Sample records for temperature quantum decoherence

  1. Observation of an anomalous decoherence effect in a quantum bath at room temperature

    PubMed Central

    Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng

    2011-01-01

    The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389

  2. Decoherence mechanisms in Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, C.; Mowson, A. M.; Christou, G.; Takahashi, S.

    In spite of wide interest in the quantum nature of SMMs, decoherence effects that ultimately limit such behavior have yet to be fully understood. Recent investigations have shown that there are three main decoherence mechanisms present in SMMs: spins can couple locally (i) to phonons (phonon decoherence); (ii) to many nuclear spins (nuclear decoherence); and (iii) to each other via dipolar interactions (dipolar decoherence). We have recently uncovered quantum coherence in a Mn3 SMM by quenching decoherence due to dipole interaction between SMMs using a high frequency electron paramagnetic resonance and low temperature. In this presentation, we will discuss temperature dependence of spin relaxation times and the decoherence mechanisms in the Mn3 SMM. This work is supported by the National Science Foundation (DMR-1508661) and the Searle scholars program.

  3. Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system

    NASA Astrophysics Data System (ADS)

    Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.

    2017-10-01

    We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.

  4. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    NASA Astrophysics Data System (ADS)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  5. Decoherence induced deformation of the ground state in adiabatic quantum computation.

    PubMed

    Deng, Qiang; Averin, Dmitri V; Amin, Mohammad H; Smith, Peter

    2013-01-01

    Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties.

  6. Decoherence induced deformation of the ground state in adiabatic quantum computation

    PubMed Central

    Deng, Qiang; Averin, Dmitri V.; Amin, Mohammad H.; Smith, Peter

    2013-01-01

    Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties. PMID:23528821

  7. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.

    PubMed

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  8. Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.

    2012-08-01

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  9. Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions.

    PubMed

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B; Elbing, Mark; Mayor, Marcel; Bryce, Martin R; Thoss, Michael; Weber, Heiko B

    2012-08-03

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  10. Temperature crossover of decoherence rates in chaotic and regular bath dynamics.

    PubMed

    Sanz, A S; Elran, Y; Brumer, P

    2012-03-01

    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.

  11. Coherence protection in coupled quantum systems

    NASA Astrophysics Data System (ADS)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  12. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  13. Nonadiabatic holonomic quantum computation in decoherence-free subspaces.

    PubMed

    Xu, G F; Zhang, J; Tong, D M; Sjöqvist, Erik; Kwek, L C

    2012-10-26

    Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces and the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of adiabatic holonomic quantum computation in decoherence-free subspaces have been proposed in the past few years. However, nonadiabatic holonomic quantum computation in decoherence-free subspaces, which avoids a long run-time requirement but with all the robust advantages, remains an open problem. Here, we demonstrate how to realize nonadiabatic holonomic quantum computation in decoherence-free subspaces. By using only three neighboring physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal set of quantum gates.

  14. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  15. Quantum correlation of high dimensional system in a dephasing environment

    NASA Astrophysics Data System (ADS)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  16. Adiabatic and nonadiabatic perturbation theory for coherence vector description of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Hollenberg, Sebastian; Päs, Heinrich

    2012-01-01

    The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.

  17. Temperature dependence of long coherence times of oxide charge qubits.

    PubMed

    Dey, A; Yarlagadda, S

    2018-02-22

    The ability to maintain coherence and control in a qubit is a major requirement for quantum computation. We show theoretically that long coherence times can be achieved at easily accessible temperatures (such as boiling point of liquid helium) in small (i.e., ~10 nanometers) charge qubits of oxide double quantum dots when only optical phonons are the source of decoherence. In the regime of strong electron-phonon coupling and in the non-adiabatic region, we employ a duality transformation to make the problem tractable and analyze the dynamics through a non-Markovian quantum master equation. We find that the system decoheres after a long time, despite the fact that no energy is exchanged with the bath. Detuning the dots to a fraction of the optical phonon energy, increasing the electron-phonon coupling, reducing the adiabaticity, or decreasing the temperature enhances the coherence time.

  18. Non-extensive entropy and properties of polaron in RbCl delta quantum dot under an applied electric field and Coulombic impurity

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-08-01

    Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence

  19. Decoherence in quantum lossy systems: superoperator and matrix techniques

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel

    2017-06-01

    Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

  20. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Härtle, R.; Cohen, G.; Reichman, D. R.; Millis, A. J.

    2013-12-01

    The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics, and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green's function reveals the importance of an interdot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.

  1. Decoherence in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  2. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  3. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-01-01

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083

  4. Preserving electron spin coherence in solids by optimal dynamical decoupling.

    PubMed

    Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B

    2009-10-29

    To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.

  5. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    NASA Astrophysics Data System (ADS)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  6. Modeling decoherence with qubits

    NASA Astrophysics Data System (ADS)

    Heusler, Stefan; Dür, Wolfgang

    2018-03-01

    Quantum effects like the superposition principle contradict our experience of daily life. Decoherence can be viewed as a possible explanation why we do not observe quantum superposition states in the macroscopic world. In this article, we use the qubit ansatz to discuss decoherence in the simplest possible model system and propose a visualization for the microscopic origin of decoherence, and the emergence of a so-called pointer basis. Finally, we discuss the possibility of ‘macroscopic’ quantum effects.

  7. Information transfer during the universal gravitational decoherence

    NASA Astrophysics Data System (ADS)

    Korbicz, J. K.; Tuziemski, J.

    2017-12-01

    Recently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an intriguing universal decoherence mechanism, suggesting that gravitation may play a conceptually important role in the quantum-to-classical transition, albeit vanishingly small in everyday situations. Here we analyze information transfer induced by this mechanism. We show that generically on short time-scales, gravitational decoherence leads to a redundant information encoding, which results in a form of objectivization of the center-of-mass position in the gravitational field. We derive the relevant time-scales of this process, given in terms of energy dispersion and quantum Fisher information. As an example we study thermal coherent states and show certain robustness of the effect with the temperature. Finally, we draw an analogy between our objectivization mechanism and the fundamental problem of point individuation in General Relativity as emphasized by the Einstein's Hole argument.

  8. Holonomic quantum computation in the presence of decoherence.

    PubMed

    Fuentes-Guridi, I; Girelli, F; Livine, E

    2005-01-21

    We present a scheme to study non-Abelian adiabatic holonomies for open Markovian systems. As an application of our framework, we analyze the robustness of holonomic quantum computation against decoherence. We pinpoint the sources of error that must be corrected to achieve a geometric implementation of quantum computation completely resilient to Markovian decoherence.

  9. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  10. Quantum decoherence of phonons in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  11. Nonexponential Decoherence and Momentum Subdiffusion in a Quantum Lévy Kicked Rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2007-06-01

    We investigate decoherence in the quantum kicked rotator (modeling cold atoms in a pulsed optical field) subjected to noise with power-law tail waiting-time distributions of variable exponent (Lévy noise). We demonstrate the existence of a regime of nonexponential decoherence where the notion of a decoherence rate is ill defined. In this regime, dynamical localization is never fully destroyed, indicating that the dynamics of the quantum system never reaches the classical limit. We show that this leads to quantum subdiffusion of the momentum, which should be observable in an experiment.

  12. Decoherence and dissipation for a quantum system coupled to a local environment

    NASA Technical Reports Server (NTRS)

    Gallis, Michael R.

    1994-01-01

    Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.

  13. Optical decoherence studies of Tm3 +:Y3Ga5O12

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-12-01

    Decoherence of the 795 nm 3H6 to 3H4 transition in 1 %Tm3 +:Y3Ga5O12 (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time scale (spectral diffusion) dependence of the optical coherence lifetime is measured. Our results show that the coherence lifetime is impacted less by spectral diffusion than other known thulium-doped materials. Photon echo excitation and spectral hole burning methods reveal uniform decoherence properties and the possibility to produce full transparency for persistent spectral holes across the entire 56 GHz inhomogeneous bandwidth of the optical transition. Temperature-dependent decoherence is well described by elastic Raman scattering of phonons with an additional weaker component that may arise from a low density of glass-like dynamic disorder modes (two-level systems). Analysis of the observed behavior suggests that an optical coherence lifetime approaching 1 ms may be possible in this system at temperatures below 1 K for crystals grown with optimized properties. Overall, we find that Tm:YGG has superior decoherence properties compared to other Tm-doped crystals and is a promising candidate for applications that rely on long coherence lifetimes, such as optical quantum memories and photonic signal processing.

  14. Disentanglement versus decoherence of two qubits in thermal noise.

    PubMed

    Zampetaki, A V; Diakonos, F K

    2012-08-31

    We show that the influence of thermal noise, simulated by a 2D ferromagnetic Ising spin lattice on a pair of noninteracting, initially entangled qubits, represented by quantum spins, leads to unexpected evolution of quantum correlations. The high temperature noise leads to ultraslow decay of the quantum correlations. Decreasing the noise temperature we observe a decrease of the characteristic decay time scale. When the noise originates from a critical state, a revival of the quantum correlations is observed. This revival becomes oscillatory with a slowly decaying amplitude when the temperature is decreased below the critical region, leading to persistence of the quantum correlations.

  15. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  16. Non-adiabatic holonomic quantum computation in linear system-bath coupling.

    PubMed

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-02-05

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.

  17. An information theory model for dissipation in open quantum systems

    NASA Astrophysics Data System (ADS)

    Rogers, David M.

    2017-08-01

    This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.

  18. Open quantum dots—probing the quantum to classical transition

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Burke, A. M.; Akis, R.; Brunner, R.; Day, T. E.; Meisels, R.; Kuchar, F.; Bird, J. P.; Bennett, B. R.

    2011-04-01

    Quantum dots provide a natural system in which to study both quantum and classical features of transport. As a closed testbed, they provide a natural system with a very rich set of eigenstates. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which classically would compose a mixed phase space. The manner of this breakup is governed strongly by Zurek's decoherence theory, and the remaining coherent states possess all the properties of his pointer states. These states are naturally studied via traditional magnetotransport at low temperatures. More recently, we have used scanning gate (conductance) microscopy to probe the nature of the coherent states, and have shown that families of states exist through the spectrum in a manner consistent with quantum Darwinism. In this review, we discuss the nature of the various states, how they are formed, and the signatures that appear in magnetotransport and general conductance studies.

  19. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    PubMed

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  20. Three-player quantum Kolkata restaurant problem under decoherence

    NASA Astrophysics Data System (ADS)

    Ramzan, M.

    2013-01-01

    Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice's payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice's payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice's payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.

  1. Electronic decoherence of two-level systems in a Josephson junction

    NASA Astrophysics Data System (ADS)

    Bilmes, Alexander; Zanker, Sebastian; Heimes, Andreas; Marthaler, Michael; Schön, Gerd; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-08-01

    The sensitivity of superconducting qubits allows for spectroscopy and coherence measurements on individual two-level systems present in the disordered tunnel barrier of an Al /AlOx /Al Josephson junction. We report experimental evidence for the decoherence of two-level systems by Bogoliubov quasiparticles leaking into the insulating AlOx barrier. We control the density of quasiparticles in the junction electrodes either by the sample temperature or by injecting them using an on-chip dc superconducting quantum interference device driven to its resistive state. The decoherence rates were measured by observing the two-level system's quantum state evolving under application of resonant microwave pulses and were found to increase linearly with quasiparticle density, in agreement with theory. This interaction with electronic states provides a noise and decoherence mechanism that is relevant for various microfabricated devices such as qubits, single-electron transistors, and field-effect transistors. The presented experiments also offer a possibility to determine the location of the probed two-level systems across the tunnel barrier, providing clues about the fabrication step in which they emerge.

  2. A Perron-Frobenius Type of Theorem for Quantum Operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng

    2017-10-01

    We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.

  3. Quantum control of topological defects in magnetic systems

    NASA Astrophysics Data System (ADS)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  4. Analysis of decoherence mechanisms in a single-atom quantum memory

    NASA Astrophysics Data System (ADS)

    Koerber, Matthias; Langenfeld, Stefan; Morin, Olivier; Neuzner, Andreas; Ritter, Stephan; Rempe, Gerhard

    2017-04-01

    While photons are ideal for the transmission of quantum information, they require dedicated memories for long-term storage. The challenge for such a photonic quantum memory is the combination of an efficient light-matter interface with a low-decoherence encoding. To increase the time before the quantum information is lost, a thorough analysis of the relevant decoherence mechanisms is indispensable. Our optical quantum memory consists of a single rubidium atom trapped in a two dimensional optical lattice in a high-finesse Fabry-Perot-type optical resonator. The qubit is initially stored in a superposition of Zeeman states, making magnetic field fluctuations the dominant source of decoherence. The impact to this type of noise is greatly reduced by transferring the qubit into a subspace less susceptible to magnetic field fluctuations. In this configuration, the achievable coherence times are no longer limited by those fluctuations, but decoherence mechanisms induced by the trapping beams pose a new limit. We will discuss the origin and magnitude of the relevant effects and strategies for possible resolutions.

  5. Quantum decoherence and interlevel relations

    NASA Astrophysics Data System (ADS)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful ways to carve the world into parts and wholes either. These conclusions, supported by quantum decoherence and the empirical success of its models, drastically alter the philosophical terrain---not just in physics or in the philosophy of physics, but in traditional metaphysics as well.

  6. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  7. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: Application to 1H NMR reversion experiments in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.

  8. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  9. Decoherence: Intrinsic, Extrinsic, and Environmental

    NASA Astrophysics Data System (ADS)

    Stamp, Philip

    2012-02-01

    Environmental decoherence times have been difficult to predict in solid-state systems. In spin systems, environmental decoherence is predicted to arise from nuclear spins, spin-phonon interactions, and long-range dipolar interactions [1]. Recent experiments have confirmed these predictions quantitatively in crystals of Fe8 molecules [2]. Coherent spin dynamics was observed over macroscopic volumes, with a decoherence Q-factor Qφ= 1.5 x10^6 (the upper predicted limit in this system being Qφ= 6 x10^7). Decoherence from dipolar interactions is particularly complex, and depends on the shape and the quantum state of the system. No extrinsic ``noise'' decoherence was observed. The generalization to quantum dot and superconducting qubit systems is also discussed. We then discuss searches for ``intrinsic'' decoherence [3,4], coming from non-linear corrections to quantum mechanics. Particular attention is paid to condensed matter tests of such intrinsic decoherence, in hybrid spin/optomechanical systems, and to ways of distinguishing intrinsic decoherence from environmental and extrinsic decoherence sources. [4pt] [1] Morello, A. Stamp, P. C. E. & Tupitsyn, Phys. Rev. Lett. 97, 207206 (2006).[0pt] [2] S. Takahashi et al., Nature 476, 76 (2011).[0pt] [3] Stamp, P. C. E., Stud. Hist. Phil. Mod. Phys. 37, 467 (2006). [0pt] [4] Stamp, P.C.E., Phil. Trans. Roy. Soc. A (to be published)

  10. Counterfactual Assessment of Decoherence in Quantum Systems

    NASA Astrophysics Data System (ADS)

    Russo, Onofrio; Jiang, Liang

    2013-03-01

    Quantum Zeno effect occurs when the system is observed for unusually short observation times, t, where the probability of the transition between different quantum states is known to be proportional to t2. This results in a decrease in the probability of transitions between states and the consequent decrease in decoherence. We consider the conditions in which these observations are made counterfactual to assess whether this results in a significant change in decoherence.

  11. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  12. Gravitational decoherence

    NASA Astrophysics Data System (ADS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-10-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.

  13. Decoherence estimation in quantum theory and beyond

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin

    The quantum physics literature provides many different characterizations of decoherence. Most of them have in common that they describe decoherence as a kind of influence on a quantum system upon interacting with an another system. In the spirit of quantum information theory, we adapt a particular viewpoint on decoherence which describes it as the loss of information into a system that is possibly controlled by an adversary. We use a quantitative framework for decoherence that builds on operational characterizations of the min-entropy that have been developed in the quantum information literature. It characterizes decoherence as an influence on quantum channels that reduces their suitability for a variety of quantifiable tasks such as the distribution of secret cryptographic keys of a certain length or the distribution of a certain number of maximally entangled qubit pairs. This allows for a quantitative and operational characterization of decoherence via operational characterizations of the min-entropy. In this thesis, we present a series of results about the estimation of the minentropy, subdivided into three parts. The first part concerns the estimation of a quantum adversary's uncertainty about classical information--expressed by the smooth min-entropy--as it is done in protocols for quantum key distribution (QKD). We analyze this form of min-entropy estimation in detail and find that some of the more recently suggested QKD protocols have previously unnoticed security loopholes. We show that the specifics of the sifting subroutine of a QKD protocol are crucial for security by pointing out mistakes in the security analysis in the literature and by presenting eavesdropping attacks on those problematic protocols. We provide solutions to the identified problems and present a formalized analysis of the min-entropy estimate that incorporates the sifting stage of QKD protocols. In the second part, we extend ideas from QKD to a protocol that allows to estimate an adversary's uncertainty about quantum information, expressed by the fully quantum smooth min-entropy. Roughly speaking, we show that a protocol that resembles the parallel execution of two QKD protocols can be used to lower bound the min-entropy of some unmeasured qubits. We explain how this result may influence the ongoing search for protocols for entanglement distribution. The third part is dedicated to the development of a framework that allows the estimation of decoherence even in experiments that cannot be correctly described by quantum theory. Inspired by an equivalent formulation of the min-entropy that relates it to the fidelity with a maximally entangled state, we define a decoherence quantity for a very general class of probabilistic theories that reduces to the min-entropy in the special case of quantum theory. This entails a definition of maximal entanglement for generalized probabilistic theories. Using techniques from semidefinite and linear programming, we show how bounds on this quantity can be estimated through Bell-type experiments. This allows to test models for decoherence that cannot be described by quantum theory. As an example application, we devise an experimental test of a model for gravitational decoherence that has been suggested in the literature.

  14. Investigating decoherence in a simple system

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1991-01-01

    The results of some simple calculations designed to study quantum decoherence are presented. The physics of quantum decoherence are briefly reviewed, and a very simple 'toy' model is analyzed. Exact solutions are found using numerical techniques. The type of incoherence exhibited by the model can be changed by varying a coupling strength. The author explains why the conventional approach to studying decoherence by checking the diagonality of the density matrix is not always adequate. Two other approaches, the decoherence functional and the Schmidt paths approach, are applied to the toy model and contrasted to each other. Possible problems with each are discussed.

  15. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    PubMed Central

    Brezinski, Mark E; Rupnick, Maria

    2016-01-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743

  16. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    PubMed

    Brezinski, Mark E; Rupnick, Maria

    2014-07-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems.

  17. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    NASA Technical Reports Server (NTRS)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  18. A universal test for gravitational decoherence

    PubMed Central

    Pfister, C.; Kaniewski, J.; Tomamichel, M.; Mantri, A.; Schmucker, R.; McMahon, N.; Milburn, G.; Wehner, S.

    2016-01-01

    Quantum mechanics and the theory of gravity are presently not compatible. A particular question is whether gravity causes decoherence. Several models for gravitational decoherence have been proposed, not all of which can be described quantum mechanically. Since quantum mechanics may need to be modified, one may question the use of quantum mechanics as a calculational tool to draw conclusions from the data of experiments concerning gravity. Here we propose a general method to estimate gravitational decoherence in an experiment that allows us to draw conclusions in any physical theory where the no-signalling principle holds, even if quantum mechanics needs to be modified. As an example, we propose a concrete experiment using optomechanics. Our work raises the interesting question whether other properties of nature could similarly be established from experimental observations alone—that is, without already having a rather well-formed theory of nature to make sense of experimental data. PMID:27694976

  19. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    PubMed Central

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-01-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865

  20. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  1. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.

  2. Extending Bell's beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories

    NASA Astrophysics Data System (ADS)

    Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.

    2009-09-01

    In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.

  3. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    NASA Astrophysics Data System (ADS)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  4. Sharpening the second law of thermodynamics with the quantum Bayes theorem.

    PubMed

    Gharibyan, Hrant; Tegmark, Max

    2014-09-01

    We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation decreases it. This provides a rigorous quantum-mechanical version of the second law of thermodynamics, governing how the entropy of a system (the entropy of its density matrix, partial-traced over the environment and conditioned on what is known) evolves under general decoherence and observation. The powerful tool of spectral majorization enables both simple alternative proofs of the classic Lindblad and Holevo inequalities without using strong subadditivity, and also novel inequalities for decoherence and observation that hold not only for von Neumann entropy, but also for arbitrary concave entropies.

  5. Quantum Darwinism in Quantum Brownian Motion

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  6. Quantum Darwinism in quantum Brownian motion.

    PubMed

    Blume-Kohout, Robin; Zurek, Wojciech H

    2008-12-12

    Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  7. Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0

    NASA Astrophysics Data System (ADS)

    Millán-Otoya, Jorge E.; Boettcher, Stefan

    2014-03-01

    Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3

  8. Relaxation and decoherence of qubits encoded in collective states of engineered magnetic structures

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Rubtsov, Alexey N.; Lichtenstein, Alexander I.; Ribeiro, Pedro

    2017-09-01

    The quantum nature of a microscopic system can only be revealed when it is sufficiently decoupled from surroundings. Interactions with the environment induce relaxation and decoherence that turn the quantum state into a classical mixture. Here, we study the timescales of these processes for a qubit encoded in the collective state of a set of magnetic atoms deposited on a metallic surface. For that, we provide a generalization of the commonly used definitions of T1 and T2 characterizing relaxation and decoherence rates. We calculate these quantities for several atomic structures, including a collective spin, a setup implementing a decoherence-free subspace, and two examples of spin chains. Our work contributes to the comprehensive understanding of the relaxation and decoherence processes and shows the advantages of the implementation of a decoherence free subspace in these setups.

  9. Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2016-07-01

    In Crull (Found Phys 45:1019-1045, 2015) it is argued that, in order to confront outstanding problems in cosmology and quantum gravity, interpretational aspects of quantum theory can by bypassed because decoherence is able to resolve them. As a result, Crull (Found Phys 45:1019-1045, 2015) concludes that our focus on conceptual and interpretational issues, while dealing with such matters in Okon and Sudarsky (Found Phys 44:114-143, 2014), is avoidable and even pernicious. Here we will defend our position by showing in detail why decoherence does not help in the resolution of foundational questions in quantum mechanics, such as the measurement problem or the emergence of classicality.

  10. Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state.

    PubMed

    Pradhan, Ekadashi; Magyar, Rudolph J; Akimov, Alexey V

    2016-11-30

    Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.

