DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
Convergence in the temperature response of leaf respiration across biomes and plant functional types
Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.
2016-01-01
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849
Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K
2016-04-05
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
Determination of a response function of a thermocouple using a short acoustic pulse.
Tashiro, Yusuke; Biwa, Tetsushi; Yazaki, Taichi
2007-04-01
This paper reports on an experimental technique to determine a response function of a thermocouple using a short acoustic pulse wave. A pulse of 10 ms is generated in a tube filled with 1 bar helium gas. The temperature is measured using the thermocouple. The reference temperature is deduced from the measured pressure on the basis of a laminar oscillating flow theory. The response function of the thermocouple is obtained as a function of frequency below 50 Hz through a comparison between the measured and reference temperatures.
NASA Astrophysics Data System (ADS)
Tang, J.; Riley, W. J.
2017-12-01
Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.
The uncertainty of crop yield projections is reduced by improved temperature response functions.
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold
2017-07-17
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions
NASA Technical Reports Server (NTRS)
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.;
2017-01-01
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Ma, Siyan; Osuna, Jessica L; Verfaillie, Joseph; Baldocchi, Dennis D
2017-06-01
Ecosystem CO 2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO 2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt ): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf-canopy-ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.
Skirvin, David J; Fenlon, John S
2003-01-01
Environmental variables, such as temperature, are important in determining the efficiency of biological control in ornamental crops. This paper examines the effect of temperature on the functional response of adult female Phytoseiulus persimilis to eggs of the spider mite, Tetranychus urticae. The functional response was determined using a new functional response assay technique with plant stems as an arena, rather than leaf discs. The use of plant stems allows the influence that plant structure has on predation to be incorporated into the assay. Control assays were also used (without predators) to estimate natural losses of prey. The data were analysed using a binomial model, with the use of Abbot's formula to correct for the losses in the controls. A combined equation to describe the effect of temperature and prey density on the predation rate of Phytoseiulus persimilis was derived. The results showed that more prey are eaten as the temperature increases from 15 degrees C to 25 degrees C, but the number of prey eaten then declines at 30 degrees C, although not to the levels seen at 20 degrees C. The implication of these results for biological control in ornamental crops, where the temperature can often exceed 30 degrees C, is discussed.
Paul V. Bolstad; Katherine Mitchell; James M. Vose
1999-01-01
We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ an4 on detached branches for Acer pensylvanicum L., A. rubrum L., Betula...
A role for dynamin in triggering ethanol tolerance.
Krishnan, Harish R; Al-Hasan, Yazan M; Pohl, Jascha B; Ghezzi, Alfredo; Atkinson, Nigel S
2012-01-01
A prevailing hypothesis is that the set of genes that underlie the endophenotypes of alcoholism overlap with those responsible for the addicted state. Functional ethanol tolerance, an endophenotype of alcoholism, is defined as a reduced response to ethanol caused by prior ethanol exposure. The neuronal origins of functional rapid tolerance are thought to be a homeostatic response of the nervous system that counters the effects of the drug. Synaptic proteins that regulate neuronal activity are an important evolutionarily conserved target of ethanol. We used mutant analysis in Drosophila to identify synaptic proteins that are important for the acquisition of rapid tolerance to sedation with ethanol. Tolerance was assayed by sedating flies with ethanol vapor and comparing the recovery time of flies after their first sedation and their second sedation. Temperature-sensitive paralytic mutants that alter key facets of synaptic neurotransmission, such as the propagation of action potentials, synaptic vesicle fusion, exocytosis, and endocytosis, were tested for the ability to acquire functional tolerance at both the permissive and restrictive temperatures. The shibire gene encodes Drosophila Dynamin. We tested 2 temperature-sensitive alleles of the gene. The shi(ts1) allele blocked tolerance at both the permissive and restrictive temperatures, while shi(ts2) blocked only at the restrictive temperature. Using the temperature-sensitive property of shi(ts2) , we showed that Dynamin function is required concomitant with exposure to ethanol. A temperature-sensitive allele of the Syntaxin 1A gene, Syx1A(3-69), also blocked the acquisition of ethanol tolerance. We have shown that shibire and Syntaxin 1A are required for the acquisition of rapid functional tolerance to ethanol. Furthermore, the shibire gene product, Dynamin, appears to be required for an immediate early response to ethanol that triggers a cellular response leading to rapid functional tolerance. Copyright © 2011 by the Research Society on Alcoholism.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1979-01-01
The effects of vegetation canopy structure on thermal infrared sensor response must be understood before vegetation surface temperatures of canopies with low percent ground cover can be accurately inferred. The response of a sensor is a function of vegetation geometric structure, the vertical surface temperature distribution of the canopy components, and sensor view angle. Large deviations between the nadir sensor effective radiant temperature (ERT) and vegetation ERT for a soybean canopy were observed throughout the growing season. The nadir sensor ERT of a soybean canopy with 35 percent ground cover deviated from the vegetation ERT by as much as 11 C during the mid-day. These deviations were quantitatively explained as a function of canopy structure and soil temperature. Remote sensing techniques which determine the vegetation canopy temperature(s) from the sensor response need to be studied.
Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K
2018-04-01
Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Temperature rise and parasitic infection interact to increase the impact of an invasive species.
Laverty, Ciaran; Brenner, David; McIlwaine, Christopher; Lennon, Jack J; Dick, Jaimie T A; Lucy, Frances E; Christian, Keith A
2017-04-01
Invasive species often detrimentally impact native biota, e.g. through predation, but predicting such impacts is difficult due to multiple and perhaps interacting abiotic and biotic context dependencies. Higher mean and peak temperatures, together with parasites, might influence the impact of predatory invasive host species additively, synergistically or antagonistically. Here, we apply the comparative functional response methodology (relationship between resource consumption rate and resource supply) in one experiment and conduct a second scaled-up mesocosm experiment to assess any differential predatory impacts of the freshwater invasive amphipod Gammarus pulex, when uninfected and infected with the acanthocephalan Echinorhynchus truttae, at three temperatures representative of current and future climate. Individual G. pulex showed Type II predatory functional responses. In both experiments, infection was associated with higher maximum feeding rates, which also increased with increasing temperatures. Additionally, infection interacted with higher temperatures to synergistically elevate functional responses and feeding rates. Parasitic infection also generally increased Q 10 values. We thus suggest that the differential metabolic responses of the host and parasite to increasing temperatures drives the synergy between infection and temperature, elevating feeding rates and thus enhancing the ecological impact of the invader. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Lee, Chen-Ting; Zhong, Lingwen; Mace, Thomas A.; Repasky, Elizabeth A.
2012-01-01
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection. PMID:22253887
Schou, Mads F; Kristensen, Torsten N; Pedersen, Anders; Karlsson, B Göran; Loeschcke, Volker; Malmendal, Anders
2017-02-01
The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation responses at benign temperatures. We exposed Drosophila melanogaster to 10 developmental temperatures covering their entire permissible temperature range. We obtained metabolic profiles and reaction norms for several functional traits: egg-to-adult viability, developmental time, and heat and cold tolerance. Females were more heat tolerant than males, whereas no sexual dimorphism was found in cold tolerance. A group of metabolites, mainly free amino acids, had linear reaction norms. Several energy-carrying molecules, as well as some sugars, showed distinct inverted U-shaped norms of reaction across the thermal range, resulting in a positive correlation between metabolite intensities and egg-to-adult viability. At extreme temperatures, low levels of these metabolites were interpreted as a response characteristic of costs of homeostatic perturbations. Our results provide novel insights into a range of metabolites reported to be central for the acclimation response and suggest several new candidate metabolites. Low and high temperatures result in different adaptive physiological responses, but they also have commonalities likely to be a result of the failure to compensate for the physiological stress. We suggest that the regulation of metabolites that are tightly connected to the performance curve is important for the ability of ectotherms to cope with variation in temperature. Copyright © 2017 the American Physiological Society.
Response of Korean pine’s functional traits to geography and climate
Dong, Yichen
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053
Response of Korean pine's functional traits to geography and climate.
Dong, Yichen; Liu, Yanhong
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.
Hodges, Gary J.; Johnson, John M.
2015-01-01
The vascular response to local skin cooling is dependent in part on a cold-induced translocation of α2C-receptors and an increased α-adrenoreceptor function. To discover whether β-adrenergic function might contribute, we examined whether β-receptor sensitivity to the β-agonist isoproterenol was affected by local skin temperature. In seven healthy volunteers, skin blood flow was measured from the forearm by laser-Doppler flowmetry and blood pressure was measured by finger photoplethysmography. Data were expressed as cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial blood pressure). Pharmacological agents were administered via intradermal microdialysis. We prepared four skin sites: one site was maintained at a thermoneutral temperature of 34°C (32 ± 10%CVCmax) one site was heated to 39°C (38 ± 11%CVCmax); and two sites were cooled, one to 29°C (22 ± 7%CVCmax) and the other 24°C (16 ± 4%CVCmax). After 20 min at these temperatures to allow stabilization of skin blood flow, isoproterenol was perfused in concentrations of 10, 30, 100, and 300 μM. Each concentration was perfused for 15 min. Relative to the CVC responses to isoproterenol at the thermoneutral skin temperature (34°C) (+21 ± 10%max), low skin temperatures reduced (at 29°C) (+17 ± 6%max) or abolished (at 24°C) (+1 ± 5%max) the vasodilator response, and warm (39°C) skin temperatures enhanced the vasodilator response (+40 ± 9%max) to isoproterenol. These data indicate that β-adrenergic function was influenced by local skin temperature. This finding raises the possibility that a part of the vasoconstrictor response to direct skin cooling could include reduced background β-receptor mediated vasodilation. PMID:25701007
Hodges, Gary J; Kellogg, Dean L; Johnson, John M
2015-04-01
The vascular response to local skin cooling is dependent in part on a cold-induced translocation of α2C-receptors and an increased α-adrenoreceptor function. To discover whether β-adrenergic function might contribute, we examined whether β-receptor sensitivity to the β-agonist isoproterenol was affected by local skin temperature. In seven healthy volunteers, skin blood flow was measured from the forearm by laser-Doppler flowmetry and blood pressure was measured by finger photoplethysmography. Data were expressed as cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial blood pressure). Pharmacological agents were administered via intradermal microdialysis. We prepared four skin sites: one site was maintained at a thermoneutral temperature of 34°C (32 ± 10%CVCmax) one site was heated to 39°C (38 ± 11%CVCmax); and two sites were cooled, one to 29°C (22 ± 7%CVCmax) and the other 24°C (16 ± 4%CVCmax). After 20 min at these temperatures to allow stabilization of skin blood flow, isoproterenol was perfused in concentrations of 10, 30, 100, and 300 μM. Each concentration was perfused for 15 min. Relative to the CVC responses to isoproterenol at the thermoneutral skin temperature (34°C) (+21 ± 10%max), low skin temperatures reduced (at 29°C) (+17 ± 6%max) or abolished (at 24°C) (+1 ± 5%max) the vasodilator response, and warm (39°C) skin temperatures enhanced the vasodilator response (+40 ± 9%max) to isoproterenol. These data indicate that β-adrenergic function was influenced by local skin temperature. This finding raises the possibility that a part of the vasoconstrictor response to direct skin cooling could include reduced background β-receptor mediated vasodilation. Copyright © 2015 the American Physiological Society.
Simulating bimodal tall fescue growth with a degree-day-based process-oriented plant model
USDA-ARS?s Scientific Manuscript database
Plant growth simulation models have a temperature response function driving development, with a base temperature and an optimum temperature defined. Such growth simulation models often function well when plant development rate shows a continuous change throughout the growing season. This approach ...
Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.
Goodman, D; Hancock, P A; Runnings, D W; Brown, S L
1984-10-01
Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.
NASA Astrophysics Data System (ADS)
Chen, Zhongjing; Zhang, Xing; Pu, Yudong; Yan, Ji; Huang, Tianxuan; Jiang, Wei; Yu, Bo; Chen, Bolun; Tang, Qi; Song, Zifeng; Chen, Jiabin; Zhan, Xiayu; Liu, Zhongjie; Xie, Xufei; Jiang, Shaoen; Liu, Shenye
2018-02-01
The accuracy of the determination of the burn-averaged ion temperature of inertial confinement fusion implosions depends on the unfold process, including deconvolution and convolution methods, and the function, i.e., the detector response, used to fit the signals measured by neutron time-of-flight (nToF) detectors. The function given by Murphy et al. [Rev. Sci. Instrum. 68(1), 610-613 (1997)] has been widely used in Nova, Omega, and NIF. There are two components, i.e., fast and slow, and the contribution of scattered neutrons has not been dedicatedly considered. In this work, a new function, based on Murphy's function has been employed to unfold nToF signals. The contribution of scattered neutrons is easily included by the convolution of a Gaussian response function and an exponential decay. The ion temperature is measured by nToF with the new function. Good agreement with the ion temperature determined by the deconvolution method has been achieved.
Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M
2013-01-01
Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281
Room temperature CO and H2 sensing with carbon nanoparticles.
Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo
2011-12-02
We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.
Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores
Adiga, Shashishekar P.; Brenner, Donald W.
2012-01-01
Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529
Finite-temperature dynamics of the Mott insulating Hubbard chain
NASA Astrophysics Data System (ADS)
Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.
2018-01-01
We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.
