 x 10 to the minus 5th power torr and temperatures ranging from room temperature to 800 C. AES traces were taken during oxidation. In situ sputtering depth profiles are also obtained. A transition temperature is observed in the range 600 to 700 C for which the composition of the outer surface oxide changed from iron oxide to chromium oxide. Heating in vacuum about 5 x 10 to the minus 10 power torr to 700 C causes conversion of the iron oxide surface to chromium oxide.

  7. Studies on in-vessel debris coolability in ALPHA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heatedmore » vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.« less

  8. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke

    NASA Astrophysics Data System (ADS)

    Xie, Yine; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Zeng, Guangming; Zhang, Xunan; Zhang, Wei; Tao, Shasha

    2015-04-01

    Mn-Ce mixed oxides supported on commercial columnar activated coke (MnCe/AC) were employed to remove elemental mercury (Hg0) at low temperatures (100-250 °C) without the assistance of HCl in flue gas. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Effects of some factors, including Mn-Ce loading values, active component, reaction temperatures and flue gas components (O2, SO2, NO, H2O), on Hg0 removal efficiency were investigated. Results indicated that the optimal Mn-Ce loading value and reaction temperature were 6% and 190 °C, respectively. Considerable high Hg0 removal efficiency (>90%) can be obtained over MnCe6/AC under both N2/O2 atmosphere and simulated flue gas atmosphere at 190 °C. Besides, it was observed that O2 and NO exerted a promotional effect on Hg0 removal, H2O exhibited a suppressive effect, and SO2 hindered Hg0 removal seriously when in the absence of O2. Furthermore, the XPS spectra of Hg 4f and Hg-TPD results showed that the captured mercury were existed as Hg0 and HgO on the MnCe6/AC, and HgO was the major species, which illustrated that adsorption and catalytic oxidation process were included for Hg0 removal over MnCe6/AC, and catalytic oxidation played the critical role. What's more, both lattice oxygen and chemisorbed oxygen or OH groups on MnCe6/AC contributed to Hg0 oxidation. MnCe6/AC, which exhibited excellent performance on Hg0 removal in the absence of HCl, appeared to be promising in industrial application, especially for low-rank coal fired flue gas.

  9. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  10. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  11. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  12. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.

  13. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  14. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments

    NASA Astrophysics Data System (ADS)

    Jian, Li; Jian, Pu; Jianzhong, Xiao; Xiaoliang, Qian

    Haynes 230 alloy was exposed to reducing and oxidizing environments at 750 °C for 1000 h, simulating the conditions in a reduced temperature solid oxide fuel cell (SOFC). The oxidized specimens were characterized in terms of the oxide morphology, composition and crystal structure. The oxide scale in each environment was identified as Cr 2O 3 with the existence of Cr 2MnO 4. Ni remained metallic in the reducing atmosphere, and NiO was detected in the sample exposed to air. The oxide scale is around 1 μm thick after 1000 h of oxidation in both situations. The area specific resistance (ASR) contributed by the oxide scale is expected less than 0.1 Ω cm 2 after 40,000 h of exposure when a parabolic oxide growth rate is assumed, demonstrating the suitability of the interconnect application of this alloy in the reduced temperature SOFCs.

  15. Structural and semiconductor-to-metal transitions of double-perovskite cobalt oxide Sr2-xLaxCoTiO6-δ with enhanced thermoelectric capability

    NASA Astrophysics Data System (ADS)

    Sugahara, Tohru; Ohtaki, Michitaka

    2011-08-01

    The thermoelectric properties of double-perovskite oxide Sr2-xLaxCoTiO6-δ were revealed to vary anomalously with the La concentration, plausibly due to a structural transition found in this study. Although the temperature dependence of the resistivity and thermopower of the present oxide showed a semiconductor-to-metal transition similar to those observed for other perovskite-related Co oxides such as Sr1-xYxCoO3-δ, the transition temperature was more than 350 K higher, implying considerable stabilization of the low-spin state of Co ions in the double-perovskite oxide. Consequently, the operating temperature range of the oxide for potential thermoelectric applications was significantly expanded toward higher temperatures.

  16. Numerical Research of Nitrogen Oxides Formation for Justification of Modernization of P-49 Nazarovsky State District Power Plant Boiler on the Low-temperature Swirl Technology of Burning

    NASA Astrophysics Data System (ADS)

    Trinchenko, A. A.; Paramonov, A. P.; Skouditskiy, V. E.; Anoshin, R. G.

    2017-11-01

    Compliance with increasingly stringent normative requirements to the level of pollutants emissions when using organic fuel in the energy sector as a main source of heat, demands constant improvement of the boiler and furnace equipment and the power equipment in general. The requirements of the current legislation in the field of environmental protection prescribe compliance with established emission standards for both new construction and the improvement of energy equipment. The paper presents the results of numerical research of low-temperature swirl burning in P-49 Nazarovsky state district power plant boiler. On the basis of modern approaches of the diffusion and kinetic theory of burning and the analysis physical and chemical processes of a fuel chemically connected energy transition in thermal, generation and transformation of gas pollutants, the technological method of nitrogen oxides decomposition on the surface of carbon particles with the formation of environmentally friendly carbonic acid and molecular nitrogen is considered during the work of low-temperature swirl furnace. With the use of the developed model, methodology and computer program, variant calculations of the combustion process were carried out and a quantitative estimate of the emission level of the nitrogen oxides of the boiler being modernized. The simulation results the and the experimental data obtained during the commissioning and balance tests of the P-49 boiler with a new furnace are confirmed that the organization of swirl combustion has allowed to increase the efficiency of work, to reduce slagging, to significantly reduce nitrogen oxide emissions, to improve ignition and burnout of fuel.

  17. Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagani, K.; Bhattacharya, A.; Kaur, J.

    In this report, we present the temperature dependence of the magnetic coercivity of graphene oxide (GO) and reduced graphene oxide (RGO). We observe an anomalous decrease in coercivity of GO and RGO with decreasing temperature. The observation could be understood by invoking the inherent presence of wrinkles on graphene oxide due to presence of oxygen containing groups. Scanning electron microscopic image reveals high wrinkles in GO than RGO. We observe higher coercivity in RGO than in GO. At room temperature, we observe antiferromagnetic and ferromagnetic behaviours in GO and RGO, respectively. Whereas, at low temperatures (below T = 60–70 K), both materials showmore » paramagnetic behaviour.« less

  18. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joana; Diniz, Mário S

    2014-06-01

    Oxidative stress biomarkers have been widely used in the development of ecological indices and in the assessment of exposure of aquatic organisms to contaminants from agricultural, industrial and urban pollution. However, temperature is known to also have a significant effect on oxidative stress biomarkers. This way, temperature is a confounding factor that may result in difficulties in the interpretation of oxidative stress biomarkers response patterns. Since climate change is expected to result in more frequent and intense heat wave events it is pertinent to investigate the effect of increasing temperature in the oxidative stress response of common aquatic organisms. It is also important to assess the differential response of different body tissues, given that they are differently exposed to temperature depending on their location and physiological function. This study investigates the effect of increasing temperature (20 °C-34 °C) in the response of multiple biomarkers of oxidative stress: lipid peroxidation, glutathione-S-transferase, superoxide dismutase and catalase activities, in the muscle, liver and gills of a common coastal fish, the Rock goby, Gobius paganellus. The response of the oxidative stress biomarkers analysed were always higher in the gills than in the other tissues. Muscle generally presented the lower levels of any of the biomarkers tested when compared to other tissues. Nevertheless, muscle tissue always responded significantly to temperature, as did the liver, while the gills were unresponsive in terms of lipid peroxidation and glutathione-S-transferase. Unresponsive tissues to temperature may be particularly interesting as indicators of pollution, given that temperature will not be a confounding variable in their oxidative stress response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    PubMed

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  20. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  1. In situ X-ray absorption fine structure analysis of redox reactions of nickel species with variable particle sizes supported on silica

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yusaku; Suzuki, Atsushi; Tsutsumi, Naoki; Katagiri, Masaki; Yamashita, Shohei; Niwa, Yasuhiro; Katayama, Misaki; Inada, Yasuhiro

    2018-02-01

    The chemical states of Ni species were systematically investigated using an in situ XAFS technique for a series of SiO2-supported Ni catalysts with different Ni particle sizes. The Ni particles were refined by varying the Ni loading in the range between 0.10 and 5 wt% and by adding citric acid into the precursor solution. An in situ observation cell for fluorescence-yield XAFS measurements was developed for the dilute Ni catalysts. The chemical state of the supported Ni species converted between Ni(0) and NiO, and no other stable species were formed during the temperature-programmed oxidation and reduction processes. Refinement of the Ni particles resulted in decreasing the oxidation temperature and increasing the reduction temperature. These shifts were explained by the affinity of NiO to SiO2, and more effective stabilization was thus anticipated for flattened small NiO particles with an increased contact area. In addition, the inhomogeneous distribution of small Ni particles observed for dilute catalysts was explained in terms of the precursor solution volume when nuclei of the precursor compound precipitated on SiO2 during the drying process.