  11. Quantum Two Player Game in Thermal Environment

    PubMed Central

    Dajka, Jerzy; Kłoda, Dawid; Łobejko, Marcin; Sładkowski, Jan

    2015-01-01

    A two-player quantum game is considered in the presence of thermal decoherence. It is shown how the thermal environment modeled in terms of rigorous Davies approach affects payoffs of the players. The conditions for either beneficial or pernicious effect of decoherence are identified. The general considerations are exemplified by the quantum version of Prisoner Dilemma. PMID:26322833

  12. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  13. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    PubMed

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  14. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace

    PubMed Central

    Pyshkin, P. V.; Luo, Da-Wei; Jing, Jun; You, J. Q.; Wu, Lian-Ao

    2016-01-01

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol. PMID:27886234

  15. Scalable architecture for a room temperature solid-state quantum information processor.

    PubMed

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  16. Global coherence of quantum evolutions based on decoherent histories: Theory and application to photosynthetic quantum energy transport

    NASA Astrophysics Data System (ADS)

    Allegra, Michele; Giorda, Paolo; Lloyd, Seth

    2016-04-01

    Assessing the role of interference in natural and artificial quantum dynamical processes is a crucial task in quantum information theory. To this aim, an appropriate formalism is provided by the decoherent histories framework. While this approach has been deeply explored from different theoretical perspectives, it still lacks of a comprehensive set of tools able to concisely quantify the amount of coherence developed by a given dynamics. In this paper, we introduce and test different measures of the (average) coherence present in dissipative (Markovian) quantum evolutions, at various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we apply them to a paradigmatic quantum process where the role of coherence is being hotly debated: exciton transport in photosynthetic complexes. To spot out the essential features that may determine the performance of the transport, we focus on a relevant trimeric subunit of the Fenna-Matthews-Olson complex and we use a simplified (Haken-Strobl) model for the system-bath interaction. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to a quantum recoil avoiding effect on the exciton dynamics, that preserves and sustains the benefits of the initial fast quantum delocalization of the exciton over the network. Indeed, for intermediate levels of decoherence, the bath is seen to selectively kill the negative interference between different exciton pathways, while retaining the initial positive one. The concepts and tools here developed show how the decoherent histories approach can be used to quantify the relation between coherence and efficiency in quantum dynamical processes.

  17. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    NASA Astrophysics Data System (ADS)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  18. Decoherence in quantum systems in a static gravitational field

    NASA Astrophysics Data System (ADS)

    Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang

    2016-09-01

    A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.

  19. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  20. Dynamics of a Chlorophyll Dimer in Collective and Local Thermal Environments

    DOE PAGES

    Merkli, M.; Berman, Gennady Petrovich; Sayre, Richard Thomas; ...

    2016-01-30

    Here we present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalizedmore » Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach.« less

  1. Tuning quantum measurements to control chaos.

    PubMed

    Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R

    2017-03-20

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  2. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits

    NASA Astrophysics Data System (ADS)

    Dong, Lihong; Rong, Xing; Geng, Jianpei; Shi, Fazhan; Li, Zhaokai; Duan, Changkui; Du, Jiangfeng

    2017-11-01

    We propose a novel theoretical scheme of quantum computation. Nuclear spin pairs are utilized to encode decoherence-free (DF) qubits. A nitrogen-vacancy center serves as a quantum actuator to initialize, readout, and quantum control the DF qubits. The realization of CNOT gates between two DF qubits are also presented. Numerical simulations show high fidelities of all these processes. Additionally, we discuss the potential of scalability. Our scheme reduces the challenge of classical interfaces from controlling and observing complex quantum systems down to a simple quantum actuator. It also provides a novel way to handle complex quantum systems.

  3. Measurement-based control of a mechanical oscillator at its thermal decoherence rate.

    PubMed

    Wilson, D J; Sudhir, V; Piro, N; Schilling, R; Ghadimi, A; Kippenberg, T J

    2015-08-20

    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen successful applications of these protocols in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. However, stabilizing the quantum state of a tangibly massive object, such as a mechanical oscillator, remains very challenging: the main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, 4.3-megahertz nanomechanical oscillator in the timescale of its thermal decoherence, a basic requirement for real-time (Markovian) quantum feedback control tasks, such as ground-state preparation. The sensor is based on evanescent optomechanical coupling to a high-Q microcavity, and achieves an imprecision four orders of magnitude below that at the standard quantum limit for a weak continuous position measurement--a 100-fold improvement over previous reports--while maintaining an imprecision-back-action product that is within a factor of five of the Heisenberg uncertainty limit. As a demonstration of its utility, we use the measurement as an error signal with which to feedback cool the oscillator. Using radiation pressure as an actuator, the oscillator is cold damped with high efficiency: from a cryogenic-bath temperature of 4.4 kelvin to an effective value of 1.1 ± 0.1 millikelvin, corresponding to a mean phonon number of 5.3 ± 0.6 (that is, a ground-state probability of 16 per cent). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of mechanical oscillators as practical subjects for measurement-based quantum control.

  4. Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Dong, Ping; Zhou, Jian; Cao, Zhuo-Liang

    2017-05-01

    A scheme for implementing the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with the interactions between a microcavity and quantum dots. A universal set of quantum gates can be constructed on the encoded logical qubits with high fidelities. The current scheme can suppress both local and collective noises, which is very important for achieving universal quantum computation. Discussions about the gate fidelities with the experimental parameters show that our schemes can be implemented in current experimental technology. Therefore, our scenario offers a method for universal and robust solid-state quantum computation.

  5. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    NASA Astrophysics Data System (ADS)

    Datta, Shounak; Goswami, Suchetana; Pramanik, Tanumoy; Majumdar, A. S.

    2017-03-01

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment.

  6. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    NASA Astrophysics Data System (ADS)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  7. Quantum digital-to-analog conversion algorithm using decoherence

    NASA Astrophysics Data System (ADS)

    SaiToh, Akira

    2015-08-01

    We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.

  8. Ignorance is bliss: general and robust cancellation of decoherence via no-knowledge quantum feedback.

    PubMed

    Szigeti, Stuart S; Carvalho, Andre R R; Morley, James G; Hush, Michael R

    2014-07-11

    A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and robust, and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.

  9. Quantum eraser and the decoherence time of a measurement process

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    1999-10-01

    We propose a which path quantum eraser scheme based on a recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)] involving two four-level atoms. We show that the quantum eraser can be used for the detection of the decoherence time of macroscopic or mesoscopic entangled superpositions of pointer states of a meter with one of the two atoms, by the visibility of the interference pattern.

  10. Quantum-like model of brain's functioning: decision making from decoherence.

    PubMed

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Quantum-holographic and classical Hopfield-like associative nnets: implications for modeling two cognitive modes of consciousness

    NASA Astrophysics Data System (ADS)

    Rakovic, D.; Dugic, M.

    2005-05-01

    Quantum bases of consciousness are considered with psychosomatic implications of three front lines of psychosomatic medicine (hesychastic spirituality, holistic Eastern medicine, and symptomatic Western medicine), as well as cognitive implications of two modes of individual consciousness (quantum-coherent transitional and altered states, and classically reduced normal states) alongside with conditions of transformations of one mode into another (considering consciousness quantum-coherence/classical-decoherence acupuncture system/nervous system interaction, direct and reverse, with and without threshold limits, respectively) - by using theoretical methods of associative neural networks and quantum neural holography combined with quantum decoherence theory.

  12. The excitonic qubit coupled with a phonon bath on a star graph: anomalous decoherence and coherence revivals

    NASA Astrophysics Data System (ADS)

    Yalouz, S.; Falvo, C.; Pouthier, V.

    2017-06-01

    Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.

  13. Drift of charge carriers in crystalline organic semiconductors

    NASA Astrophysics Data System (ADS)

    Dong, Jingjuan; Si, Wei; Wu, Chang-Qin

    2016-04-01

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ˜105 V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  14. Drift of charge carriers in crystalline organic semiconductors.

    PubMed

    Dong, Jingjuan; Si, Wei; Wu, Chang-Qin

    2016-04-14

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10(5) V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  15. Towards fault tolerant adiabatic quantum computation.

    PubMed

    Lidar, Daniel A

    2008-04-25

    I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.

  16. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  17. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    PubMed

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  18. Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits

    DOE PAGES

    Merkli, M.; Berman, G. P.; Sigal, I. M.

    2010-01-01

    We describe our recenmore » t results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N -level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0 and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.« less

  19. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  20. Decoherence by spontaneous emission: A single-atom analog of superradiance

    NASA Astrophysics Data System (ADS)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2016-12-01

    We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.

  1. Dynamics and protection of tripartite quantum correlations in a thermal bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long

    2015-03-15

    We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less

  2. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  3. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  4. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  5. Quantum effects in energy and charge transfer in an artificial photosynthetic complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco

    2011-06-28

    We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled tomore » the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of {approx}100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.« less

  6. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan

    Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less

  7. Experimental entanglement purification of arbitrary unknown states.

    PubMed

    Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton

    2003-05-22

    Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.

  8. Sampled-data design for sliding mode control based on various robust specifications in open quantum system

    NASA Astrophysics Data System (ADS)

    Ji, Yinghua; Ju-Ju, Hu; Jian-Hua, Huang; Qiang, Ke

    Due to the influence of decoherence, the quantum state probably evolves from the initial pure state to the mixed state, resulting in loss of fidelity, coherence and purity, which is deteriorating for quantum information transmission. Thus, in quantum engineering, quantum control should not only realize the transfer and track of quantum states through manipulation of the external electromagnetic field but also enhance the robustness against decoherence. In this paper, we aim to design a control law to steer the system into the sliding mode domain and maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We first define the required control performance by fidelity, degree of coherence and purity in terms of the uncertainty of the Hamiltonian in Markovian open quantum system. By characterizing the required robustness using a sliding mode domain, a sampled-data design method is introduced for decoherence control in the quantum system. Furthermore, utilizing the sampled data, a control scheme has been designed on the basis of sliding mode control, and the choice of sampling operator and driving of quantum state during the sampling by the Lyapunov control method are discussed.

  9. Electron-phonon interaction in quantum transport through quantum dots and molecular systems

    NASA Astrophysics Data System (ADS)

    Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2016-12-01

    The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.

  10. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    NASA Astrophysics Data System (ADS)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  11. From quantum to classical interactions between a free electron and a surface

    NASA Astrophysics Data System (ADS)

    Beierle, Peter James

    Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.

  12. Quantum to classical transition in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.

    1998-12-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.

  13. Decoherence of entangled states by colored noise: application to precision measurements

    NASA Astrophysics Data System (ADS)

    Andre, Axel; Sorensen, Anders; Lukin, Mikhail; van der Wal, Caspar

    2003-05-01

    Controlled manipulation of quantum systems can lead to a number of exciting new applications in quantum information science, from quantum computation to applications in precision measurements. In many such applications, decoherence is a key factor to take into account and ultimately determines the feasibility or usefulness of the proposal. The decoherence of quantum mechanical degrees of freedom is usually modeled through their interaction with a bath consisting of a large number of harmonic oscillators. The separation of energy scales between the energy of the oscillators and the interaction energy leads to separation of time scales so that the decoherence process can be modeled effectively by a markovian process (infinitely short reservoir correlation time). Low-lying state are long-lived and are therefore ideally suited for storage of quantum information and long-lived quantum memory. Due to their long lifetime, these states are sensitive to the low frequency noise of the environment. In particular 1/f noise is dominating at low frequencies and this changes the form of the decoherence. In this case, non-exponential decay is to be expected so that the importance of decoherence depends on the time-scale. We consider the accuracy of frequency measurements using the Ramsey technique when the ensemble of atoms is subject to colored noise during the measurement. It has been shown that the use of entangled states of atomic ensembles (so-called spin squeezed states) may lead to an improvement in the accuracy of frequency measurements when the system is noiseless [1]. To assess the usefulness in a real setup decoherence has to be taken into account. It has been shown that for white noise spectra the net improvement is very small [2], this conclusion is however changed significantly when the system is influenced by colored noise. We study phase noise of the reference oscillator in frequency measurements and show that for non-white noise spectra (e.g. when the noise power increases at low frequencies such as for 1/f noise) there is a net improvement in accuracy when using spin-squeezed states as compared with non-entangled states. [1] D.J. Wineland et al., Phys. Rev. A 50, 67 (1994). [2] S.F. Huelga et al., Phys. Rev. Lett. 79, 3865 (1997).

  14. Probability, arrow of time and decoherence

    NASA Astrophysics Data System (ADS)

    Bacciagaluppi, Guido

    This paper relates both to the metaphysics of probability and to the physics of time asymmetry. Using the formalism of decoherent histories, it investigates whether intuitions about intrinsic time directedness that are often associated with probability can be justified in the context of no-collapse approaches to quantum mechanics. The standard (two-vector) approach to time symmetry in the decoherent histories literature is criticised, and an alternative approach is proposed, based on two decoherence conditions ('forwards' and 'backwards') within the one-vector formalism. In turn, considerations of forwards and backwards decoherence and of decoherence and recoherence suggest that a time-directed interpretation of probabilities, if adopted, should be both contingent and perspectival.

  15. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  16. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  17. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Jian; Huang Yixiao; Wang Xiaoguang

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  18. Gravitational decoherence, alternative quantum theories and semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Hu, B. L.

    2014-04-01

    In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.

  19. Observational constraints on quantum decoherence during inflation

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2018-05-01

    Since inflationary perturbations must generically couple to all degrees of freedom present in the early Universe, it is more realistic to view these fluctuations as an open quantum system interacting with an environment. Then, on very general grounds, their evolution can be modelled with a Lindblad equation. This modified evolution leads to quantum decoherence of the system, as well as to corrections to observables such as the power spectrum of curvature fluctuations. On one hand, current cosmological observations constrain the properties of possible environments and place upper bounds on the interaction strengths. On the other hand, imposing that decoherence completes by the end of inflation implies lower bounds on the interaction strengths. Therefore, the question arises of whether successful decoherence can occur without altering the power spectrum. In this paper, we systematically identify all scenarios in which this is possible. As an illustration, we discuss the case in which the environment consists of a heavy test scalar field. We show that this realises the very peculiar configuration where the correction to the power spectrum is quasi scale invariant. In that case, the presence of the environment improves the fit to the data for some inflationary models but deteriorates it for others. This clearly demonstrates that decoherence is not only of theoretical importance but can also be crucial for astrophysical observations.

  20. Length scales involved in decoherence of trapped bosons by buffer-gas scattering

    NASA Astrophysics Data System (ADS)

    Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.

    2014-05-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.

  1. Coherence and decoherence in the brain

    NASA Astrophysics Data System (ADS)

    Hepp, K.

    2012-09-01

    This review provides many entry points to controversies in neuroscience, where input from mathematical physics could be fruitful, especially about coherence and decoherence in the brain, both on the level of classical and quantum mechanics.

  2. Non-Markovian Complexity in the Quantum-to-Classical Transition

    PubMed Central

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-01-01

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

  3. Correlated Errors in the Surface Code

    NASA Astrophysics Data System (ADS)

    Lopez, Daniel; Mucciolo, E. R.; Novais, E.

    2012-02-01

    A milestone step into the development of quantum information technology would be the ability to design and operate a reliable quantum memory. The greatest obstacle to create such a device has been decoherence due to the unavoidable interaction between the quantum system and its environment. Quantum Error Correction is therefore an essential ingredient to any quantum computing information device. A great deal of attention has been given to surface codes, since it has very good scaling properties. In this seminar, we discuss the time evolution of a qubit encoded in the logical basis of a surface code. The system is interacting with a bosonic environment at zero temperature. Our results show how much spatial and time correlations can be detrimental to the efficiency of the code.

  4. Dynamic stimulation of quantum coherence in systems of lattice bosons.

    PubMed

    Robertson, Andrew; Galitski, Victor M; Refael, Gil

    2011-04-22

    Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

  5. Decoherence-induced conductivity in the one-dimensional Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegmann, Thomas; Wolf, Dietrich E.; Ujsághy, Orsolya

    We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determinedmore » by the second-order generalized Lyapunov exponent (GLE) [4].« less

  6. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  7. Enhancing coherence in molecular spin qubits via atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2016-03-01

    Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

  8. Rapid onset of decoherence in driven-dissipative Rydberg systems

    NASA Astrophysics Data System (ADS)

    Magnan, Eric; Boulier, Thomas; Bracamontes, Carlos; Maslek, James; Young, Jeremy; Gorshkov, Alexei; Porto, Trey; Rolston, Steven; JQI-Rubidium One Team

    2017-04-01

    Rydberg atoms have been strong candidates for the realization of quantum information processing and quantum simulation. Recently, however, there has been concerns about this approach due to the observation of a rapid onset of decoherence in large ensembles. In we provide experimental support for the hypothesis that this is due to the avalanche-like onset of exchange dipole interactions, fueled by blackbody transitions to nearby Rydberg states of opposite parity. Making a fully microscopic model has proven difficult as it requires beyond mean-field arguments, but the ubiquitousness of Rydberg-Rydberg blackbody transitions at room temperature and the always-resonant nature of dipole exchange interactions make it an interesting challenge, and argues for deeper study into the matter. In this poster, we present complementary measurements and analysis that confirm this mechanism. We also discuss several possibilities to reduce its impact on the system's coherence. This work was partially supported by NSF PIF, AFOSR, ARO, ARL-CDQI, and NSF PFC at JQI.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Xiaoqiang; Wang Hongfu; Zhang Shou

    We present an approach for implementation of a 1->3 orbital state quantum cloning machine based on the quantum Zeno dynamics via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity assisted by classical fields. Through appropriate modulation of the coupling constants between rf SQUIDs and classical fields, the quantum cloning machine can be realized within one step. We also discuss the effects of decoherence such as spontaneous emission and the loss of cavity in virtue of master equation. The numerical simulation result reveals that the quantum cloning machine is especially robust against themore » cavity decay, since all qubits evolve in the decoherence-free subspace with respect to cavity decay due to the quantum Zeno dynamics.« less

  10. Momentum distributions for the quantum delta-kicked rotor with decoherence

    PubMed

    Vant; Ball; Christensen

    2000-05-01

    We report on the momentum distribution line shapes for the quantum delta-kicked rotor in the presence of environment induced decoherence. Experimental and numerical results are presented. In the experiment ultracold cesium atoms are subjected to a pulsed standing wave of near resonant light. Spontaneous scattering of photons destroys dynamical localization. For the scattering rates used in our experiment the momentum distribution shapes remain essentially exponential.

  11. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  12. Principles of control for decoherence-free subsystems.

    PubMed

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  13. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    NASA Astrophysics Data System (ADS)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  14. Adiabatic transport of qubits around a black hole

    NASA Astrophysics Data System (ADS)

    Viennot, David; Moro, Olivia

    2017-03-01

    We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.

  15. Decoherence and thermalization of a pure quantum state in quantum field theory.

    PubMed

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  16. Phonon effects on the radiative recombination of excitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł

    2011-11-01

    We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.

  17. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    NASA Astrophysics Data System (ADS)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  18. The Measurement Problem: Decoherence and Convivial Solipsism

    NASA Astrophysics Data System (ADS)

    Zwirn, Hervé

    2016-06-01

    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve (or to dissolve) it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to decide between two different interpretations. The first one is to consider that the decoherence process has the effect to actually project a superposed state into one of its classically interpretable component, hence doing the same job as the reduction postulate. For the second one, decoherence is only a way to show why no macroscopic superposed state can be observed, so explaining the classical appearance of the macroscopic world, while the quantum entanglement between the system, the apparatus and the environment never disappears. In this case, explaining why only one single definite outcome is observed remains to do. In this paper, I examine the arguments that have been given for and against both interpretations and defend a new position, the "Convivial Solipsism", according to which the outcome that is observed is relative to the observer, different but in close parallel to the Everett's interpretation and sharing also some similarities with Rovelli's relational interpretation and Quantum Bayesianism. I also show how "Convivial Solipsism" can help getting a new standpoint about the EPR paradox providing a way out of the seemingly unavoidable non-locality of quantum mechanics.

  19. Avoiding irreversible dynamics in quantum systems

    NASA Astrophysics Data System (ADS)

    Karasik, Raisa Iosifovna

    2009-10-01

    Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with the interactions between the system and its environment in a special way to reduce decoherence. This property is used to discover new DFS that rely on rather counterintuitive phenomenon, which I call an "incoherent generation of coherences." I also provide examples of physical systems that support such states. These DFS can be used to suppress & coherence, but may not be sufficient for performing full quantum computation. I also explore the possibility of physically generating the DFS that are useful for quantum computation. For quantum computation we need to preserve at least two quantum states to encode the quantum analogue of classical bits. Here I aim to generate DFS in a system composed from a large collection of atoms or molecules and I need to determine how one should position atoms or molecules in 3D space so that the overall system possesses a DFS with at least two states (i.e., non-trivial DFS). I show that for many Markovian systems, non-trivial DFS can exist only when particles are located in exactly the same position in space. This, of course, is not possible in the real world. For these systems, I also show that states in DFS are states with infinite lifetime. However, for all practical applications we just need long-lived states. Thus in reality, we do just need to bring quantum particles close together to generate an imperfect DFS, i.e. a collection of long-lived states. This can be achieved, for example, for atoms within a single molecule.

  20. Decoherence in models for hard-core bosons coupled to optical phonons

    NASA Astrophysics Data System (ADS)

    Dey, A.; Lone, M. Q.; Yarlagadda, S.

    2015-09-01

    Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific and technological implications for quantum computation. Here, we study decay of excited-state population and decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics. Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each site providing a different local optical phonon environment; furthermore, the HCB systems in both models are taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach shows that the quantum states of the system do not decohere.

  1. Bang-bang control of a qubit coupled to a quantum critical spin bath

    NASA Astrophysics Data System (ADS)

    Rossini, D.; Facchi, P.; Fazio, R.; Florio, G.; Lidar, D. A.; Pascazio, S.; Plastina, F.; Zanardi, P.

    2008-05-01

    We analytically and numerically study the effects of pulsed control on the decoherence of a qubit coupled to a quantum spin bath. When the environment is critical, decoherence is faster and we show that the control is relatively more effective. Two coupling models are investigated, namely, a qubit coupled to a bath via a single link and a spin-star model, yielding results that are similar and consistent.