NASA Astrophysics Data System (ADS)
Ochoa, Diego Alejandro; García, Jose Eduardo
2016-04-01
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
NASA Technical Reports Server (NTRS)
Didwall, E. M.
1981-01-01
Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.
De Nardis, Jacopo; Panfil, Miłosz
2018-05-25
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
De Nardis, Jacopo; Panfil, Miłosz
2018-05-01
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Thermo-mechanical characterization of silicone foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.
Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmore » for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures« less
Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S
2013-02-01
We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.
Longer growing seasons shift grassland vegetation towards more-productive species
NASA Astrophysics Data System (ADS)
Fridley, Jason D.; Lynn, Josh S.; Grime, J. P.; Askew, A. P.
2016-09-01
Despite advances in plant functional ecology that provide a framework for predicting the responses of vegetation to environmental change, links between plant functional strategies and elevated temperatures are poorly understood. Here, we analyse the response of a species-rich grassland in northern England to two decades of temperature and rainfall manipulations in the context of the functional attributes of 21 coexisting species that represent a large array of resource-use strategies. Three principal traits, including body size (canopy height), tissue investment (leaf construction cost), and seed size, varied independently across species and reflect tradeoffs associated with competitiveness, stress tolerance, and colonization ability. Unlike past studies, our results reveal a strong association between functional traits and temperature regime; species favoured by extended growing seasons have taller canopies and faster assimilation rates, which has come at the expense of those species of high tissue investment. This trait-warming association was three times higher in deep soils, suggesting species shifts have been strongly mediated by competition. In contrast, vegetation shifts from rainfall manipulations have been associated only with tissue investment. Functional shifts towards faster growing species in response to warming may be responsible for a marginal increase in productivity in a system that was assumed to be nutrient-limited.
An Analytical Solution for Transient Thermal Response of an Insulated Structure
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis.
Righetti, Francesco; Nuss, Aaron M; Twittenhoff, Christian; Beele, Sascha; Urban, Kristina; Will, Sebastian; Bernhart, Stephan H; Stadler, Peter F; Dersch, Petra; Narberhaus, Franz
2016-06-28
RNA structures are fundamentally important for RNA function. Dynamic, condition-dependent structural changes are able to modulate gene expression as shown for riboswitches and RNA thermometers. By parallel analysis of RNA structures, we mapped the RNA structurome of Yersinia pseudotuberculosis at three different temperatures. This human pathogen is exquisitely responsive to host body temperature (37 °C), which induces a major metabolic transition. Our analysis profiles the structure of more than 1,750 RNAs at 25 °C, 37 °C, and 42 °C. Average mRNAs tend to be unstructured around the ribosome binding site. We searched for 5'-UTRs that are folded at low temperature and identified novel thermoresponsive RNA structures from diverse gene categories. The regulatory potential of 16 candidates was validated. In summary, we present a dynamic bacterial RNA structurome and find that the expression of virulence-relevant functions in Y. pseudotuberculosis and reprogramming of its metabolism in response to temperature is associated with a restructuring of numerous mRNAs.
Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures
NASA Astrophysics Data System (ADS)
Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.
2018-02-01
In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.
Liu, Juan; Zhang, XueJiao; Zhang, FangPeng; Hong, Ni; Wang, GuoPing; Wang, Aiming; Wang, LiPing
2015-11-16
MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.
NASA Astrophysics Data System (ADS)
Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar
2008-02-01
Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.
Thin film devices used as oxygen partial pressure sensors
NASA Technical Reports Server (NTRS)
Canady, K. S.; Wortman, J. J.
1970-01-01
Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.
The TRPM2 channel: A thermo-sensitive metabolic sensor.
Kashio, Makiko; Tominaga, Makoto
2017-09-03
Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.
NASA Astrophysics Data System (ADS)
Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.
2017-12-01
Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological functioning and stoichiometric needs into models, in order to accurately predict future changes in soil C stocks in response to global warming.
Ulrich, P N; Marsh, A G
2009-01-01
The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.
Seebacher, Frank
2005-10-01
Biological functions are dependent on the temperature of the organism. Animals may respond to fluctuation in the thermal environment by regulating their body temperature and by modifying physiological and biochemical rates. Phenotypic flexibility (reversible phenotypic plasticity, acclimation, or acclimatisation in rate functions occurs in all major taxonomic groups and may be considered as an ancestral condition. Within the Reptilia, representatives from all major groups show phenotypic flexibility in response to long-term or chronic changes in the thermal environment. Acclimation or acclimatisation in reptiles are most commonly assessed by measuring whole animal responses such as oxygen consumption, but whole animal responses are comprised of variation in individual traits such as enzyme activities, hormone expression, and cardiovascular functions. The challenge now lies in connecting the changes in the components to the functioning of the whole animal and its fitness. Experimental designs in research on reptilian thermal physiology should incorporate the capacity for reversible phenotypic plasticity as a null-hypothesis, because the significance of differential body temperature-performance relationships (thermal reaction norms) between individuals, populations, or species cannot be assessed without testing that null-hypothesis.
Zanobetti, Antonella; Coull, Brent A.; Kloog, Itai; Sparrow, David; Vokonas, Pantel S.; Gold, Diane R.; Schwartz, Joel D.
2017-01-01
Many studies have demonstrated that cold and hot temperatures are associated with increased deaths and hospitalization rates; new findings indicate also an association with more specific cardiac risk factors. Most of these existing studies have relied on few weather stations to characterize exposures; few have used residence-specific estimates of temperature, or examined the exposure-response function. We investigated the association of arrhythmia episodes with spatial and temporal variation in temperature. We also evaluated the association between monitored ambient temperature (central) and the same outcome. This longitudinal analysis included 701 older men participating in the VA Normative Aging Study. Arrhythmia episodes were measured as ventricular ectopy (VE) (bigeminy, trigemini or couplets episodes) by 4min electrocardiogram (ECG) monitoring in repeated visits during 2000–2010. The outcome was defined as having or not VE episodes during a study visit. We applied a mixed effect logistic regression model with a random intercept for subject, controlling for seasonality, weekday, medication use, smoking, diabetes status, body mass index and age. We also examined effect modification by personal characteristics, confounding by air pollution, and the exposure-response function. For 1° C increase in the same day residence-specific temperature, the odds of having VE episodes was 1.10 (95%CI: 1.04–1.17). The odds associated with 1° C increase in central temperature was 1.05 (95%CI: 1.02–1.09). The exposure-response function was non-linear for averages of temperature, presenting a J-shaped pattern, suggesting greater risk at lower and higher temperatures. Increased warm temperature and decreased cold temperature may increase the risk of ventricular arrhythmias. PMID:28001123
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.
Sundh, Henrik; Kvamme, Bjørn Olav; Fridell, Frode; Olsen, Rolf Erik; Ellis, Tim; Taranger, Geir Lasse; Sundell, Kristina
2010-11-09
Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon.
2010-01-01
Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon. PMID:21062437
Optimization of intermittent microwave–convective drying using response surface methodology
Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid
2015-01-01
In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706
NASA Astrophysics Data System (ADS)
Wang, H.; Guan, H.; Deng, R.; Simmons, C. T.
2013-12-01
Canopy conductance response to environmental conditions is a critical component in land surface hydrological modeling. This response is often formulated as a combination of response functions of each influencing factor (solar radiation, air temperature, vapor pressure deficit, and soil water availability). These functions are climate and vegetation specific. Thus, it is important to determine the most appropriate combination of response functions and their parameter values for a specific environment. We will present a method for this purpose based on field measurements and an optimization scheme. The study was performed on Drooping Sheoak (Allocasuarina verticillata) in Adelaide South Australia. Sap flow and stem water potential were measured in a year together with microclimate variables. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine the performance of 36 combinations of various response functions. Parameters in the models were optimized using a DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training dataset. The testing results show that the best combination gave a correlation coefficient of 0.97, and root mean square error of 0.0006 m/s in comparison to the PM-calculated values. The maximum stomatal conductance given by this combination is 0.0075 m/s, equivalent to a minimum stomatal resistance of 133 s/m. This is close to the number (150 s/m) used in Noah land surface model for evergreen needle-leaf trees. It is surprising that for all combinations, the optimized parameter of the temperature response function is against its physical meaning. This is likely related to the inter-dependence between air temperature and vapor pressure deficit. Supported by the results, we suggest that the effects of vapor pressure deficit and air temperature should be represented together, so as to be consistent with the physics.
Design of a Temperature-Responsive Transcription Terminator.
Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz
2018-02-16
RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.
Cojocaru, C; Khayet, M; Zakrzewska-Trznadel, G; Jaworska, A
2009-08-15
The factorial design of experiments and desirability function approach has been applied for multi-response optimization in pervaporation separation process. Two organic aqueous solutions were considered as model mixtures, water/acetonitrile and water/ethanol mixtures. Two responses have been employed in multi-response optimization of pervaporation, total permeate flux and organic selectivity. The effects of three experimental factors (feed temperature, initial concentration of organic compound in feed solution, and downstream pressure) on the pervaporation responses have been investigated. The experiments were performed according to a 2(3) full factorial experimental design. The factorial models have been obtained from experimental design and validated statistically by analysis of variance (ANOVA). The spatial representations of the response functions were drawn together with the corresponding contour line plots. Factorial models have been used to develop the overall desirability function. In addition, the overlap contour plots were presented to identify the desirability zone and to determine the optimum point. The optimal operating conditions were found to be, in the case of water/acetonitrile mixture, a feed temperature of 55 degrees C, an initial concentration of 6.58% and a downstream pressure of 13.99 kPa, while for water/ethanol mixture a feed temperature of 55 degrees C, an initial concentration of 4.53% and a downstream pressure of 9.57 kPa. Under such optimum conditions it was observed experimentally an improvement of both the total permeate flux and selectivity.
Thermotaxis, circadian rhythms, and TRP channels in Drosophila
Bellemer, Andrew
2015-01-01
The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026
Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru
2016-03-15
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas dragmore » by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.« less
Functional laser speckle imaging of cerebral blood flow under hypothermia
NASA Astrophysics Data System (ADS)
Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao
2011-08-01
Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.
Webb, Cheryl L; Milsom, William K
2017-07-01
During entrance into hibernation in golden-mantled ground squirrels (Callospermophilus lateralis), ventilation decreases as metabolic rate and body temperature fall. Two patterns of respiration occur during deep hibernation. At 7 °C body temperature (T b ), a breathing pattern characterized by episodes of multiple breaths (20.6 ± 1.9 breaths/episode) separated by long apneas or nonventilatory periods (T nvp ) (mean = 11.1 ± 1.2 min) occurs, while at 4 °C T b , a pattern in which breaths are evenly distributed and separated by a relatively short T nvp (0.5 ± 0.05 min) occurs. Squirrels exhibiting each pattern have similar metabolic rates and levels of total ventilation (0.2 and 0.23 ml O 2 /hr/kg and 0.11 and 0.16 ml air/min/kg, respectively). Squirrels at 7 °C T b exhibit a significant hypoxic ventilatory response, while squirrels at 4 °C T b do not respond to hypoxia at any level of O 2 tested. Squirrels at both temperatures exhibit a significant hypercapnic ventilatory response, but the response is significantly reduced in the 4 °C T b squirrels. Carotid body denervation has little effect on the breathing patterns or on the hypercapnic ventilatory responses. It does reduce the magnitude and threshold for the hypoxic ventilatory response. Taken together the data suggest that (1) the fundamental rhythm generator remains functional at low temperatures; (2) the hypercapnic ventilatory response arises from central chemoreceptors that remain functional at very low temperatures; (3) the hypoxic ventilatory response arises from both carotid body and aortic chemoreceptors that are silenced at lower temperatures; and (4) there is a strong correlation between breathing pattern and chemosensitivity.
Temperature dependence of the multistability of lactose utilization network of Escherichia coli
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
Biological systems are capable of producing multiple states out of a single set of inputs. Multistability acts like a biological switch that allows organisms to respond differently to different environmental conditions and hence plays an important role in adaptation to changing environment. One of the widely studied gene regulatory networks underlying the metabolism of bacteria is the lactose utilization network, which exhibits a multistable behavior as a function of lactose concentration. We have studied the effect of temperature on multistability of the lactose utilization network at various concentrations of thio-methylgalactoside (TMG), a synthetic lactose. We find that while the lactose utilization network exhibits a bistable behavior for temperature T >20° C , a graded response arises for temperature T <=20° C. Furthermore, we construct a phase diagram of the graded and bistable response of lactose utilization network as a function of temperature and TMG concentration. Our results suggest that environmental conditions, in this case temperature, can alter the nature of cellular regulation of metabolism.
Role of initial state and final quench temperature on aging properties in phase-ordering kinetics.
Corberi, Federico; Villavicencio-Sanchez, Rodrigo
2016-05-01
We study numerically the two-dimensional Ising model with nonconserved dynamics quenched from an initial equilibrium state at the temperature T_{i}≥T_{c} to a final temperature T_{f} below the critical one. By considering processes initiating both from a disordered state at infinite temperature T_{i}=∞ and from the critical configurations at T_{i}=T_{c} and spanning the range of final temperatures T_{f}∈[0,T_{c}[ we elucidate the role played by T_{i} and T_{f} on the aging properties and, in particular, on the behavior of the autocorrelation C and of the integrated response function χ. Our results show that for any choice of T_{f}, while the autocorrelation function exponent λ_{C} takes a markedly different value for T_{i}=∞ [λ_{C}(T_{i}=∞)≃5/4] or T_{i}=T_{c} [λ_{C}(T_{i}=T_{c})≃1/8] the response function exponents are unchanged. Supported by the outcome of the analytical solution of the solvable spherical model we interpret this fact as due to the different contributions provided to autocorrelation and response by the large-scale properties of the system. As changing T_{f} is considered, although this is expected to play no role in the large-scale and long-time properties of the system, we show important effects on the quantitative behavior of χ. In particular, data for quenches to T_{f}=0 are consistent with a value of the response function exponent λ_{χ}=1/2λ_{C}(T_{i}=∞)=5/8 different from the one [λ_{χ}∈(0.5-0.56)] found in a wealth of previous numerical determinations in quenches to finite final temperatures. This is interpreted as due to important preasymptotic corrections associated to T_{f}>0.
Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N
2005-05-01
This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less
Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.
Carbonell-Bejerano, Pablo; Santa María, Eva; Torres-Pérez, Rafael; Royo, Carolina; Lijavetzky, Diego; Bravo, Gema; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Antolín, M Carmen; Martínez-Zapater, José M
2013-07-01
Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.
Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2016-04-01
To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.
NASA Technical Reports Server (NTRS)
Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.
2010-01-01
A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.
Effects of temperature on the metabolic response to feeding in Python molurus.
Wang, Tobias; Zaar, Morten; Arvedsen, Sine; Vedel-Smith, Christina; Overgaard, Johannes
2002-11-01
As ectothermic vertebrates, reptiles undergo diurnal and seasonal changes in body temperature, which affect many biological functions. In conjunction with a general review regarding the effects of temperature on digestion in reptiles, we describe the effects of various temperatures (20-35 degrees C) on the metabolic response to digestion in the Burmese python (Python molurus). The snakes were fed mice amounting to 20% of their body weight and gas exchange (oxygen uptake and CO(2) production) were measured until digestion had ended and gas exchange returned to fasting levels. Elevated temperature was associated with a faster and larger metabolic increase after ingestion, and the time required to return to fasting levels was markedly longer at low temperature. The factorial increase between fasting oxygen consumption (VO(2)) and maximal VO(2) during digestion was, however, similar at all temperatures studied. Furthermore, the integrated SDA response was not affected by temperature suggesting the costs associated with digestion are temperature-independent. Other studies on reptiles show that digestive efficiency is only marginally affected by temperature and we conclude that selection of higher body temperatures during digestion (postprandial thermophilic response) primarily reduces the time required for digestion.
Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit.
Cheng, Lin; Sun, Rong-rong; Wang, Fei-yan; Peng, Zhen; Kong, Fu-ling; Wu, Jian; Cao, Jia-shu; Lu, Gang
2012-04-01
High temperature adversely affects quality and yield of tomato fruit. Polyamine can alleviate heat injury in plants. This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit. An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd, 1 mmol/L) and high temperature (33/27 °C) treatments in tomato fruits at mature green stage. Of the 10101 tomato probe sets represented on the array, 127 loci were differentially expressed in high temperature-treated fruits, compared with those under normal conditions, functionally characterized by their involvement in signal transduction, defense responses, oxidation reduction, and hormone responses. However, only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits, which were involved in primary metabolism, signal transduction, hormone responses, transcription factors, and stress responses. Meanwhile, 55 genes involved in energy metabolism, cell wall metabolism, and photosynthesis were down-regulated in Spd-treated fruits. Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.
Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.
Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M
2010-08-17
We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.
Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L
2014-02-01
Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Abd_Allah, Elsayed Fathi; Nauman, Mohd; Asif, Ambreen; Hashem, Abeer; Alqarawi, Abdulaziz A.
2017-01-01
Productivity of wheat (Triticum aestivum) is markedly affected by high temperature and nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were grown in control conditions, and under a combined stress of high temperature (32 °C) and low nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins. Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants altered their protein expression as an adaptive means to maintain growth. This response varied with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better understanding of its mechanism. PMID:29186028
Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence
NASA Astrophysics Data System (ADS)
Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.
2018-05-01
We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.
Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar
2014-01-01
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434
Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben
2016-01-01
An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625
Thermal adaptation of net ecosystem exchange
Yuan, W.; Luo, Y.; Liang, S.; ...
2011-06-06
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
Thermal adaptation of net ecosystem exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, W.; Luo, Y.; Liang, S.
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas.
Yang, Fan; Taggart, David K; Penner, Reginald M
2010-07-05
The properties of a single heated palladium (Pd) nanowire for the detection of hydrogen gas (H(2)) are explored. In these experiments, a Pd nanowire, 48-98 microm in length, performs three functions in parallel: 1) Joule self-heating is used to elevate the nanowire temperature by up to 128 K, 2) the 4-contact wire resistance in the absence of H(2) is used to measure its temperature, and 3) the nanowire resistance in the presence of H(2) is correlated with its concentration, allowing it to function as a H(2) sensor. Compared with the room-temperature response of a Pd nanowire, the response of the heated nanowire to hydrogen is altered in two ways: First, the resistance change (DeltaR/R(0)) induced by H(2) exposure at any concentration is reduced by a factor of up to 30 and second, the rate of the resistance change - observed at the beginning ("response") and at the end ("recovery") of a pulse of H(2) - is increased by more than a factor of 50 at some H(2) concentrations. Heating nearly eliminates the retardation of response and recovery seen from 1-2% H(2), caused by the alpha --> beta phase transition of PdH(x), a pronounced effect for nanowires at room temperature. The activation energies associated with sensor response and recovery are measured and interpreted.
Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine
2017-03-01
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL -1 and 42μgL -1 ) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin
2017-07-06
Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Richardson, John G.; Morrison, John L.; Hawkes, Grant L.
2006-07-04
An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.
Coping with thermal challenges: physiological adaptations to environmental temperatures.
Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K
2012-07-01
Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.
Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198
Proteomic changes in rice leaves grown under open field high temperature stress conditions.
Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K
2015-11-01
The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M
2010-01-01
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking naturalmore » temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.« less
RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.
Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J
2014-12-10
In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.
Mechanical response of the flux lines in ceramic YBa2Cu3O7-δ
NASA Astrophysics Data System (ADS)
Luzuriaga, J.; André, M.-O.; Benoit, W.
1992-06-01
We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.
The forms of alkalis in the biochar produced from crop residues at different temperatures.
Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong
2011-02-01
The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
Autonomic composite hydrogels by reactive printing: materials and oscillatory response.
Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A
2014-03-07
Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).
Zhao Xiaoying; Ren Jizhou
2007-01-01
The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi
2017-04-01
This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.
Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony
2015-04-01
Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.
Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change.
Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir; Würthner, Frank
2016-11-01
The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI-OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI-PBI interactions this phase transition affords a pronounced color change with "fluorescence-on" response that can be utilized as a smart temperature sensory system.
NASA Astrophysics Data System (ADS)
Sane, Sandeep Bhalchandra
This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Lu, Jian; Garuba, Oluwayemi
This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less
Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M
2009-06-17
A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.
NASA Astrophysics Data System (ADS)
Rypdal, Kristoffer; Rypdal, Martin
2016-07-01
Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.
Altered nutrition during hot droughts will impair forest functions in the future
NASA Astrophysics Data System (ADS)
Grossiord, C.; Gessler, A.; Reed, S.; Dickman, L. T.; Collins, A.; Schönbeck, L.; Sevanto, S.; Vilagrosa, A.; McDowell, N. G.
2017-12-01
Rising greenhouse gas emissions will increase atmospheric temperature globally and alter hydrological cycles resulting in more extreme and recurrent droughts in the coming century. Nutrition is a key component affecting the vulnerability of forests to extreme climate. Models typically assume that global warming will enhance nitrogen cycling in terrestrial ecosystems and lead to improved plant functions. Drought on the other hand is expected to weaken the same processes, leading to a clear conflict and inability to predict how nutrition and plant functions will be impacted by a simultaneously warming and drying climate. We used a unique setup consisting of long-term manipulation of climate on mature trees to examine how individual vs. combined warming and drought would alter soil N cycling and tree functions. The site consists of the longest record of tree responses to experimental warming and precipitation reduction in natural conditions.Changes in soil nitrogen cycling (e.g. microbial activity, nitrification and ammonification rates, N concentration) occurred in response to the treatments. In addition, temperature rise and precipitation reduction altered the ability of trees to take up nitrogen and modified nitrogen allocation patterns between aboveground and belowground compartments. Although no additive effect of warming and drying were found for the two studied species, contrasting responses to warming and droughts were observed between the two functional types. Overall, our results show that higher temperature and reduced precipitation will alter the nutrition of forest ecosystems in the future with potentially large consequences for forest functions, structure and biodiversity.
Final Technical Report to DOE for the Award DE-SC0004601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong
Understanding the responses, adaptations and feedback mechanisms of biological communities to climate change is critical to project future state of earth and climate systems. Although significant amount of knowledge is available on the feedback responses of aboveground communities to climate change, little is known about the responses of belowground microbial communities due to the challenges in analyzing soil microbial community structure. Thus the goal overall goal of this study is to provide system-level, predictive mechanistic understanding of the temperature sensitivity of soil carbon (C) decomposition to climate warming by using cutting-edge integrated metagenomic technologies. Towards this goal, the following fourmore » objectives will be pursued: (i) To determine phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems; (ii) To delineate the responses of microbial community structure, functions and activities to climate change in the temperate grassland and tundra ecosystems; (iii) To determine the temperature sensitivity of microbial respiration in soils with different mixtures of labile versus recalcitrant C, and the underlying microbiological basis for temperature sensitivity of these pools; and (iv) To synthesize all experimental data for revealing microbial control of ecosystem carbon processes in responses to climate change. We have achieved our goals for all four proposed objectives. First, we determined the phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems. For this objective, we have developed a novel phasing amplicon sequencing (PAS) approach for MiSeq sequencing of amplicons. This approach has been used for sequencing various phylogenetic and functional genes related to ecosystem functioning. A comprehensive functional gene array (e.g., GeoChip 5.0) has also been developed and used for soil microbial community analysis in this study. In addition, shot-gun metagenome sequencing along with the above approaches have been used to understand the phylogenetic and functional diversity, composition, and structure of soil microbial communities in both temperature grassland and tundra ecosystems. Second, we determined the response of soil microbial communities to climate warming in both temperate grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is vulnerable, too. (ii) Climate warming also significantly shifted the metabolic diversity, composition and structure of microbial communities, and key metabolic pathways related to carbon turnover, such as cellulose degradation (~13%) and CO2 production (~10%), and to nitrogen cycling, including denitrification (~12%) were enriched by warming. (iii) Warming also altered the expression patterns of microbial functional genes important to ecosystem functioning and stability through GeoChip and metatranscriptomic analysis of soil microbial communities at the OK site. Third, we analyzed temperature sensitivity of C decomposition to climate warming for both AK and OK soils through laboratory incubations. Key results include: (i) Alaska tundra soils showed that after one year of incubation, CT in the top 15 cm could be as high as 25% and 15% of the initial soil C content at 25°C and 15°C incubations, respectively. (ii) analysis of 456 incubated soil samples with 16S rRNA gene, ITS and GeoChip hybridization showed that warming shifted the phylogenretic and functional diversity, composition, structure and metabolic potential of soil microbial communities, and at different stages of incubation, key populations and functional genes significantly changed along with soil substrate changes. Functional gene diversity and functional genes for degrading labile C components decrease along incubation when labile C components are exhausting, but the genes related to degrading recalcitrant C increase. These molecular data will be directly used for modeling. Fourth, we have developed novel approaches to integrate and model experimental data to understand microbial control of ecosystem C processes in response to climate change. We compared different methods to calculate Q10 for estimating temperature sensitivity, and new approaches for Q10 calculation and molecular ecological network analysis were also developed. Using those newly developed approaches, our result indicated that Q10s increased with the recalcitrance of C pools, suggesting that longer incubation studies are needed in order to assess the temperature sensitivity of slower C pools, especially at low temperature regimes. This project has been very productive, resulting in 42 papers published or in press, 4 submitted, and 13 in preparation.« less
Temperature uniformity in hyperthermal tumor therapy
NASA Technical Reports Server (NTRS)
Harrison, G. H.; Robinson, J. E.; Samaras, G. M.
1978-01-01
Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.
Thermoregulation in multiple sclerosis.
Davis, Scott L; Wilson, Thad E; White, Andrea T; Frohman, Elliot M
2010-11-01
Multiple sclerosis (MS) is a progressive neurological disorder that disrupts axonal myelin in the central nervous system. Demyelination produces alterations in saltatory conduction, slowed conduction velocity, and a predisposition to conduction block. An estimated 60-80% of MS patients experience temporary worsening of clinical signs and neurological symptoms with heat exposure. Additionally, MS may produce impaired neural control of autonomic and endocrine functions. This review focuses on five main themes regarding the current understanding of thermoregulatory dysfunction in MS: 1) heat sensitivity; 2) central regulation of body temperature; 3) thermoregulatory effector responses; 4) heat-induced fatigue; and 5) countermeasures to improve or maintain function during thermal stress. Heat sensitivity in MS is related to the detrimental effects of increased temperature on action potential propagation in demyelinated axons, resulting in conduction slowing and/or block, which can be quantitatively characterized using precise measurements of ocular movements. MS lesions can also occur in areas of the brain responsible for the control and regulation of body temperature and thermoregulatory effector responses, resulting in impaired neural control of sudomotor pathways or neural-induced changes in eccrine sweat glands, as evidenced by observations of reduced sweating responses in MS patients. Fatigue during thermal stress is common in MS and results in decreased motor function and increased symptomatology likely due to impairments in central conduction. Although not comprehensive, some evidence exists concerning treatments (cooling, precooling, and pharmacological) for the MS patient to preserve function and decrease symptom worsening during heat stress.