  2. Nitric oxide synthetic capacity in relation to dialysate temperature.

    PubMed

    Beerenhout, Charles H; Noris, Marina; Kooman, Jeroen P; Porrati, Francesca; Binda, Elena; Morigi, Marina; Bekers, Otto; van der Sande, Frank M; Todeschini, Marta; Macconi, Daniela; Leunissen, Karel M L; Remuzzi, Giuseppe

    2004-01-01

    During hemodialysis, vascular reactivity is impaired, which can be corrected by lowering dialysate temperature. It has also been shown that nitric oxide (NO) is related to intradialytic hypotension. As NO synthesis may be temperature-dependent, this study addressed the influence of dialysate temperature on the NO synthetic capacity of plasma. NO synthetic capacity was studied during hemodialysis with a dialysate temperature of 37.5 degrees C (dialysis-37.5 degrees C) and programmed extracorporeal blood cooling (cool dialysis; Blood Temperature Monitor; Fresenius C) in 12 stable patients. NO synthetic capacity was assessed ex vivo by [3H]L-citrulline formation from [3H]L-arginine in cultured endothelial cells after incubation with plasma samples obtained during the respective sessions. Core temperature decreased (-0.32 +/- 0.10 degrees C) and energy transfer rate was significantly lower (-27.5 +/- 2.8 W; p < 0.05) during cool dialysis compared to dialysis-37.5 degrees C (0.19 +/- 0.06 degrees C and -0.8 +/- 1.2 W respectively; p < 0.05). Systolic blood pressure decreased during dialysis-37.5 degrees C (-19 +/- 4 mm Hg; p < 0.05), but not during cool dialysis (-6 +/- 5 mm Hg). NO synthetic capacity increased during dialysis-37.5 degrees C (55.5 +/- 9.3 to 73.5 +/- 10.2 pmol/10(5) cells; p < 0.05), in contrast to cool dialysis (67.3 +/- 11.1 to 66.2 +/- 10.8 pmol/10(5) cells). The stimulatory effect of uremic plasma on endothelial NO synthesis was augmented during dialysis-37.5 degrees C but not during cool dialysis. Copyright 2004 S. Karger AG, Basel

  3. Defense Coastal/Estuarine Research Program (DCERP) Baseline Monitoring Plan

    DTIC Science & Technology

    2007-09-19

    climatological stress (e.g., temperature, drought) and shorter-term air pollutant stress (oxidants and metals ). Heavy metals of fine PM have been...speciation of the fine and coarse PM fractions will allow distinction between different PM sources such as wind blown soil dust, including dust...emitting 12% of the total PM2.5 mass (U.S. EPA, 2004b). Source apportionment modeling of PM2.5 mass concentrations from 24 Speciation Defense Coastal

  4. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S

    2014-04-01

    Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of rigor temperature, ageing and display time on the meat quality and lipid oxidative stability of hot boned beef Semimembranosus muscle.

    PubMed

    Mungure, Tanyaradzwa E; Bekhit, Alaa El-Din A; Birch, E John; Stewart, Ian

    2016-04-01

    The effects of rigor temperature (5, 15, 20 and 25°C), ageing (3, 7, 14, and 21 days) and display time on meat quality and lipid oxidative stability of hot boned beef M. Semimembranosus (SM) muscle were investigated. Ultimate pH (pH(u)) was rapidly attained at higher rigor temperatures. Electrical conductivity increased with rigor temperature (p<0.001). Tenderness, purge and cooking losses were not affected by rigor temperature; however purge loss and tenderness increased with ageing (p<0.01). Lightness (L*) and redness (a*) of the SM increased as rigor temperature increased (p<0.01). Lipid oxidation was assessed using (1)H NMR where changes in aliphatic to olefinic (R(ao)) and diallylmethylene (R(ad)) proton ratios can be rapidly monitored. R(ad), R(ao), PUFA and TBARS were not affected by rigor temperature, however ageing and display increased lipid oxidation (p<0.05). This study shows that rigor temperature manipulation of hot boned beef SM muscle does not have adverse effects on lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Cox, David F.

    2018-09-01

    The oxidation of clean and Na precovered MnO(100) has been investigated by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD) of adsorbed water. XPS results indicate that Mn3O4-like and Mn2O3-like surfaces can be formed by various oxidation treatments of clean and nearly-stoichiometric MnO(100), while a NaMnO2-like surface can be produced by the oxidation of MnO(100) pre-covered with multilayers of metallic Na. Water TPD results indicate that water adsorption/desorption is sensitive to the available oxidation states of surface Mn cations, and can be used to distinguish between surfaces exposing Mn2+and Mn3+ cations, or a combination of these oxidation states. Carbon dioxide and water TPD results from the NaMnO2-like surface indicate that pre-adsorbed water blocks the uptake of CO2, while water displaces pre-adsorbed CO2. No indication of a strong reactive interaction is observed between CO2, water and the NaMnO2-like surface under the conditions of our study.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  8. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  9. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Technical Reports Server (NTRS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-01-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  10. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followedmore » by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.« less

  11. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  12. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  13. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  14. Methanol oxidation on stoichiometric and oxygen-rich RuO2(110).

    PubMed

    Rai, Rahul; Weaver, Jason F

    2017-07-26

    We used temperature-programmed reaction spectroscopy (TPRS) to investigate the adsorption and oxidation of methanol on stoichiometric and O-rich RuO 2 (110) surfaces. We find that the complete oxidation of CH 3 OH is strongly preferred on stoichiometric RuO 2 (110) during TPRS for initial CH 3 OH coverages below ∼0.33 ML (monolayer), and that partial oxidation to mainly CH 2 O becomes increasingly favored with increasing CH 3 OH coverage from 0.33 to 1.0 ML. We present evidence that an adsorbed CH 2 O 2 species serves as the key intermediate to complete oxidation and that CH 2 O 2 formation is intrinsically facile but becomes limited by the availability of bridging O-atoms on stoichiometric RuO 2 (110) at initial CH 3 OH coverages above 0.33 ML. We show that methanol molecules adsorbed in excess of 0.33 ML dehydrogenate to mainly CH 2 O and desorb during TPRS, with adsorbed CH 3 O groups mediating the evolution of both CH 2 O and CH 3 OH. We find that O-rich RuO 2 (110) surfaces are also highly active toward methanol oxidation and that selectivity toward the complete oxidation of methanol increases markedly with increasing coverage of on-top O-atoms (O ot ) on RuO 2 (110). Our results demonstrate that CH 3 OH species adsorbed within O ot -rich domains react efficiently during TPRS, in parallel with reaction of CH 3 OH adsorbed initially on cus-Ru sites. The data suggests that the facile hydrogenation of O ot atoms and the resulting desorption of H 2 O at low-temperature (<∼400 K) provides an efficient pathway for restoring reactive O-atoms and thereby promoting complete oxidation of methanol on the O-rich RuO 2 (110) surface.

  15. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  16. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  17. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  18. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  19. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    PubMed

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  20. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures

    PubMed Central

    Wang, Zhong-hua; Gao, Xing-cun; Liu, Cheng-hao; Qi, Han-bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100–500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300–500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption. PMID:29668672

  1. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  2. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  3. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  4. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    NASA Astrophysics Data System (ADS)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  5. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  6. Effect of dietary restriction on sperm characteristic and oxidative status on testicular tissue in young rats exposed to long-term heat stress.

    PubMed

    Aydilek, N; Varisli, O; Kocyigit, A; Taskin, A; Kaya, M S

    2015-11-01

    This study was conducted to evaluate the effects of dietary restriction on oxidative status and sperm parameters in rats exposed to long-term heat stress. Forty healthy Sprague-Dawley rats, aged 2.5 month, were divided into four groups of 10 with respect to feeding and temperature regimen (room temperature (22 °C)-ad libitum, room temperature-dietary restriction (40%), high temperature (38 °C)-ad libitum, high temperature-dietary restriction). At the end of the 9th week, some oxidants (lipid hydroperoxide, total oxidant status, oxidative stress index) and antioxidants (total antioxidant status, sulfhydryl groups, ceruloplasmin, paraoxonase and arylesterase activities) were measured in the testis tissue. The concentration, motility, volume, abnormal sperm count, acrosome and membrane integrity of epididymal spermatozoon and intratesticular testosterone levels were evaluated. High temperature did not change oxidative and antioxidative parameters except for sulfhydryl groups and ceruloplasmin, yet it impaired all sperm values. Neither sperm values nor oxidative status apart from sulfhydryl groups, ceruloplasmin and arylesterase was affected by dietary restriction in the testis tissue. These results suggest that long-term heat stress does not have a significant effect on testicular oxidative status, while the spermatozoa are sensitive to heat stress in young rats. Dietary restriction failed to improve the sperm quality and oxidative status except some individual antioxidant parameters; conversely, it decreased intratesticular testosterone level in the young rats exposed to long-term heat stress. © 2014 Blackwell Verlag GmbH.

  7. Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.

    2017-04-01

    Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.

  8. Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength

    DOE PAGES

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...

    2017-01-01

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  9. Transformation toughened ceramics for the heavy duty diesel engine technology program

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.

    1984-01-01

    The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.

  10. New method of metallization for silicon solar cells. First quarterly report, December 15, 1978-March 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, M.