  2. Realistic clocks, universal decoherence, and the black hole information paradox.

    PubMed

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-12-10

    Ordinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how "classical" even the best possible clock can be. With realistic clocks, quantum mechanics ceases to be unitary and a fundamental mechanism of decoherence of quantum states arises. We estimate the rate of the universal loss of unitarity using optimal realistic clocks. In particular, we observe that the rate is rapid enough to eliminate the black hole information puzzle: all information is lost through the fundamental decoherence before the black hole can evaporate. This improves on a previous calculation we presented with a suboptimal clock in which only part of the information was lost by the time of evaporation.

  3. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  4. Prediction and Real-Time Compensation of Qubit Decoherence Via Machine Learning (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-01-16

    ARTICLE Received 24 Sep 2016 | Accepted 29 Nov 2016 | Published 16 Jan 2017 Prediction and real- time compensation of qubit decoherence via machine...information to suppress stochastic, semiclassical decoherence, even when access to measurements is limited. First, we implement a time -division...quantum information experiments. Second, we employ predictive feedback during sequential but time delayed measurements to reduce the Dick effect as

  5. Nonlocal memory effects allow perfect teleportation with mixed states

    PubMed Central

    Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki

    2014-01-01

    One of the most striking consequences of quantum physics is quantum teleportation – the possibility to transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a maximally entangled quantum state acting as a resource for the teleportation task. If, however, the state is influenced by decoherence, perfect teleportation can no longer be accomplished. Therefore, one of the current major challenges in accomplishing teleportation over long distances is to overcome the limitations imposed by decoherence and the subsequent mixedness of the resource state. Here we show that, in the presence of nonlocal memory effects, perfect quantum teleportation can be achieved even with mixed photon polarisation states. Our results imply that memory effects can be exploited in harnessing noisy quantum systems for quantum communication and that non-Markovianity is a resource for quantum information tasks. PMID:24714695

  6. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving.

    PubMed

    Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin

    2015-10-28

    Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection.

  7. Instantaneous and dynamical decoherence

    NASA Astrophysics Data System (ADS)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  8. Slowing Quantum Decoherence by Squeezing in Phase Space

    NASA Astrophysics Data System (ADS)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  9. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  10. Preserving photon qubits in an unknown quantum state with Knill Dynamical Decoupling - Towards an all optical quantum memory

    NASA Astrophysics Data System (ADS)

    Gupta, Manish K.; Navarro, Erik J.; Moulder, Todd A.; Mueller, Jason D.; Balouchi, Ashkan; Brown, Katherine L.; Lee, Hwang; Dowling, Jonathan P.

    2015-05-01

    The storage of quantum states and its distribution over long distances is essential for emerging quantum technologies such as quantum networks and long distance quantum cryptography. The implementation of polarization-based quantum communication is limited by signal loss and decoherence caused by the birefringence of a single-mode fiber. We investigate the Knill dynamical decoupling scheme, implemented using half-wave plates in a single mode fiber, to minimize decoherence of polarization qubit and show that a fidelity greater than 99 % can be achieved in absence of rotation error and fidelity greater than 96 % can be achieved in presence of rotation error. Such a scheme can be used to preserve any quantum state with high fidelity and has potential application for constructing all optical quantum memory, quantum delay line, and quantum repeater. The authors would like to acknowledge the support from the Air Force office of Scientific Research, the Army Research office, and the National Science Foundation.

  11. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

    PubMed Central

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-01-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467

  12. Classical Limit and Quantum Logic

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  13. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  14. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  15. Unforgeable Noise-Tolerant Quantum Tokens

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Pastawski, Fernando; Jiang, Liang; Lukin, Mikhail; Cirac, Ignacio

    2012-06-01

    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of ``quantum money.'' A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure ``quantum money''-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.

  16. Random unitary evolution model of quantum Darwinism with pure decoherence

    NASA Astrophysics Data System (ADS)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  17. Decoherence and Noise in Spin-based Solid State Quantum Computers. Approximation-Free Numerical Simulations

    DTIC Science & Technology

    2007-07-21

    the spin coherent states P-representation", Conference on Quantum Computations and Many- Body Systems, February 2006, Key West, FL 9. B. N. Harmon...solid-state spin-based qubit systems was the focus of our project. Since decoherence is a complex many- body non-equilibrium process, and its...representation of the density matrix, see Sec. 3 below). This work prompted J. Taylor from the experimental group of C. Marcus and M. Lukin (funded by

  18. A Simple Example of ``Quantum Darwinism'': Redundant Information Storage in Many-Spin Environments

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2005-11-01

    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.

  19. Multimode optomechanical system in the quantum regime.

    PubMed

    Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S; Schliesser, Albert

    2017-01-03

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 10 7 ) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.

  20. Multimode optomechanical system in the quantum regime

    NASA Astrophysics Data System (ADS)

    Hvidtfelt Padkær Nielsen, William; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert

    2017-01-01

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.

  1. Spin Decoherence in III-V Quantum Wells and Superlattices

    NASA Astrophysics Data System (ADS)

    Lau, Wayne H.; Flatté, Michael E.

    2001-03-01

    Electron spin decoherence in zincblende type quantum wells (QW) and superlattices (SL) near room temperature is dominated by the precessional D'yakonov-Perel' (DP) mechanism. The effective precession is a direct result of the spin splitting of the conduction band due to bulk inversion asymmetry (BIA) of the constituent zincblende semiconductors and also to any native interface asymmetry (NIA) of the heterointerfaces. The effect of BIA is dominant in common atom (CA) systems such as GaAs/AlGaAs QWs. However, in no common atom (NCA) systems such as InAs/GaSb, the interface bonds are different in character from those in the bulk and are asymmetrically oriented (giving rise to NIA). To accurately describe the DP spin relaxation mechanism we employ a nonperturbative nanostructure model based on a fourteen-bulk-band basis, including both BIA and NIA. Quantitative agreement between these calculations and measurements is found for GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb QW's, as well as for an InAs/GaSb SL.

  2. Random matrix ensembles for many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Vyas, Manan; Seligman, Thomas H.

    2018-04-01

    Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.

  3. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Zhang, P.; Sun, C. P.

    2006-03-01

    We study the physical implementation of the photon-Carnot engine (PCE) based on the cavity quantum electrodynamics system [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003)]. Here we analyze two decoherence mechanisms for the more practical systems of PCE, the dissipation of photon field, and the pure dephasing of the input atoms. As a result we find that (i) the PCE can work well to some extent even in the existence of the cavity loss (photon dissipation) and (ii) the short-time atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.

  4. Decoherence and discrete symmetries in deformed relativistic kinematics

    NASA Astrophysics Data System (ADS)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  5. Surface-hopping dynamics and decoherence with quantum equilibrium structure.

    PubMed

    Grunwald, Robbie; Kim, Hyojoon; Kapral, Raymond

    2008-04-28

    In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.

  6. How decoherence affects the probability of slow-roll eternal inflation

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2017-07-01

    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.

  7. Generalized quantum theory of recollapsing homogeneous cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James B.

    2004-06-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic “JṡdΣ” rule of quantum cosmology, as well as a generalization of this rule to generic initial states.

  8. Sudden death of entanglement and non-locality in two- and three-component quantum systems

    NASA Astrophysics Data System (ADS)

    Ann, Kevin

    2011-12-01

    Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).

  9. Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature.

    PubMed

    Pouthier, Vincent

    2012-11-07

    A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.

  10. Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers.

    PubMed

    Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan

    2015-06-01

    A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.

  11. Monitoring ion-channel function in real time through quantum decoherence

    PubMed Central

    Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.

    2010-01-01

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908

  12. Using quantum process tomography to characterize decoherence in an analog electronic device

    NASA Astrophysics Data System (ADS)

    Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville

    The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  13. Monitoring ion-channel function in real time through quantum decoherence.

    PubMed

    Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L

    2010-11-02

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.

  14. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk; Yam, ChiYung

    2015-04-28

    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can bemore » suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.« less

  15. Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu; Nano and Micro Device Center, University of Alabama in Huntsville, Huntsville, Alabama 35899; Patty, K. D.

    2014-02-24

    We show that when a semiconductor quantum dot is in the vicinity of a metallic nanoparticle and driven by a mid-infrared laser field, its coherent dynamics caused by interaction with a visible laser field can become free of quantum decoherence. We demonstrate that this process, which can offer undamped Rabi and field oscillations, is the result of coherent normalization of the “effective” polarization dephasing time of the quantum dot (T{sub 2}{sup *}). This process indicates formation of infrared-induced coherently forced oscillations, which allows us to control the value of T{sub 2}{sup *} using the infrared laser. The results offer decay-freemore » ultrafast modulation of the effective field experienced by the quantum dot when neither the visible laser field nor the infrared laser changes with time.« less

  16. The Role of Quantum Decoherence in FRET.

    PubMed

    Nelson, Philip C

    2018-02-16

    Resonance energy transfer has become an indispensable experimental tool for single-molecule and single-cell biophysics. Its physical underpinnings, however, are subtle: it involves a discrete jump of excitation from one molecule to another, and so we regard it as a strongly quantum-mechanical process. And yet its kinetics differ from what many of us were taught about two-state quantum systems, quantum superpositions of the states do not seem to arise, and so on. Although J. R. Oppenheimer and T. Förster navigated these subtleties successfully, it remains hard to find an elementary derivation in modern language. The key step involves acknowledging quantum decoherence. Appreciating that aspect can be helpful when we attempt to extend our understanding to situations in which Förster's original analysis is not applicable. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Error suppression for Hamiltonian quantum computing in Markovian environments

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-03-01

    Hamiltonian quantum computing, such as the adiabatic and holonomic models, can be protected against decoherence using an encoding into stabilizer subspace codes for error detection and the addition of energy penalty terms. This method has been widely studied since it was first introduced by Jordan, Farhi, and Shor (JFS) in the context of adiabatic quantum computing. Here, we extend the original result to general Markovian environments, not necessarily in Lindblad form. We show that the main conclusion of the original JFS study holds under these general circumstances: Assuming a physically reasonable bath model, it is possible to suppress the initial decay out of the encoded ground state with an energy penalty strength that grows only logarithmically in the system size, at a fixed temperature.

  18. Probing possible decoherence effects in atmospheric neutrino oscillations.

    PubMed

    Lisi, E; Marrone, A; Montanino, D

    2000-08-07

    It is shown that the results of the Super-Kamiokande atmospheric neutrino experiment, interpreted in terms of nu(mu)<-->nu(tau) flavor transitions, can probe possible decoherence effects induced by new physics (e.g., by quantum gravity) with high sensitivity, supplementing current laboratory tests based on kaon oscillations and on neutron interferometry. By varying the (unknown) energy dependence of such effects, one can either obtain strong limits on their amplitude or use them to find an unconventional solution to the atmospheric nu anomaly based solely on decoherence.

  19. Efficient tools for quantum metrology with uncorrelated noise

    NASA Astrophysics Data System (ADS)

    Kołodyński, Jan; Demkowicz-Dobrzański, Rafał

    2013-07-01

    Quantum metrology offers enhanced performance in experiments on topics such as gravitational wave-detection, magnetometry or atomic clock frequency calibration. The enhancement, however, requires a delicate tuning of relevant quantum features, such as entanglement or squeezing. For any practical application, the inevitable impact of decoherence needs to be taken into account in order to correctly quantify the ultimate attainable gain in precision. We compare the applicability and the effectiveness of various methods of calculating the ultimate precision bounds resulting from the presence of decoherence. This allows us to place a number of seemingly unrelated concepts into a common framework and arrive at an explicit hierarchy of quantum metrological methods in terms of the tightness of the bounds they provide. In particular, we show a way to extend the techniques originally proposed in Demkowicz-Dobrzański et al (2012 Nature Commun. 3 1063), so that they can be efficiently applied not only in the asymptotic but also in the finite number of particles regime. As a result, we obtain a simple and direct method, yielding bounds that interpolate between the quantum enhanced scaling characteristic for a small number of particles and the asymptotic regime, where quantum enhancement amounts to a constant factor improvement. Methods are applied to numerous models, including noisy phase and frequency estimation, as well as the estimation of the decoherence strength itself.

  20. Decoherence, discord, and the quantum master equation for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; McDonald, Jamie I.

    2017-05-01

    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

  1. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    PubMed Central

    Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Šetrajčić, Jovan

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662

  2. Tsallis entropy and decoherence of CsI quantum pseudo dot qubit

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-05-01

    Polaron in CsI quantum pseudo dot under an electromagnetic field was considered, and the ground and first excited state energies were derived by employing the combining Pekar variational and unitary transformation methods. With the two-level system obtained, single qubit was envisioned and the decoherence was studied using non-extensive entropy (Tsallis entropy). Numerical results showed: (i) the increase (decrease) of the energy levels (period of oscillation) with the increase of chemical potential, the zero point of pseudo dot, cyclotron frequency, and transverse and longitudinal confinements; (ii) the Tsallis entropy evolved as a wave envelop that increase with the increase of non-extenxive parameter and with the increase of electric field strength, zero point of pseudo dot and cyclotron frequency the wave envelop evolve periodically with reduction of period; (iii) The transition probability increases from the boundary to the centre of the dot where it has its maximum value. It was also noted that the probability density oscillate with period T0 = ℏ / Δ Ε with the tunnelling of the chemical potential and zero point of the pseudo dot. These results are helpful in the control of decoherence in quantum systems and may also be useful for the design of quantum computers.

  3. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  4. PT -symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  5. PT -symmetric slowing down of decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  6. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  7. Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, K.; Fujii, T.; Tanda, S.

    2017-09-01

    We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.

  8. Multimode optomechanical system in the quantum regime

    PubMed Central

    Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert

    2017-01-01

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry–Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to −2.4 dB (−3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry–Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom. PMID:27999182

  9. Unforgeable noise-tolerant quantum tokens

    PubMed Central

    Pastawski, Fernando; Yao, Norman Y.; Jiang, Liang; Lukin, Mikhail D.; Cirac, J. Ignacio

    2012-01-01

    The realization of devices that harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of “quantum money” [Wiesner S (1983) ACM SIGACT News 15:78–88]. A dishonest holder of a quantum bank note will invariably fail in any counterfeiting attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence, and operational imperfections abound. Thus, the development of secure “quantum money”-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store, and measure single quantum bit memories, making their experimental realization accessible with current technologies.

  10. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  11. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  12. Hybrid quantum systems with trapped charged particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.

    2017-02-01

    Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.

  13. The elusive Heisenberg limit in quantum-enhanced metrology

    PubMed Central

    Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin

    2012-01-01

    Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859

  14. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  15. Timeless Configuration Space and the Emergence of Classical Behavior

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique

    2018-06-01

    The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed `consistent'. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of multiple gravitational models in which Lorentz symmetry is not fundamental, but only emergent. And what allows this approach to overcome previous barriers to a timeless, conditional probabilities interpretation of quantum mechanics is the new notion of records—made possible by an inherent asymmetry of configuration space. I outline and explore consequences of this approach for foundational issues of quantum mechanics, such as the natural emergence of the Born rule, conservation of probabilities, and the Sleeping Beauty paradox.

  16. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for bothmore » systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.« less

  17. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states.

    PubMed

    Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  18. Non-Markovian quantum jumps in excitonic energy transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebentrost, Patrick; Chakraborty, Rupak; Aspuru-Guzik, Alan

    2009-01-01

    We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased excitontransport, which can be seen as an extension of recent environment-assisted quantum transport concepts to the non-Markovian regime. Within the NMQJ method,more » the Fenna–Matthew–Olson protein is investigated as a prototype for larger photosynthetic complexes.« less

  19. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level—a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (∼50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers. PMID:28090078

  20. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.

  1. Measurement-induced decoherence and information in double-slit interference.

    PubMed

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-07-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.

  2. Generalized Quantum Theory of Bianchi IX Cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James

    2003-04-01

    We apply sum-over-histories generalized quantum theory to the closed homogeneous minisuperspace Bianchi IX cosmological model. We sketch how the probabilities in decoherent sets of alternative, coarse-grained histories of this model universe are calculated. We consider in particular, the probabilities for classical evolution in a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not, illustrating the prediction that these universes will evolve in an approximately classical manner with a probability near unity.

  3. Tailoring decoherence in nanomagnets by geometrical design

    NASA Astrophysics Data System (ADS)

    Delgado, Fernando; FernáNdez-Rossier, JoaquíN.

    Magnetic atoms on surfaces suffer relaxation and decoherence, which limit their possible applications in both classical storage and quantum computation. Kondo exchange interaction is usually the dominant source of relaxation. Hence, for a single magnetic impurity, the product of density of states at the Fermi level and the Kondo coupling controls relaxation and decoherence together with the renormalization of the magnetic anisotropy. Here we show that in the case of small arrays of magnetic adatoms, which can be build by STM manipulation, relaxation and decoherence are controlled in addition by the product of Fermi wavenumber and inter-spin distance, giving place to interesting interference phenomena similar to those appearing in optics. This is nothing else that the dissipative counterpart of the RKKY oscillation. In addition, we explore different configurations to reduce the spin decoherence of antiferromagnetic spin arrays opening a route to engineer spin relaxation and decoherence in atomically designed spin structures. Financial support by Spanish Government through Grants FIS2013-473228 and MAT2015-66888-C3-2-R.

  4. Relating quantum discord with the quantum dense coding capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  5. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  6. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    NASA Astrophysics Data System (ADS)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  7. Millikelvin cooling of an optically trapped microsphere in vacuum

    NASA Astrophysics Data System (ADS)

    Li, Tongcang; Kheifets, Simon; Raizen, Mark G.

    2011-07-01

    Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years. This work is an important step towards the creation of `Schrödinger cats', quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling. This is ideal for studying the gravitational state reduction, a manifestation of the apparent conflict between general relativity and quantum mechanics. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule and even produce Schrödinger cats of living organisms.

  8. Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity

    PubMed Central

    Dai, Li; Kuo, Watson; Chung, Ming-Chiang

    2015-01-01

    We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning. PMID:26062033

  9. Unbound states in quantum heterostructures

    PubMed Central

    Bastard, G

    2006-01-01

    We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.

  10. Optimizing Hardware Compatibility for Scaling Up Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Fang, Michael; Campbell, Brooks; Chen, Zijun; Chiaro, Ben; Dunsworth, Andrew; Kelly, Julian; Megrant, Anthony; Neill, Charles; O'Malley, Peter; Quintana, Chris; Vainsencher, Amit; Wenner, Jim; White, Ted; Barends, Rami; Chen, Yu; Fowler, Austin; Jeffrey, Evan; Mutus, Josh; Roushan, Pedram; Sank, Daniel; Martinis, John

    2015-03-01

    Since quantum computation relies on the manipulation of fragile quantum states, qubit devices must be isolated from the noisy environment to prevent decoherence. Custom made components make isolation from thermal and infrared radiation possible, but have been unreliable, massive, and show sub-ideal microwave performance. Infrared isolation for large scale experiments (> 8 qubits) was achieved with compact impedance matched microwave filters which attenuate stray infrared signals on cryogenic cables with only -25 dB reflection up to 7.5 GHz. In addition, a thermal anchoring system was designed to effectively transfer unwanted heat from more than 100 coaxial cables in the dilution refrigerator and yielded a 33 percent improvement in base temperature and 50% improvement in hold time.

  11. Interuniversal entanglement in a cyclic multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel

    2017-04-01

    We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.

  12. Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan

    2017-12-01

    We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.

  13. Decoherence and surface hopping: When can averaging over initial conditions help capture the effects of wave packet separation?

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Shenvi, Neil

    2011-06-01

    Fewest-switches surface hopping (FSSH) is a popular nonadiabatic dynamics method which treats nuclei with classical mechanics and electrons with quantum mechanics. In order to simulate the motion of a wave packet as accurately as possible, standard FSSH requires a stochastic sampling of the trajectories over a distribution of initial conditions corresponding, e.g., to the Wigner distribution of the initial quantum wave packet. Although it is well-known that FSSH does not properly account for decoherence effects, there is some confusion in the literature about whether or not this averaging over a distribution of initial conditions can approximate some of the effects of decoherence. In this paper, we not only show that averaging over initial conditions does not generally account for decoherence, but also why it fails to do so. We also show how an apparent improvement in accuracy can be obtained for a fortuitous choice of model problems, even though this improvement is not possible, in general. For a basic set of one-dimensional and two-dimensional examples, we find significantly improved results using our recently introduced augmented FSSH algorithm.

  14. Nontrivial Quantum Effects in Biology: A Skeptical Physicists' View

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Eisert, Jens

    The following sections are included: * Introduction * A Quantum Life Principle * A quantum chemistry principle? * The anthropic principle * Quantum Computing in the Brain * Nature did everything first? * Decoherence as the make or break issue * Quantum error correction * Uselessness of quantum algorithms for organisms * Quantum Computing in Genetics * Quantum search * Teleological aspects and the fast-track to life * Quantum Consciousness * Computability and free will * Time scales * Quantum Free Will * Predictability and free will * Determinism and free will * Acknowledgements * References

  15. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  16. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    PubMed Central

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-01-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond. PMID:27193389

  17. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-05-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.

  18. Error Mitigation for Short-Depth Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  19. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  20. Environment-induced decoherence II. Effect of decoherence on Bell's inequality for an EPR pair

    NASA Astrophysics Data System (ADS)

    Venugopalan, A.; Kumar, Deepak; Ghosh, R.

    1995-02-01

    According to Bell's theorem, the degree of correlation between spatially separated measurements on a quantum system is limited by certain inequalities if one assumes the condition of locality. Quantum mechanics predicts that this limit can be exceeded, making it nonlocal. We analyse the effect of an environment modelled by a fluctuating magnetic field on the quantum correlations in an EPR singlet as seen in the Bell inequality. We show that in an EPR setup, the system goes from the usual ‘violation’ of Bell's inequality to a ‘non-violation’ for times larger than a characteristic time scale which is related to the parameters of the fluctuating field. We also look at these inequalities as a function of the spatial separation between the EPR pair.

  1. Measurement-induced decoherence and information in double-slit interference

    PubMed Central

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-01-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373

  2. Quantum Time Evolution in a Qubit Readout Process with a Josephson Bifurcation Amplifier

    NASA Astrophysics Data System (ADS)

    Nakano, Hayato; Saito, Shiro; Semba, Kouichi; Takayanagi, Hideaki

    2009-06-01

    We analyzed the Josephson bifurcation amplifier (JBA) readout process of a superconducting qubit quantum mechanically by calculating the dynamics of the density operator of a driven nonlinear oscillator and a qubit coupled system during the measurement process. In purely quantum cases, bifurcation is impossible. Introducing decoherence enables us to reproduce the bifurcation with a finite hysteresis. When a qubit is initially in a superposition state, we have observed the qubit-probe (JBA) entangled state, and it is divided into two separable states at the moment the JBA transition begins. This corresponds to “projection.” To readout the measurement result, however, we must wait until the two JBA states are macroscopically well separated. The waiting time is determined by the strength of the decoherence in the JBA.