N cycling in SPRUCE (Spruce Peatlands Response Under ...
Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in the nitrogen cycle can have consequences on NO3, NH4 availability or pollution, and potentially increase nitrous oxide (N2O) emissions, a persistent greenhouse gas (GHG). These consequences can cascade to altering whole ecosystem functions and effecting human health.We are investigating nitrogen cycling response to elevated temperature and CO2 in a boreal peatland. Spruce and Peatland Responses Under Climate and Environmental Change (SPRUCE) project initiated soil warming in 2014 in ten peatland mesocosms (five temperature treatments from ambient (+0°C) to +9°C) and elevated CO2 in half of the mesocosms in 2016. Peat cores at three depths (acrotelm, catotelm, deep peat) were analyzed in the laboratory for denitrification, nitrification, and ammonification. We expect denitrification, nitrification, and ammonification rates to increase, and denitrification efficiency to decrease with rising temperatures- potentially contaminating water resources with NO3, NH4 and increase N2O concentrations in our atmosphere. This research will enhance the scientific understanding of how nitrogen cycling, an important functional eco-service, responds under environmental conditions including elevated CO2
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh
1998-01-01
An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Huber, Martin; Blumthaler, Mario; Schreder, Josef
2002-01-01
Within the frame of the Austrian UV Monitoring Network, repeated recalibrations of Solar Light Sunburn Meters between December 1997 and March 2000 have shown significant temporal changes in the instruments' relative spectral response function as well as in their absolute calibration. Therefore, laboratory investigations of the effects of ambient temperature and internal relative humidity on the behavior of two Sunburn Meters have been performed. Despite internal temperature stabilization, both instruments show significant dependence of their spectral response function on ambient temperature. When the outside temperature of the detector's housing varies between 13 degree(s)C and 44 degree(s)C, spectral sensitivity changes by up to 10% in the UVB range and by up to a factor of 2 in the UVA range, depending on internal relative humidity. As a consequence, output voltage variations of 10% are observed when the detector is mounted in front of a 1000 W halogen lamp and its internal relative humidity is changed while its ambient temperature is kept constant. Whereas temperature effects take place within several hours, instabilities due to variations in internal relative humidity show typical time constants in the order of several days.
Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin
2018-09-15
Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.
Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.
Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L
2016-02-25
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.
Unfolding of a temperature-sensitive domain controls voltage-gated channel activation
Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.
2016-01-01
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429
Sensitive photo-thermal response of graphene oxide for mid-infrared detection
NASA Astrophysics Data System (ADS)
Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu
2015-09-01
This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f
NASA Astrophysics Data System (ADS)
Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin
2011-01-01
We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.
Bashari, Azadeh; Hemmatinejad, Nahid; Pourjavadi, Ali
2017-09-01
This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) /chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperature/pH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β -CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles was performed via ultrasonic bath and exhaustion methods. The antibacterial activity of the treated fabrics at different temperatures demonstrated the preparing new functional bio-antibacterial fabrics with temperature responsiveness.
NASA Astrophysics Data System (ADS)
Quetin, G. R.; Swann, A. L. S.
2017-12-01
Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
Functional traits predict relationship between plant abundance dynamic and long-term climate warming
Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.
2013-01-01
Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400
Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M
2008-03-01
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.
Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei
2016-05-03
Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.
The role of depressed metabolism in increased radio-resistance
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1975-01-01
The results of experiments on hamsters and rats to determine physiological responses to various temperature conditions are presented. The experimental methods described are considered to be applicable to future mammalian experiments in space. Renal function was examined in the golden hamster as a function of body temperature. Hamsters were also acclimated to heat and metabolic rates, body temperature, skin temperature, cardiac distribution and whole body hematocrits were measured. In addition, the effects of heat stress on the intestinal transport of sugars in the hamster and rat were studied. The biological effects of prolonged space flight and methods of simulating weightlessness are also discussed.
Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi
2018-06-01
Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.
Pramudya, Ragita C; Seo, Han-Seok
2017-01-01
Coffee and green tea are popular beverages consumed at both hot and cold temperatures. When people consume hot beverages concurrently with other activities, they may experience at different temperatures over the period of consumption. However, there has been limited research investigating the effects of product temperatures on emotional responses and sensory attributes of beverages. This study aimed to determine whether emotional responses to, and sensory attributes of, brewed coffee and green tea vary as a function of sample temperature. Using a check-all-that-apply (CATA) method, 157 participants (79 for coffee and 78 for green tea) were asked to evaluate either coffee or green tea samples served at cold (5°C), ambient (25°C), and hot (65°C) temperatures with respect to emotional responses and sensory attributes. The results showed that sample temperature could have significant influences on emotional responses to, and sensory attributes of, coffee and green tea samples. More specifically, 6 and 18 sensory attributes of coffee and green tea samples, respectively, significantly differed with sample temperature. Beverage samples evaluated at 65°C were characterized, regardless of activation/arousal level, by positive emotional responses terms and favorable sensory attributes. While beverages evaluated at 25°C were associated more with negative emotional responses with low activation/arousal, those evaluated at 5°C were more frequently characterized as having negative emotional responses with high activation/arousal. Sensory and emotional drivers of liking for both coffee and green tea differed both with sample temperature and gender. While both emotional responses and sensory attributes were identified as drivers of liking among females, only emotional responses were identified as drivers of liking among males. In conclusion, this study provides empirical evidence that both emotional responses to, and sensory attributes of, coffee and green tea beverages can vary with sample temperatures. To provide a better understanding of product characteristics, emotional responses to, and sensory attributes of, coffee or green tea beverages should be tested over a wider range of product temperatures.
Pramudya, Ragita C.; Seo, Han-Seok
2018-01-01
Coffee and green tea are popular beverages consumed at both hot and cold temperatures. When people consume hot beverages concurrently with other activities, they may experience at different temperatures over the period of consumption. However, there has been limited research investigating the effects of product temperatures on emotional responses and sensory attributes of beverages. This study aimed to determine whether emotional responses to, and sensory attributes of, brewed coffee and green tea vary as a function of sample temperature. Using a check-all-that-apply (CATA) method, 157 participants (79 for coffee and 78 for green tea) were asked to evaluate either coffee or green tea samples served at cold (5°C), ambient (25°C), and hot (65°C) temperatures with respect to emotional responses and sensory attributes. The results showed that sample temperature could have significant influences on emotional responses to, and sensory attributes of, coffee and green tea samples. More specifically, 6 and 18 sensory attributes of coffee and green tea samples, respectively, significantly differed with sample temperature. Beverage samples evaluated at 65°C were characterized, regardless of activation/arousal level, by positive emotional responses terms and favorable sensory attributes. While beverages evaluated at 25°C were associated more with negative emotional responses with low activation/arousal, those evaluated at 5°C were more frequently characterized as having negative emotional responses with high activation/arousal. Sensory and emotional drivers of liking for both coffee and green tea differed both with sample temperature and gender. While both emotional responses and sensory attributes were identified as drivers of liking among females, only emotional responses were identified as drivers of liking among males. In conclusion, this study provides empirical evidence that both emotional responses to, and sensory attributes of, coffee and green tea beverages can vary with sample temperatures. To provide a better understanding of product characteristics, emotional responses to, and sensory attributes of, coffee or green tea beverages should be tested over a wider range of product temperatures. PMID:29375418
Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu
2017-03-21
The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.
Arve, Louise E; Kruse, Ole Mathis Opstad; Tanino, Karen K; Olsen, Jorunn E; Futsæther, Cecilia; Torre, Sissel
2017-04-01
Previous studies have shown that plants developed under high relative air humidity (RH>85%) develop malfunctioning stomata and therefor have increased transpiration and reduced desiccation tolerance when transferred to lower RH conditions and darkness. In this study, plants developed at high RH were exposed to daily VPD fluctuations created by changes in temperature and/or RH to evaluate the potential improvements in stomatal functioning. Daily periods with an 11°C temperature increase and consequently a VPD increase (vpd: 0.36-2.37KPa) reduced the stomatal apertures and improved the stomatal functionality and desiccation tolerance of the rosette plant Arabidopsis thaliana. A similar experiment was performed with only a 4°C temperature increase and/or a RH decrease on tomato. The results showed that a daily change in VPD (vpd: 0.36-1.43KPa) also resulted in improved stomatal responsiveness and decreased water usage during growth. In tomato, the most effective treatment to increase the stomatal responsiveness to darkness as a signal for closure was daily changes in RH without a temperature increase. Copyright © 2017 Elsevier GmbH. All rights reserved.
Central control of body temperature
Morrison, Shaun F.
2016-01-01
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289
Central control of body temperature.
Morrison, Shaun F
2016-01-01
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
NASA Astrophysics Data System (ADS)
Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.
2016-09-01
The response of tropical corals and calcifying algae to ocean acidification (OA) and warming has received much attention in the past decade. However, most studies have evaluated the response of organisms to two or three temperature treatments, which does not allow the functional relationship between calcification and temperature under ambient and future pCO2 to be determined. This study tested the hypothesis that the relationship between calcification and temperature is affected by OA in the coral Acropora pulchra and the calcified alga Lithophyllum kotschyanum. Pieces of each organism were incubated under five (24-30 °C) or six (24-31.5 °C) temperatures crossed with two pCO2 levels (400 and 1000 μatm), and calcification was assessed in trials conducted in the spring and summer. The response of coral calcification to temperature was a positive asymmetric parabola with a maximum at ~28 °C under both pCO2 levels and in both seasons; the effects of pCO2 on calcification were largest at ~28 °C and lowest in both cool and warm temperatures. In contrast, calcification of the alga at both levels of pCO2 was unaffected by temperature in spring, but declined linearly with temperature in summer. This study demonstrates that the calcification response of coral reef organisms to the crossed effect of warming and OA is complex and cannot be fully assessed without using multiple temperature treatments that are ecologically relevant.
Wallenstein, Matthew D.; Hall, Edward K.
2012-01-01
As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.
Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.
Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon
2007-07-25
Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.
Comprehension of the Electric Polarization as a Function of Low Temperature
NASA Astrophysics Data System (ADS)
Liu, Changshi
2017-01-01
Polarization response to warming plays an increasingly important role in a number of ferroelectric memory devices. This paper reports on the theoretical explanation of the relationship between polarization and temperature. According to the Fermi-Dirac distribution, the basic property of electric polarization response to temperature in magnetoelectric multiferroic materials is theoretically analyzed. The polarization in magnetoelectric multiferroic materials can be calculated by low temperature using a phenomenological theory suggested in this paper. Simulation results revealed that the numerically calculated results are in good agreement with experimental results of some inhomogeneous multiferroic materials. Numerical simulations have been performed to investigate the influences of both electric and magnetic fields on the polarization in magnetoelectric multiferroic materials. Furthermore, polarization behavior of magnetoelectric multiferroic materials can be predicted by low temperature, electric field and magnetic induction using only one function. The calculations offer an insight into the understanding of the effects of heating and magnetoelectric field on electrical properties of multiferroic materials and offer a potential to use similar methods to analyze electrical properties of other memory devices.
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.
Multiscale Evaluation of Thermal Dependence in the Glucocorticoid Response of Vertebrates.
Jessop, Tim S; Lane, Meagan L; Teasdale, Luisa; Stuart-Fox, Devi; Wilson, Robbie S; Careau, Vincent; Moore, Ignacio T
2016-09-01
Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and meta- and comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stress-induced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species' responses to current and future climate variation.
In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides
NASA Technical Reports Server (NTRS)
Park, Cheol; Ounaies, Zoubeida; Wise, Kristopher E.; Harrison, Joycelyn S.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
An amorphous piezoelectric polyimide containing polar functional groups has been developed using a combination of experimental and molecular modeling for potential use in high temperature applications. This amorphous polyimide, (Beta-CN)APB/ODPA, has exhibited good thermal stability and piezoelectric response at temperatures up to 150C. Density functional calculations predicted that a partially cured amic acid (open imide ring) possesses a dipole moment four times larger than the fully imidized closed ring. In situ poling and imidization of the partially cured (Beta-CN)APB/ODPA, was studied in an attempt to maximize the degree of dipolar orientation and the resultant piezoelectric response. A positive corona poling was used to minimize localized arcing during poling and to allow use of higher poling fields without dielectric breakdown. The dielectric relaxation strength, remanent polarization, and piezoelectric response were evaluated as a function of the poling profile. The partially cured, corona poled polymers exhibited higher dielectric relaxation strength (delta varepsilon), remanent polarization (Pr) and piezoelectric strain coefficient (d33) than the fully cured, conventionally poled ones.
Evaluating linear response in active systems with no perturbing field
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
2017-03-01
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed by Warren and Allen (Phys. Rev. Lett., 109 (2012) 250601) for out-of-equilibrium systems of passive Brownian particles. We illustrate our method by evaluating two linear response functions for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of many active particles interacting via a screened Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size.