    1979-01-01

    The objective of this program is to develop a low-cost ohmic contact on silicon solar cells based on molybdenum tin metal system. The approach is based on the formulation of a screenable ink composed from molybdenum oxide and tin mixture. The first quarter of this program involved the study of the reduction of MoO/sub 3/ into Mo and the establishing of MoO/sub 3/:Sn ratio. Both tasks have been done in an experimental station constructed for this purpose. The results showed that molybdenum was formed from its oxide at 800/sup 0/C and improved in bonding to silicon at 900/sup 0/C. Amore » 20% MoO/sub 3/-80% Sn mixture was converted into a metallic coating within this temperature range. The next quarter will be concerned with the formulation of screenable ink, calibration of a tube furnace for the firing cycle and evaluation of the metal contact on solar cell structures.« less

  11. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  12. The reduction of nitric oxide by ammonia over polycrystalline platinum model catalysts in the presence of oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katona, T.; Guczi, L.; Somorjai, G.A.

    1992-06-01

    The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less

  13. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  14. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. XPS studies of UO 2 oxidation by alpha radiolysis of water at 100°C

    NASA Astrophysics Data System (ADS)

    Sunder, S.; Boyer, G. D.; Miller, N. H.

    1990-12-01

    The effect of alpha radiolysis of water on the oxidation and dissolution of UO 2 was studied at 100°C as a function of alpha-field strength and water chemistry using X-ray photoelectron spectroscopy. In N 2-purged solutions the oxidation of UO 2 increases with the strength of the alpha flux; an alpha flux greater than or equal to that from a 250-μ Ci americium-241 source leads to oxidation of UO 2 beyond the UO 2.33 (U 3O 7) stage, and an alpha flux equal to that from a 5-μ Ci source does not result in UO 2 oxidation beyond the UO 2.33 stage. The presence of dissolved H 2 in water, at a concentration ≥ 1.6 × 10 -4moldm-3, reduces the oxidation and dissolution of UO 2 due to alpha radiolysis at temperatures ≥ 100° C. It is concluded that the radiolysis of groundwater at ~ 100°C, due to the alpha flux associated with used CANDU fuel, is unlikely to make a significant contribution to its oxidative dissolution in the geological disposal vault planned in the Canadian Nuclear Fuel Waste Management Program. CANada Deuterium Uranium. Registered trademark.

  16. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    PubMed

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crack healing in silicon nitride due to oxidation

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Tikare, Veena; Pawlik, Ralph

    1991-01-01

    The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment.

  18. 40 CFR 63.3968 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer...) For a catalytic oxidizer, install gas temperature monitors upstream and/or downstream of the catalyst... the requirements in paragraphs (a) and (c)(3)(i) through (v) of this section for each gas temperature...

  19. 40 CFR 63.3968 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer...) For a catalytic oxidizer, install gas temperature monitors upstream and/or downstream of the catalyst... the requirements in paragraphs (a) and (c)(3)(i) through (v) of this section for each gas temperature...

  20. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  1. Instability of phosphorous doped SiO2 in 4H-SiC MOS capacitors at high temperatures

    NASA Astrophysics Data System (ADS)

    Idris, M. I.; Weng, M. H.; Chan, H.-K.; Murphy, A. E.; Clark, D. T.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2016-12-01

    In this paper, the effect of inclusion of phosphorous (at a concentration below 1%) on the high temperature characteristics (up to 300 °C) of the SiO2/SiC interface is investigated. Capacitance-voltage measurements taken for a range of frequencies have been utilized to extract parameters including flatband voltage, threshold voltage, effective oxide charge, and interface state density. The variation of these parameters with temperature has been investigated for bias sweeps in opposing directions and a comparison made between phosphorous doped and as-grown oxides. At room temperature, the effective oxide charge for SiO2 may be reduced by the phosphorous termination of dangling bonds at the interface. However, at high temperatures, the effective charge in the phosphorous doped oxide remains unstable and effects such as flatband voltage shift and threshold voltage shift dominate the characteristics. The instability in these characteristics was found to result from the trapped charges in the oxide (±1012 cm-3) or near interface traps at the interface of the gate oxide and the semiconductor (1012-1013 cm-2 eV-1). Hence, the performance enhancements observed for phosphorous doped oxides are not realised in devices operated at elevated temperatures.

  2. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    PubMed Central

    Ashok, Akarapu; Pal, Prem

    2014-01-01

    Silicon dioxide (SiO2) thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs) and microelectromechanical systems (MEMS). Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics. PMID:24672287

  3. Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-01-01

    This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.

  4. Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Zhu, Shuanglin

    Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

  5. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.

  6. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  7. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  8. Effect of Heat-Treatment Temperature on the Interfacial Reaction Between Oxide Inclusions and Si-Mn Killed Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Yang, Shufeng; Liu, Chengsong; Li, Jingshe; Hao, Weixing

    2018-06-01

    The effect of heat-treatment temperature on the interfacial reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si alloy was investigated by the diffusion couple method in the temperature range of 1173-1573 K. The reaction at the interface between the alloy and oxide was not obvious during treatment at 1173 K, but, with increasing heat-treatment temperature, the interfacial reaction was strengthened and the proportion of the MnO·SiO2 phase in the oxide increased. The width of the particle-precipitation zone in the alloy increased with increasing temperature from 1173 K to 1473 K but decreased at 1573 K owing to coarsening of the precipitated particles. In addition, Mn2+ and Si4+ in the oxide significantly diffused into the alloy at 1573 K, resulting in an obvious increase of the Mn and Si contents in the alloy near the interface.

  9. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  10. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj Singh

    Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermalmore » transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.« less

  11. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  12. Surface oxidation of NiTi shape memory alloy.

    PubMed

    Firstov, G S; Vitchev, R G; Kumar, H; Blanpain, B; Van Humbeeck, J

    2002-12-01

    Mechanically polished NiTi alloy (50 at% Ni) was subjected to heat treatment in air in the temperature range 300-800 degrees C and characterised by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. Thermogravimetry measurements were carried out to investigate the kinetics of oxidation. The results of thermodynamic calculations were compared to the experimental observations. It was found that NiTi alloy exhibits different oxidation behaviour at temperatures below and above 500 degrees C. A Ni-free zone was found in the oxide layer for oxidation temperatures of 500 degrees C and 600 degrees C. The oxidation at 500 degrees C produces a smooth protective nickel-free oxide layer with a relatively small amount of Ni species at the air/oxide interface, which is in favour of good biocompatibility of NiTi implants. The oxidation mechanism for the NiTi shape memory alloy is discussed. Copyright 2002 Elsevier Science Ltd.

  13. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties.

    PubMed

    Utrera, Mariana; Morcuende, David; Estévez, Mario

    2014-03-01

    The effect of three frozen storage temperatures (-8, -18 and -80 °C) on protein oxidation in beef patties was studied through the analysis of novel oxidation markers. Additionally, the connection between lipid and protein oxidation and the impact of the latter on particular quality traits (water holding capacity, color and texture) of subsequently processed beef patties (cooking/cold-stored) were investigated. Protein oxidation was measured as the loss of tryptophan fluorescence and formation of diverse lysine oxidation products (α-aminoadipic semialdehyde, α-aminoadipic acid and Schiff bases). Lipid oxidation was assessed by levels of thiobarbituric acid reactive substances and hexanal. A significant effect of storage temperature on protein oxidation was detected. Frozen storage increased the susceptibility of meat proteins to undergo further oxidation during processing. Timely interactions were found between lipid and protein oxidation. Plausible mechanisms by which oxidative damage to proteins may have an impact in particular quality traits are thoroughly discussed. © 2013.

  14. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  15. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  16. A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa

    NASA Astrophysics Data System (ADS)

    Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.

    2017-12-01

    The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident in the diffraction patterns from the samples at 23 GPa and 44 GPa. The density and equation of state parameters for our observed oxide, carbonate, and metal manganese structures are used in conjunction with existing thermodynamic information to predict how the free energies of formation of Mn- oxide and Mn-carbonate change as a function of pressure.

  17. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOEpatents

    Carolan, Michael Francis

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  18. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, following Extended Aging at 300-600C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Parker, Stephen Scott; Wood, Elizabeth Sooby

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21wt.%Cr-5wt.%Al-3wt.%Mo (Kanthal APMT). Aging treatments were performed for 100-1000 hours in stagnant air at 300, 400, 500, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, themore » oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.« less

  19. Hollow spiny shell of porous Ni-Mn oxides: A facile synthesis route and their application as electrode in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2015-07-01

    Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.

  20. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  1. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  2. On the determination of growth stress during oxidation of pure zirconium at elevated temperature

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; Moulin, G.

    2018-07-01

    An experimental approach have been proposed to evaluate growth of stress during high temperature oxidation of pure zirconium. The development of stress in the oxide scale has been investigated experimentally in in-situ conditions by combining the Deflection Test in Monofacial Oxidation (DTMO) with Acoustic Emission analysis (AE). Microstructure of the sample were studied by using Scanning Electron Microscopy technique. Oxidation experiments were performed continuously during 24 h at 400 °C and 500 °C in air under normal atmospheric pressure. Taking into account purely elastic behaviour of the material, primary evolution of growth stress developed in the oxide scale during oxidation process have been estimated. Presented study of the Zr/ZrO2 system revealed two opposite phenomena of stress relief when cooling from 400 °C and 500 °C to room temperature. This study is presented as a tool to understand the phenomena of stress evolution in the zirconia layer during isothermal treatment at high temperature and after cooling.