  3. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance.

    PubMed

    Mishima, K; Yamashita, K

    2009-07-07

    We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagnolo, Nicolo; Consorzio Interuniversitario per le Scienze Fisiche della Materia, piazzale Aldo Moro 5, I-00185 Roma; Sciarrino, Fabio

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  5. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  6. Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow

    NASA Astrophysics Data System (ADS)

    Liu, Pei-Hua; Lin, Feng-Li

    2017-08-01

    In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called “anti-Unruh” phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].

  7. Interpreting quantum coherence through a quantum measurement process

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  8. Robust transmission of non-Gaussian entanglement over optical fibers

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Lidar, Daniel A.

    2006-12-01

    We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter.

  9. Gravity and decoherence: the double slit experiment revisited

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2018-02-01

    The double slit experiment is iconic and widely used in classrooms to demonstrate the fundamental mystery of quantum physics. The puzzling feature is that the probability of an electron arriving at the detector when both slits are open is not the sum of the probabilities when the slits are open separately. The superposition principle of quantum mechanics tells us to add amplitudes rather than probabilities and this results in interference. This experiment defies our classical intuition that the probabilities of exclusive events add. In understanding the emergence of the classical world from the quantum one, there have been suggestions by Feynman, Diosi and Penrose that gravity is responsible for suppressing interference. This idea has been pursued in many different forms ever since, predominantly within Newtonian approaches to gravity. In this paper, we propose and theoretically analyse two ‘gedanken’ or thought experiments which lend strong support to the idea that gravity is responsible for decoherence. The first makes the point that thermal radiation can suppress interference. The second shows that in an accelerating frame, Unruh radiation does the same. Invoking the Einstein equivalence principle to relate acceleration to gravity, we support the view that gravity is responsible for decoherence.

  10. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  11. Optimal control of complex atomic quantum systems.

    PubMed

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  12. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  13. Principle of least decoherence for Newtonian semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Tilloy, Antoine; Diósi, Lajos

    2017-11-01

    Recent works have proved that semiclassical theories of gravity needed not be fundamentally inconsistent, at least in the Newtonian regime. Using the machinery of continuous measurement theory and feedback, it was shown that one could construct well-behaved models of hybrid quantum-classical dynamics at the price of an imposed (nonunique) decoherence structure. We introduce a principle of least decoherence (PLD) which allows us to naturally single out a unique model from all the available options; up to some unspecified short distance regularization scale. Interestingly, the resulting model is found to coincide with the old—erstwhile only heuristically motivated—proposal of Penrose and one of us for gravity-related spontaneous decoherence and collapse. Finally, this paper suggests that it is in the submillimeter behavior of gravity that new phenomena might be found.

  14. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  15. Peptides and proteins in matter wave interferometry: Challenges and prospects

    NASA Astrophysics Data System (ADS)

    Sezer, Ugur; Geyer, Philipp; Mairhofer, Lukas; Brand, Christian; Doerre, Nadine; Rodewald, Jonas; Schaetti, Jonas; Koehler, Valentin; Mayor, Marcel; Arndt, Markus

    2016-05-01

    Recent developments in matter wave physics suggest that quantum interferometry with biologically relevant nanomaterials is becoming feasible for amino acids, peptides, proteins and RNA/DNA strands. Quantum interference of biomolecules is interesting as it can mimic Schrödinger's cat states with molecules of high mass, elevated temperature and biological functionality. Additionally, the high internal complexity can give rise to a rich variety of couplings to the environment and new handles for quantitative tests of quantum decoherence. Finally, matter wave interferometers are highly sensitive force sensors and pave the way for quantum-assisted measurements of biomolecular properties in interaction with tailored or biomimetic environments. Recent interferometer concepts such as the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) or the Optical Time-domain Matter Wave interferometer (OTIMA) have already proven their potential for quantum optics in the mass range beyond 10000 amu and for metrology. Here we show our advances in quantum interferometry with vitamins and peptides and discuss methods of realizing cold, intense and sufficiently slow beams of synthetically tailored or hydrated polypeptides with promising properties for a new generation of quantum optics.

  16. Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles

    NASA Astrophysics Data System (ADS)

    Semenenko, Henry; Byrnes, Tim

    2016-05-01

    Quantum computing implementations under consideration today typically deal with systems with microscopic degrees of freedom such as photons, ions, cold atoms, and superconducting circuits. The quantum information is stored typically in low-dimensional Hilbert spaces such as qubits, as quantum effects are strongest in such systems. It has, however, been demonstrated that quantum effects can be observed in mesoscopic and macroscopic systems, such as nanomechanical systems and gas ensembles. While few-qubit quantum information demonstrations have been performed with such macroscopic systems, a quantum algorithm showing exponential speedup over classical algorithms is yet to be shown. Here, we show that the Deutsch-Jozsa algorithm can be implemented with macroscopic ensembles. The encoding that we use avoids the detrimental effects of decoherence that normally plagues macroscopic implementations. We discuss two mapping procedures which can be chosen depending upon the constraints of the oracle and the experiment. Both methods have an exponential speedup over the classical case, and only require control of the ensembles at the level of the total spin of the ensembles. It is shown that both approaches reproduce the qubit Deutsch-Jozsa algorithm, and are robust under decoherence.

  17. Evolution and Survival of Quantum Entanglement

    DTIC Science & Technology

    2015-05-06

    Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi , rotating wave approximation...measurements, PHYSICAL REVIEW A , (06 2013): 62331. doi: S Agarwal, , S M Hashemi Rafsanjani , J H Eberly. Dissipation of the Rabi Model Beyond the

  18. A Decoherence-Free Quantum Memory Using Trapped Ions

    DTIC Science & Technology

    2016-09-22

    superpo- sitions. Robust quantum memories are there- fore essential to realizing the potential gains of quantum computing (3). However, inter- action of a...tolerant quantum logic (13, 14). These properties suggest that DFSs will be intrinsic to future quantum computing architectures. Logic gates on DFS...practi- cal quantum computing will in any case re- quire logic gates of a much higher fidelity than those used in this work. We therefore expect that, once

  19. Time-invariant discord: high temperature limit and initial environmental correlations

    NASA Astrophysics Data System (ADS)

    Tabesh, F. T.; Karpat, G.; Maniscalco, S.; Salimi, S.; Khorashad, A. S.

    2018-04-01

    We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-qubit systems independently interacting with local reservoirs. Our work takes into account several significant effects present in decoherence models, which have not been yet explored in the context of time-invariant quantum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak coupling regime and also examine the effect of thermal photons on the dynamical behavior of frozen discord. Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters such as the strength of the initial amount of entanglement between the reservoirs.

  20. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    NASA Astrophysics Data System (ADS)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first step. In the second part of this thesis, we develop the theory of decoherence for a mesoscopic system's rotational degrees of freedom. Combining decoherence in the translational degrees of freedom, the system's shot noise heating is discussed. We then focus on cooling the nanoparticle in the laser-shot-noise-dominant regime using two different feedback cooling schemes: the force feedback cooling and the parametric feedback cooling. Both quantum and classical calculations are performed, and an exact match is observed. We also explore the parameters that could possibly affect the cooling trend, where we find that the cooling limit for both cooling schemes strongly depends on the position measurement efficiency, and it poses good questions for researchers interested in achieving ground state cooling: what is the best measurement efficiency for a given measurement setup and what can be done to get a better measurement efficiency?

  1. The Birth and Death of Redundancy in Decoherence and Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Riedel, Charles; Zurek, Wojciech; Zwolak, Michael

    2012-02-01

    Understanding the quantum-classical transition and the identification of a preferred classical domain through quantum Darwinism is based on recognizing high-redundancy states as both ubiquitous and exceptional. They are produced ubiquitously during decoherence, as has been demonstrated by the recent identification of very general conditions under which high-redundancy states develop. They are exceptional in that high-redundancy states occupy a very narrow corner of the global Hilbert space; states selected at random are overwelming likely to exhibit zero redundancy. In this letter, we examine the conditions and time scales for the transition from high-redundancy states to zero-redundancy states in many-body dynamics. We identify sufficient condition for the development of redundancy from product states and show that the destruction of redundancy can be accomplished even with highly constrained interactions.

  2. Dissipatively Stabilized Quantum Sensor Based on Indirect Nuclear-Nuclear Interactions

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Plenio, M. B.

    2017-07-01

    We propose to use a dissipatively stabilized nitrogen vacancy (NV) center as a mediator of interaction between two nuclear spins that are protected from decoherence and relaxation of the NV due to the periodical resets of the NV center. Under ambient conditions this scheme achieves highly selective high-fidelity quantum gates between nuclear spins in a quantum register even at large NV-nuclear distances. Importantly, this method allows for the use of nuclear spins as a sensor rather than a memory, while the NV spin acts as an ancillary system for the initialization and readout of the sensor. The immunity to the decoherence and relaxation of the NV center leads to a tunable sharp frequency filter while allowing at the same time the continuous collection of the signal to achieve simultaneously high spectral selectivity and high signal-to-noise ratio.

  3. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    NASA Astrophysics Data System (ADS)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  4. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  5. Stochastic modification of the Schrödinger-Newton equation

    NASA Astrophysics Data System (ADS)

    Bera, Sayantani; Mohan, Ravi; Singh, Tejinder P.

    2015-07-01

    The Schrödinger-Newton (SN) equation describes the effect of self-gravity on the evolution of a quantum system, and it has been proposed that gravitationally induced decoherence drives the system to one of the stationary solutions of the SN equation. However, the equation itself lacks a decoherence mechanism, because it does not possess any stochastic feature. In the present work we derive a stochastic modification of the Schrödinger-Newton equation, starting from the Einstein-Langevin equation in the theory of stochastic semiclassical gravity. We specialize this equation to the case of a single massive point particle, and by using Karolyhazy's phase variance method, we derive the Diósi-Penrose criterion for the decoherence time. We obtain a (nonlinear) master equation corresponding to this stochastic SN equation. This equation is, however, linear at the level of the approximation we use to prove decoherence; hence, the no-signaling requirement is met. Lastly, we use physical arguments to obtain expressions for the decoherence length of extended objects.

  6. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  7. Nonequilibrium distribution functions in electron transport: decoherence, energy redistribution and dissipation

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Ujsághy, Orsolya; Wolf, Dietrich E.

    2018-04-01

    A new statistical model for the combined effects of decoherence, energy redistribution and dissipation on electron transport in large quantum systems is introduced. The essential idea is to consider the electron phase information to be lost only at randomly chosen regions with an average distance corresponding to the decoherence length. In these regions the electron's energy can be unchanged or redistributed within the electron system or dissipated to a heat bath. The different types of scattering and the decoherence leave distinct fingerprints in the energy distribution functions. They can be interpreted as a mixture of unthermalized and thermalized electrons. In the case of weak decoherence, the fraction of thermalized electrons show electrical and thermal contact resistances. In the regime of incoherent transport the proposed model is equivalent to a Boltzmann equation. The model is applied to experiments with carbon nanotubes. The excellent agreement of the model with the experimental data allows to determine the scattering lengths of the system.

  8. Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement

    NASA Astrophysics Data System (ADS)

    Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa

    2018-03-01

    An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.

  9. Enhancing robustness of multiparty quantum correlations using weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in; Mishra, Utkarsh, E-mail: utkarsh@hri.res.in; Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhancesmore » the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.« less

  10. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.

    The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysismore » shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.« less

  12. Quantum open system theory: bipartite aspects.

    PubMed

    Yu, T; Eberly, J H

    2006-10-06

    We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.

  13. Unambiguous quantum-state filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Sasaki, Masahide; CREST, Japan Science and Technology Corporation, Tokyo,

    2003-07-01

    In this paper, we consider a generalized measurement where one particular quantum signal is unambiguously extracted from a set of noncommutative quantum signals and the other signals are filtered out. Simple expressions for the maximum detection probability and its positive operator valued measure are derived. We apply such unambiguous quantum state filtering to evaluation of the sensing of decoherence channels. The bounds of the precision limit for a given quantum state of probes and possible device implementations are discussed.

  14. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene

    2018-02-01

    In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.

  15. Quantum optical tests of complementarity: Quantum eraser and the decoherence time of a local measurement process

    NASA Astrophysics Data System (ADS)

    Abranyos, Yonatan

    1999-10-01

    Quantum optical tests of the fundamental principles of quantum mechanics, in particular, complementarity, entanglement and non-locality, are the central themes of this dissertation. A which-path experiment is implemented based on a recent experiment by Eichmann et al. [1] involving two four-level atoms. In the version considered here a continuous Broad Band Excitation field drives the two trapped atoms and, depending on the type of scattering, information about which atom scattered the light is stored in the internal degrees of the atoms. Entanglement of the atoms-photon system is intimately connected to the availability of ``which way'' information. The quantum eraser disentangles the atoms-photon system and consequently ``which way'' information is lost leading to interference. Two different experimental schemes based on the Eichmann et al. experiment are proposed for the implementation of the quantum eraser. The quantum eraser schemes erase the ``which way'' information and interference is observed in the second order correlation function. With a slight modification of the experiment, a scheme that allows to verify recently derived inequalities by Englert [2] in connection with distinguishability and visibility in a two-way interferometer is proposed. These inequalities, in some sense, can be regarded as quantifying the notion of wave-particle duality. The visibility of interference depends on the detected polarization direction of the scattered light, and a reading out of the internal atomic states of one of the two atoms provides for partial ``which way'' information or distinguishability of the two different paths. Finally, the quantum eraser is used to measure the decoherence time of a local measurement process. The experiment proposed is similar to the quantum eraser setup and contains the complete measurement process of system-meter-environment interaction. The decoherence time is quantitatively expressed in the amount of reduction of the visibility in the second order correlation function. In addition, it explores how we can cast the question of quantum coherence of mesoscopic or macroscopic systems with a quantum eraser or in general interference experiments.

  16. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  17. Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, J. L.; Instituto de Biocomputacion y Fisica de Sistemas Complejos; Unidad Asociada IQFR-BIFI, Universidad de Zaragoza, Mariano Esquillor s/n, E-50018 Zaragoza

    2012-08-07

    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamicsmore » makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.« less

  18. Dealing with quantum weirdness: Holism and related issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elby, Andrew Richard

    1995-12-01

    Various issues are discussed in interpretation of quantum mechanics. All these explorations point toward the same conclusion, that some systems are holistically connected, i.e., some composite systems have properties that cannot, even in principle, be reduced to the properties of its subsystems. This is argued to be the central metaphysical lesson of quantum theory; this will remain pertinent even if quantum mechanics gets replaced by a superior theory. Chap. 2 discusses nonlocality and rules out hidden-variable theories that approximately reproduce the perfect correlations of quantum mechanics, as well as theories that obey locality conditions weaker than those needed to derivemore » Bell`s inequality. Chap. 3 shows that SQUID experiments can rule out non-invasive measurability if not macrorealism. Chap. 4 looks at interpretational issues surrounding decoherence, the dissipative interaction between a system and its environment. Decoherence klcan help ``modal`` interpretations pick out the desired ``preferred`` basis. Chap. 5 explores what varieties of causation can and cannot ``explain`` EPR correlations. Instead of relying on ``watered down`` causal explanations, we should instead develop new, holistic explanatory frameworks.« less

  19. Level statistics of disordered spin-1/2 systems and materials with localized Cooper pairs.

    PubMed

    Cuevas, Emilio; Feigel'man, Mikhail; Ioffe, Lev; Mezard, Marc

    2012-01-01

    The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width. The important question is: what is the driving force and the mechanism of transition(s) between these two types of many-body systems - with and without intrinsic decoherence? Here we address this question via the numerical study of energy-level statistics of a system of interacting spin-1/2 with random transverse fields. We present the first evidence for a well-defined quantum phase transition between domains of discrete and continous many-body spectra in such spin models, implying the appearance of novel insulating phases in the vicinity of the superconductor-insulator transition in InO(x) and similar materials.

  20. EDITORIAL: Squeezed states and uncertainty relations

    NASA Astrophysics Data System (ADS)

    Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector

    2004-06-01

    This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly from Latin American countries including, of course, Mexico. There were many talks on the subjects traditionally covered in this conference series, including quantum fluctuations, different forms of squeezing, unlike kinds of nonclassical states of light, and distinct representations of the quantum superposition principle, such as even and odd coherent states. The entanglement phenomenon, frequently in the form of the EPR paradox, is responsible for the main advantages of quantum engineering compared with classical methods. Even though entanglement has been known since the early days of quantum mechanics, its properties, such as the most appropriate entanglement measures, are still under current investigation. The phenomena of dissipations and decoherence of the initial pure states are very important because the fast decoherence can destroy all the advantages of quantum processes in teleportation, quantum computing and image processing. Due to this, methods of controlling the decoherence, such as by the use of different kinds of nonlinearities and deformations, are also under study. From the very beginning of quantum mechanics, the uncertainty relations were basic inequalities distinguishing the classical and quantum worlds. Among the theoretical methods for quantum optics and quantum mechanics, this conference covered phase space and group representations, such as the Wigner and probability distribution functions, which provide an alternative approach to the Schr\\"odinger or Heisenberg picture. Different forms of probability representations of quantum states are important tools to be applied in studying various quantum phenomena, such as quantum interference, decoherence and quantum tomography. They have been established also as a very useful tool in all branches of classical optics. From the mathematical point of view, it is well known that the coherent and squeezed states are representations of the Lorentz group. It was noted throughout the conference that another form of the Lorentz group, namely, the 2 x 2 representation of the SL(2,c) group, is becoming more prominent while providing the mathematical basis for the Poincaré sphere, entanglement, qubits and decoherence, as well as classical ray optics traditionally based on 2 x 2 `ABCD' matrices. The contributions of this special issue cover the most recent trends in all areas of quantum optics and the foundations of quantum mechanics.

  1. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

    PubMed

    Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L

    The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.

  2. Energy-efficient quantum computing

    NASA Astrophysics Data System (ADS)

    Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko

    2017-04-01

    In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.

  3. Cavity QED at the quantum-classical boundary

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Steffen, L.; Bishop, L. S.; Wallraff, A.

    2010-03-01

    The quantum limit of cavity QED is characterized by a well resolved vacuum Rabi mode splitting spectrum. If the number of excitations n in the resonantly coupled matter-light system is increased from one, the nonlinear √n scaling of the dressed eigenstates is observed [1]. At very large photon numbers the transmission spectrum turns into a single Lorentzian line as expected from the correspondence principle. This classical limit emerges when the occupancy of the low energy dressed states is increased until the quantum nonlinearity of the available transitions becomes small compared to dephasing and relaxation rates [2]. We explore this quantum-classical crossover in a circuit QED system where we vary the thermal occupation of the resonator by 5 orders of magnitude using a quasi-thermal noise source. From vacuum Rabi spectra measured in linear response and from time resolved vacuum Rabi oscillation measurements we consistently extract cavity field temperatures between 100 mK and 10 K using a master equation model. The presented experimental approach is useful to determine the thermal occupation of a quantum system and offers the possibility to study entanglement and decoherence at elevated temperatures. [1] J. M. Fink et al. Nature 454, 315 (2008). [2] I. Rau, et al. Phys. Rev. B 70, 054521 (2004).

  4. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-06-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or “nonredundant,” information.

  5. Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.

    2009-05-01

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  6. Microscopic theory of energy dissipation and decoherence in open systems: A quantum Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Taj, D.; Iotti, R. C.; Rossi, F.

    2009-11-01

    We shall revisit the conventional adiabatic or Markov approximation, which — contrary to the semiclassical case- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally addressed by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, able to provide a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, our procedure guarantees a positive evolution for a variety of physical subsystem (including the common partial trace), and quantum scattering rates are well defined even for subsystems with internal structure/ continuous energy spectrum. We shall compare the proposed Markov dissipation model with the conventional one also through basic simulations of energy-relaxation versus decoherence channels in prototypical semiconductor nanodevices.

  7. Dynamics of Entropy in Quantum-like Model of Decision Making

    NASA Astrophysics Data System (ADS)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  8. Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, R.; Andeen, K.; Baker, M.

    2009-05-15

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentzmore » invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.« less

  9. Ultra-High Q Acoustic Resonance in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    De Lorenzo, L. A.; Schwab, K. C.

    2017-02-01

    We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4× 10^8, consistent with the dissipation due to dilute ^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

  10. Lessons on electronic decoherence in molecules from exact modeling

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  11. Quantum Computing since Democritus

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott

    2013-03-01

    1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.

  12. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  13. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  14. Emergence of a classical Universe from quantum gravity and cosmology.

    PubMed

    Kiefer, Claus

    2012-09-28

    I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.

  15. Decoherence can relax cosmic acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markkanen, Tommi

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decaymore » of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.« less

  16. Random walk in generalized quantum theory

    NASA Astrophysics Data System (ADS)

    Martin, Xavier; O'Connor, Denjoe; Sorkin, Rafael D.

    2005-01-01

    One can view quantum mechanics as a generalization of classical probability theory that provides for pairwise interference among alternatives. Adopting this perspective, we “quantize” the classical random walk by finding, subject to a certain condition of “strong positivity”, the most general Markovian, translationally invariant “decoherence functional” with nearest neighbor transitions.

  17. Thermal Decoherence of a Nonequilibrium Polariton Fluid

    NASA Astrophysics Data System (ADS)

    Klembt, Sebastian; Stepanov, Petr; Klein, Thorsten; Minguzzi, Anna; Richard, Maxime

    2018-01-01

    Exciton polaritons constitute a unique realization of a quantum fluid interacting with its environment. Using selenide-based microcavities, we exploit this feature to warm up a polariton condensate in a controlled way and monitor its spatial coherence. We determine directly the amount of heat picked up by the condensate by measuring the phonon-polariton scattering rate and comparing it with the loss rate. We find that, upon increasing the heating rate, the spatial coherence length decreases markedly, while localized phase structures vanish, in good agreement with a stochastic mean-field theory. From the thermodynamical point of view, this regime is unique, as it involves a nonequilibrium quantum fluid with no well-defined temperature but which is nevertheless able to pick up heat with dramatic effects on the order parameter.