Bao, Fei; Huang, Xiaozhen; Zhu, Chipan; Zhang, Xiaoyan; Li, Xin; Yang, Shuhua
2014-06-01
Plant defense responses are regulated by temperature. In Arabidopsis, the chilling-sensitive mutant chs2-1 (rpp4-1d) contains a gain-of-function mutation in the TIR-NB-LRR (Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat) gene, RPP4 (RECOGNITION OF PERONOSPORA PARASITICA 4), which leads to constitutive activation of the defense response at low temperatures. Here, we identified and characterized two suppressors of rpp4-1d from a genetic screen, hsp90.2 and hsp90.3, which carry point mutations in the cytosolic heat shock proteins HSP90.2 and HSP90.3, respectively. The hsp90 mutants suppressed the chilling sensitivity of rpp4-1d, including seedling lethality, activation of the defense responses and cell death under chilling stress. The hsp90 mutants exhibited compromised RPM1 (RESISTANCE TO PSEUDOMONAS MACULICOLA 1)-, RPS4 (RESISTANCE TO P. SYRINGAE 4)- and RPP4-mediated pathogen resistance. The wild-type RPP4 and the mutated form rpp4 could interact with HSP90 to form a protein complex. Furthermore, RPP4 and rpp4 proteins accumulated in the cytoplasm and nucleus at normal temperatures, whereas the nuclear accumulation of the mutated rpp4 was decreased at low temperatures. Genetic analysis of the intragenic suppressors of rpp4-1d revealed the important functions of the NB-ARC and LRR domains of RPP4 in temperature-dependent defense signaling. In addition, the rpp4-1d-induced chilling sensitivity was largely independent of the WRKY70 or MOS (modifier of snc1) genes. [Correction added after online publication 11 March 2013: the expansions of TIR-NB-LRR and RPS4 were amended] This study reveals that Arabidopsis HSP90 regulates RPP4-mediated temperature-dependent cell death and defense responses. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Kahler, S.; Krieger, A. S.
1978-01-01
The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.
Ranka, Mikhil; Katepalli, Hari; Blankschtein, Daniel; Hatton, T Alan
2017-11-21
Stimuli-responsive pickering emulsions have received considerable attention in recent years, and the utilization of temperature as a stimulus has been of particular interest. Previous efforts have led to responsive systems that enable the formation of stable emulsions at room temperature, which can subsequently be triggered to destabilize with an increase in temperature. The development of a thermoresponsive system that exhibits the opposite response, however, i.e., one that can be triggered to form stable emulsions at elevated temperatures and subsequently be induced to phase separate at lower temperatures, has so far been lacking. Here, we describe a system that accomplishes this goal by leveraging a schizophrenic diblock copolymer that exhibits both an upper and a lower critical solution temperature. The diblock copolymer was conjugated to 20 nm silica nanoparticles, which were subsequently demonstrated to stabilize O/W emulsions at 65 °C and trigger phase separation upon cooling to 25 °C. The effects of particle concentration, electrolyte concentration, and polymer architecture were investigated, and facile control of emulsion stability was demonstrated for multiple oil types. Our approach is likely to be broadly adaptable to other schizophrenic diblock copolymers and find significant utility in applications such as enhanced oil recovery and liquid-phase heterogeneous catalysis, where stable emulsions are desired only at elevated temperatures.
NASA Astrophysics Data System (ADS)
Okano, Teruo; Kikuchi, Akihiko
1996-04-01
Considerable research attention has been focused recently on materials which change their structure and properties in response to external stimuli. These materials, termed `intelligent materials', sense a stimulus as a signal (sensor function), judge the magnitude of this signal (processor function), and then alter their function in direct response (effector function). Introduction of stimuli-responsive polymers as switching sequences into both artificial materials and bioactive molecules would permit external, stimuli-induced modulation of their structures and `on-off' switching of their respective functions at molecular levels. Intelligent materials embodying these concepts would contribute to the establishment of basic principles for fabricating novel systems which modulate their structural changes and functional changes in response to external stimuli. These materials are attractive not only as new, sophisticated biomaterials but also for utilization in protein biotechnology, medical diagnosis and advanced site-specific drug delivery system.
Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems
Grossiord, Charlotte; Sevanto, Sanna; Adams, Henry D.; ...
2016-09-14
Model scenarios of climate change predict that warming and drought will occur simultaneously in the future in many regions. The capacity of woody species to modify their physiology and morphology in response to environmental conditions is widely recognized, but little is known about the responses of trees to reduced precipitation and increased temperature acting simultaneously. In a semi-arid woodland, we assessed in this paper the responses in physiological (needle emergence, maximum photosynthesis, stomatal conductance, water use efficiency (WUE) and shoot elongation) and morphological (needle length and thickness, and leaf mass per area (LMA)) foliar traits of piñon pine (Pinus edulis)more » in response to three years of a 45% reduction in precipitation, a 4.8 °C increase in air temperature and their simultaneous effects. A strong change in physiological and morphological traits in response to reduced precipitation was observed. Precipitation reduction delayed needle emergence, decreased photosynthesis and stomatal conductance, increased WUE, decreased shoot elongation and induced shorter needles with a higher LMA. Trees subjected to simultaneous reductions in precipitation and warming demonstrated a similar response. However, atmospheric warming did not induce a response in any of the measured traits. Physiological and morphological traits of trees in this semi-arid climate were more responsive to changes in soil moisture than air temperature. Long-term exposure to seasonal drought stress in arid sites may have resulted in strong plastic responses to this first stressor. However, atmospheric warming probably was not experienced as a stress for trees in this warm and dry climate. Finally and overall, our results indicate that in semi-arid ecosystems where tree functioning is already highly limited by soil water availability, atmospheric warming as anticipated with climate change may have less impact on foliar trait responses than previously thought.« less
Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna; Adams, Henry D.
Model scenarios of climate change predict that warming and drought will occur simultaneously in the future in many regions. The capacity of woody species to modify their physiology and morphology in response to environmental conditions is widely recognized, but little is known about the responses of trees to reduced precipitation and increased temperature acting simultaneously. In a semi-arid woodland, we assessed in this paper the responses in physiological (needle emergence, maximum photosynthesis, stomatal conductance, water use efficiency (WUE) and shoot elongation) and morphological (needle length and thickness, and leaf mass per area (LMA)) foliar traits of piñon pine (Pinus edulis)more » in response to three years of a 45% reduction in precipitation, a 4.8 °C increase in air temperature and their simultaneous effects. A strong change in physiological and morphological traits in response to reduced precipitation was observed. Precipitation reduction delayed needle emergence, decreased photosynthesis and stomatal conductance, increased WUE, decreased shoot elongation and induced shorter needles with a higher LMA. Trees subjected to simultaneous reductions in precipitation and warming demonstrated a similar response. However, atmospheric warming did not induce a response in any of the measured traits. Physiological and morphological traits of trees in this semi-arid climate were more responsive to changes in soil moisture than air temperature. Long-term exposure to seasonal drought stress in arid sites may have resulted in strong plastic responses to this first stressor. However, atmospheric warming probably was not experienced as a stress for trees in this warm and dry climate. Finally and overall, our results indicate that in semi-arid ecosystems where tree functioning is already highly limited by soil water availability, atmospheric warming as anticipated with climate change may have less impact on foliar trait responses than previously thought.« less
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
Shao, Li; Pang, Nannan; Yan, Ping; Jia, Fengju; Sun, Qi; Ma, Wenjuan; Yang, Yi
2018-04-09
The influence of mild perioperative hypothermia on the immune function and incidence of postoperative wound infections has been suggested, but the specific mechanism is unclear. This study aimed to analyze the body temperature, immune function, and wound infection rates in patients receiving open surgery for gastric cancer. Body temperature was controlled in each patient using one of four different methods: wrapping limbs, head and neck; insulated blankets; warming infusion fluids and insulated blankets; and warming fluids without insulated blankets. One hundred patients were randomly divided into four groups of 25 patients each, and every group received a different intraoperative treatment for maintaining normal body temperature. Nasopharyngeal and rectal temperatures, transforming growth factor beta (TGF-β), interleukin 10 (IL-10) levels, and cluster of differentiation (CD)3+ and CD4+/CD25+ regulatory T cell (Treg) counts were measured before surgery and at 2 and 4 hours postoperatively. Patients were evaluated at one week after surgery for signs of infection. Intraoperative body temperature and measures of immune function varied significantly between the four groups, with the largest temperature changes observed in the group in which only the limbs were wrapped in cotton pads to control the body temperature. The group in which infusion fluids and transfused blood (if needed) were heated to 37℃, peritoneal irrigation fluid was heated to 37℃, and an insulation blanket was heated to 39℃ and placed under the patient, showed the lowest temperature change (i.e., close to normal temperature) and cytokine response after surgery. No intergroup differences were found in the infection rates at one week after surgery. In conclusion, body temperature variation during surgery affects the immune function of patients, and maintaining body temperature close to normal results in the least variation of immune function.
Nonlinear response from transport theory and quantum field theory at finite temperature
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Defu, Hou; Kobes, R.
2001-07-01
We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.
A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode.
Zheng, Yu-Bin; Zhao, Shuang; Cao, Shuo-Hui; Cai, Sheng-Lin; Cai, Xiu-Hong; Li, Yao-Qun
2017-01-07
In this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall. The experimental results confirmed that the P(DMAEMA-co-VPBA) brush modified nanochannel regulated the ionic current rectification successfully under three different external stimuli. This biomimetically inspired research simulates the complex biological multi-functions of ion channels and promotes the development of "smart" biomimetic nanochannel systems for actuating and sensing applications.
Coding and Plasticity in the Mammalian Thermosensory System.
Yarmolinsky, David A; Peng, Yueqing; Pogorzala, Leah A; Rutlin, Michael; Hoon, Mark A; Zuker, Charles S
2016-12-07
Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schwartz, Joel D.; Lee, Mihye; Kinney, Patrick L.; Yang, Suijia; Mills, David; Sarofim, Marcus C.; Jones, Russell; Streeter, Richard; St. Juliana, Alexis; Peers, Jennifer;
2015-01-01
Background: A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods: We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results: We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April - September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October-March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions: We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature-mortality relationships from 1997 to 2006 without any future adaptation. However, results varied by location, with some locations showing net reductions in premature temperature-attributable deaths with climate change.
Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas
2017-01-01
Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
Spinal cord, hypothalamic, and air temperature: interaction with arousal states in the marmot.
Miller, V M; South, F E
1979-01-01
Yellow-bellied marmots, Marmota flaviventris, prepared with U-shaped thermodes in the epidural space of the thoracic vertebral canal, a thermode in the preoptic hypothalamus, and cortical surface and hippocampal electrodes, were used to investigate the interaction of arousal states with temperature regulation. It was found that arousal state of the animal influences the thermoregulatory responses initiated in either the spinal cord or hypothalamus. Further, changes in ambient temperature affected both the gain and the threshold of these responses. The interaction of the hypothalamus and spinal cord was not an additive function, however the threshold for shivering of each could be altered by temperature manipulation of the other. Future studies in modeling of temperature regulation should consider the contributions of temperature receptors of the spinal cord and the arousal state of the animal during the stimulation period.
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2018-03-01
A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.
Central circuitries for body temperature regulation and fever.
Nakamura, Kazuhiro
2011-11-01
Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
Understanding and quantifying foliar temperature acclimation for Earth System Models
NASA Astrophysics Data System (ADS)
Smith, N. G.; Dukes, J.
2015-12-01
Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly simulating leaf carbon exchange responses to future warming. Therefore, our data, if used to parameterize large-scale models, are likely to provide an even greater improvement in model performance, resulting in more reliable projections of future carbon-clime feedbacks.
Response diversity of wild bees to overwintering temperatures.
Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja
2013-12-01
Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.
Genetic and epigenetic control of plant heat responses
Liu, Junzhong; Feng, Lili; Li, Jianming; He, Zuhua
2015-01-01
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22–27°C), high temperature (27–30°C) and extremely high temperature (37–42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed. PMID:25964789
Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection
NASA Technical Reports Server (NTRS)
Erickson, Lisa
2016-01-01
The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.
Previous studies from this laboratory have demonstrated significant deficits in cardiovascular function in rats exposed to the pesticide chlordimeform (CDM) when body core temperature (Tco) was maintained at 37oC. o investigate the role of Tco on CDM toxicity, similar experiments...
Climate-Host Mapping of Phytophthora ramorum, causal agent of sudden oak death
Roger Magarey; Glenn Fowler; Manuel Colunga; Bill Smith; Ross Meentemeyer
2008-01-01
We modeled Phytophthora ramorum infection using the North Carolina State University- Animal and Plant Health Inspection Service Plant Pest Forecasting System (NAPPFAST) for the conterminous United States. Our infection model is based on a temperature-moisture response function. The model parameters were: leaf wetness, minimum temperature, optimum...
Thermionic switched self-actuating reactor shutdown system
Barrus, Donald M.; Shires, Charles D.; Brummond, William A.
1989-01-01
A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.