  3. Electrochemistry of Sulfur Dioxide in Nonaqueous Solutions. Part I.

    DTIC Science & Technology

    1981-05-18

    carried out as part of a program to investigate safety hazards in nonaqueous ambient temperature lithium batteries. Comparison and discussion of...behavior of nonaqueous solutions of sulfur dioxide has been generated by the use of these systems in high energy density lithium batteries. During the past... hexafluorophosphate ) 6 at -0.13V and +0.63V (vs. AgCl coated Ag wire), which were assigned to the oxidation of S02- and 62042-. Fouchard observed that the

  4. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  5. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    NASA Astrophysics Data System (ADS)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  6. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  7. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less

  8. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  9. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE PAGES

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.; ...

    2016-07-20

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Zheng, Yang; Kukkadapu, Ravi K.

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-Vis, EPR and Mössbauer spectroscopies, coupled with temperature programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major monomeric and dimeric Fe species are extra-framework [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+. Larger oligomers with unknown nuclearity, poorly crystallized Fe2O3 particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations suggest that isolated Fe3+ ions are the active sites for standard SCR while the dimeric sites aremore » the active centers for NO oxidation. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. A low-temperature standard SCR reaction network is proposed that includes redox cycling of both monomeric and dimeric Fe species, for SCR and NO2 generation, respectively. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  11. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  12. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111).

    PubMed

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F; Bäumer, Marcus

    2015-09-17

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmO x ) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmO x films, eventually leading to the desorption of CO and H₂ which desorbs at temperatures in the range 400-600 K. Small quantities of CO₂ are also detected mainly on as-prepared Sm₂O₃ thin films, but the production of CO₂ is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmO x structures influence the chemical behavior. Over repeated TPD experiments, a SmO x structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmO x films or as OH groups on the SmO x surfaces.

  13. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111)

    PubMed Central

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F.; Bäumer, Marcus

    2015-01-01

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces. PMID:28793562

  14. Development of improved high temperature coatings for IN-792 + HF

    NASA Technical Reports Server (NTRS)

    Profant, D. D.; Naik, S. K.

    1981-01-01

    The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.

  15. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)« less

  16. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  17. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  18. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  19. Analysis of oxidation of self-baking electrodes (Soederberg electrodes) by means of three-dimensional model

    NASA Astrophysics Data System (ADS)

    Pashnin, S. V.

    2017-10-01

    The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.

  20. Prediction of scuffing failure based on competitive kinetics of oxide formation and removal: Application to lubricated sliding of AISI 52100 steel on steel

    NASA Astrophysics Data System (ADS)

    Cutiongco, Eric C.; Chung, Yip-Wah

    1994-07-01

    A method for predicting scuffing failure based on the competitive kinetics of oxide formation and removal has been developed and applied to the sliding of AISI 52100 steel on steel with poly-alpha-olefin as the lubricant. Oxide formation rates were determining using static oxidation tests on coupons of 52100 steel covered with poly-alpha-olefin at temperatures of 140 C to 250 C. Oxide removal rates were determined at different combinations of initial average nominal contact pressures (950 MPa to 1578 MPa) and sliding velocities (0.4 m/s to 1.8 m/s) using a ball-on-disk vacuum tribotester. The nominal asperity flash temperatures generated during the wear tests were calculated and the temperatures corresponding to the intersection of the the Arrhenius plots of oxide formation and removal rates were determined and taken as the critical failure temperatures. The pressure-velocity failure transition diagram was constructed by plotting the critical failure temperatures along isotherms of average nominal asperity flash temperatures calculated at different combinations of contact stress and sliding speed. The predicted failure transition curve agreed well with experimental scuffing data.

  1. Sorbent for use in hot gas desulfurization

    DOEpatents

    Gasper-Galvin, Lee D.; Atimtay, Aysel T.

    1993-01-01

    A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

  2. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay

    2013-01-01

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less

  3. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  4. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  5. Laser absorption of nitric oxide for thermometry in high-enthalpy air

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-12-01

    The design and demonstration of a laser absorption sensor for thermometry in high-enthalpy air is presented. The sensor exploits the highly temperature-sensitive and largely pressure-independent concentration of nitric oxide in air at chemical equilibrium. Temperature is thus inferred from an in situ measurement of nascent nitric oxide. The strategy is developed by utilizing a quantum cascade laser source for access to the strong fundamental absorption band in the mid-infrared spectrum of nitric oxide. Room temperature measurements in a high-pressure static cell validate the suitability of the Voigt lineshape model to the nitric oxide spectra at high gas densities. Shock-tube experiments enable calibration of a collision-broadening model for temperatures between 1200-3000 K. Finally, sensor performance is demonstrated in a high-pressure shock tube by measuring temperature behind reflected shock waves for both fixed-chemistry experiments where nitric oxide is seeded, and for experiments involving nitric oxide formation in shock-heated mixtures of N2 and O2. Results show excellent performance of the sensor across a wide range of operating conditions from 1100-2950 K and at pressures up to 140 atm.

  6. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  7. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  8. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  9. High-temperature oxidation behavior and mechanism of a new type of wrought Ni-Fe-Cr-Al superalloy up to 1300 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.; Fang, H.; Fu, X.

    The oxidation behavior of a new type of wrought Ni-Fe-Cr-Al superalloys has been investigated systematically in the temperature range of 1,100 to 1,300 C. Results are compared with those of alloy 214, Inconel 600, and GH 3030. It is shown that the oxidation resistance of the new superalloys is excellent and much better than that of the comparison alloys. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD) experiments reveal that the excellent oxidation resistance of the new superalloy is due to the formation of a dense, stable and continuous Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}more » oxide layer at high temperatures. Differential thermal analysis (DTA) shows that the formation of Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} oxide layers on the new superalloy reaches a maximum at 1,060 and 1,356 C, respectively. The Cr{sub 2}O{sub 3} layer peels off easily, and the single dense Al{sub 2}O{sub 3} layer remains, giving good oxidation resistance at temperatures higher than 1,150 C. In addition, the new superalloy possesses high mechanical strength at high temperatures. On-site tests showed that the new superalloy has ideal oxidation resistance and can be used at high temperatures up to 1,300 C in various oxidizing and corrosion atmospheres, such as those containing SO{sub 2}, CO{sub 2} etc., for long periods.« less

  10. Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation.

    PubMed

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-02-13

    We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.

  11. Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal

    DOE PAGES

    Wu, Zili; Hu, Guoxiang; Jiang, De-en; ...

    2016-09-29

    Investigation of monodispersed and atomically-precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects in Au catalysis. We have explored the catalytic behavior of a newly-synthesized Au 22(L 8) 6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO 2, CeO 2 and Al 2O 3. Stability of the supported Au 22 nanoclusters was probed structurally by EXAFS and HAADF-STEM, and their adsorption and reactivity for CO oxidation were investigated by IR absorption spectroscopy and temperature programed flow reaction. Low temperature CO oxidation activity was observed for the supportedmore » pristine Au 22(L 8) 6 nanoclusters without ligand removal. Isotopically labeled O 2 was used to demonstrate that the reaction pathway occurs through a redox mechanism, consistent with the observed support-dependent activity trend: CeO 2 > TiO 2 > Al 2O 3. Substantiated by density functional theory (DFT) calculations, we conclude that the uncoordinated Au sites in the intact Au 22(L 8) 6 nanoclusters are capable of adsorbing CO, activating O2 and promoting CO oxidation reaction. Thanks to the presence of the in situ coordination unsaturated Au atoms, this work is the first clear demonstration of a ligand-protected Au nanocluster that are active for gas phase catalysis without the need of ligand removal.« less

  12. Development and characterization of lubricants for use near nuclear reactors in space vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.

    1972-01-01

    The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.

  13. The Reactivity and Structure of Size Selected VxO y Clusters on a TiO2 (110)-(1 X 1) Surface of Variable Oxidation State

    NASA Astrophysics Data System (ADS)

    Neilson, Hunter L.