  18. Unifying decoherence and the Heisenberg Principle

    NASA Astrophysics Data System (ADS)

    Janssens, Bas

    2017-08-01

    We exhibit three inequalities involving quantum measurement, all of which are sharp and state independent. The first inequality bounds the performance of joint measurement. The second quantifies the trade-off between the measurement quality and the disturbance caused on the measured system. Finally, the third inequality provides a sharp lower bound on the amount of decoherence in terms of the measurement quality. This gives a unified description of both the Heisenberg uncertainty principle and the collapse of the wave function.

  19. Augmented Ehrenfest dynamics yields a rate for surface hopping

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.

    2010-04-01

    We present a new algorithm for mixed quantum-classical dynamics that helps bridge the gap between mean-field (Ehrenfest) and surface-hopping dynamics by defining a natural rate of decoherence. In order to derive this decoherence result, we have expanded the number of independent variables in the usual Ehrenfest routine so that mixed quantum-classical derivatives are now propagated in time alongside the usual Ehrenfest variables. Having done so, we compute a unique rate of decoherence using two independent approaches: (i) by comparing the equations of motion for the joint nuclear-electronic probability density in phase space according to Ehrenfest dynamics versus partial Wigner transform dynamics and (ii) by introducing a frozen Gaussian interpretation of Ehrenfest dynamics which allows nuclear wave packets to separate. The first consequence of this work is a means to rigorously check the accuracy of standard Ehrenfest dynamics. Second, this paper suggests a nonadiabatic dynamics algorithm, whereby the nuclei are propagated on the mean-field (Ehrenfest) potential energy surface and undergo stochastic decoherence events. Our work resembles the surface-hopping algorithm of Schwartz and co-workers [J. Chem. Phys. 123, 234106 (2005)]—only now without any adjustable parameters. For the case of two electronic states, we present numerical results on the so-called "Tully problems" and emphasize that future numerical benchmarking is still needed. Future work will also treat the problem of three or more electronic states.

  20. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  1. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  2. Dissipative production of a maximally entangled steady state of two quantum bits.

    PubMed

    Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J

    2013-12-19

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  3. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  4. Observing single quantum trajectories of a superconducting quantum bit

    NASA Astrophysics Data System (ADS)

    Murch, K. W.; Weber, S. J.; Macklin, C.; Siddiqi, I.

    2013-10-01

    The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a `quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing `quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.

  5. Observing single quantum trajectories of a superconducting quantum bit.

    PubMed

    Murch, K W; Weber, S J; Macklin, C; Siddiqi, I

    2013-10-10

    The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a 'quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing 'quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.

  6. Neutrino mixing, oscillations and decoherence in astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man

    2007-08-01

    This thesis focuses on a finite-temperature field-theoretical treatment of neutrino oscillations in hot and dense media. By implementing the methods of real-time non-equilibrium field theory, we study the dynamics of neutrino mixing, oscillations, decoherence and relaxation in astrophysical and cosmological environments. We first study neutrino oscillations in the early universe in the temperature regime prior to the epoch of Big Bang Nucleosynthesis (BBN). The dispersion relations and mixing angles in the medium are found to be helicity-dependent, and a resonance like the Mikheyev-Smirnov- Wolfenstein (MSW) effect is realized. The oscillation time scales are found to be longer near a resonance and shorter for off-resonance high-energy neutrinos. We then investigate the space-time propagation of neutrino wave-packets just before BBN. A phenomenon of " frozen coherence " is found to occur if the longitudinal dispersion catches up with the progressive separation between the mass eigenstates, before the coherence time limit has been reached. However, the transverse dispersion occurs at a much shorter scale than all other possible time scales in the medium, resulting in a large suppression in the transition probabilities from electron-neutrino to muon-neutrino. We also explore the possibility of charged lepton mixing as a consequence of neutrino mixing in the early Universe. We find that charged leptons, like electrons and muons, can mix and oscillate resonantly if there is a large lepton asymmetry in the neutrino sector. We study sterile neutrino production in the early Universe via active-sterile oscillations. We provide a quantum field theoretical reassessment of the quantum Zeno suppression on the active-to-sterile transition probability and its time average. We determine the complete conditions for quantum Zeno suppression. Finally, we examine the interplay between neutrino mixing, oscillations and equilibration in a thermal medium, and the corresponding non-equilibrium dynamics. The equilibrium density matrix is found to be nearly diagonal in the basis of eigenstates of an effective Hamiltonian that includes self-energy corrections in the medium.

  7. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  8. Quantum repeaters based on trapped ions with decoherence-free subspace encoding

    NASA Astrophysics Data System (ADS)

    Zwerger, M.; Lanyon, B. P.; Northup, T. E.; Muschik, C. A.; Dür, W.; Sangouard, N.

    2017-12-01

    Quantum repeaters provide an efficient solution to distribute Bell pairs over arbitrarily long distances. While scalable architectures are demanding regarding the number of qubits that need to be controlled, here we present a quantum repeater scheme aiming to extend the range of present day quantum communications that could be implemented in the near future with trapped ions in cavities. We focus on an architecture where ion-photon entangled states are created locally and subsequently processed with linear optics to create elementary links of ion-ion entangled states. These links are then used to distribute entangled pairs over long distances using successive entanglement swapping operations performed using deterministic ion-ion gates. We show how this architecture can be implemented while encoding the qubits in a decoherence-free subspace to protect them against collective dephasing. This results in a protocol that can be used to violate a Bell inequality over distances of about 800 km assuming state-of-the-art parameters. We discuss how this could be improved to several thousand kilometres in future setups.

  9. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  10. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    NASA Astrophysics Data System (ADS)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  11. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  12. EDITORIAL: Focus on Quantum Dissipation in Unconventional Environments FOCUS ON QUANTUM DISSIPATION IN UNCONVENTIONAL ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Grifoni, Milena; Paladino, Elisabetta

    2008-11-01

    Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different 'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition Frithjof B Anders Effects of low-frequency noise cross-correlations in coupled superconducting qubits A D'Arrigo, A Mastellone, E Paladino and G Falci From coherent motion to localization: dynamics of the spin-boson model at zero temperature Haobin Wang and Michael Thoss Phonon distributions of a single-bath mode coupled to a quantum dot F Cavaliere, G Piovano, E Paladino and M Sassetti

  13. PREFACE: DICE 2006—Quantum Mechanics between Decoherence and Determinism

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos; Elze, Hans-Thomas; Vitiello, Giuseppe

    2007-06-01

    These proceedings are based on the Invited Lectures and Contributed Papers of the Third International Workshop on Decoherence, Information, Complexity and Entropy—DICE 2006, which was held at Castello di Piombino (Tuscany), 11 15 September 2006. They are meant to document the stimulating exchange of ideas at this interdisciplinary workshop and to share it with the wider scientific community. It successfully continued what was begun with DICE 20021 and followed by DICE 20042 uniting more than seventy participants from more than a dozen different countries worldwide. It has been a great honour and inspiration for all of us to have Professor G. 't Hooft (Nobel Prize for Physics 1999) from the Spinoza Institute and University of Utrecht with us, who presented the lecture `A mathematical theory for deterministic quantum mechanics' (included in this volume). Discussions under the wider theme `Quantum Mechanics between decoherence and determinism: new aspects from particle physics to cosmology' took place in the very pleasant and productive atmosphere at the Castello di Piombino, with a fluctuation of stormy weather only on the evening of the conference dinner. The program of the workshop was grouped according to the following topics: complex systems, classical and quantum aspects Lorentz symmetry, neutrinos and the Universe reduction, decoherence and entanglement quantum, gravity and spacetime -- emergent reality? quantum gravity/cosmology The traditional Public Opening Lecture was presented this time by E. Del Giudice (Milano), who captivated the audience with `Old and new views on the structure of matter and the special case of living matter' on the evening of the arrival day. The workshop has been organized by S. Boccaletti (Firenze), L. Diósi (Budapest), H.-T. Elze (Pisa, chair), L. Fronzoni (Pisa), J. Halliwell (London), and G. Vitiello (Salerno), with great help from our conference secretaries M. Pesce-Rollins (Siena) and L. Baldini (Pisa). Several institutions and sponsors generously supported the workshop and their representatives and, in particular, the citizens of Piombino are deeply thanked for the hospitality: G. Anselmi (Sindaco del Comune di Piombino), O. Dell'Omodarme (Assessore alle Culture), A. Tempestini (Assessore alla Pubblica Istruzione), E. Murzi (Assessore al Turismo), A. Falchi (Dirigente dei Servizi Educativi e Culturali), M. Gianfranchi (Responsabile del Servizio Promozione Culturale), T. Ghini (Ufficio Beni Culturali), and L. Grilli, C. Boggero and P. Venturi (Ufficio Cultura), M. Pierulivo (Segreteria del Sindaco), L. Pasquinucci (URP e Comunicazione). Thanks go to Idearte (Cooperativa di Servizi Culturali) and especially to L. Pesce (Vitrium Galleria, Populonia). Funds made available by Universitá di Pisa (Centro Interdisciplinare per lo Studio dei Sistemi Complessi -- CISSC and Domus Galilaeana) and Universitá di Salerno (Dipartimento di Fisica and INFN) are gratefully acknowledged. The research papers presented at the workshop, often incorporating further developments since then, have been edited by L. Diósi, H.-T. Elze and G. Vitiello. They are collected here, essentially following the program of the workshop, however, divided into Invited Lectures and Contributed Papers, respectively. In the name of all participants, we would like to thank G. Douglas (IOP Publishing, Bristol) for his friendly advice and immediate help during the editing process. Lajos Diósi, Hans-Thomas Elze and Giuseppe Vitiello Budapest, Pisa, Salerno, March 2007 1Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004) 2Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy DICE 2004 ed H-T Elze Braz. J. Phys. 35, 2A and 2B (2005) pp 205 529 freely accessible at: www.sbfisica.org.br/bjp

  14. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    PubMed Central

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  15. Underlying Information Technology Tailored Quantum Error Correction

    DTIC Science & Technology

    2006-07-28

    typically constructed by using an optical beam splitter . • We used a decoherence-free-subspace encoding to reduce the sensitivity of an optical Deutsch...simplification of design constraints in solid state QC (incl. quantum dots and superconducting qubits), hybrid quantum error correction and prevention methods...process tomography on one- and two-photon polarisation states, from full and partial data "• Accomplished complete two-photon QPT. "• Discovered surprising

  16. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  17. Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Zhong

    2018-05-01

    We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.

  18. Non-Markovianity hinders Quantum Darwinism.

    PubMed

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-20

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  19. Non-Markovianity hinders Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  20. Non-Markovianity hinders Quantum Darwinism

    PubMed Central

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857

  1. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  2. Models & Searches of CPT Violation: a personal, very partial, list

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2018-01-01

    In this talk, first I motivate theoretically, and then I review the phenomenology of, some models entailing CPT Violation (CPTV). The latter is argued to be responsible for the observed matter-antimatter asymmetry in the Cosmos, and may owe its origin to either Lorentz-violating background geometries, whose effects are strong in early epochs of the Universe but very weak today, being temperature dependent in general, or to an ill-defined CPT generator in some quantum gravity models entailing decoherence of quantum matter as a result of quantum degrees of freedom in the gravity sector that are inaccessible to the low-energy observers. In particular, for the latter category of CPTV, I argue that entangled states of neutral mesons (Kaons or B-systems), of central relevance to KLOE-2 experiment, can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle, which I only briefly touch upon.

  3. Quantifying and tuning entanglement for quantum systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing

    A 2D Ising model with transverse field on a triangular lattice is studied using exact diagonalization. The quantum entanglement of the system is quantified by the entanglement of formation. The ground state property of the system is studied and the quantified entanglement is shown to be closely related to the ground state wavefunction while the singularity in the entanglement as a function of the transverse field is a reasonable indicator of the quantum phase transition. In order to tune the entanglement, one can either include an impurity in the otherwise homogeneous system whose strength is tunable, or one can vary the external transverse field as a tuner. The latter kind of tuning involves complicated dynamical properties of the system. From the study of the dynamics on a comparatively smaller system, we provide ways to tune the entanglement without triggering any decoherence. The finite temperature effect is also discussed. Besides showing above physical results, the realization of the trace-minimization method in our system is provided; the scalability of such method to larger systems is argued.

  4. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter

    2017-10-01

    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.

  5. Spin entanglement, decoherence and Bohm's EPR paradox.

    PubMed

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  6. An Invitation to the Mathematics of Topological Quantum Computation

    NASA Astrophysics Data System (ADS)

    Rowell, E. C.

    2016-03-01

    Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.

  7. Physics at the FMQT’08 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.

    2010-01-01

    This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.

  8. Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2010-06-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F’s entropy increase. This demonstrates that the environment’s capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced.

  9. Emergent dark energy via decoherence in quantum interactions

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Corona-Ugalde, Paulina; Khosla, Kiran E.; Milburn, Gerard J.; Mann, Robert B.

    2017-06-01

    In this work we consider a recent proposal that gravitational interactions are mediated via classical information and apply it to a relativistic context. We study a toy model of a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime. Analysis of the resulting fluid, shows the equation of state asymptotically oscillates around the value w  =  -1/3, regardless of the spatial curvature, which provides the bound between accelerating and decelerating expanding FRW cosmologies. Motivated with quantum-classical interactions this model is yet another example of theories with violation of energy-momentum conservation whose signature could have significant consequences for the observable universe.

  10. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  11. Mitigating leakage errors due to cavity modes in a superconducting quantum computer

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Béjanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Pagel, Z.; Rinehart, J. R.; Mariantoni, M.

    2018-07-01

    A practical quantum computer requires quantum bit (qubit) operations with low error probabilities in extensible architectures. We study a packaging method that makes it possible to address hundreds of superconducting qubits by means of coaxial Pogo pins. A qubit chip is housed in a superconducting box, where both box and chip dimensions lead to unwanted modes that can interfere with qubit operations. We analyze these interference effects in the context of qubit coherent leakage and qubit decoherence induced by damped modes. We propose two methods, half-wave fencing and antinode pinning, to mitigate the resulting errors by detuning the resonance frequency of the modes from the qubit frequency. We perform electromagnetic field simulations indicating that the resonance frequency of the modes increases with the number of installed pins and can be engineered to be significantly higher than the highest qubit frequency. We estimate that the error probabilities and decoherence rates due to suitably shifted modes in realistic scenarios can be up to two orders of magnitude lower than the state-of-the-art superconducting qubit error and decoherence rates. Our methods can be extended to different types of packages that do not rely on Pogo pins. Conductive bump bonds, for example, can serve the same purpose in qubit architectures based on flip chip technology. Metalized vias, instead, can be used to mitigate modes due to the increasing size of the dielectric substrate on which qubit arrays are patterned.

  12. Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism.

    PubMed

    Zurek, Wojciech Hubert

    2018-07-13

    The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. Entanglement-assisted quantum convolutional coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Mark M.; Brun, Todd A.

    2010-04-15

    We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.

  14. Controlling the loss of quantum correlations via quantum memory channels

    NASA Astrophysics Data System (ADS)

    Duran, Durgun; Verçin, Abdullah

    2018-07-01

    A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.

  15. Application of quantum Darwinism to a structured environment

    NASA Astrophysics Data System (ADS)

    Pleasance, Graeme; Garraway, Barry M.

    2017-12-01

    Quantum Darwinism extends the traditional formalism of decoherence to explain the emergence of classicality in a quantum universe. A classical description emerges when the environment tends to redundantly acquire information about the pointer states of an open system. In light of recent interest, we apply the theoretical tools of the framework to a qubit coupled with many bosonic subenvironments. We examine the degree to which the same classical information is encoded across collections of (i) complete subenvironments and (ii) residual "pseudomode" components of each subenvironment, the conception of which provides a dynamic representation of the reservoir memory. Overall, significant redundancy of information is found as a typical result of the decoherence process. However, by examining its decomposition in terms of classical and quantum correlations, we discover classical information to be nonredundant in both cases i and ii. Moreover, with the full collection of pseudomodes, certain dynamical regimes realize opposite effects, where either the total classical or quantum correlations predominantly decay over time. Finally, when the dynamics are non-Markovian, we find that redundant information is suppressed in line with information backflow to the qubit. By quantifying redundancy, we concretely show it to act as a witness to non-Markovianity in the same way as the trace distance does for nondivisible dynamical maps.

  16. Deterministic delivery of remote entanglement on a quantum network.

    PubMed

    Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald

    2018-06-01

    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

  17. Methods of approaching decoherence in the flavor sector due to space-time foam

    NASA Astrophysics Data System (ADS)

    Mavromatos, N. E.; Sarkar, Sarben

    2006-08-01

    In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.

  18. Physics at the FQMT'11 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th M.; Keefe, P. D.

    2012-11-01

    This paper deals with the recent state of the art of the following topics presented at the FQMT'11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation, dephasing, noise, and decoherence; quantum optics; macroscopic quantum behavior; e.g. cold atoms; Bose-Einstein condensates; physics of quantum computing and quantum information; mesoscopic, nano-electro-mechanical systems and nano-optical systems; spin systems and their dynamics; biological systems and molecular motors; and cosmology, gravitation and astrophysics. The lectures and discussions at the FQMT'11 conference, as well as the contributions to the related topical issue, reveal important themes for future development. The recent literature is included.

  19. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe

    NASA Astrophysics Data System (ADS)

    Ollivier, Harold; Poulin, David; Zurek, Wojciech H.

    2005-10-01

    We study the role of the information deposited in the environment of an open quantum system in the course of the decoherence process. Redundant spreading of information—the fact that some observables of the system can be independently read off from many distinct fragments of the environment—is investigated as the key to effective objectivity, the essential ingredient of classical reality. This focus on the environment as a communication channel through which observers learn about physical systems underscores the importance of quantum Darwinism—selective proliferation of information about “the fittest states” chosen by the dynamics of decoherence at the expense of their superpositions—as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective classical reality from within the quantum substrate.

  20. Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences

    NASA Astrophysics Data System (ADS)

    Ann, Kevin; Jaeger, Gregg

    2009-07-01

    Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.

  1. Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage.

    PubMed

    Liang, Yan; Song, Chong; Ji, Xin; Zhang, Shou

    2015-09-07

    Quantum logic gate is indispensable to quantum computation. One of the important qubit operations is the quantum controlled-not (CNOT) gate that performs a NOT operation on a target qubit depending on the state of the control qubit. In this paper we present a scheme to realize the quantum CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. The influence of various decoherence processes on the fidelity is discussed. The strict numerical simulation results show that the fidelity for the CNOT gate is relatively high.

  2. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  3. Postquench prethermalization in a disordered quantum fluid of light

    NASA Astrophysics Data System (ADS)

    Larré, Pierre-Élie; Delande, Dominique; Cherroret, Nicolas

    2018-04-01

    We study the coherence of a disordered and interacting quantum light field after propagation along a nonlinear optical fiber. Disorder is generated by a cross-phase modulation with a randomized auxiliary classical light field, while interactions are induced by self-phase modulation. When penetrating the fiber from free space, the incoming quantum light undergoes a disorder and interaction quench. By calculating the coherence function of the transmitted quantum light, we show that the decoherence induced by the quench spreads in a light-cone fashion in the nonequilibrium many-body quantum system, leaving the latter prethermalize with peculiar features originating from disorder.

  4. Quantum Control of Open Systems and Dense Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.

  5. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk; The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste; Berrada, K.

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount ofmore » SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.« less

  7. The rise and fall of redundancy in decoherence and quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Jess Riedel, C.; Zurek, Wojciech H.; Zwolak, Michael

    2012-08-01

    A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are exceptional. Building on previous studies of quantum Darwinism showing that highly redundant branching states are produced ubiquitously during pure decoherence, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancy to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit.

  8. High-efficient entanglement distillation from photon loss and decoherence.

    PubMed

    Wang, Tie-Jun; Wang, Chuan

    2015-11-30

    We illustrate an entanglement distillation protocol (EDP) for a mixed photon-ensemble which composed of four kinds of entangled states and vacuum states. Exploiting the linear optics and local entanglement resource (four-qubit entangled GHZ state), we design the nondemolition parity-checking and qubit amplifying (PCQA) setup for photonic polarization degree of freedom which are the key device of our scheme. With the PCQA setup, a high-fidelity entangled photon-pair system can be achieved against the transmission losses and the decoherence in noisy channels. And in the available purification range for our EDP, the fidelity of this ensemble can be improved to the maximal value through iterated operations. Compared to the conventional entanglement purification schemes, our scheme largely reduces the initialization requirement of the distilled mixed quantum system, and overcomes the difficulties posed by inherent channel losses during photon transmission. All these advantages make this scheme more useful in the practical applications of long-distance quantum communication.

  9. Effects of entanglement in an ideal optical amplifier

    NASA Astrophysics Data System (ADS)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  10. Experimental study of entanglement evolution in the presence of bit-flip and phase-shift noises

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Cao, Lian-Zhen; Zhao, Jia-Qiang; Yang, Yang; Lu, Huai-Xin

    2017-10-01

    Because of its important role both in fundamental theory and applications in quantum information, evolution of entanglement in a quantum system under decoherence has attracted wide attention in recent years. In this paper, we experimentally generate a high-fidelity maximum entangled two-qubit state and present an experimental study of the decoherence properties of entangled pair of qubits at collective (non-collective) bit-flip and phase-shift noises. The results shown that entanglement decreasing depends on the type of the noises (collective or non-collective and bit-flip or phase-shift) and the number of qubits which are subject to the noise. When two qubits are depolarized passing through non-collective noisy channel, the decay rate is larger than that depicted for the collective noise. When two qubits passing through depolarized noisy channel, the decay rate is larger than that depicted for one qubit.

  11. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  12. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.

  13. Niels Bohr as philosopher of experiment: Does decoherence theory challenge Bohr's doctrine of classical concepts?

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian; Schlosshauer, Maximilian

    2015-02-01

    Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.

  14. Noisy relativistic quantum games in noninertial frames

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khan, M. Khalid

    2013-02-01

    The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.

  15. Many worlds in perspective

    NASA Astrophysics Data System (ADS)

    Päs, Heinrich

    2017-08-01

    A minimal approach to the measurement problem and the quantum-to-classical transition assumes a universally valid quantum formalism, i.e. unitary time evolution governed by a Schrödinger-type equation. As had been pointed out long ago, in this view the measurement process can be described by decoherence which results in a ”Many-Worlds” or ”Many-Minds” scenario according to Everett and Zeh. A silent assumption for decoherence to proceed is however, that there exists incomplete information about the environment our object system gets entangled with in the measurement process. This paper addresses the question where this information is traced out and - by adopting recent approaches to model consciousness in neuroscience - argues that a rigorous interpretation results in a perspectival notion of the quantum-to-classical transition. The information that is or is not available in the consciousness of the observer is crucial for the definition of the environment (i.e. the unknown degrees of freedom in the remainder of the Universe). As such the Many-Worlds-Interpretation, while being difficult or impossible to probe in physics, may become testable in psychology.