Slot, Martijn; Winter, Klaus
2017-05-01
Tropical forests contribute significantly to the global carbon cycle, but little is known about the temperature response of photosynthetic carbon uptake in tropical species, and how this varies within and across forests. We determined in situ photosynthetic temperature-response curves for upper canopy leaves of 42 tree and liana species from two tropical forests in Panama with contrasting rainfall regimes. On the basis of seedling studies, we hypothesized that species with high photosynthetic capacity - light-demanding, fast-growing species - would have a higher temperature optimum of photosynthesis (T Opt ) than species with low photosynthetic capacity - shade-tolerant, slow-growing species - and that, therefore, T Opt would scale with the position of a species on the slow-fast continuum of plant functional traits. T Opt was remarkably similar across species, regardless of their photosynthetic capacity and other plant functional traits. Community-average T Opt was almost identical to mean maximum daytime temperature, which was higher in the dry forest. Photosynthesis above T Opt appeared to be more strongly limited by stomatal conductance in the dry forest than in the wet forest. The observation that all species in a community shared similar T Opt values suggests that photosynthetic performance is optimized under current temperature regimes. These results should facilitate the scaling up of photosynthesis in relation to temperature from leaf to stand level in species-rich tropical forests. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Baev, Vesselin; Milev, Ivan; Naydenov, Mladen; Vachev, Tihomir; Apostolova, Elena; Mehterov, Nikolay; Gozmanva, Mariyana; Minkov, Georgi; Sablok, Gaurav; Yahubyan, Galina
2014-11-01
Small RNA profiling and assessing its dependence on changing environmental factors have expanded our understanding of the transcriptional and post-transcriptional regulation of plant stress responses. Insufficient data have been documented earlier to depict the profiling of small RNA classes in temperature-associated stress which has a wide implication for climate change biology. In the present study, we report a comparative assessment of the genome-wide profiling of small RNAs in Arabidopsis thaliana using two conditional responses, induced by high- and low-temperature. Genome-wide profiling of small RNAs revealed an abundance of 21 nt small RNAs at low temperature, while high temperature showed an abundance of 21 nt and 24 nt small RNAs. The two temperature treatments altered the expression of a specific subset of mature miRNAs and displayed differential expression of a number of miRNA isoforms (isomiRs). Comparative analysis demonstrated that a large number of protein-coding genes can give rise to differentially expressed small RNAs following temperature shifts. Low temperature caused accumulation of small RNAs, corresponding to the sense strand of a number of cold-responsive genes. In contrast, high temperature stimulated the production of small RNAs of both polarities from genes encoding functionally diverse proteins. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Thermodynamic responses of electronic systems.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-09-07
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Thermodynamic responses of electronic systems
NASA Astrophysics Data System (ADS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2017-09-01
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan
2016-01-01
Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for obtaining credible predictions of the changes in crop production, plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when asymmetric night temperature change continues. PMID:27933085
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming
2007-12-01
The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.
Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang
2016-01-01
Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048
Modeling of the Temperature-dependent Spectral Response of In(1-x)Ga(x)Sb Infrared Photodetectors
NASA Technical Reports Server (NTRS)
Gonzalex-Cuevas, Juan A.; Refaat, Tamer F.; Abedin, M. Nurul; Elsayed-Ali, Hani E.
2006-01-01
A model of the spectral responsivity of In(1-x) Ga(x) Sb p-n junction infrared photodetectors has been developed. This model is based on calculations of the photogenerated and diffusion currents in the device. Expressions for the carrier mobilities, absorption coefficient and normal-incidence reflectivity as a function of temperature were derived from extensions made to Adachi and Caughey-Thomas models. Contributions from the Auger recombination mechanism, which increase with a rise in temperature, have also been considered. The responsivity was evaluated for different doping levels, diffusion depths, operating temperatures, and photon energies. Parameters calculated from the model were compared with available experimental data, and good agreement was obtained. These theoretical calculations help to better understand the electro-optical behavior of In(1-x) Ga(x) Sb photodetectors, and can be utilized for performance enhancement through optimization of the device structure.
NASA Astrophysics Data System (ADS)
Schipper, L. A.; O'Neill, T.; Arcus, V. L.
2014-12-01
One of the most fundamental factors controlling all biological and chemical processes is changing temperature. Temperature dependence was originally described by the Arrhenius function in the 19th century. This function provides an excellent description of chemical reaction rates. However, the Arrhenius function does not predict the temperature optimum of biological rates that is clearly evident in laboratory and field measurements. Previously, the temperature optimum of biological processes has been ascribed to denaturation of enzymes but the observed temperature optima in soil are often rather modest, occurring at about 40-50°C and generally less than recognised temperatures for protein unfolding. We have modified the Arrhenius function incorporating a temperature-dependent activation energy derived directly from first principles from thermodynamics of macromolecules. MacroMolecular Rate Theory (MMRT) accounts for large changes in the flexibility of enzymes during catalysis that result in changes in heat capacity (ΔC‡p) of the enzyme during the reaction. MMRT predicts an initially Arrhenius-like response followed by a temperature optimum without the need for enzyme denaturation (Hobbs et al., 2013. ACS Chemical Biology. 8: 2388-2393). Denaturation, of course, occurs at much higher temperatures. We have shown that MMRT fits biogeochemical data collected from laboratory and field studies with important implications for changes in absolute temperature sensitivity as temperature rises (Schipper et al., 2014. Global Change Biology). As the temperature optimum is approached the absolute temperature sensitivity of biological processes decreases to zero. Consequently, the absolute temperature-sensitivity of soil biological processes depends on both the change in ecosystem temperature and the temperature optimum of the biological process. MMRT also very clearly explains why Q10 values decline with increasing temperature more quickly than would be predicted from the Arrhenius function. Temperature optima of many soil biological processes including respiration are very poorly documented but would lead to a better understanding of how soil systems will respond to increasing global temperatures.
Protracted effects of chronic stress on serotonin-dependent thermoregulation.
Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K
2015-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.
Protracted effects of chronic stress on serotonin dependent thermoregulation
Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.
2016-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686
Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo
2018-05-01
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.
Sang, Qinqin; Shan, Xi; An, Yahong; Shu, Sheng; Sun, Jin; Guo, Shirong
2017-01-01
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch. PMID:28220137
Sang, Qinqin; Shan, Xi; An, Yahong; Shu, Sheng; Sun, Jin; Guo, Shirong
2017-01-01
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.
Fast-Response Fiber-Optic Anemometer with Temperature Self-Compensation
2015-05-18
be considered to be a function of time only. With a heating source within the sensor, the model for LSA is expressed as [13], ( ) ( ),s w s s shA ... shA C Vρ , in the exponent of the transient term in RHS of Eq. (7) characterizes the response time of the anemometer. Conversion of the temperature...circulator, and the reflected signal night was acquired by a high-speed spectrometer (Ibsen Photonics, I-MON 256 USB) which was connected to a computer
Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery
NASA Astrophysics Data System (ADS)
Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang
2015-02-01
We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06714b
Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joana; Diniz, Mário S
2014-06-01
Oxidative stress biomarkers have been widely used in the development of ecological indices and in the assessment of exposure of aquatic organisms to contaminants from agricultural, industrial and urban pollution. However, temperature is known to also have a significant effect on oxidative stress biomarkers. This way, temperature is a confounding factor that may result in difficulties in the interpretation of oxidative stress biomarkers response patterns. Since climate change is expected to result in more frequent and intense heat wave events it is pertinent to investigate the effect of increasing temperature in the oxidative stress response of common aquatic organisms. It is also important to assess the differential response of different body tissues, given that they are differently exposed to temperature depending on their location and physiological function. This study investigates the effect of increasing temperature (20 °C-34 °C) in the response of multiple biomarkers of oxidative stress: lipid peroxidation, glutathione-S-transferase, superoxide dismutase and catalase activities, in the muscle, liver and gills of a common coastal fish, the Rock goby, Gobius paganellus. The response of the oxidative stress biomarkers analysed were always higher in the gills than in the other tissues. Muscle generally presented the lower levels of any of the biomarkers tested when compared to other tissues. Nevertheless, muscle tissue always responded significantly to temperature, as did the liver, while the gills were unresponsive in terms of lipid peroxidation and glutathione-S-transferase. Unresponsive tissues to temperature may be particularly interesting as indicators of pollution, given that temperature will not be a confounding variable in their oxidative stress response. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Accurately predicting phenology in crop simulation models is critical for correctly simulating crop production. While extensive work in modeling phenology has focused on the temperature response function (resulting in robust phenology models), limited work on quantifying the phenological responses t...
NASA Astrophysics Data System (ADS)
Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.
2017-12-01
Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.
Analysis of the operation of the SCD Response intermittent compression system.
Morris, Rh J; Griffiths, H; Woodcock, J P
2002-01-01
The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.
NASA Technical Reports Server (NTRS)
George, William K.; Rae, William J.; Woodward, Scott H.
1991-01-01
The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.
Nanoscale functionalization and characterization of surfaces with hydrogel patterns and biomolecules
NASA Astrophysics Data System (ADS)
Dinakar, Hariharasudhan Chirra
The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted. Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel was achieved using microcontact printing, while thickness control was achieved using atom transfer radical polymerization (ATRP). Atomic force microscopy analysis showed that to the ATRP reaction time governed the pattern growth. The temperature dependent swelling ratio was tailored by tuning the mesh size of the hydrogel. While nanopatterns exhibited a broad lower critical solution temperature (LCST) transition, surface roughness showed a sharp LCST transition. Quartz crystal microbalance with dissipation showed rapid response behavior of the thin films, which makes them applicable as functional components in biomedical devices. The easy synthesis, relative biocompatibility, inertness, and easy functionalization of gold nanoparticles (GNPs) have made them useful for various biomedical applications. Although ATRP can be successfully carried out over GNPs, the yield of stable solution based GNPs for biomedical applications prove to be low. As an alternative approach, a novel method of ISOlating, FUnctionalizing, and REleasing nanoparticles (ISOFURE) was proposed. Biodegradable poly(beta-amino ester) hydrogels were used to synthesize ISOFURE-GNP composites. ATRP was performed inside the composite, and the final hydrogel coated GNPs were released via matrix degradation. Response analysis confirmed that the ISOFURE method led to the increased stability and yield of the hydrogel coated ISOFURE-GNPs. The ISOFURE protocol was also utilized in functionalizing GNPs with enzyme catalase in the absence of a stabilizing reagent. Biotin-streptavidin affinity was used as the bioconjugation method. Activity analysis of the conjugated enzyme showed that the ISOFURE-GNPs showed enhanced biomolecular loading relative to solution based stabilizing reagent passivated GNPs. KEYWORDS: Hydrogel, Gold nanoparticle, ISOFURE, Atom transfer radical polymerization, Microcontact printing
A Potential Function Derivation of a Constitutive Equation for Inelastic Material Response
NASA Technical Reports Server (NTRS)
Stouffer, D. C.; Elfoutouh, N. A.
1983-01-01
Physical and thermodynamic concepts are used to develop a potential function for application to high temperature polycrystalline material response. Inherent in the formulation is a differential relationship between the potential function and constitutive equation in terms of the state variables. Integration of the differential relationship produces a state variable evolution equation that requires specification of the initial value of the state variable and its time derivative. It is shown that the initial loading rate, which is directly related to the initial hardening rate, can significantly influence subsequent material response. This effect is consistent with observed material behavior on the macroscopic and microscopic levels, and may explain the wide scatter in response often found in creep testing.
NASA Astrophysics Data System (ADS)
Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.
2016-12-01
Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.
Impacts of warming revealed by linking resource growth rates with consumer functional responses.
West, Derek C; Post, David M
2016-05-01
Warming global temperatures are driving changes in species distributions, growth and timing, but much uncertainty remains regarding how climate change will alter species interactions. Consumer-Resource interactions in particular can be strongly impacted by changes to the relative performance of interacting species. While consumers generally gain an advantage over their resources with increasing temperatures, nonlinearities can change this relation near temperature extremes. We use an experimental approach to determine how temperature changes between 5 and 30 °C will alter the growth of the algae Scenedesmus obliquus and the functional responses of the small-bodied Daphnia ambigua and the larger Daphnia pulicaria. The impact of warming generally followed expectations, making both Daphnia species more effective grazers, with the increase in feeding rates outpacing the increases in algal growth rate. At the extremes of our temperature range, however, warming resulted in a decrease in Daphnia grazing effectiveness. Between 25 and 30 °C, both species of Daphnia experienced a precipitous drop in feeding rates, while algal growth rates remained high, increasing the likelihood of algal blooms in warming summer temperatures. Daphnia pulicaria performed significantly better at cold temperatures than D. ambigua, but by 20 °C, there was no significant difference between the two species, and at 25 °C, D. ambigua outperformed D. pulicaria. Warming summer temperatures will favour the smaller D. ambigua, but only over a narrow temperature range, and warming beyond 25 °C could open D. ambigua to invasion from tropical species. By fitting our results to temperature-dependent functions, we develop a temperature- and density-dependent model, which produces a metric of grazing effectiveness, quantifying the grazer density necessary to halt algal growth. This approach should prove useful for tracking the transient dynamics of other density-dependent consumer-resource interactions, such as agricultural pests and biological-control agents. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric
2016-01-01
A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices. PMID:27532825
Modeling infection of spring onion by Puccinia allii in response to temperature and leaf wetness.