    The Reactivity and Structure of Size Selected VxOy Clusters on a TiO2 (110) Surface of Variable Oxidation State by Hunter L Neilson The selective oxidative dehydrogenation of methanol by vanadium oxide/TiO2 model systems has received a great deal of interest in the surface science community. Previous studies using temperature programmed desorption and reaction (TPD/R) to probe the oxidation of methanol to formaldehyde by vanadia/TiO2 model catalysts have shown that the activity of these systems vary considerably based on the way in which the model system is prepared with formaldehyde desorption temperatures observed anywhere from room temperature to 660 K. The principle reason for this variation is that the preparation of sub-monolayer films of vanadia on TiO2 produces clusters with a multitude of VxOy structures and a mixture of vanadium oxidation states. As a result the stoichiometry of the active vanadium oxide catalyst as well as the oxidation state of vanadium in the active catalyst remain unknown. To better understand this system, our group has probed the reactivity and structure of size-selected Vx, VOy and VxOy clusters on a reduced TiO2 (110) support in ultra-high vacuum (UHV) via TPD/R and scanning tunneling microscopy (STM). Ex situ preparation of these clusters in the gas phase prior to deposition has allowed us to systematically vary the stoichiometry of the vanadia clusters; a layer of control not available via the usual routes to vanadium oxide. The most active catalysts are shown to have (VO3)n stoichiometry in agreement with the theoretical models of the Metiu group. We have shown that both the activity and selectivity of V2O6 and V3O9 cluster catalysts depend sensitively on the oxidation state of the TiO2 (110) support. For example, V2O6 on a reduced surface is selective for the oxidation of methanol to formaldehyde while the selectivity shifts to favor methyl formate as the surface becomes increasingly oxidized. STM studies show that the structure of size-selected V2O6 clusters, upon adsorption to the surface, varies considerably with the oxidation state of the support, in good agreement with our reactivity studies. V 3O9 was shown to catalyze the oxidation of methanol to both formaldehyde and methyl formate on a reduced surface while STM suggests that, unlike V2O6, these clusters are prone to decomposition upon adsorption to the surface. Furthermore, TPD/R of size selected V 2O5 and V2O7 on TiO2 suggests that altering the stoichiometry of the (VO3)n clusters by a single oxygen atom significantly inhibits the activity of these catalysts.

  14. Structural Evolution of a Ni Alloy Surface During High-Temperature Oxidation

    DOE PAGES

    Oleksak, Richard P.; Carney, Casey S.; Holcomb, Gordon R.; ...

    2017-11-20

    We show that considerable structural transformations occur at a Ni alloy surface during the transient stages of high-temperature oxidation. This was demonstrated by exposing the alloy to high-temperature CO 2 for short times at both atmospheric and supercritical pressures. A protective Cr-rich oxide layer formed after only 5 min at 700 °C and persisted for longer exposures up to 500 h. Voids formed and grew over time by the condensation of metal vacancies generated during oxidation, while the alloy surface recrystallized after sufficient oxidation had occurred. The oxygen potential established at the oxide/alloy interface led to oxidation along the newlymore » formed grain boundaries as well as adjacent to and inside of the voids. Al, the most stable oxide-former and present at low concentration in the alloy, was preferentially oxidized in these regions. Furthermore, the results provide an improved understanding of the internal oxidation of Al and its role in enhancing scale adhesion for this class of Ni alloys.« less

  15. High temperature corrosion of a nickel base alloy by helium impurities

    NASA Astrophysics Data System (ADS)

    Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.

    2007-05-01

    High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.

  16. Oxidation characteristics of Ti-25Al-10Nb-3V-1Mo intermetallic alloy

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A.; Clark, Ronald K.; Sankaran, Sankara N.; Wiedemann, Karl E.

    1990-01-01

    Static oxidation kinetics of the super-alpha 2 titanium-aluminide alloy Ti-25Al-10Nb-3V-1Mo (at. percent) were investigated in air over the temperature range of 650 to 1000 C using thermogravimetric analysis. The oxidation kinetics were complex at all exposure temperatures and displayed up to three distinct oxidation rates. Breakaway oxidation occurred after long exposure times at high temperatures. Oxidation products were determined using x ray diffraction techniques, electron microprobe analysis, and energy dispersive x ray analysis. Oxide scale morphology was examined by scanning electron microscopy of the surfaces and cross sections of oxidized specimens. The oxides during the parabolic stages were compact and multilayered, consisting primarily of TiO2 doped with Nb, a top layer of Al2O3, and a thin bottom layer of TiN. The transition between the second and third parabolic stage was found to be linked to the formation of a TiAl layer at the oxide-metal interface. Porosity was formed during the third stage, causing degradation of the oxide and the beginning of breakaway oxidation.

  17. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  18. An XPS study of the stability of Fomblin Z25 on the native oxide of aluminum. [x ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.

    1991-01-01

    Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum and sapphire surfaces, and their behavior at different temperatures was studied using x ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found that the interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. Our conclusion is that the native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At high temperatures (150 C) degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formulation of a debris layer.

  19. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    DOE PAGES

    Yan, Yong; Garrison, Benton E.; Howell, Mike; ...

    2017-11-03

    Two-sided oxidation experiments were recently conducted at 900°C–1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. Atmore » or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100–150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.« less

  20. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  1. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  2. Nonstoichiometric La(2 - x)GeO(5 - delta) monoclinic oxide as a new fast oxide ion conductor.

    PubMed

    Ishihara, T; Arikawa, H; Akbay, T; Nishiguchi, H; Takita, Y

    2001-01-17

    Oxide ion conductivity in La(2)GeO(5)-based oxide was investigated and it was found that La-deficient La(2)GeO(5) exhibits oxide ion conductivity over a wide range of oxygen partial pressure. The crystal structure of La(2)GeO(5) was estimated to be monoclinic with P2(1)/c space group. Conductivity increased with increasing the amount of La deficiency and the maximum value was attained at x = 0.39 in La(2 - x)GeO(5 - delta). The oxide ion transport number in La(2)GeO(5)-based oxide was estimated to be unity by the electromotive force measurement in H(2)-O(2) and N(2)-O(2) gas concentration cells. At a temperature higher than 1000 K, the oxide ion conductivity of La(1.61)GeO(5 - delta) was almost the same as that of La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3 - delta) or Ce(0.85)Gd(0.15)O(2 - delta), which are well-known fast oxide ion conductors. On the other hand, a change in the activation energy for oxide ion conductivity was observed at 973 K, and at intermediate temperature, the oxide ion conductivity of La(1.61)GeO(5 - delta) became much smaller than that of these well-known fast oxide ion conductors. The change in the activation energy of the oxide ion conductivity seems to be caused by a change in the local oxygen vacancy structure. However, doping a small amount of Sr for La in La(2)GeO(5) was effective to stabilize the high-temperature crystal structure to low temperature. Consequently, doping a small amount of Sr increases the oxide ion conductivity of La(2)GeO(5)-based oxide at low temperature.

  3. Melt-infiltrated Sic Composites for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2004-01-01

    SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.

  4. The experimental evaluation and application of high-temperature solid lubricants. Ph.D. Thesis - Case Western Reserve Univ., 1989 Final Report

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1990-01-01

    A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.

  5. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  6. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  7. 40 CFR Table 1 to Subpart Mmmm of... - Operating Limits if Using the Emission Rate With Add-On Controls Option

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Thermal oxidizer a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a) i. Collecting the combustion temperature... 3-hour average combustion temperature at or above the temperature limit. 2. Catalytic oxidizer a...

  8. High temperature microelectrophoresis studies of the solid oxide/water interface

    NASA Astrophysics Data System (ADS)

    Fedkin, Mark Valentinovich

    Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.

  9. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  10. Oxidation characteristics of 440 C CRES in gaseous oxygen (GOX) environments. [Corrosion Resistant Steel

    NASA Technical Reports Server (NTRS)

    Dennies, Daniel P.; Parsons, Terry D.

    1986-01-01

    The oxidation characteristics of 440 C corrosion-resistant steel are evaluated. The dependence of oxide color, type, and thickness, material hardness, and microstructure on temperature is examined. The effects of exposure time, passivation layer, and oxygen pressure on the oxide formation are investigated. A direct relationship between temperature and oxide color, formation, and thickness is detected. It is observed that the exposure time does not affect the microstructure or oxide color, type, or thickness; however, the passivation layer does affect oxide color and type.

  11. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  12. Reactivity of metal oxide sorbents for removal of sulfur compounds from coal gases at high temperature and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.

    1997-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less

  13. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating. During this project it was found that stiffness response to increase and remain stable to a certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine coating materials if micro-channel cooling system is implemented.

  14. Cermets and method for making same

    DOEpatents

    Aaron, W. Scott; Kinser, Donald L.; Quinby, Thomas C.

    1983-01-01

    The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.

  15. Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy

    2016-12-01

    Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.

  16. Investigation of the storage and release of oxygen in a Cu-Pt element of a high-temperature microcombustor

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Sturesson, P.; Hjort, K.; Klintberg, L.; Thornell, G.

    2014-11-01

    A miniature combustor for converting organic samples into CO2 with application in carbon isotopic measurements has been manufactured and evaluated. The combustor was made of High-Temperature Co-fired Ceramic (HTCC) alumina green tapes. The device has a built-in screen printed heater and a temperature sensor made of platinum, co-sintered with the ceramic. A copper oxide oxygen supply was added to the combustor after sintering by in-situ electroplating of copper on the heater pattern followed by thermal oxidation. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Thermal Gravimetric Analysis (TGA) were used to study electroplating, oxidation and the oxide reduction processes. The temperature sensor was calibrated by use of a thermocouple. It demonstrates a temperature coefficient resistance of 4.66×10-3/°C between 32 and 660 °C. The heat characterization was done up to 1000 °C by using IR thermography, and the results were compared with the data from the temperature sensor. Combustion of starch confirmed the feasibility of using copper oxide as the source of oxygen of combustion.