  16. Supersensitive ancilla-based adaptive quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Larson, Walker; Saleh, Bahaa E. A.

    2017-10-01

    The supersensitivity attained in quantum phase estimation is known to be compromised in the presence of decoherence. This is particularly patent at blind spots—phase values at which sensitivity is totally lost. One remedy is to use a precisely known reference phase to shift the operation point to a less vulnerable phase value. Since this is not always feasible, we present here an alternative approach based on combining the probe with an ancillary degree of freedom containing adjustable parameters to create an entangled quantum state of higher dimension. We validate this concept by simulating a configuration of a Mach-Zehnder interferometer with a two-photon probe and a polarization ancilla of adjustable parameters, entangled at a polarizing beam splitter. At the interferometer output, the photons are measured after an adjustable unitary transformation in the polarization subspace. Through calculation of the Fisher information and simulation of an estimation procedure, we show that optimizing the adjustable polarization parameters using an adaptive measurement process provides globally supersensitive unbiased phase estimates for a range of decoherence levels, without prior information or a reference phase.

  17. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  18. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    NASA Astrophysics Data System (ADS)

    Ding, Zhi-yong; He, Juan; Ye, Liu

    2017-02-01

    A feasible scheme for protecting the Greenberger-Horne-Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  19. Robust one-step catalytic machine for high fidelity anticloning and W-state generation in a multiqubit system.

    PubMed

    Olaya-Castro, Alexandra; Johnson, Neil F; Quiroga, Luis

    2005-03-25

    We propose a physically realizable machine which can either generate multiparticle W-like states, or implement high-fidelity 1-->M (M=1,2,...infinity) anticloning of an arbitrary qubit state, in a single step. This universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting itself for its next operation. It possesses an inherent immunity to decoherence. Most importantly in terms of practical multiparty quantum communication, the machine's robustness in the presence of decoherence actually increases as the number of qubits M increases.

  20. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    PubMed

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  1. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  2. Quantum Transduction with Adaptive Control

    NASA Astrophysics Data System (ADS)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  3. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.

    PubMed

    Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G

    2017-03-10

    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.

  4. Quantum Transduction with Adaptive Control.

    PubMed

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  5. Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations

    NASA Astrophysics Data System (ADS)

    Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min

    2018-02-01

    In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.

  6. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  7. The New Quantum Logic

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2014-06-01

    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

  8. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    PubMed

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  9. Uncertainty relation in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng

    2015-04-01

    We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 ⁡ c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  10. Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation

    NASA Astrophysics Data System (ADS)

    Rosati, Roberto; Dolcini, Fabrizio; Rossi, Fausto

    2015-12-01

    A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015), 10.1063/1.4922739] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum channels for the nondispersive transmission of electronic wave packets.

  11. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    PubMed

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  12. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  13. Quantum Private Query Based on Bell State and Single Photons

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chang, Yan; Zhang, Shi-Bin; Yang, Fan; Zhang, Yan

    2018-03-01

    Quantum private query (QPQ) can protect both user's and database holder's privacy. In this paper, we propose a novel quantum private query protocol based on Bell state and single photons. As far as we know, no one has ever proposed the QPQ based on Bell state. By using the decoherence-free (DF) states, our protocol can resist the collective noise. Besides that, our protocol is a one-way quantum protocol, which can resist the Trojan horse attack and reduce the communication complexity. Our protocol can not only guarantee the participants' privacy but also stand against an external eavesdropper.

  14. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  15. Predictability sieve, pointer states, and the classicality of quantum trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

    2005-12-15

    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and puritymore » loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)« less

  16. Investigations of the Quantum Correlation in Two-Qubit Heisenberg XYZ Model with Decoherence

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang

    2017-03-01

    Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated with the use of concurrence C and quantum discord (QD). With the Werner state as the initial state, we discuss the influence of mixture degree r on the dynamics. There are some difference between the time evolution behaviors of these two correlation measures with different value of r. For 0 ≤ r ≤ 1/3, there exists quantum discord but no entanglement; For 1/3< r<1, there is a "entanglement sudden death and birth" phenomenon in the concurrence but not in the QD; For r=1, there is one interesting thing that the concurrence decays from 1 to a minimum value close to 0 but the QD vanish. In addition, we have investigated the influence of different parameters on the two correlation measures. It has been found that, the concurrence and QD both exhibit osillatory behaviors with the time evolution, which is independent on the magnetic field B and the coupling coefficient J z . However, the Dzyaloshinskii-Moriya interaction (D) and coupling coefficient J have strong influence on concurrence and QD. With the increasing of the D or J, the frequency of the oscillation getting larger. When time is fixed, with the increasing of D or J, the concurrence and QD change periodically.

  17. Observation of quantum-memory-assisted entropic uncertainty relation under open systems, and its steering

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Fei; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Wang, Dong; Ye, Liu

    2018-01-01

    Quantum objects are susceptible to noise from their surrounding environments, interaction with which inevitably gives rise to quantum decoherence or dissipation effects. In this work, we examine how different types of local noise under an open system affect entropic uncertainty relations for two incompatible measurements. Explicitly, we observe the dynamics of the entropic uncertainty in the presence of quantum memory under two canonical categories of noisy environments: unital (phase flip) and nonunital (amplitude damping). Our study shows that the measurement uncertainty exhibits a non-monotonic dynamical behavior—that is, the amount of the uncertainty will first inflate, and subsequently decrease, with the growth of decoherence strengths in the two channels. In contrast, the uncertainty decreases monotonically with the growth of the purity of the initial state shared in prior. In order to reduce the measurement uncertainty in noisy environments, we put forward a remarkably effective strategy to steer the magnitude of uncertainty by means of a local non-unitary operation (i.e. weak measurement) on the qubit of interest. It turns out that this non-unitary operation can greatly reduce the entropic uncertainty, upon tuning the operation strength. Our investigations might thereby offer an insight into the dynamics and steering of entropic uncertainty in open systems.

  18. Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Chekhovich, Evgeny A.

    2017-06-01

    Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.

  19. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  20. The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study

    NASA Astrophysics Data System (ADS)

    Slaoui, A.; Daoud, M.; Laamara, R. Ahl

    2018-07-01

    We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two-level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation. Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible for the revival phenomenon of non-classical correlations.

  1. Effect of electric field on RbCl quantum pseudodot qubit

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Hui; Xiao, Jing-Lin

    2018-04-01

    By employing the variational method of Pekar type, we study the effects of electric field on RbCl quantum pseudodot (QPD) qubits. Our results confirm that (1) the electron oscillates in the RbCl QPD with a certain period; (2) the electron's probability density is a raising function of electric field; (3) the oscillating frequency is an increasing one of the electric field and the two-dimensional electron gas chemical potential. Two ways are found for prolonging the lifetime of the qubit and suppressing the decoherence in the quantum information field.

  2. Blind Quantum Signature with Controlled Four-Particle Cluster States

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  3. Decision theory and information propagation in quantum physics

    NASA Astrophysics Data System (ADS)

    Forrester, Alan

    In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.

  4. Quantum superposition at the half-metre scale.

    PubMed

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.

  5. Philosophical perspectives on quantum chaos: Models and interpretations

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa Nicole

    2001-09-01

    The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and theoretical pluralism, are inadequate. The fruitful ways in which models have been used in quantum chaos research point to the need for a new framework for addressing intertheoretic relations that focuses on models rather than laws.

  6. Single-qubit decoherence under a separable coupling to a random matrix environment

    NASA Astrophysics Data System (ADS)

    Carrera, M.; Gorin, T.; Seligman, T. H.

    2014-08-01

    This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude as the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects, and symmetry-breaking equilibrium states.

  7. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  8. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  9. Control of electron spin decoherence in nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.

  10. Understanding and controlling spin-systems using electron spin resonance techniques

    NASA Astrophysics Data System (ADS)

    Martens, Mathew

    Single molecule magnets (SMMs) posses multi-level energy structures with properties that make them attractive candidates for implementation into quantum information technologies. However there are some major hurdles that need to be overcome if these systems are to be used as the fundamental components of an eventual quantum computer. One such hurdle is the relatively short coherence times these systems display which severely limits the amount of time quantum information can remain encoded within them. In this dissertation, recent experiments conducted with the intent of bringing this technology closer to realization are presented. The detailed knowledge of the spin Hamiltonian and mechanisms of decoherence in SMMs are absolutely essential if these systems are to be used in technologies. To that effect, experiments were done on a particularly promising SMM, the complex K6[VIV15AsIII 6O42(H2O)] · 8H2O, known as V15. High-field electron spin resonance (ESR) measurements were performed on this system at the National High Magnetic Field Laboratory. The resulting spectra allowed for detailed analysis of the V15 spin Hamiltonian which will be presented as well as the most precise values yet reported for the g-factors of this system. Additionally, the line widths of the ESR spectra are studied in depth and found to reveal that fluctuations within the spin-orbit interaction are a mechanism for decoherence in V15. A new model for decoherence is presented that describes very well both the temperature and field orientation dependences of the measured ESR line widths. Also essential is the ability to control spin-states of SMMs. Presented in this dissertation as well is the demonstration of the coherent manipulation of the multi-state spin system Mn2+ diluted in MgO by means of a two-tone pulse drive. Through the detuning between the excitation and readout radio frequency pulses it is possible to select the number of photons involved in a Rabi oscillation as well as increase the frequency of this nutation. Experimental findings fit well the analytical model developed. This process could lead to the use of multi-level spin systems as tunable solid state qubits. Finally, if quantum computing technologies are to be commercially realized, an on-chip method to address qubits must be developed. One way to incorporate SMMs to an on-chip device is by way of a coplanar waveguide (CPW) resonator. Efforts to create a resonator of this type to be used to perform low-temperature ESR on-chip will be described. Our work is focused on implementing such on-chip techniques in high magnetic fields, which is desirable for ESR-type of experiments in (quasi-)isotropic spin systems. Considerable attention is given to the coupling of these devices and a geometry is presented for a superconducting CPW resonator that is critically coupled. The effect of the magnetic field on the resonance position and its quality factor is addressed as well. Our devices show robust performance in field upwards of 1 Tesla and their use in performing on-chip ESR measurements seem promising.

  11. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  12. Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED

    NASA Astrophysics Data System (ADS)

    Huembeli, Patrick; Nigg, Simon E.

    2017-07-01

    Eigenstate-preserving multi-qubit parity measurements lie at the heart of stabilizer quantum error correction, which is a promising approach to mitigate the problem of decoherence in quantum computers. In this work we explore a high-fidelity, eigenstate-preserving parity readout for superconducting qubits dispersively coupled to a microwave resonator, where the parity bit is encoded in the amplitude of a coherent state of the resonator. Detecting photons emitted by the resonator via a current biased Josephson junction yields information about the parity bit. We analyze theoretically the measurement back action in the limit of a strongly coupled fast detector and show that in general such a parity measurement, while approximately quantum nondemolition is not eigenstate preserving. To remediate this shortcoming we propose a simple dynamical decoupling technique during photon detection, which greatly reduces decoherence within a given parity subspace. Furthermore, by applying a sequence of fast displacement operations interleaved with the dynamical decoupling pulses, the natural bias of this binary detector can be efficiently suppressed. Finally, we introduce the concept of a heralded parity measurement, where a detector click guarantees successful multi-qubit parity detection even for finite detection efficiency.

  13. Correlating quantum decoherence and material defects in a Josephson qubit

    NASA Astrophysics Data System (ADS)

    Hite, D. A.; McDermott, R.; Simmonds, R. W.; Cooper, K. B.; Steffen, M.; Nam, S.; Pappas, D. P.; Martinis, J. M.

    2004-03-01

    Superconducting tunnel junction devices are promising candidates for constructing quantum bits (qubits) for quantum computation because of their inherently low dissipation and ease of scalability by microfabrication. Recently, the Josephson phase qubit has been characterized spectroscopically as having spurious microwave resonators that couple to the qubit and act as a dominant source of decoherence. While the origin of these spurious resonances remains unknown, experimental evidence points to the material system of the tunnel barrier. Here, we focus on our materials research aimed at elucidating and eliminating these spurious resonators. In particular, we have studied the use of high quality Al films epitaxially grown on Si(111) as the base electrode of the tunnel junction. During each step in the Al/AlOx/Al trilayer growth, we have investigated the structure in situ by AES, AED and LEED. While tunnel junctions fabricated with these epitaxial base electrodes prove to be of non-uniform oxide thickness and too thin, I-V characteristics have shown a lowering of subgap currents by a factor of two. Transport measurements will be correlated with morphological structure for a number of devices fabricated with various degrees of crystalline quality.

  14. Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field

    NASA Astrophysics Data System (ADS)

    Akhtarshenas, S. J.; Khezrian, M.

    2010-04-01

    In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.

  15. Compatible quantum theory

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory requires a macroscopic mechanism for selecting a physical framework, which is part of the macroscopic theory (MAQM). The selection of a physical framework involves the breaking of the microscopic ‘framework symmetry’, which can proceed either phenomenologically as in the standard quantum measurement theory, or more fundamentally by considering the quantum system under study to be a subsystem of a macroscopic quantum system. The decoherent histories formulation of Gell-Mann and Hartle, as well as that of Omnès, are theories of this fundamental type, where the physical framework is selected by a coarse-graining procedure in which the physical phenomenon of decoherence plays an essential role. Various well-known interpretations of QM are described from the perspective of CQT. Detailed definitions and proofs are presented in the appendices.

  16. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions

    PubMed Central

    Wineland, D. J.; Monroe, C.; Itano, W. M.; Leibfried, D.; King, B. E.; Meekhof, D. M.

    1998-01-01

    Methods for, and limitations to, the generation of entangled states of trapped atomic ions are examined. As much as possible, state manipulations are described in terms of quantum logic operations since the conditional dynamics implicit in quantum logic is central to the creation of entanglement. Keeping with current interest, some experimental issues in the proposal for trappedion quantum computation by J. I. Cirac and P. Zoller (University of Innsbruck) are discussed. Several possible decoherence mechanisms are examined and what may be the more important of these are identified. Some potential applications for entangled states of trapped-ions which lie outside the immediate realm of quantum computation are also discussed. PMID:28009379

  17. Long-distance quantum communication with atomic ensembles and linear optics.

    PubMed

    Duan, L M; Lukin, M D; Cirac, J I; Zoller, P

    2001-11-22

    Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

  18. Simulation of n-qubit quantum systems. III. Quantum operations

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2007-05-01

    During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems often result in very large symbolic expressions that dramatically slow down the evaluation of measures or other quantities. In these cases, MAPLE's assume facility sometimes helps to reduce the complexity of symbolic expressions, but often only numerical evaluation is possible. Since the complexity of the FEYNMAN commands is very different, no general scaling law for the CPU time and memory usage can be given. No. of bytes in distributed program including test data, etc.: 799 265 No. of lines in distributed program including test data, etc.: 18 589 Distribution format: tar.gz Reasons for new version: While the previous program versions were designed mainly to create and manipulate the state of quantum registers, the present extension aims to support quantum operations as the essential ingredient for studying the effects of noisy environments. Does this version supersede the previous version: Yes Nature of the physical problem: Today, entanglement is identified as the essential resource in virtually all aspects of quantum information theory. In most practical implementations of quantum information protocols, however, decoherence typically limits the lifetime of entanglement. It is therefore necessary and highly desirable to understand the evolution of entanglement in noisy environments. Method of solution: Using the computer algebra system MAPLE, we have developed a set of procedures that support the definition and manipulation of n-qubit quantum registers as well as (unitary) logic gates and (nonunitary) quantum operations that act on the quantum registers. The provided hierarchy of commands can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems in ideal and nonideal quantum circuits.

  19. Parameter estimation by decoherence in the double-slit experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo

    2018-06-01

    We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  1. Coherence properties of the 0-π qubit

    NASA Astrophysics Data System (ADS)

    Groszkowski, Peter; Di Paolo, A.; Grimsmo, A. L.; Blais, A.; Schuster, D. I.; Houck, A. A.; Koch, Jens

    2018-04-01

    Superconducting circuits rank among some of the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit (Brooks et al 2013 Phys. Rev. A 87 52306) promises increased protection from spontaneous relaxation and dephasing. In this paper we present a detailed theoretical study of the coherence properties of the 0-π device, investigate relevant decoherence channels, and show estimates for achievable coherence times in multiple parameter regimes. In our analysis, we include disorder in circuit parameters, which results in the coupling of the qubit to a low-energy, spurious harmonic mode. We analyze the effects of such coupling on decoherence, in particular dephasing due to photon shot noise, and outline how such a noise channel can be mitigated by appropriate parameter choices. In the end we find that the 0-π qubit performs well and may become an attractive candidate for the implementation of the next-generation superconducting devices for uses in quantum computing and information.

  2. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  3. Large-scale frequency- and time-domain quantum entanglement over the optical frequency comb (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier

    2017-05-01

    When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.

  4. A quantum measure of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.edu

    2014-05-01

    It has been recently suggested that probabilities of different events in the multiverse are given by the frequencies at which these events are encountered along the worldline of a geodesic observer (the ''watcher''). Here I discuss an extension of this probability measure to quantum theory. The proposed extension is gauge-invariant, as is the classical version of this measure. Observations of the watcher are described by a reduced density matrix, and the frequencies of events can be found using the decoherent histories formalism of Quantum Mechanics (adapted to open systems). The quantum watcher measure makes predictions in agreement with the standardmore » Born rule of QM.« less

  5. Nonexponential Decoherence and Subdiffusion in Atom-Optics Kicked Rotor.

    PubMed

    Sarkar, Sumit; Paul, Sanku; Vishwakarma, Chetan; Kumar, Sunil; Verma, Gunjan; Sainath, M; Rapol, Umakant D; Santhanam, M S

    2017-04-28

    Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.

  6. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  7. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    NASA Astrophysics Data System (ADS)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  8. Self-assembling hybrid diamond-biological quantum devices

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  9. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  10. Probing spin dynamics and quantum relaxation in Li Y0.998 Ho0.002 F4 via 19F NMR

    NASA Astrophysics Data System (ADS)

    Graf, M. J.; Lascialfari, A.; Borsa, F.; Tkachuk, A. M.; Barbara, B.

    2006-01-01

    We report measurements of F19 nuclear spin-lattice relaxation 1/T1 as a function of temperature and external magnetic field in a LiY0.998Ho0.002F4 single crystal, a single-ion magnet exhibiting interesting quantum effects. The F19 1/T1 is found to depend on the coupling with the diluted rare-earth (RE) moments, making it an effective probe of the rare-earth spin dynamics. The results for 1/T1 show a behavior similar to that observed in molecular nanomagnets, a result which we attribute to the discreteness of the energy levels in both cases. At intermediate temperatures the lifetime broadening of the crystal field split RE magnetic levels follows a T3 power law. At low temperature the field dependence of 1/T1 shows peaks in correspondence to the critical magnetic fields for energy level crossings (LC). A key result of this study is that the broadening of the levels at LC is found to become extremely small at low temperatures, about 1.7mT , a value which is comparable to the weak dipolar fields at the RE lattice positions. Thus, unlike the molecular magnets, decoherence effects are strongly suppressed, and it may be possible to measure directly the level repulsions at avoided level crossings.

  11. EPR Studies of Magnetically Dilute Ga-Doped Single Crystals of Fe18 Antiferromagnetic Molecular Wheels

    NASA Astrophysics Data System (ADS)

    Henderson, John; Ramsey, Christopher; Del Barco, Enrique; Stamatatos, Theocharis; Christou, George

    2008-03-01

    Studies of the quantum dynamics of the electron spins in solid state systems has gained considerable interest recently due to their potential for use as quantum computing substrates. One class of materials, molecular magnets, are of particular importance, owing to the seemingly limitless array of spin configurations due to synthetic chemical flexibility. Efforts are currently devoted to minimizing decoherence times by diminishing dipolar effects. In this regard, we have carried out EPR measurements on small single crystals of 0.5% Ga doped Fe18 molecular antiferromagnetic wheels at temperatures down to 300 mK using planar resonators patterned on GaAs wafers. This system constitutes a dilute sample of S = 5/2 molecules dispersed within a sea of S = 0 (at low temperature) molecules, which significantly reduces dipolar interactions and might provide a means of observing Rabi oscillations in crystals of molecular magnets. Detailed angular dependence studies reveal significant anisotropy with D = 500 mK and E = 20 mK. The presence of second order anisotropy (E) is very unusual for such a high symmetry system and its interpretation will be discussed. Pulsed-EPR measurements and doping concentration dependence will also be discussed.

  12. Adiabatic quantum computation in open systems.

    PubMed

    Sarandy, M S; Lidar, D A

    2005-12-16

    We analyze the performance of adiabatic quantum computation (AQC) subject to decoherence. To this end, we introduce an inherently open-systems approach, based on a recent generalization of the adiabatic approximation. In contrast to closed systems, we show that a system may initially be in an adiabatic regime, but then undergo a transition to a regime where adiabaticity breaks down. As a consequence, the success of AQC depends sensitively on the competition between various pertinent rates, giving rise to optimality criteria.

  13. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  14. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, Alexey V., E-mail: alexvakimov@gmail.com, E-mail: oleg.prezhdo@rochester.edu; Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973; Long, Run

    2014-05-21

    We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fullymore » quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.« less

  15. Anomalous electron spin decoherence in an optically pumped quantum dot

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Sham, L. J.

    2013-03-01

    We study the nuclear-spin-fluctuation induced spin decoherence of an electron (SDE) in an optically pumped quantum dot. The SDE is computed in terms of the steady distribution of the nuclear field (SDNF) formed through the hyperfine interaction (HI) with two different nuclear species in the dot. A feedback loop between the optically driven electron spin and the nuclear spin ensemble determines the SDNF [W. Yang and L. J. Sham, Phy. Rev. B 85, 235319(2012)]. Different from that work and others reviewed therein, where a bilinear HI, SαIβ , between the electron (or hole) spin S and the nuclear spin I is used, we use an effective nonlinear interaction of the form SαIβIγ derived from the Fermi-contact HI. Our feedback loop forms a multi-peak SDNF in which the SDE shows remarkable collapses and revivals in nanosecond time scale. Such an anomalous SDE results from a quantum interference effect of the electron Larmor precession in a multi-peak effective magnetic field. In the presence of a bilinear HI that suppresses the nuclear spin fluctuation, the non-Markovian SDE persists whenever there are finite Fermi contact interactions between two or more kinds of nuclei and the electron in the quantum dot. This work is supported by NSF(PHY 1104446) and the US Army Research Office MURI award W911NF0910406.