Furuya, Hiromitsu; Takanashi, Hiroyuki; Fuji, Shin-Ichi; Nagai, Yoshio; Naito, Hideki
2009-08-01
The influence of temperature and leaf wetness duration on infection of spring onion (Japanese bunching onion) leaves by Puccinia allii was examined in controlled-environment experiments. Leaves of potted spring onion plants (Allium fistulosum cv. Yoshikura) were inoculated with urediniospores and exposed to 6.5, 10, 15, 22, or 27 h of wetness at 5, 10, 15, 20, or 25 degrees C. The lesion that developed increased in density with increasing wetness duration. Relative infection was modeled as a function of both temperature and wetness duration using the modified version of Weibull's cumulative distribution function (R(2) = 0.9369). Infection occurred between 6.5 and 27 h of leaf wetness duration at 10, 15, 20, and 25 degrees C and between 10 and 27 h at 5 degrees C, and increased rapidly between 6.5 and 15 h of wetness at 10, 15, and 20 degrees C. At 25 degrees C, few uredinia developed regardless of the wetness duration. Parameter H, one of eight parameters used in the equation and which controls the asymmetry in the response curve, varied markedly according to the temperature, so that the model could be improved by representing H as a function of wetness duration (R(2) = 0.9501).
NASA Astrophysics Data System (ADS)
Yu, Yong; Wang, Jun
Wheat, pretreated by 60Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 °C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied.
Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian
2012-01-01
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454
NASA Technical Reports Server (NTRS)
Bales, Thomas T.
1992-01-01
Vugraphs are presented to show the use of refractory materials for the skin of the High speed Civil Transport (HSCT). Examples are given of skin temperature ranges, failure mode weight distribution, tensile properties as a function of temperature, and components to be constructed from composite materials. The responsibilities of various aircraft companies for specific aircraft components are defined.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
A heating-superfusion platform technology for the investigation of protein function in single cells.
Xu, Shijun; Ainla, Alar; Jardemark, Kent; Jesorka, Aldo; Jeffries, Gavin D M
2015-01-06
Here, we report on a novel approach for the study of single-cell intracellular enzyme activity at various temperatures, utilizing a localized laser heating probe in combination with a freely positionable microfluidic perfusion device. Through directed exposure of individual cells to the pore-forming agent α-hemolysin, we have controlled the membrane permeability, enabling targeted delivery of the substrate. Mildly permeabilized cells were exposed to fluorogenic substrates to monitor the activity of intracellular enzymes, while adjusting the local temperature surrounding the target cells, using an infrared laser heating system. We generated quantitative estimates for the intracellular alkaline phosphatase activity at five different temperatures in different cell lines, constructing temperature-response curves of enzymatic activity at the single-cell level. Enzymatic activity was determined rapidly after cell permeation, generating five-point temperature-response curves within just 200 s.
Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.
Hartzell, Samantha; Bartlett, Mark S; Virgin, Lawrence; Porporato, Amilcare
2015-03-07
Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks
NASA Astrophysics Data System (ADS)
Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor
Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).
Integrated Temperature and Hydrogen Sensors with MEMS Technology
Jiang, Hongchuan; Huang, Min; Yu, Yibing; Tian, Xiaoyu; Zhang, Wanli; Zhang, Jianfeng; Huang, Yifan; Yu, Kun
2017-01-01
In this work, a PdNi thin film hydrogen gas sensor with integrated Pt thin film temperature sensor was designed and fabricated using the micro-electro-mechanical system (MEMS) process. The integrated sensors consist of two resistors: the former, based on Pt film, is used as a temperature sensor, while the latter had the function of hydrogen sensing and is based on PdNi alloy film. The temperature coefficient of resistance (TCR) in both devices was measured and the output response of the PdNi film hydrogen sensor was calibrated based on the temperature acquired by the Pt temperature sensor. The SiN layer was deposited on top of Pt film to inhibit the hydrogen diffusion and reduce consequent disturbance on temperature measurement. The TCR of the PdNi film and the Pt film was about 0.00122/K and 0.00217/K, respectively. The performances of the PdNi film hydrogen sensor were investigated with hydrogen concentrations from 0.3% to 3% on different temperatures from 294.7 to 302.2 K. With the measured temperature of the Pt resistor and the TCR of the PdNi film, the impact of the temperature on the performances of the PdNi film hydrogen sensor was reduced. The output response, response time and recovery time of the PdNi film hydrogen sensors under the hydrogen concentration of 0.5%, 1.0%, 1.5% and 2.0% were measured at 313 K. The output response of the PdNi thin film hydrogen sensors increased with increasing hydrogen concentration while the response time and recovery time decreased. A cycling test between pure nitrogen and 3% hydrogen concentration was performed at 313 K and PdNi thin film hydrogen sensor demonstrated great repeatability in the cycling test. PMID:29301220
ABSTRACT
Rodents often demonstrate a profound depression in physiological function following acute exposure to toxic xenobiotic agents. This effect, termed the hypothermic response, is primarily characterized by significant decreases in core temperature and heart rate, and is...
A neutron spectrometer based on temperature variations in superheated drop compositions
NASA Astrophysics Data System (ADS)
Apfel, Robert E.; d'Errico, Francesco
2002-01-01
The response of superheated drop detectors (SDDs) to neutron radiation varies in a self-consistent manner with variations in temperature and pressure, making such compositions suitable for neutron spectrometry. The advantage of this approach is that the response functions of candidate materials versus energy as the temperature or pressure is varied are nested and have distinct thresholds, with no thermal neutron response. These characteristics permit unfolding without the uncertainties associated with other spectrometry techniques, where multiple solutions are possible, thus requiring an initial guess of the spectrum. A spectrometer was developed based on the well-established technology for acoustic sensing of bubble events interfaced with a proportional-integral-derivative temperature controller. The active monitor for neutrons, called REMbrandt™, was used as the platform for controlling temperature on a SDD probe and for data acquisition, thereby automating the process of measuring the neutron energy spectrum. The new instrument, called REM-SPEC™, implements and automates the original BINS approach: it adjusts the temperature of the SDD vial in increasing steps and measures the bubble event rate at each step. By using two distinct SDD materials with overlapping responses, the 0.1-20 MeV range of energies relevant to practical spectrometry is readily covered. Initial experiments with an Am-Be source validate the operational protocols of this device.
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Thermoregulatory disorders and illness related to heat and cold stress.
Cheshire, William P
2016-04-01
Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Turning on the alarm: the neural mechanisms of the transition from innocuous to painful sensation.
Johnstone, Tom; Salomons, Tim V; Backonja, Miroslav Misha; Davidson, Richard J
2012-01-16
The experience of pain occurs when the level of a stimulus is sufficient to elicit a marked affective response, putatively to warn the organism of potential danger and motivate appropriate behavioral responses. Understanding the biological mechanisms of the transition from innocuous to painful levels of sensation is essential to understanding pain perception as well as clinical conditions characterized by abnormal relationships between stimulation and pain response. Thus, the primary objective of this study was to characterize the neural response associated with this transition and the correspondence between that response and subjective reports of pain. Towards this goal, this study examined BOLD response profiles across a range of temperatures spanning the pain threshold. 14 healthy adults underwent functional magnetic resonance imaging (fMRI) while a range of thermal stimuli (44-49°C) were applied. BOLD responses showed a sigmoidal profile along the range of temperatures in a network of brain regions including insula and mid-cingulate, as well as a number of regions associated with motor responses including ventral lateral nuclei of the thalamus, globus pallidus and premotor cortex. A sigmoid function fit to the BOLD responses in these regions explained up to 85% of the variance in individual pain ratings, and yielded an estimate of the temperature of steepest transition from non-painful to painful heat that was nearly identical to that generated by subjective ratings. These results demonstrate a precise characterization of the relationship between objective levels of stimulation, resulting neural activation, and subjective experience of pain and provide direct evidence for a neural mechanism supporting the nonlinear transition from innocuous to painful levels along the sensory continuum. Copyright © 2011 Elsevier Inc. All rights reserved.
Global versus local mechanisms of temperature sensing in ion channels.
Arrigoni, Cristina; Minor, Daniel L
2018-05-01
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Predicting maize phenology: Intercomparison of functions for developmental response to temperature
USDA-ARS?s Scientific Manuscript database
Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...
Alternative Splicing of Barley Clock Genes in Response to Low Temperature
Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.
2016-01-01
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947
Cryptic impacts of temperature variability on amphibian immune function.
Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian
2013-11-15
Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.
Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir
2017-02-15
Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.
An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform.
Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong
2016-07-15
The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard "chilled-mirror" dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional "chilled-mirror" hygrometers. Moreover, this DPS outperforms conventional "chilled-mirror" hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.
An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform
NASA Astrophysics Data System (ADS)
Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong
2016-07-01
The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.
Possible relation of water structural relaxation to water anomalies
Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene
2013-01-01
The anomalous behavior of thermodynamic response functions is an unsolved problem in the physics of water. The mechanism that gives rise to the dramatic indefinite increase at low temperature in the heat capacity, the compressibility, and the coefficient of thermal expansion, is unknown. We explore this problem by analyzing both new and existing experimental data on the power spectrum S(Q, ω) of bulk and confined water at ambient pressure. When decreasing the temperature, we find that the liquid undergoes a structural transformation coinciding with the onset of an extended hydrogen bond network. This network onset seems to give rise to the marked viscoelastic behavior, consistent with the interesting possibility that the sound velocity and response functions of water depend upon both the frequency and wave vector. PMID:23483053
Co-doped sodium chloride crystals exposed to different irradiation temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.
2013-07-03
Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of themore » dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.« less
Temperature-controlled optical stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-06-01
Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.
Stressor-Specific Alterations in Corticosterone and Immune Responses in Mice
Bowers, Stephanie L.; Bilbo, Staci D.; Dhabhar, Firdaus S.; Nelson, Randy J.
2007-01-01
Different stressors likely elicit different physiological and behavioral responses. Previously reported differences in the effects of stressors on immune function may reflect qualitatively different physiological responses to stressors; alternatively, both large and subtle differences in testing protocols and methods among laboratories may make direct comparisons among studies difficult. Here we examine the effects of chronic stressors on plasma corticosterone concentrations, leukocyte redistribution, and skin delayed-type hypersensitivity (DTH) and the effects of acute stressors on plasma corticosterone and leukocyte redistribution. The effects of several commonly used laboratory stressors including restraint, forced swim, isolation, and low ambient temperatures (4°C) were examined. Exposure to each stressor elevated corticosterone concentrations, with restraint (a putative psychological stressor) evoking a significantly higher glucocorticoid response than other stressors. Chronic restraint and forced swim enhanced the DTH response compared to the handled, low temperature, or isolation conditions. Restraint, low temperature, and isolation significantly increased trafficking of lymphocytes and monocytes compared to forced swim or handling. Generally, acute restraint, low temperature, isolation, and handling increased trafficking of lymphocytes and monocytes. Considered together, our results suggest that the different stressors commonly used in psychoneuroimmunology research may not activate the physiological stress response to the same extent. The variation observed in the measured immune responses may reflect differential glucocorticoid activation, differential metabolic adjustments, or both processes in response to specific stressors. PMID:17890050
Umbers, Kate D L
2011-09-01
Rapid, reversible colour change is unusual in animals, but is a feature of male chameleon grasshoppers (Kosciuscola tristis). Understanding what triggers this colour change is paramount to developing hypotheses explaining its evolutionary significance. In a series of manipulative experiments the author quantified the effects of temperature, and time of day, as well as internal body temperature, on the colour of male K. tristis. The results suggest that male chameleon grasshoppers change colour primarily in response to temperature and that the rate of colour change varies considerably, with the change from black to turquoise occurring up to 10 times faster than the reverse. Body temperature changed quickly (within 10min) in response to changes in ambient temperature, but colour change did not match this speed and thus colour is decoupled from internal temperature. This indicates that male colour change is driven primarily by ambient temperature but that their colour does not necessarily reflect current internal temperature. I propose several functional hypotheses for male colour change in K. tristis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Shaoqing; Sheng, Binbin; Lin, Wenting; Meng, Fangang
2018-09-15
Temperature is a well-known environmental stress that influences both microbial metabolism and community structure in the biological wastewater treatment systems. In this study, responses of biological performance and sludge microbiota to the long-term day/night temperature differences (DNTD) were investigated in membrane bioreactors (MBRs). The results showed that the functional bacteria could sustained their ecological functions at low DNTD (20/30 °C), resulting in relatively stable performance with respect to nutrient removal. However, when the activated sludge was subjected to a high DNTD (17/33 °C), the effluent concentrations of COD, TN and TP were significantly higher in MBR-B than that in MBR-A. In addition, more severe membrane fouling occurred under the perturbation of high DNTD as revealed by the transmembrane pressure (TMP) profile, which was mainly attributed to the accumulation of extracellular polymeric substances (EPS). The results of 16S rRNA gene sequencing showed that DNTD showed negligible effect on the bacterial community structures. Nonetheless, the functional bacteria responded differently to DNTD, which were in accordance with the bioreactor performances. Specifically, Nitrospina (NOB) and Tetrasphaera (PAOs) appeared to be sensitive to both low and high DNTD. In contrast, a low DNTD showed marginal effects on the denitrifiers, while a high DNTD significantly decreased their abundances. More strikingly, filamentous bulking bacteria were found to be well-adapted to DNTD, indicating their tolerance to the daily temperature fluctuation. This study will advance our knowledge regarding the response of microbial ecology of activated sludge to daily temperature variations in full-scale MBRs. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of temperature dependence of optical properties in laser irradiation of biological tissue
NASA Astrophysics Data System (ADS)
Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.
1992-08-01
Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.
NASA Astrophysics Data System (ADS)
Egbunike, G. N.; Ogunmola, A. L.; Amakiri, S. F.