  17. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; R. C. O'Brien

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less

  18. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-05-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  19. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    PubMed

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  20. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-07-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  1. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  2. Oxidation of Ca-α-SiAlON Powders Prepared by Combustion Synthesis

    PubMed Central

    Li, Jinfu; Li, Zhongmin; Wang, Enhui; Wang, Zhanjun; Yin, Xiaowei; Zhang, Zuotai

    2015-01-01

    The oxidation of Ca-α-SiAlON synthesized by the combustion synthesis (CS) method with different additives was investigated in air atmosphere using thermogravimetric (TG) analysis in a temperature range from 1453 K to 1653 K. The experimental results indicated that oxidation was controlled by mixed chemical and diffusion steps. The oxidation products by XRD analysis were composed of SiO2 and CaAl2Si2O8 at low oxidation temperature, whereas the SiO2-Al2O3-CaO ternary glassy phase was formed at elevated temperature. The deviation of oxidation resistance from each sample may be due to the morphological difference brought about by different additive additions. This study reveals the effects of additives on the oxidation resistance of synthesized Ca-α-SiAlON powders. PMID:28793657

  3. Design for Oxidation Resistance

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, Jon C.; Barrett, Charles A.

    1997-01-01

    Alloys intended for use in high-temperature environment rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation and hot corrosion resistance. To be protective, this oxide layer must be chemically, thermodynamically stable. Successful alloy design for oxidative environment is best achieved by developing alloys that are capable of forming adherent scales of either alumina (Al2O3), chromia (Cr2O3), or silica (SiO2). In this article, emphasis has been placed on the issue related to high-temperature oxidation of superalloys used in gas turbine engine application. Despite the complexity of these alloys, optimal performance has been associated with protective alumina scale formation. As will be described below, both compositional makeup and protective coatings play key role in providing oxidation protection. Other high-temperature materials described include nickel and titanium aluminide intermetallics, refractory metal, and ceramics.

  4. Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique

    NASA Astrophysics Data System (ADS)

    Raship, N. A.; Sahdan, M. Z.; Adriyanto, F.; Nurfazliana, M. F.; Bakri, A. S.

    2017-01-01

    Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.

  5. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  6. Effect of temperature and dissolved oxygen on stress corrosion cracking behavior of P92 ferritic-martensitic steel in supercritical water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, Z. F.; Zhang, L. F.; Chen, K.; Singh, P. M.

    2018-01-01

    The effect of temperature and dissolved oxygen (DO) on stress corrosion cracking (SCC) of P92 martensitic steel in supercritical water (SCW) was investigated using slow strain rate test (SSRT) and fractography analysis. The SSRT was carried out at temperatures of 400, 500, 600 °C in deaerated supercritical water and at DO contents of 0, 200, 500 ppb at the temperature of 600 °C, respectively. The results of SSRT show that the decrease of ductility at the temperature of 400 °C may be related to the dynamic strain aging (DSA) of P92 steel. The degradation of the mechanical properties in SCW is the joint effect of temperature and SCC. Compared with the effect of temperature, DO in SCW has no significant effect on the SCC susceptibility of P92 steel. The observation of oxide layer shows that large numbers of pores are nucleated in the oxide layer, which is related to vacancy accumulation and hydrogen generated in the oxide layer. Under the combined action of the growth stress and tensile stress, micro cracks, nucleated from the pores in the oxide layer, are easily propagated intergranularly outward to the surface of specimen, and fewer cracks can extend inward along the intrinsic pores to the inner oxide/metal interface, which is the reason for the exfoliation of oxide films.

  7. Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water-gas shift reaction.

    PubMed

    Fishman, Zachary S; He, Yulian; Yang, Ke R; Lounsbury, Amanda W; Zhu, Junqing; Tran, Thanh Minh; Zimmerman, Julie B; Batista, Victor S; Pfefferle, Lisa D

    2017-09-14

    Understanding how nano-dimensionality impacts iron oxide based catalysis is central to a wide range of applications. Here, we focus on hematite nanosheets, nanowires and nanoparticles as applied to catalyze the reverse water gas shift (RWGS) probe reaction. We introduce a novel approach to synthesize ultrathin (4-7 nm) hematite nanosheets using copper oxide nanosheets as a hard template and propose a reaction mechanism based on density functional theory (DFT) calculations. Hematite nanowires and nanoparticles were also synthesized and characterized. H 2 temperature programmed reduction (H 2 -TPR) and RWGS reactions were performed to glean insights into the mechanism of CO 2 conversion to CO over the iron oxide nanomaterials and were compared to H 2 binding energy calculations based on density functional theory. While the nanosheets did exhibit high CO 2 conversion, 28% at 510 °C, we found that the iron oxide nanowires had the highest CO 2 conversion, reaching 50% at 750 °C under atmospheric pressure. No products besides CO and H 2 O were detected.

  8. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  9. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    PubMed Central

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  10. Critical oxide cluster size on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, M.; Suzuki, T.

    1999-03-01

    The initial stage of oxide growth and subsequent oxide decomposition on Si(111)-7×7 at temperatures between 350 and 720°C are studied with the optical second harmonic generation for O 2 pressures ( Pox) between 5×10 -9 and 4×10 -6 Torr. The obtained pressure dependencies of the initial oxide growth rate ( Rgr) and the subsequent oxide decomposition rate are associated with the cluster-forming nature of the oxidation process. For the model of oxide cluster nucleation and growth, a scaling relationship is derived among the critical oxide cluster size, i, and the experimentally measurable values of Rgr and Pox. The critical oxide cluster size, i, thus obtained from the kinetic data increases with temperature. This correlates with an increase of desorption channels and their rates in that the competition between growth and decomposition requires more stable oxide clusters, i.e. clusters with a larger critical size, for oxide to grow at higher temperatures. The increase of i with decreasing Pox is related with a decrease of Rgr: a decreased Rgr requires critical clusters with a longer lifetime, i.e. clusters with a larger size.

  11. Analysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction studies.

    PubMed

    Nickel, H; Quadakkers, W J; Singheiser, L

    2002-10-01

    In three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the oxidation resistance of the ODS alloys and its effect on growth mechanisms.

  12. Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene.

    PubMed

    Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R

    2016-06-07

    Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.

  13. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  14. Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.

    PubMed

    Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R

    2017-12-01

    The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.

  15. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  16. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  17. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    NASA Astrophysics Data System (ADS)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  18. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  19. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  20. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    PubMed Central

    Fraser, Tricia; Brown, Paul D.

    2017-01-01

    Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration were factors which acted in isolation or together with other regulatory cues to contribute to the variable gene expression observed in this study. Overall, differential gene expression in serovar Portlandvere was more responsive to temperature and oxidative stress. PMID:28536558

  1. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  2. The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Talyzin, Alexandr V.; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás

    2013-12-01

    The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04631a

  3. High temperature static strain gage development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Anderson, W. L.; Przybyszewski, J. S.

    1991-01-01

    Final results are presented from a program to develop a thin film static strain gage for use on the blades and vanes of running, test stand gas turbine engines with goals of an 3 x 3 mm gage area and total errors of less than 10 pct. of + or - 2,000 microstrain after 50 hrs at 1250 K. Pd containing 13 Wt. pct. Cr was previously identified as a new strain sensor alloy that appeared to be potentially usable to 1250 K. Subsequently, it was discovered, in contrast with its behavior in bulk, that Pd-13Cr suffered from oxidation attack when prepared as a 4.5 micron thick thin film. Continuing problems with electrical leakage to the substrate and the inability of sputtered alumina overcoats to prevent oxidation led to the discovery that sputtered alumina contains appreciable amounts of entrapped argon. After the argon has been exsolved by heating to elevated temperatures, the alumina films undergo a linear shrinkage of about 2 pct. resulting in formation of cracks. These problems can be largely overcome by sputtering the alumina with the substrate heated to 870 K. With 2 micron thick hot sputtered alumina insulation and overcoat films, total 50 hr drifts of about 100 microstrain (2 tests) and about 500 microstrain (1 test) were observed at 1000 and 1100 K, respectively. Results of tests on complete strain gage systems on constant moment bend bars with Pd temperature compensation grids revealed that oxidation of the Pd grid was a major problem even when the grid was overcoated with a hot or cold sputtered alumina overcoat.

  4. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong

    2018-02-01

    A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.

  5. Hydrogen Production from Liquid Hydrocarbons Demonstration Program.

    DTIC Science & Technology

    1986-09-01

    The results of a 17 hour run indicate that the DP can produce hydrogen-containing product gas with less than 1 ppmv hydrogen sulfide . (4) Product...promotes the hydrolysis of carbonyl sulfide (COS) by the reaction: COS + H20 = H2 S + CO2 (2) Feed inlet temperature is 550*F. The water gas reaction is...feed stream to less than 10 ppmw. This is achieved by contacting the product gas stream with a zinc oxide bed where the hydrogen sulfide will react with

  6. Catalysts for the Oxidation of Carbon Monoxide at Low Temperatures.

    DTIC Science & Technology

    1979-11-21

    Four catalysts ( hopcalite , Whetlerite, a supported palladium, and a supported platinum) were tested for efficiency in promoting the oxidation of...carbon monoxide (CO). At room temperature and 50% RH, hopcalite has no catalytic capability and platinum has practically none. At room temperature and 15...RH, hopcalite is superior to platinum in catalyzing the oxidation of CO. Hopcalite is more efficient than either of the other three catalysts in the

  7. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  8. Space Shuttle main engine product improvement

    NASA Technical Reports Server (NTRS)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  9. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  10. A Review of In Situ Observations of Crystallization and Growth in High Temperature Oxide Melts

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sohn, Il

    2018-05-01

    This review summarizes the significant results of high-temperature confocal laser scanning microscopy (CLSM) and single hot thermocouple technology (SHTT) and its application in observing the crystallization and growth in high-temperature oxide melts from iron- and steel-making slags to continuous casting mold fluxes. Using in situ observations of CLSM and SHTT images of high-temperature molten oxides with time, temperature, and composition, the crystallization behavior, including crystal morphology, crystallization temperature, initial nucleation and growth rate, could be obtained. The broad range of applications using in situ observations during crystallization have provided a wealth of opportunities in pyrometallurgy and is provided in this review.