  16. Experimental evidence of coherent transport.

    PubMed

    Flores-Olmedo, E; Martínez-Argüello, A M; Martínez-Mares, M; Báez, G; Franco-Villafañe, J A; Méndez-Sánchez, R A

    2016-04-28

    Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations.

  17. Experimental evidence of coherent transport

    PubMed Central

    Flores-Olmedo, E.; Martínez-Argüello, A. M.; Martínez-Mares, M.; Báez, G.; Franco-Villafañe, J. A.; Méndez-Sánchez, R. A.

    2016-01-01

    Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations. PMID:27121226

  18. Locking of electron spin coherence above 20 ms in natural silicon carbide

    NASA Astrophysics Data System (ADS)

    Simin, D.; Kraus, H.; Sperlich, A.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2017-04-01

    We demonstrate that silicon carbide (SiC) with a natural isotope abundance can preserve a coherent spin superposition in silicon vacancies over an unexpectedly long time exceeding 20 ms. The spin-locked subspace with a drastically reduced decoherence rate is attained through the suppression of heteronuclear spin crosstalking by applying a moderate magnetic field in combination with dynamic decoupling from the nuclear spin baths. Furthermore, we identify several phonon-assisted mechanisms of spin-lattice relaxation and find that it can be extremely long at cryogenic temperatures, equal to or even longer than 10 s. Our approach may be extended to other polyatomic compounds and opens a path towards improved qubit memory for wafer-scale quantum technologies.

  19. A Perron-Frobenius type of theorem for quantum operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew

    Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.

  20. Quantum information is physical

    NASA Astrophysics Data System (ADS)

    DiVincenzo, D. P.; Loss, D.

    1998-03-01

    We discuss a few current developments in the use of quantum mechanically coherent systems for information processing. In each of these developments, Rolf Landauer has played a crucial role in nudging us, and other workers in the field, into asking the right questions, some of which we have been lucky enough to answer. A general overview of the key ideas of quantum error correction is given. We discuss how quantum entanglement is the key to protecting quantum states from decoherence in a manner which, in a theoretical sense, is as effective as the protection of digital data from bit noise. We also discuss five general criteria which must be satisfied to implement a quantum computer in the laboratory, and we illustrate the application of these criteria by discussing our ideas for creating a quantum computer out of the spin states of coupled quantum dots.

  1. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  2. Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures

    NASA Astrophysics Data System (ADS)

    Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan

    2016-10-01

    We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.

  3. The Decoherence and Interference of Cosmological Arrows of Time for a de Sitter Universe with Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Rotondo, Marcello; Nambu, Yasusada

    2018-06-01

    We consider the superposition of two semiclassical solutions of the Wheeler-DeWitt equation for a de Sitter universe, describing a quantized scalar vacuum propagating in a universe that is contracting in one case and expanding in the other, each identifying a opposite cosmological arrow of time. We discuss the suppression of the interference terms between the two arrows of time due to environment-induced decoherence caused by modes of the scalar vacuum crossing the Hubble horizon. Furthermore, we quantify the effect of the interference on the expectation value of the observable field mode correlations, with respect to an observer that we identify with the spatial geometry.

  4. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  5. Probing coherence aspects of adiabatic quantum computation and control.

    PubMed

    Goswami, Debabrata

    2007-09-28

    Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.

  6. Nonadiabatic conditional geometric phase shift with NMR.

    PubMed

    Xiang-Bin, W; Keiji, M

    2001-08-27

    A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.

  7. Quantum rotation gates with controlled nonadiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Abdelrahman A. H.; Benmachiche, Abderrahim; Subhi Mahmoud, Gharib; Messikh, Azeddine

    2018-04-01

    Quantum gates can be implemented adiabatically and nonadiabatically. Many schemes used at least two sequentially implemented gates to obtain an arbitrary one-qubit gate. Recently, it has been shown that nonadiabatic gates can be realized by single-shot implementation. It has also been shown that quantum gates can be implemented with controlled adiabatic evolutions. In this paper, we combine the advantage of single-shot implementation with controlled adiabatic evolutions to obtain controlled nonadiabatic evolutions. We also investigate the robustness to different types of errors. We find that the fidelity is close to unity for realistic decoherence rates.

  8. Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Kłobus, Waldemar; Grudka, Andrzej; Baumgartner, Andreas; Tomaszewski, Damian; Schönenberger, Christian; Martinek, Jan

    2014-03-01

    We investigate theoretically the use of nonideal ferromagnetic contacts as a means to detect quantum entanglement of electron spins in transport experiments. We use a designated entanglement witness and find a minimal spin polarization of η >1/√3 ≈58% required to demonstrate spin entanglement. This is significantly less stringent than the ubiquitous tests of Bell's inequality with η >1/√24 >≈84%. In addition, we discuss the impact of decoherence and noise on entanglement detection and apply the presented framework to a simple quantum cryptography protocol. Our results are directly applicable to a large variety of experiments.

  9. Spin coherence in silicon/silicon-germanium nanostructures

    NASA Astrophysics Data System (ADS)

    Truitt, James L.

    This thesis investigates the spin coherence of electrons in silicon/silicon-germanium (Si/SiGe) quantum wells. With a long spin coherence time, an electron trapped in a quantum dot in Si/SiGe is a prime candidate for a quantum bit (qubit) in a solid state implementation of a quantum computer. In particular, the mechanisms responsible for decoherence are examined in a variety of Si/SiGe quantum wells, and it is seen that their behavior does not correspond to published theories of decoherence in these structures. Transport data are analyzed for all samples to determine the electrical properties of each, taking into account a parallel conduction path seen in all samples. Furthermore, the effect of confining the electrons into nanostructures of varying size in one of the samples is studied. All but one of the samples examined are grown by ultrahigh vacuum chemical vapor deposition at the University of Wisconsin - Madison. The nanostructures are patterned on a sample provided by IBM using the Nabity Pattern Generation Software (NPGS) on a LEO1530 Scanning Electron Microscope, and etched using SF6 in an STS reactive ion etcher. Continuous-wave electron spin resonance studies are done using a Bruker ESP300E spectrometer, with a 4.2K continuous flow cryostat and X-band cavity. In order to fully characterize the sample, electrical measurements were done. Hall bars are etched into the 2DEGs, and Ohmic contacts are annealed in to provide a current path through the 2DEG. Measurements are made both from room temperature down to 2K in a Physical Property Measurement System (PPMS), and at 300mK using a custom built probe in a one shot 3He cryostat made by Oxford Instruments. The custom built probe also allows high frequency excitations, facilitating electrically detected magnetic resonance (EDMR) experiments. In many of the samples, an orientationally dependent electron spin resonance linewidth is seen whose anisotropy is much larger at small angles than that predicted by published theories. The anisotropy is further increased through lateral confinement of the electrons, and a change in the coherence and relaxation times may be seen as a function of dot size as well. Finally, an outlook on the direction the lab is taking from 2DEGs to dots with electron spin resonance is given, with some promising electrically detected magnetic resonance results shown.

  10. A Rout to Protect Quantum Gates constructed via quantum walks from Noises.

    PubMed

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2018-05-08

    The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

  11. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning

    2017-05-01

    Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  12. Quantum computer games: Schrödinger cat and hounds

    NASA Astrophysics Data System (ADS)

    Gordon, Michal; Gordon, Goren

    2012-05-01

    The quantum computer game 'Schrödinger cat and hounds' is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. 'Schrödinger cat and hounds' demonstrates the effects of superposition, destructive and constructive interference, measurements and entanglement. More advanced concepts, like particle-wave duality and decoherence, can also be taught using the game as a model. The game that has an optimal solution in the classical version, can have many different solutions and a new balance of powers in the quantum world. Game-aided lectures were given to high-school students which showed that it is a valid and entertaining teaching platform.

  13. Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Raghavan, G.

    2018-03-01

    Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.

  14. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  15. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    PubMed

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  16. Control relaxation via dephasing: A quantum-state-diffusion study

    NASA Astrophysics Data System (ADS)

    Jing, Jun; Yu, Ting; Lam, Chi-Hang; You, J. Q.; Wu, Lian-Ao

    2018-01-01

    Dynamical decoupling as a quantum control strategy aims at suppressing quantum decoherence adopting the popular philosophy that the disorder in the unitary evolution of the open quantum system caused by environmental noises should be neutralized by a sequence of ordered or well-designed external operations acting on the system. This work studies the solution of quantum-state-diffusion equations by mixing two channels of environmental noises, i.e., relaxation (dissipation) and dephasing. It is interesting to find in two-level and three-level atomic systems that a non-Markovian relaxation or dissipation process can be suppressed by a Markovian dephasing noise. The discovery results in an anomalous control strategy by coordinating relaxation and dephasing processes. Our approach opens an avenue of noise control strategy with no artificial manipulation over the open quantum systems.

  17. Materials Frontiers to Empower Quantum Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their originsmore » in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.« less

  18. The Quantum Steganography Protocol via Quantum Noisy Channels

    NASA Astrophysics Data System (ADS)

    Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2015-08-01

    As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

  19. Models and (some) Searches for CPT Violation: From Early Universe to the Present Era

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2017-07-01

    In the talk, I review theoretical models, inspired by quantum gravity, that may violate CPT symmetry. The amount of violation today (which is constrained severely by a plethora of experiments that I will not describe due to lack of space) need not be the same with the one that occurred in the Early Universe,. In certain models, one can obtain a precise temperature dependence of CPT violating effects, which is such that these effects are significant during the radiation era of the Universe, but are damped quickly so that they do not to affect nucleosynthesis and are negligible in the present epoch (that is, beyond experimental detection with the current experimental sensitivity). The CPT Violation (CPTV) in these models may arise from special properties of the background over which the fields of the model are propagating upon and be responsible for the generation of a matter-antimatter asymmetry, where any CP violation effects could only assist in the creation of the asymmetry, the dominant effect being CPTV. However, there are cases, where the CPTV arises as a consequence of an ill-defined CPT operator due to decoherence as a result of quantum gravity environmental degrees of freedom, inaccessible to a low-energy observer. I also discuss briefly the current-era phenomenology of some of the above models; in particular, for the ones involving decoherence-induced CPT violation, I argue that entangled states of neutral mesons (Kaons or B-systems) can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle.

  20. Simulation of quantum dynamics with integrated photonics

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  1. Quantum memristors

    DOE PAGES

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; ...

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less

  2. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE PAGES

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.; ...

    2016-04-04

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  3. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.

    PubMed

    Banerjee, A; Bridges, C A; Yan, J-Q; Aczel, A A; Li, L; Stone, M B; Granroth, G E; Lumsden, M D; Yiu, Y; Knolle, J; Bhattacharjee, S; Kovrizhin, D L; Moessner, R; Tennant, D A; Mandrus, D G; Nagler, S E

    2016-07-01

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.

  4. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  5. Experimental investigation of criteria for continuous variable entanglement.

    PubMed

    Bowen, W P; Schnabel, R; Lam, P K; Ralph, T C

    2003-01-31

    We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR paradox and inseparability criteria, with both results clearly beating the standard quantum limit. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.

  6. Experimental simulation of decoherence in photonics qudits

    PubMed Central

    Marques, B.; Matoso, A. A.; Pimenta, W. M.; Gutiérrez-Esparza, A. J.; Santos, M. F.; Pádua, S.

    2015-01-01

    We experimentally perform the simulation of open quantum dynamics in single-qudit systems. Using a spatial light modulator as a dissipative optical device, we implement dissipative-dynamical maps onto qudits encoded in the transverse momentum of spontaneous parametric down-converted photon pairs. We show a well-controlled technique to prepare entangled qudits states as well as to implement dissipative local measurements; the latter realize two specific dynamics: dephasing and amplitude damping. Our work represents a new analogy-dynamical experiment for simulating an open quantum system. PMID:26527330

  7. Continuous quantum measurement in spin environments

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Wang, An Min

    2015-08-01

    We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.

  8. Collective fluorescence and decoherence of a few nearly identical quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2007-01-01

    We study the collective interaction of excitons in closely spaced artificial molecules and arrays of nearly identical quantum dots with the electromagnetic modes. We discuss how collective fluorescence builds up in the presence of a small mismatch of the transition energy. We show that a superradiant state of a single exciton in a molecule of two dots with realistic energy mismatch undergoes a two-rate decay. We also analyze the stability of subdecoherent states for nonidentical systems.

  9. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  10. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2007-11-01

    Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them—into becoming a witness.

  11. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide

    PubMed Central

    Yang, Wan-li; An, Jun-Hong; Zhang, Cheng-jie; Chen, Chang-yong; Oh, C. H.

    2015-01-01

    We investigate the dynamics of quantum correlation between two separated nitrogen vacancy centers (NVCs) placed near a one-dimensional plasmonic waveguide. As a common medium of the radiation field of NVCs propagating, the plasmonic waveguide can dynamically induce quantum correlation between the two NVCs. It is interesting to find that such dynamically induced quantum correlation can be preserved in the long-time steady state by locally applying individual driving on the two NVCs. In particular, we also show that a large degree of quantum correlation can be established by this scheme even when the distance between the NVCs is much larger than their operating wavelength. This feature may open new perspectives for devising active decoherence-immune solid-state optical devices and long-distance NVC-based quantum networks in the context of plasmonic quantum electrodynamics. PMID:26493045

  12. Relativistic and noise effects on multiplayer Prisoners' dilemma with entangling initial states

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Rashidi, S. S.

    2017-11-01

    Three-players Prisoners' dilemma (Alice, Bob and Colin) is studied in the presence of a single collective environment effect as a noise. The environmental effect is coupled with final states by a particular form of Kraus operators K_0 and K_1 through amplitude damping channel. We introduce the decoherence parameter 0≤p≤1 to the corresponding noise matrices, in order to controling the rate of environment influence on payoff of each players. Also, we consider the Unruh effect on the payoff of player, who is located at a noninertial frame. We suppose that two players (Bob and Colin) are in Rindler region I from Minkowski space-time, and move with same uniform acceleration (r_b=r_c) and frequency mode. The game is begun with the classical strategies cooperation ( C) and defection ( D) accessible to each player. Furthermore, the players are allowed to access the quantum strategic space ( Q and M). The quantum entanglement is coupled with initial classical states by the parameter γ \\in [0,π /2]. Using entangled initial states by exerting an unitary operator \\hat{J} as entangling gate, the quantum game (competition between Prisoners, as a three-qubit system) is started by choosing the strategies from classical or quantum strategic space. Arbitrarily chosen strategy by each player can lead to achieving profiles, which can be considered as Nash equilibrium or Pareto optimal. It is shown that in the presence of noise effect, choosing quantum strategy Q results in a winning payoff against the classical strategy D and, for example, the strategy profile ( Q, D, C) is Pareto optimal. We find that the unfair miracle move of Eisert from quantum strategic space is an effective strategy for accelerated players in decoherence mode (p=1) of the game.

  13. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng

    2010-11-15

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression canmore » be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.« less

  14. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  15. Amplification, Redundancy, and Quantum Chernoff Information

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-04-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  16. Defects in Quantum Computers

    DOE PAGES

    Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.; ...

    2018-03-14

    The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less

  17. Robust bidirectional links for photonic quantum networks

    PubMed Central

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  18. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  19. Defects in Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.

    The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less

  20. Transient quantum coherent response to a partially coherent radiation field.

    PubMed

    Sadeq, Zaheen S; Brumer, Paul

    2014-02-21

    The response of an arbitrary closed quantum system to a partially coherent electric field is investigated, with a focus on the transient coherences in the system. As a model we examine, both perturbatively and numerically, the coherences induced in a three level V system. Both rapid turn-on and pulsed turn-on effects are investigated. The effect of a long and incoherent pulse is also considered, demonstrating that during the pulse the system shows a coherent response which reduces after the pulse is over. Both the pulsed scenario and the thermally broadened CW case approach a mixed state in the long time limit, with rates dictated by the adjacent level spacings and the coherence time of the light, and via a mechanism that is distinctly different from traditional decoherence. These two excitation scenarios are also explored for a minimal "toy" model of the electronic levels in pigment protein complex PC645 by both a collisionally broadened CW laser and by a noisy pulse, where unexpectedly long transient coherence times are observed and explained. The significance of environmentally induced decoherence is noted.

  1. Enhancement of pumped current in quantum dots

    NASA Astrophysics Data System (ADS)

    Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro

    A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.

  2. Realistic continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; De Siena, S.; CNR-INFM Coherentia, Napoli, Italy, and CNISM and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi, SA

    2010-01-15

    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states and two classes of non-Gaussian entangled resources: two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed catlike states. We discuss the optimization procedure on the free parameters of the non-Gaussian resourcesmore » at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the nonideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial information on the alphabet of input states allows further significant improvement in the performance of the nonideal teleportation protocol.« less

  3. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  4. Quantum heat engine power can be increased by noise-induced coherence

    PubMed Central

    Scully, Marlan O.; Chapin, Kimberly R.; Dorfman, Konstantin E.; Kim, Moochan Barnabas; Svidzinsky, Anatoly

    2011-01-01

    Laser and photocell quantum heat engines (QHEs) are powered by thermal light and governed by the laws of quantum thermodynamics. To appreciate the deep connection between quantum mechanics and thermodynamics we need only recall that in 1901 Planck introduced the quantum of action to calculate the entropy of thermal light, and in 1905 Einstein’s studies of the entropy of thermal light led him to introduce the photon. Then in 1917, he discovered stimulated emission by using detailed balance arguments. Half a century later, Scovil and Schulz-DuBois applied detailed balance ideas to show that maser photons were produced with Carnot quantum efficiency (see Fig. 1A). Furthermore, Shockley and Quiesser invoked detailed balance to obtain the efficiency of a photocell illuminated by “hot” thermal light (see Fig. 2A). To understand this detailed balance limit, we note that in the QHE, the incident light excites electrons, which can then deliver useful work to a load. However, the efficiency is limited by radiative recombination in which the excited electrons are returned to the ground state. But it has been proven that radiatively induced quantum coherence can break detailed balance and yield lasing without inversion. Here we show that noise-induced coherence enables us to break detailed balance and get more power out of a laser or photocell QHE. Surprisingly, this coherence can be induced by the same noisy (thermal) emission and absorption processes that drive the QHE (see Fig. 3A). Furthermore, this noise-induced coherence can be robust against environmental decoherence.Fig. 1.(A) Schematic of a laser pumped by hot photons at temperature Th (energy source, blue) and by cold photons at temperature Tc (entropy sink, red). The laser emits photons (green) such that at threshold the laser photon energy and pump photon energy is related by Carnot efficiency (4). (B) Schematic of atoms inside the cavity. Lower level b is coupled to the excited states a and β. The laser power is governed by the average number of hot and cold thermal photons, and . (C) Same as B but lower b level is replaced by two states b1 and b2, which can double the power when there is coherence between the levels.Fig. 2.(A) Schematic of a photocell consisting of quantum dots sandwiched between p and n doped semiconductors. Open circuit voltage and solar photon energy ℏνh are related by the Carnot efficiency factor where Tc is the ambient and Th is the solar temperature. (B) Schematic of a quantum dot solar cell in which state b is coupled to a via, e.g., solar radiation and coupled to the valence band reservoir state β via optical phonons. The electrons in conduction band reservoir state α pass to state β via an external circuit, which contains the load. (C) Same as B but lower level b is replaced by two states b1 and b2, and when coherently prepared can double the output power.Fig. 3.(A) Photocell current j = Γραα (laser photon flux Pl/ℏνl) (in arbitrary units) generated by the photovoltaic cell QHE (laser QHE) of Fig. 1C (Fig. 2C) as a function of maximum work (in electron volts) done by electron (laser photon) Eα - Eβ + kTc log(ραα/ρββ) with full (red line), partial (brown line), and no quantum interference (blue line). (B) Power of a photocell of Fig. 2C as a function of voltage for different decoherence rates , 100γ1c. Upper curve indicates power acquired from the sun. PMID:21876187

  5. Quantum heat engine power can be increased by noise-induced coherence.

    PubMed

    Scully, Marlan O; Chapin, Kimberly R; Dorfman, Konstantin E; Kim, Moochan Barnabas; Svidzinsky, Anatoly

    2011-09-13

    Laser and photocell quantum heat engines (QHEs) are powered by thermal light and governed by the laws of quantum thermodynamics. To appreciate the deep connection between quantum mechanics and thermodynamics we need only recall that in 1901 Planck introduced the quantum of action to calculate the entropy of thermal light, and in 1905 Einstein's studies of the entropy of thermal light led him to introduce the photon. Then in 1917, he discovered stimulated emission by using detailed balance arguments. Half a century later, Scovil and Schulz-DuBois applied detailed balance ideas to show that maser photons were produced with Carnot quantum efficiency (see Fig. 1A). Furthermore, Shockley and Quiesser invoked detailed balance to obtain the efficiency of a photocell illuminated by "hot" thermal light (see Fig. 2A). To understand this detailed balance limit, we note that in the QHE, the incident light excites electrons, which can then deliver useful work to a load. However, the efficiency is limited by radiative recombination in which the excited electrons are returned to the ground state. But it has been proven that radiatively induced quantum coherence can break detailed balance and yield lasing without inversion. Here we show that noise-induced coherence enables us to break detailed balance and get more power out of a laser or photocell QHE. Surprisingly, this coherence can be induced by the same noisy (thermal) emission and absorption processes that drive the QHE (see Fig. 3A). Furthermore, this noise-induced coherence can be robust against environmental decoherence.Fig. 1.(A) Schematic of a laser pumped by hot photons at temperature T(h) (energy source, blue) and by cold photons at temperature T(c) (entropy sink, red). The laser emits photons (green) such that at threshold the laser photon energy and pump photon energy is related by Carnot efficiency (4). (B) Schematic of atoms inside the cavity. Lower level b is coupled to the excited states a and β. The laser power is governed by the average number of hot and cold thermal photons, and . (C) Same as B but lower b level is replaced by two states b(1) and b(2), which can double the power when there is coherence between the levels.Fig. 2.(A) Schematic of a photocell consisting of quantum dots sandwiched between p and n doped semiconductors. Open circuit voltage and solar photon energy ℏν(h) are related by the Carnot efficiency factor where T(c) is the ambient and T(h) is the solar temperature. (B) Schematic of a quantum dot solar cell in which state b is coupled to a via, e.g., solar radiation and coupled to the valence band reservoir state β via optical phonons. The electrons in conduction band reservoir state α pass to state β via an external circuit, which contains the load. (C) Same as B but lower level b is replaced by two states b(1) and b(2), and when coherently prepared can double the output power.Fig. 3.(A) Photocell current j = Γρ(αα) (laser photon flux P(l)/ℏ(ν(l))) (in arbitrary units) generated by the photovoltaic cell QHE (laser QHE) of Fig. 1C (Fig. 2C) as a function of maximum work (in electron volts) done by electron (laser photon) E(α) - E(β) + kT(c) log(ρ(αα)/ρ(ββ)) with full (red line), partial (brown line), and no quantum interference (blue line). (B) Power of a photocell of Fig. 2C as a function of voltage for different decoherence rates , 100γ(1c). Upper curve indicates power acquired from the sun.