  11. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  12. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  13. Oxidative deterioration of pork during superchilling storage.

    PubMed

    Pomponio, Luigi; Ruiz-Carrascal, Jorge

    2017-12-01

    In superchilling (SC), meat is kept at temperatures around 1 °C below its initial freezing point, leading to a significant increase in shelf life. This study aimed to address the oxidative changes taking place in pork loins during prolonged storage at SC temperature. Loins were stored either at chilling (CH) conditions (2-4 °C) for 4 weeks or at SC temperature (around -1 °C) for 12 weeks. Storage at SC temperature diminished the rate of lipid and protein oxidation and discoloration in pork loins, so that final levels of most oxidation products and instrumental color values after 12 weeks of SC storage were similar to those after 4 weeks at CH conditions. However, hexanal content peaked by the end of SC storage, pointing to a potential accumulation of compounds from lipid oxidation during SC storage. SC storage of pork slows down the rate of lipid and protein oxidation. However, accumulation of volatile compounds from lipid oxidation could be a limiting factor for shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    PubMed Central

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-01-01

    The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964

  15. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications.

    PubMed

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-03-25

    The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.

  16. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  17. Sliding durability of candidate seal fiber materials in hydrogen from 25 to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    Sliding durability studies of candidate ceramic fibers were conducted in hydrogen to support the high temperature seal development program at NASA LeRC. Pin-on-disk tests were used to measure the friction and durability of a tow or bundle of ceramic fibers in sliding against a superalloy disk. This procedure was used previously to test candidate fibers in an air environment. The fibers based upon mullite (Al2O3-SiO2) chemistry (Nextel 550, 440, and 312) exhibited better durability in hydrogen than in air. HPZ, a complex silicon carboxynitride fiber which showed good durabilty in air, however, showed a significant loss of durability in hot hydrogen. These results are consistent with recent thermodynamic and experimental studies of ceramic compatibility with hydrogen at elevated temperatures. These research results indicate that only oxide fibers display good durability in both air and hydrogen environments. Also, simple, low cost testing in air can provide an adequate data base for initial seal material screening and selection, especially for oxide fiber candidates. The findings of this research provide critical input to the seal design team.

  18. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  19. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  20. Optical and probe determination of soot concentrations in a model gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1986-01-01

    An experimental program was conducted to track the variation in soot loading in a generic gas turbine combustor. The burner is a 12.7-cm dia cylindrical device consisting of six sheet-metal louvers. Determination of soot loading along the burner length is achieved by measurement at the exit of the combustor and then at upstream stations by sequential removal of liner louvers to shorten burner length. Alteration of the flow field approaching and within the shortened burners is minimized by bypassing flow in order to maintain a constant linear pressure drop. The burner exhaust flow is sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust are determined by optical techniques. Four test fuels are burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Particulate concentration data indicate a strong oxidation mechanism in the combustor secondary zone, though the oxidation is significantly affected by flow temperature. Soot production is directly related to fuel smoke point.

  1. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  2. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.

  3. A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1992-01-01

    A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni- and Co-base superalloys was reduced to a single attack parameter, K(sub a), for each run. This K(sub a) value was used to rank the cyclic oxidation resistance of each alloy at 1000, 1100, and 1150 C. These K(sub a) values were also used to derive an estimating equation using multiple linear regression involving log(sub 10)K(sub a) as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr, and Ta.

  4. Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Jih-Fen, Lei; Zeller, Mary V.

    1994-01-01

    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy.

  5. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  6. High temperature regenerative H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)

    1988-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.

  7. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  8. Carbon isotope effect during abiogenic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Kiyosu, Yasuhiro; Roy Krouse, H.

    1989-11-01

    The oxidation of methane during flow over CuO and Fe 2O 3 has been examined in the temperature range of 400-650°C. The reaction rate and carbon isotope fractionation are dependent upon the choice of oxide and temperature. The activation energy is lower for hematite (8.0 kcal mole -1) than for cupric oxide (16.6 kcal mole -1). The measured ratios of the isotopic rate constants α =k 12/k 13 were found to have temperature dependences given by: 10 3(α - 1) =2.93 × 10 6/T 2 + 8.11 (cupric oxide) 10 3(α - 1) =7.44 × 10 6/T 2 + 6.56 (hematite) Abiogenic oxidation of methane is probably a significant mechanism for fractionating carbon isotopes in nature.

  9. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  10. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  11. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-03-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  12. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  13. Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2017-02-21

    The involvement of a great amount of active oxygen species is a crucial requirement for catalytic oxidation of benzene, because complete mineralization of one benzene molecule needs 15 oxygen atoms. Here, we disperse single silver adatoms on nanostructured hollandite manganese oxide (HMO) surfaces by using a thermal diffusion method. The single-atom silver catalyst (Ag 1 /HMO) shows high catalytic activity in benzene oxidation, and 100% conversion is achieved at 220 °C at a high space velocity of 23 000 h -1 . The Mars-van Krevelen mechanism is valid in our case as the reaction orders for both benzene and O 2 approach one, according to reaction kinetics data. Data from H 2 temperature-programmed reduction and O core-level X-ray photoelectron spectra (XPS) reveal that Ag 1 /HMO possesses a great amount of active surface lattice oxygen available for benzene oxidation. Valence-band XPS and density functional theoretical calculations demonstrate that the single Ag adatoms have the upshifted 4d orbitals, thus facilitating the activation of gaseous oxygen. Therefore, the excellent activation abilities of Ag 1 /HMO toward both surface lattice oxygen and gaseous oxygen account for its high catalytic activity in benzene oxidation. This work may assist with the rational design of efficient metal-oxide catalysts for the abatement of volatile organic compounds such as benzene.

  14. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  15. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  16. The high-temperature oxidation of aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Brezinsky, K.

    1986-01-01

    Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethylbenzene, and propylbenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield copious amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene.

  17. Plasma-Assisted Atomic Layer Deposition of High-Density Ni Nanoparticles for Amorphous In-Ga-Zn-O Thin Film Transistor Memory

    NASA Astrophysics Data System (ADS)

    Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin

    2017-02-01

    For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of 1.5 × 1012 cm-2 and a small size of 3 4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.

  18. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    PubMed

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    PubMed Central

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  20. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  1. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea.

    PubMed

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-10-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis-Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l(-1) was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used (15)NH4(+) dilution technique.

  2. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  3. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  4. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  5. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    PubMed Central

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-01-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088

  6. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  7. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique.

    PubMed

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-23

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  8. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  9. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. Appendix.

    DTIC Science & Technology

    1987-12-31

    CuCl Excimer Si x Ge Quadropole mass spectrometer ions photoionic emission, threshold low temperature processing low energy ion beam silicon oxidation ...Etching," ECS Proceedings, 1986. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, "Optically-Induced, Room- Temperature Oxidation of Gallium...MOS transistors with gate dielectrics obtained by ion beam oxidation at room temperature . Introduction control over the process parameters and

  10. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum.

    DTIC Science & Technology

    1987-12-31

    spectrometer ions photoionic emission threshold low temperature processing low energy ion beam silicon oxidation sputtering of silicon dioxide germanium...Osgood, "Optically-Induced, Room- Temperature Oxidation of Gallium Arsenide," Mat. Res. Soc. Symp. Proc. 75(1987):251-255. P. D. Brewer and R. M. Osgood... oxide films (40-70 A) at room temperature which are suitable for MOSFET devices, has been extensively studied experimentally and theoretically. The

  11. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    PubMed Central

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. PMID:27877342

  12. Grain boundary oxidation and its effects on high temperature fatigue life

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Yoshiki

    1986-01-01

    Fatigue lives at elevated temperatures are often shortened by creep and/or oxidation. Creep causes grain boundary void nucleation and grain boundary cavitation. Grain boundary voids and cavities will accelerate fatigue crack nucleation and propagation, and thereby shorten fatigue life. The functional relationships between the damage rate of fatigue crack nucleation and propagation and the kinetic process of oxygen diffusion depend on the detailed physical processes. The kinetics of grain boundary oxidation penetration was investigated. The statistical distribution of grain boundary penetration depth was analyzed. Its effect on high temperature fatigue life are discussed. A model of intermittent micro-ruptures of grain boundary oxide was proposed for high temperature fatigue crack growth. The details of these studies are reported.

  13. Scanning tunnelling microscope for boron surface studies

    NASA Astrophysics Data System (ADS)

    Trenary, Michael

    1990-10-01

    The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).

  14. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide.

    PubMed

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-04

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  15. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    NASA Astrophysics Data System (ADS)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  16. Initial reactive sticking coefficient of O 2 on Si(111)-7 × 7 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Suzuki, Takanori

    1996-05-01

    Kinetics of the initial stage of oxide growth in the reaction of oxygen with Si(111)-7 × 7 at temperatures from room temperature to Ttr, and pressures from 5 × 10 -9 to 2 × 10 -7 Torr are investigated with optical second-harmonic generation, here temperature from oxide growth to Si etching without oxide growth. At a fixed pressure, the initial reactive sticking coefficient ( S0), obtained from the rate of oxide growth, decreases with increasing temperature to S0=0 at Ttr. We have found that the initial reacti sticking coefficient depends on the O 2 pressure. At temperatures above 320°C, the whole temperature dependence of S0 is situated in the region of higher temperatures for higher O 2 pressures ( Pox). Moreover, an additional bend in the temperature dependence of S0 is observed for Pox>1 × 10 -8 Torr near Ttr. A precursor-mediated adsorption model involving the reaction of formation is considered. The parameters of this model, obtained from the best fits to the experimental data, show that oxide growth rate constant increases and volatile SiO formation rate constant decreases as a function of O 2 pressure. At zero oxide coverage, the pressure dependence of the reaction rate constants is suggested to originate from interaction in the layer of the chemisorbed precursor species, whose coverage depends on the O 2 pressure. The volatile SiO formation is described by a three-step sequential two-channel process through the chemisorbed O 2 precursor species, whereas one of the channels with a larger activation energy is suggested to induce the additional bend in S0( T) near Ttr at higher O 2 pressures.

  17. Analysis of Halogen-Mercury Reactions in Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paula Buitrago; Geoffrey Silcox; Constance Senior

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.« less

  18. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    DOE PAGES

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; ...

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less

  19. Catalysts for low temperature oxidation

    DOEpatents

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  20. Advanced high temperature materials for the energy efficient automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.

    1984-01-01

    The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

  1. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com; CEA, LETI, Campus Minatec, F-38054 Grenoble; LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis,more » this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.« less

  2. Method of forming high density oxide pellets by hot pressing at 50$sup 0$ to 100$sup 0$C above the cubic to monoclinic phase transformation temperature

    DOEpatents

    Pasto, A.E.

    1975-08-01

    A process for low temperature sintering of rare earth and actinide oxides which have a cubic to monoclinic transformation is described. The process involves hot pressing a powder compact at a temperature just above the transformation temperature. (auth)

  3. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan, E-mail: wangyan@csu.edu.cn; Liu, Yong, E-mail: yonliu@csu.edu.cn; Tang, Huiping, E-mail: hptang@c-nin.com

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} onmore » its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.« less

  4. Top Ten Reasons for DEOX as a Front End to Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; K.J. Bateman; S.D. Herrmann

    A front end step is being considered to augment chopping during the treatment of spent oxide fuel by pyroprocessing. The front end step, termed DEOX for its emphasis on decladding via oxidation, employs high temperatures to promote the oxidation of UO2 to U3O8 via an oxygen carrier gas. During oxidation, the spent fuel experiences a 30% increase in lattice structure volume resulting in the separation of fuel from cladding with a reduced particle size. A potential added benefit of DEOX is the removal of fission products, either via direct release from the broken fuel structure or via oxidation and volatilizationmore » by the high temperature process. Fuel element chopping is the baseline operation to prepare spent oxide fuel for an electrolytic reduction step. Typical chopping lengths range from 1 to 5 mm for both individual elements and entire assemblies. During electrolytic reduction, uranium oxide is reduced to metallic uranium via a lithium molten salt. An electrorefining step is then performed to separate a majority of the fission products from the recoverable uranium. Although DEOX is based on a low temperature oxidation cycle near 500oC, additional conditions have been tested to distinguish their effects on the process.[1] Both oxygen and air have been utilized during the oxidation portion followed by vacuum conditions to temperatures as high as 1200oC. In addition, the effects of cladding on fission product removal have also been investigated with released fuel to temperatures greater than 500oC.« less

  5. Effect of temperature on the adsorption of sulfanilamide onto aluminum oxide and its molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ji, Ying-xue; Wang, Feng-he; Duan, Lun-chao; Zhang, Fan; Gong, Xue-dong

    2013-11-01

    The effect of temperature on the adsorption of sulfanilamide (SA) onto aluminum oxide was researched through batch adsorption experiments, and was then simulated using the molecular dynamics (MD) method. The results show that SA can be adsorbed effectively by the adsorbent of aluminum oxide due to their interactions between SA molecule and the surface of aluminum oxide crystal, and temperature is a key factor which influences the adsorption efficiency obviously. The removal ratio of SA at 298 K is the highest among the selected temperatures (293 K, 298 K, 303 K). MD simulations revealed the interactions between SA molecules and (0 1 2) surface of aluminum oxide crystal at molecular level. The SA molecule has clung to the (0 1 2) face of aluminum oxide crystal, and its structure is deformed during its combining process with the surface. Both binding energies (Eb) and deformation energies (ΔEdeform) in the SA-aluminum oxide system follow the same order as: SA-Al2O3 (298 K) > SA-Al2O3 (293 K) > SA-Al2O3 (303 K). Their deformation energies are far less than their non-bonding energies. Analysis of radial distribution functions (RDFs) indicates that SA can be adsorbed effectively by aluminum oxide crystal mainly through non-bond interactions. The simulation results agree well with the experimental results, which verify the rationality and reliability of the MD simulation. The further MD simulations provide theoretically optimal temperature (301 K) for the adsorption of SA onto aluminum oxide. The molecular dynamics simulation will be useful for better understanding the adsorption mechanism of antibiotics onto metal oxides, which will also be helpful for optimizing experimental conditions to improve the adsorptive removal efficiency of antibiotics.

  6. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  7. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  8. Gold nanoparticles supported on magnesium oxide for CO oxidation

    NASA Astrophysics Data System (ADS)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  9. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  10. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  11. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  12. High Temperature Oxidation of Boron Nitride. Part 1; Monolithic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Farmer, Serene; Moore, Arthur; Sayir, Haluk

    1997-01-01

    High temperature oxidation of monolithic boron nitride (BN) is examined. Hot pressed BN and both low and high density CVD BN were studied. It is shown that oxidation rates are quite sensitive to microstructural factors such as orientation, porosity, and degree of crystallinity. In addition small amounts of water vapor lead to volatilization of the B2O3 oxide as H(x)B(y)O(z). For these reasons, very different oxidation kinetics were observed for each type of BN.

  13. Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: Implications for the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-González, Rafael; McKay, Christopher

    2009-07-01

    TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms ( Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ˜5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ˜20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO 2 (ion 44 m/z) from microorganisms evolved at temperatures of ˜326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO 2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO 2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO 2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  14. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composites

    PubMed Central

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-01-01

    The ablation and oxidation of ZrB2-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters (i.e., heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance. PMID:28809239

  15. Thermomechanical and Thermochemical Behavior of a Hafnium-20 Percent Tantalum Alloy. Ph.D. Thesis - North Carolina State Univ., Raleigh

    NASA Technical Reports Server (NTRS)

    Howell, J. P.

    1971-01-01

    An investigation was conducted to determine the thermomechanical and thermochemical behavior of a high temperature, oxidation resistant, hafnium-20 percent tantalum alloy. The elastic and shear moduli of this alloy were determined in air up to 1000 C and in vacuum up to 2000 C using a mechanical resonance technique. The internal friction of the alloy was measured up to temperatures greater than 1400 C. Room temperature stress-strain behavior of the oxidized and unoxidized alloy was established. The effect of annealing on the elastic and shear moduli of the extruded rod material was investigated. The martensitic-type phase transformation occurring in the alloy was studied using hot stage metallography and electron microscopy. Static oxidation tests were conducted on the alloy at temperatures from 1000 C to 1700 C with weight gain measurements made as a function of time and temperatures. Surface morphology studies were conducted on the oxide coatings formed at the different temperatures using scanning electron microscopy and X-ray diffraction techniques.

  16. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB₂-Based Ultra High Temperature Ceramic Composites.

    PubMed

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-04-29

    The ablation and oxidation of ZrB₂-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters ( i.e. , heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance.

  17. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  18. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  19. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    PubMed Central

    Li, Meng; Xie, De-Gang; Ma, Evan; Li, Ju; Zhang, Xi-Xiang; Shan, Zhi-Wei

    2017-01-01

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures. PMID:28218260

  20. Fretting of titanium at temperatures to 650 C in air

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1975-01-01

    Fretting wear experiments were conducted on high-purity titanium at temperatures up to 650 C. Results indicate that up to about 500 C, the fretting wear increases with temperature. A further increase in the temperature up to 650 C results in decreasing fretting wear. This change in trend of fretting wear with temperature is shown to be associated with a change in oxidation rate. Additional experiments at 650 C showed a transmission from a low rate of fretting wear to a higher rate occurred after exposure to a number of fretting cycles; the number of cycles required to cause this transition was dependent on the normal load. Scanning electron microscopy studies revealed that this transition was marked by cracking and disruption of the surface oxide film. A model was proposed that coupled the oxidation rate kinetics of titanium at 650 C with the occurrence of wear at the surface of the oxide film.

Top