  6. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  7. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    PubMed

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  8. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.

  9. Quantum particles in general spacetimes: A tangent bundle formalism

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Mattias N. R.

    2018-06-01

    Using tangent bundle geometry we construct an equivalent reformulation of classical field theory on flat spacetimes which simultaneously encodes the perspectives of multiple observers. Its generalization to curved spacetimes realizes a new type of nonminimal coupling of the fields and is shown to admit a canonical quantization procedure. For the resulting quantum theory we demonstrate the emergence of a particle interpretation, fully consistent with general relativistic geometry. The path dependency of parallel transport forces each observer to carry their own quantum state; we find that the communication of the corresponding quantum information may generate extra particles on curved spacetimes. A speculative link between quantum information and spacetime curvature is discussed which might lead to novel explanations for quantum decoherence and vanishing interference in double-slit or interaction-free measurement scenarios, in the mere presence of additional observers.

  10. Quantum origins of objectivity

    NASA Astrophysics Data System (ADS)

    Horodecki, R.; Korbicz, J. K.; Horodecki, P.

    2015-03-01

    In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model. More specifically, working formally within the decoherence theory setting with multiple environments (called quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr [N. Bohr, Phys. Rev. 48, 696 (1935), 10.1103/PhysRev.48.696] and a natural definition of objectivity lead to a canonical structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.

  11. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    PubMed

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  12. Complementarity of information and the emergence of the classical world

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Zurek, Wojciech

    2013-03-01

    We prove an anti-symmetry property relating accessible information about a system through some auxiliary system F and the quantum discord with respect to a complementary system F'. In Quantum Darwinism, where fragments of the environment relay information to observers - this relation allows us to understand some fundamental properties regarding correlations between a quantum system and its environment. First, it relies on a natural separation of accessible information and quantum information about a system. Under decoherence, this separation shows that accessible information is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. Second, It shows that objective information becomes accessible to many observers only when quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. The resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality, and supports Bohr's intuition that quantum phenomena acquire classical reality only when communicated.

  13. Robust quantum control using smooth pulses and topological winding

    NASA Astrophysics Data System (ADS)

    Barnes, Edwin; Wang, Xin

    2015-03-01

    Perhaps the greatest challenge in achieving control of microscopic quantum systems is the decoherence induced by the environment, a problem which pervades experimental quantum physics and is particularly severe in the context of solid state quantum computing and nanoscale quantum devices because of the inherently strong coupling to the surrounding material. We present an analytical approach to constructing intrinsically robust driving fields which automatically cancel the leading-order noise-induced errors in a qubit's evolution exactly. We address two of the most common types of non-Markovian noise that arise in qubits: slow fluctuations of the qubit energy splitting and fluctuations in the driving field itself. We demonstrate our method by constructing robust quantum gates for several types of spin qubits, including phosphorous donors in silicon and nitrogen-vacancy centers in diamond. Our results constitute an important step toward achieving robust generic control of quantum systems, bringing their novel applications closer to realization. Work supported by LPS-CMTC.

  14. Error budgeting single and two qubit gates in a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team

    Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.

  15. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  16. Incorporating Decoherence in the Dynamic Disorder Model of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Si, Wei; Yao, Yao; Wu, Chang-Qin

    2014-03-01

    The transport phenomena in crystalline organic semiconductors, such as pentacene, have drawn much attention recently, where the electron-phonon interaction plays a crucial role. An important advance is the dynamic disorder model proposed by Troisi et. al., which is successful in determining the carrier mobility and explaining the optical conductivity measurements. In this work, we aim to incorporate the decoherence effects in the dynamic disorder model, which is essential for the self-consistent description of the carrier dynamics. The method is based on the energy-based decoherence correction widely used in the surface hopping algorithm. The resulting dynamics shows a diffusion process of wave packets with finite localization length, which scales with the decoherence time. In addition, the calculated mobility decreases with increasing temperature. Thus the method could describe a band-like transport based on localized states, which is the type of transport anticipated in these materials.

  17. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  18. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Zalys-Geller, E.; Narla, A.; Shankar, S.; Reinhold, P.; Burkhart, L.; Axline, C.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2018-05-01

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  19. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions.

    PubMed

    Campagne-Ibarcq, P; Zalys-Geller, E; Narla, A; Shankar, S; Reinhold, P; Burkhart, L; Axline, C; Pfaff, W; Frunzio, L; Schoelkopf, R J; Devoret, M H

    2018-05-18

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  20. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  1. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  2. Bulk crystalline optomechanics

    NASA Astrophysics Data System (ADS)

    Renninger, W. H.; Kharel, P.; Behunin, R. O.; Rakich, P. T.

    2018-06-01

    Control of long-lived, high-frequency phonons using light offers a path towards creating robust quantum links, and could lead to tools for precision metrology with applications to quantum information processing. Optomechanical systems based on bulk acoustic-wave resonators are well suited for this goal in light of their high quality factors, and because they do not suffer from surface interactions as much as their microscale counterparts. However, so far these phonons have been accessible only electromechanically, using piezoelectric interactions. Here, we demonstrate customizable optomechanical coupling to macroscopic phonon modes of a bulk acoustic-wave resonator at cryogenic temperatures. These phonon modes, which are formed by shaping the surfaces of a crystal into a plano-convex phononic resonator, yield appreciable optomechanical coupling rates, providing access to high acoustic quality factors (4.2 × 107) at high phonon frequencies (13 GHz). This simple approach, which uses bulk properties rather than nanostructural control, is appealing for the ability to engineer optomechanical systems at high frequencies that are robust against thermal decoherence. Moreover, we show that this optomechanical system yields a unique form of dispersive symmetry-breaking that enables phonon heating or cooling without an optical cavity.

  3. Aspects of String Dualities

    NASA Astrophysics Data System (ADS)

    Orgera, Jacopo

    In this thesis we investigate some aspects of String Dualities. In particular, in the context of Twistor-String/Field Theories duality, we present some partial results toward the understanding of Conformal Supergravity amplitudes. Also, in the context of AdS/CFT duality, we investigate: the role of Euclidean Wormholes in quantum de-coherence and the semiclassical decay of certain non-supersimmetric vacua.

  4. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    NASA Astrophysics Data System (ADS)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  5. Effect of correlated decay on fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Lemberger, B.; Yavuz, D. D.

    2017-12-01

    We analyze noise in the circuit model of quantum computers when the qubits are coupled to a common bosonic bath and discuss the possible failure of scalability of quantum computation. Specifically, we investigate correlated (super-radiant) decay between the qubit energy levels from a two- or three-dimensional array of qubits without imposing any restrictions on the size of the sample. We first show that regardless of how the spacing between the qubits compares with the emission wavelength, correlated decay produces errors outside the applicability of the threshold theorem. This is because the sum of the norms of the two-body interaction Hamiltonians (which can be viewed as the upper bound on the single-qubit error) that decoheres each qubit scales with the total number of qubits and is unbounded. We then discuss two related results: (1) We show that the actual error (instead of the upper bound) on each qubit scales with the number of qubits. As a result, in the limit of large number of qubits in the computer, N →∞ , correlated decay causes each qubit in the computer to decohere in ever shorter time scales. (2) We find the complete eigenvalue spectrum of the exchange Hamiltonian that causes correlated decay in the same limit. We show that the spread of the eigenvalue distribution grows faster with N compared to the spectrum of the unperturbed system Hamiltonian. As a result, as N →∞ , quantum evolution becomes completely dominated by the noise due to correlated decay. These results argue that scalable quantum computing may not be possible in the circuit model in a two- or three- dimensional geometry when the qubits are coupled to a common bosonic bath.

  6. Experimental recovery of quantum correlations in absence of system-environment back-action

    PubMed Central

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554

  7. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  8. Experimental recovery of quantum correlations in absence of system-environment back-action.

    PubMed

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.

  9. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  10. Quantum gates by periodic driving

    PubMed Central

    Shi, Z. C.; Wang, W.; Yi, X. X.

    2016-01-01

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900

  11. Quantum gates by periodic driving.

    PubMed

    Shi, Z C; Wang, W; Yi, X X

    2016-02-25

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions-it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation.

  12. On-chip quantum interference of a superconducting microsphere

    NASA Astrophysics Data System (ADS)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  13. Quantum coding with finite resources.

    PubMed

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M

    2016-05-09

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.

  14. Quantum coding with finite resources

    PubMed Central

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M.

    2016-01-01

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995

  15. Oxide double quantum dot - an answer to the qubit problem?

    NASA Astrophysics Data System (ADS)

    Yarlagadda, Sudhakar; Dey, Amit

    We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.

  16. Response to ``Comment on `Indications of energetic consequences of decoherence at short times for scattering from open quantum systems''' [AIP Advances 1, 049101 (2011)

    NASA Astrophysics Data System (ADS)

    Chatzidimitriou-Dreismann, C. A.; Gray, E. MacA.; Blach, T. P.

    2011-12-01

    The Comment by Mayers and Reiter criticizes our work on two counts. Firstly, it is claimed that the quantum decoherence effects that we report in consequence of our experimental analysis of neutron Compton scattering from H in gaseous H2 are not, as we maintain, outside the framework of conventional neutron scattering theory. Secondly, it is claimed that we did not really observe such effects, owing to a faulty analysis of the experimental data, which are claimed to be in agreement with conventional theory. We focus in this response on the critical issue of the reliability of our experimental results and analysis. Using the same standard Vesuvio instrument programs used by Mayers et al., we show that, if the experimental results for H in gaseous H2 are in agreement with conventional theory, then those for D in gaseous D2 obtained in the same way cannot be, and vice-versa. We expose a flaw in the calibration methodology used by Mayers et al. that leads to the present disagreement over the behaviour of H, namely the ad hoc adjustment of the measured H peak positions in TOF during the calibration of Vesuvio so that agreement is obtained with the expectation of conventional theory. We briefly address the question of the necessity to apply the theory of open quantum systems.

  17. Estimating the Error of an Analog Quantum Simulator by Additional Measurements

    NASA Astrophysics Data System (ADS)

    Schwenk, Iris; Zanker, Sebastian; Reiner, Jan-Michael; Leppäkangas, Juha; Marthaler, Michael

    2017-12-01

    We study an analog quantum simulator coupled to a reservoir with a known spectral density. The reservoir perturbs the quantum simulation by causing decoherence. The simulator is used to measure an operator average, which cannot be calculated using any classical means. Since we cannot predict the result, it is difficult to estimate the effect of the environment. Especially, it is difficult to resolve whether the perturbation is small or if the actual result of the simulation is in fact very different from the ideal system we intend to study. Here, we show that in specific systems a measurement of additional correlators can be used to verify the reliability of the quantum simulation. The procedure only requires additional measurements on the quantum simulator itself. We demonstrate the method theoretically in the case of a single spin connected to a bosonic environment.

  18. Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.

    PubMed

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2014-12-12

    Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.

  19. Experimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry

    PubMed Central

    Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can

    2016-01-01

    High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately. PMID:26738875

  20. Stabilizing coherence with nested environments: a numerical study using kicked Ising models

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, C.; Villaseñor, E.; Pineda, C.; Seligman, T. H.

    2016-08-01

    We study a tripartite system of coupled spins, where a first set of one or two spins is our central system which is coupled to another set considered, the near environment, in turn coupled to the third set, the far environment. The dynamics considered are those of a generalized kicked spin chain in the regime of quantum chaotic dynamics. This allows us to test recent results that suggest that the presence of a far environment, coupled to the near environment, slows decoherence of the central system. After an extensive numerical study, we confirm previous results for extreme values and special cases. In particular, under a wide variety of circumstances an increasing coupling between near and far environment, slows decoherence, as measured by purity, and protects internal entanglement.

  1. Decoherence-free emergence of macroscopic local realism for entangled photons in a cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portolan, S.; Rossi, F.; Di Stefano, O.

    2006-02-15

    We investigate the influence of environmental noise on polarization entangled light generated by parametric emission in a cavity. By adopting a recent separability criterion, we show that (i) self-stimulation may suppress the detrimental influence of noise on entanglement, but (ii) once it becomes effective, a noise-equipped classical model of parametric emission provides the same results of quantum theory with respect to the separability criterion. More generally we also show that, in the macroscopic limit, it is not possible to observe violations of local realism with measurements of finite order n-particle correlations only. These results provide a prototypical case of themore » emergence of macroscopic local realism in the presence of strong entanglement even in the absence of decoherence.« less

  2. Interference of qubits in pure dephasing and almost pure dephasing environments

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Mierzejewski, Marcin; Dajka, Jerzy

    2015-07-01

    Two-path interference of quantum particles with internal spin (qubits) interacting on one arm of the interferometer with bosonic environment is studied. It is assumed that the energy exchange between the qubit and its environment is either absent, which is a pure dephasing (decoherence) model, or very weak. Both the amplitude and the position of maximum of an output intensity discussed as a function of a phase shift can serve as a quantifier of parameters describing coupling between qubit and its environment. The time evolution of the qubit-environment system is analyzed in the Schrödinger picture and the output intensity for qubit-environment interaction close to pure decoherence is analyzed by means of perturbation theory. Quality of the applied approximation is verified by comparison with numerical results.

  3. Compact continuous-variable entanglement distillation.

    PubMed

    Datta, Animesh; Zhang, Lijian; Nunn, Joshua; Langford, Nathan K; Feito, Alvaro; Plenio, Martin B; Walmsley, Ian A

    2012-02-10

    We introduce a new scheme for continuous-variable entanglement distillation that requires only linear temporal and constant physical or spatial resources. Distillation is the process by which high-quality entanglement may be distributed between distant nodes of a network in the unavoidable presence of decoherence. The known versions of this protocol scale exponentially in space and doubly exponentially in time. Our optimal scheme therefore provides exponential improvements over existing protocols. It uses a fixed-resource module-an entanglement distillery-comprising only four quantum memories of at most 50% storage efficiency and allowing a feasible experimental implementation. Tangible quantum advantages are obtainable by using existing off-resonant Raman quantum memories outside their conventional role of storage.

  4. Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits

    NASA Astrophysics Data System (ADS)

    de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.

    2017-02-01

    An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.

  5. Direct detection of time-resolved Rabi oscillations in a single quantum dot via resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-03-01

    Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.

  6. All-optical electron spin quantum computer with ancilla bits for operations in each coupled-dot cell

    NASA Astrophysics Data System (ADS)

    Ohshima, Toshio

    2000-12-01

    A cellular quantum computer with a spin qubit and ancilla bits in each cell is proposed. The whole circuit works only with the help of external optical pulse sequences. In the operation, some of the ancilla bits are activated, and autonomous single-and two-qubit operations are made. In the sleep mode of a cell, the decoherence of the qubit is negligibly small. Since only two cells at most are active at once, the coherence can be maintained for a sufficiently long time for practical purposes. A device structure using a coupled-quantum-dot array with possible operation and measurement schemes is also proposed.

  7. Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

    NASA Astrophysics Data System (ADS)

    Ishioka, Sachio; Fujikawa, Kazuo

    2006-06-01

    Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger-Horne-Zeilinger states in Josephson systems / T. Fujii, M. Nishida, N. Hatakenaka -- Quantum-dot systems. Tunable tunnel and exchange couplings in double quantum dots / S. Tarucha, T. Hatano, M. Stopa. Coherent transport through quantum dots / S. Katsumoto ... [et al.]. Electrically pumped single-photon sources towards 1.3 [symbol]m / X. Xu ... [et al.]. Aharonov-Bohm-type effects in antidot arrays and their decoherence / M. Kato ... [et al.]. Nonequilibrium Kondo dot connected to ferromagnetic leads / Y. Utsumi ... [et al.]. Full counting-statistics in a single-electron transistor in the presence of strong quantum fluctuations / Y. Utsumi -- Anomalous Hall effect and Spin-Hall effect. Geometry and the anomalous Hall effect in ferromagnets / N. P. Ong, W.-L. Lee. Control of spin chirality, Berry phase, and anomalous Hall effect / Y. Tokura, Y. Taguchi. Quantum geometry and Hall effect in ferromagnets and semiconductors / N. Nagaosa. Spin-Hall effect in a semiconductor two-dimensional hole gas with strong spin-orbit coupling / J. Wunderlich ... [et al.]. Intrinsic spin Hall effect in semiconductors / S. Murakami -- Spin related phenomena. Theory of spin transfer phenomena in magnetic metals and semiconductors / A. S. Núñez, A. H. MacDonald. Spin filters of semiconductor nanostructures / T. Dietl, G. Grabecki, J. Wróbel. Experimental study on current-driven domain wall motion / T. Ono ... [et al.]. Magnetization reversal of ferromagnetic nano-dot by non local spin injection / Y. Otani, T. Kimura. Theory of current-driven domain wall dynamics / G. Tatara ... [et al.]. Magnetic impurity states and ferromagnetic interaction in diluted magnetic semiconductors / M. Ichimura ... [et al.]. Geometrical effect on spin current in magnetic nano-structures / M. Ichimura, S. Takahashi, S. Maekawa. Ferromagnetism in anatase TiO[symbol] codoped with Co and Nb / T. Hitosugi ... [et al.] -- Superconductivity in nano-systems. Nonlinear quantum effects in nanosuperconductors / C. Carballeira ... [et al.]. Coalescence and rearrangement of vortices in mesoscopic superconductors / A. Kanda ... [et al.]. Superconductivity in topologically nontrivial spaces / M. Hayashi ... [et al.]. DC-SQUID ratchet using atomic point contact / Y. Ootuka, H. Miyazaki, A. Kanda. Superconducting wire network under spatially modulated magnetic field / H. Sano ... [et al.]. Simple and stable control of mechanical break junction for the study of superconducting atomic point contact / H. Miyazaki ... [et al.]. Critical currents in quasiperiodic pinning arrays: one-dimensional chains and Penrose lattices / V. R. Misko, S. Savel'ev, F. Nori. Macroscopic quantum tunneling in high-Tc superconductor Josephson junctions / S. Kawabata -- Novel properties of carbon nanotubes. Carbon nanotubes and unique transport properties: importance of symmetry and channel number / T. Ando. Optical processes in single-walled carbon nanotubes threaded by a magnetic flux / J. Kono ... [et al.]. Non-equilibrium transport through a single-walled carbon nanotube with highly transparent coupling to reservoirs / P. Recher, N. Y. Kim, Y. Yamamoto -- Novel properties of nano-systems. Transport properties in low dimensional artificial lattice of gold nano-particles / S. Saito ... [et al.]. First principles study of dihydride-chain structures on H-terminated Si(100) surface / Y. Suwa ... [et al.]. Electrical property of Ag nanowires fabricated on hydrogen-terminated Si(100) surface / M. Fujimori, S. Heike, T. Hashizume. Effect of environment on ionization of excited atoms embedded in a solid-state cavity / M. Ando ... [et al.]. Development of universal virtual spectroscope for optoelectronics research: first principles software replacing dielectric constant measurements / T. Hamada ... [et al.]. Quantum Nernst effect / H Nakamura, N. Hatano, R. Shirasaki -- Precise measurements. Quantum phenomena visualized using electron waves / A. Tonomura. An optical lattice clock: ultrastable atomic clock with engineered perturbation / H. Katori ... [et al.]. Development of Mach-Zehnder interferometer and "coherent beam steering" technique for cold neutron / K. Taketani ... [et al.]. Surface potential measurement by atomic force microscopy using a quartz resonator / S. Heike, T. Hashizume -- Fundamental Problems in quantum physics. Berry's phases and topological properties in the Born-Oppenheimer approximation / K. Fujikawa. Self-trapping of Bose-Einstein condensates by oscillating interactions / H. Saito, M. Ueda. Spinor solitons in Bose-Einstein condensates - atomic spin transport / J. Ieda. Spin decoherence in a gravitational field / H. Terashima, M. Ueda. Berry's phase of atoms with different sign of the g-factor in a conical rotating magnetic field observed by a time-domain atom interferometer / A. Morinaga ... [et al.] -- List of participants.

  8. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown that it is about three times larger than that of bulk ZnTe. In Chapter 6 I study the optical anisotropy in QDs. I show that all samples exhibit such an effect, and explain it based on non-spherical shape of the QDs. Numerical calculation is applied to calculate degree of linear polarization, and estimate the aspect ratio. The exciton anisotropic exchange splitting is calculated from the magnetic field dependence of the DCP. In the last two chapters I show my achievement on the growth of ZnO nanorods as a core for type-II 1D systems and propose an outlook for future research on the type-II semiconductor heterostructures.

  9. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGES

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  10. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less

  11. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  12. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review

    NASA Astrophysics Data System (ADS)

    Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo

    2018-07-01

    More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.

  13. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  14. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  15. Quantum jumps on Anderson attractors

    NASA Astrophysics Data System (ADS)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  16. Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    NASA Astrophysics Data System (ADS)

    Qureshi, Mumnuna A.; Zhong, Johnny; Qureshi, Zihad; Mason, Peter; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2018-03-01

    We consider the evolution of the quantum states of a Hamiltonian that is parametrically perturbed via a term proportional to the adiabatic parameter λ (t ) . Starting with the Pechukas-Yukawa mapping of the energy eigenvalue evolution in a generalized Calogero-Sutherland model of a one-dimensional classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d λ /d t and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of nonadiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfiability problem, we obtain the occupation dynamics, which provides insight into the population of states and sources of decoherence in a quantum system.

  17. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    PubMed

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  18. Deterministic nonclassicality for quantum-mechanical oscillators in thermal states

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim

    2016-07-01

    Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.

  19. Coherent inflation for large quantum superpositions of levitated microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  20. Entropy production in a photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2017-05-01

    We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.

Top