1983-09-01
The relative importance of dry- and wet-bulb temperatures on cutaneous function in Bos indicus and Bos taurus females under humid tropical climatic conditions was evaluated. The parameters investigated were sweating rate and skin temperature, while the species utilised were zebu White Fulani ( Bos indicus) and German Brown and German Black and White ( Bos taurus). The sweating rate, irrespective of breed, differed with the site of sampling and was more influenced by dry-bulb (59%) than by wet-bulb temperature (41%). Skin temperature responded more to wet-bulb temperature in White Fulani and German Black and White cattle, but not in German Brown cattle. It is concluded that the response of the animals, with respect to sweating, was similar but that the efficiency of sweating, judged by the lowering of skin temperature, was higher in Bos indicus than in Bos taurus. This, in part, may explain the higher degree of comfort demonstrated by Bos indicus under tropical conditions.
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.
2018-04-01
Inverse thermal analysis of Ti-6Al-4V friction stir welds is presented that demonstrates application of a methodology using numerical-analytical basis functions and temperature-field constraint conditions. This analysis provides parametric representation of friction-stir-weld temperature histories that can be adopted as input data to computational procedures for prediction of solid-state phase transformations and mechanical response. These parameterized temperature histories can be used for inverse thermal analysis of friction stir welds having process conditions similar those considered here. Case studies are presented for inverse thermal analysis of friction stir welds that use three-dimensional constraint conditions on calculated temperature fields, which are associated with experimentally measured transformation boundaries and weld-stir-zone cross sections.
NASA Astrophysics Data System (ADS)
Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.
2012-12-01
Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4oC). Both growth forms were similarly responsive to episodic rainfall, regardless of event magnitude, though mesquite were able to maintain photosynthetic function for a longer period in response to each rain. However, in the second year of the experiment a new pattern of response to moisture and high temperature stress emerged. Under dry conditions, mesquite sustained high photosynthetic rates across a wider range of atmospheric temperatures and were less responsive to rainfall, regardless of event magnitude. In contrast, the limiting effect of high temperatures on bunchgrass photosynthesis was soil moisture dependent. In this case, the effects of high temperature limitation were exaggerated under dry conditions and relaxed when soil moisture was more abundant. Together, these trends yielded a significantly greater photosynthetic assimilation by deeper-rooted mesquite shrubs than shallow-rooted bunchgrasses under both temperature regimes. Combining these aboveground measurements of carbon uptake with belowground estimates of carbon efflux will allow us to make much more informed projections of net carbon balance within mixed vegetation shrublands across a range of global climate change projections.
Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir
2016-01-01
The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI–OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI–PBI interactions this phase transition affords a pronounced color change with “fluorescence-on” response that can be utilized as a smart temperature sensory system. PMID:28451124
NASA Astrophysics Data System (ADS)
Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.
2017-12-01
Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.
Seasonal hydrologic responses to climate change in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Vano, Julie A.; Nijssen, Bart; Lettenmaier, Dennis P.
2015-04-01
Increased temperatures and changes in precipitation will result in fundamental changes in the seasonal distribution of streamflow in the Pacific Northwest and will have serious implications for water resources management. To better understand local impacts of regional climate change, we conducted model experiments to determine hydrologic sensitivities of annual, seasonal, and monthly runoff to imposed annual and seasonal changes in precipitation and temperature. We used the Variable Infiltration Capacity (VIC) land-surface hydrology model applied at 1/16° latitude-longitude spatial resolution over the Pacific Northwest (PNW), a scale sufficient to support analyses at the hydrologic unit code eight (HUC-8) basin level. These experiments resolve the spatial character of the sensitivity of future water supply to precipitation and temperature changes by identifying the seasons and locations where climate change will have the biggest impact on runoff. The PNW exhibited a diversity of responses, where transitional (intermediate elevation) watersheds experience the greatest seasonal shifts in runoff in response to cool season warming. We also developed a methodology that uses these hydrologic sensitivities as basin-specific transfer functions to estimate future changes in long-term mean monthly hydrographs directly from climate model output of precipitation and temperature. When principles of linearity and superposition apply, these transfer functions can provide feasible first-order estimates of the likely nature of future seasonal streamflow change without performing downscaling and detailed model simulations.
Reversible Self-Actuated Thermo-Responsive Pore Membrane
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-01-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563
Reversible Self-Actuated Thermo-Responsive Pore Membrane
NASA Astrophysics Data System (ADS)
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-12-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.
Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology
Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.
2014-01-01
Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.
Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter
2015-09-01
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.
Do mitochondrial properties explain intraspecific variation in thermal tolerance?
Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M
2009-02-01
As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.
Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M
2018-02-25
Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.
Cao, Zi-Quan; Wang, Guo-Jie
2016-06-01
Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M
2015-09-01
Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Diamond turning of thermoplastic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.; Scattergood, R.O.
Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.
Modelling and optimization of semi-solid processing of 7075 Al alloy
NASA Astrophysics Data System (ADS)
Binesh, B.; Aghaie-Khafri, M.
2017-09-01
The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.
Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.
Uto, K; Aoyagi, T; DeForest, C A; Ebara, M
2018-05-01
Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.
USDA-ARS?s Scientific Manuscript database
A simple hourly infection model was used for a risk assessment of citrus black spot (CBS) caused by Phyllosticta citricarpa. The infection model contained a temperature-moisture response function and also included functions to simulate ascospore release and dispersal of pycnidiospores. A validatio...
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-04-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.
Theoretical modeling of electron mobility in superfluid {sup 4}He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, Frédéric; Bonifaci, Nelly; Haeften, Klaus von
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavitymore » sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.« less
Song, Ji Eun; Cho, Eun Chul
2016-01-01
We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195
Merchant, Mark; Fleury, Lauren; Rutherford, Renee; Paulissen, Mark
2008-09-15
Fever is a non-specific host defense mechanism that comprises part of the innate immune response. Innate immune function is thought to be an important adaptive immunological response to infection because it occurs across a broad diversity of phyla. Some reptiles can mount a febrile response, despite the fact that their internal body temperatures (T(b)s) are, to some extent, controlled by the environmental temperatures in which they live. This study was undertaken to determine if LPS would induce fever in green anole lizards (Anolis carolinensis). Lizards were maintained in thermal gradients (22-45 degrees C) with a 12-h diurnal cycle. anoles were injected with LPS, pyrogen-free saline, or left untreated, and their T(b)s were recorded every 15min using internal cloacal probes. All lizards showed a diurnal periodicity in T(b) characterized by decreased temperatures during the scotophase (dark hours) and higher temperatures during the photophase (light phase). Anoles injected with LPS exhibited a hypothermic response, relative to untreated and saline-injected animals. The response varied from 2.1 to 4.6 degrees C lower than control lizards. The hypothermic response was initiated within 12-24h of LPS injection, and continued for 3 days after treatment. However, the anapyrexic response was observed primarily during scotophases, with photophase hypothermia observed only on the first day after LPS injection.
Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Bhatt, N. K.; Jani, A. R.
2011-12-01
The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni10Cr90 and Co20Cr80 alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.
NASA Astrophysics Data System (ADS)
Quetin, Gregory R.
The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning, e.g. interaction between photosynthesis and temperature, can also acclimate to different climatological states. The combination of these two factors thus determines ecological-climate interactions. The ecosystem functioning also plays a key role in predicting the carbon cycle, hydrological cycle, terrestrial surface energy balance, and the feedbacks in the climate system. Predicting the response of the Earth's biosphere to global warming requires the ability to mechanistically represent the processes controlling ecosystem functioning through photosynthesis, respiration, and water use. The physical environment in a place shapes the vegetation there, but vegetation also has the potential to shape the environment, e.g. increased photosynthesis and transpiration moisten the atmosphere. These two-way ecoclimate interactions create the potential for feedbacks between vegetation at the physical environment that depend on the vegetation and the climate of a place, and can change throughout the year. In Chapter 1, we derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness to interannual variations in temperature and precipitation. We infer mechanisms constraining ecosystem functioning by analyzing how the sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation transitions in sign (greener when warmer or drier to greener when cooler or wetter) along an emergent line in climate space with a slope of about 59 mm/yr/°C, twice as steep as contours of aridity. The mismatch between these slopes is evidence at a global scale of the limitation of both water supply due to inefficiencies in plant access to rainfall, and plant physiological responses to atmospheric water demand. This empirical pattern can provide a functional constraint for process-based models, helping to improve predictions of the global-scale response of vegetation to a changing climate. In Chapter 2, we use observations of vegetation interaction with the physical environment to identify where ecosystem functioning is well simulated in an ensemble of Earth system models. We leverage this data-model comparison to hypothesize which physiological mechanisms--photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability--dominate the ecosystem response in places with different climates. The models are generally successful in reproducing the broad sign and shape of ecosystem function across climate space except for simulating generally lower leaf area during warmer years in places with hot wet climates. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models. Finally, models and observations share an abrupt threshold between dry regions and wet regions where strong positive vegetation response to precipitation falls to nearly zero in places receiving around 1000 mm/year. In Chapter 3, we investigate how ecoclimate interactions change across seasons in the Amazon basin. We use observations of solar induced fluorescence from the Orbiting Carbon Observatory 2 (OCO2) to statistically analyze the sensitivity of fluorescence to synoptic variations in temperature and precipitation. In addition to studying the sensitivity of vegetation to climate across seasons, we use OCO2 measurements of total column water vapor (TCWV) and CO2 concentration (XCO2) to investigate the influence of the Amazon basin vegetation on the CO2 concentration and water vapor of the atmosphere leaving the basin. Our analysis determines the seasonal importance of vegetation activity on the outflow of CO2 from the Amazon basin, while providing evidence that transpiration is primarily driven by variations in temperature during the dry season, rather than photosynthesis. We establish a statistical relationship between fluorescence (as a proxy for vegetation photosynthesis), temperature, and precipitation, as well as the difference between the outflow of atmospheric water vapor from the inflow water vapor, basin fluorescence, temperature, and precipitation.
Silicon carbide semiconductor technology for high temperature and radiation environments
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.
1993-01-01
Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.
Title: Freshwater phytoplankton responses to global warming.
Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian
2016-09-20
Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.
Spin Multiphoton Antiresonance at Finite Temperatures
NASA Astrophysics Data System (ADS)
Hicke, Christian; Dykman, Mark
2007-03-01
Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.
NASA Astrophysics Data System (ADS)
Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.
2017-05-01
During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.
Kumar, Raushan; Xavier, Ka Martin; Lekshmi, Manjusha; Dhanabalan, Vignaesh; Thachil, Madonna T; Balange, Amjad K; Gudipati, Venkateshwarlu
2018-04-01
Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg -1 ) and feed moisture (140-200 g kg -1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg -1 and Acetes inclusion level 146.7 g kg -1 was found to be the best one based on sensory evaluation. The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.
Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle
2015-12-01
Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. © 2015 John Wiley & Sons Ltd.
Marchin, Renée M; Salk, Carl F; Hoffmann, William A; Dunn, Robert R
2015-08-01
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6-5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5-15 days and delayed leaf coloring by 18-21 days, resulting in an extension of the growing season by as much as 20-29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring-porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse-porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring-porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10-16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring-blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology. © 2015 John Wiley & Sons Ltd.
Transcriptomic responses to high water temperature in two species of Pacific salmon
Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Pavlidis, Paul; Miller, Kristi M
2014-01-01
Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant ‘cool’ or ‘warm’ water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon. PMID:24567748
Roessingh, Sanne; Stanewsky, Ralf
2017-10-03
trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster . Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.
NASA Technical Reports Server (NTRS)
Chen, I. M.; Anderson, R. E.
1971-01-01
A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.
Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.
Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L
2007-09-15
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.
Proteome analysis of the Escherichia coli heat shock response under steady-state conditions
Lüders, Svenja; Fallet, Claas; Franco-Lara, Ezequiel
2009-01-01
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date. PMID:19772559
A dynamic model for plant growth: validation study under changing temperatures
NASA Technical Reports Server (NTRS)
Wann, M.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1984-01-01
A dynamic simulation model to describe vegetative growth of plants, for which some functions and parameter values have been estimated previously by optimization search techniques and numerical experimentation based on data from constant temperature experiments, is validated under conditions of changing temperatures. To test the predictive capacity of the model, dry matter accumulation in the leaves, stems, and roots of tobacco plants (Nicotiana tabacum L.) was measured at 2- or 3-day intervals during a 5-week period when temperatures in controlled-environment rooms were programmed for changes at weekly and daily intervals and in ascending or descending sequences within a range of 14 to 34 degrees C. Simulations of dry matter accumulation and distribution were carried out using the programmed changes for experimental temperatures and compared with the measured values. The agreement between measured and predicted values was close and indicates that the temperature-dependent functional forms derived from constant-temperature experiments are adequate for modelling plant growth responses to conditions of changing temperatures with switching intervals as short as 1 day.
Experimental Determination of Linear Dynamics of Two-Spool Turbojet Engines
NASA Technical Reports Server (NTRS)
Novik, David; Heppler, Herbert
1954-01-01
Transfer functions descriptive of the response of most engine variables were determined from transient data that were obtained from approximate step inputs in fuel flow and in exhaust-nozzle area. The speed responses of both spools to fuel flow and to turbine-inlet temperature appeared as identical first-order lags. Response to exhaust-nozzle area was characterized by a first-order lag response of the outer-spool speed, accompanied by virtually no change in inner-spool speed.
Global depression in gene expression as a response to rapid thermal changes in vent mussels
Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier
2009-01-01
Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin. PMID:19515664
Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
Kwon, H W; Choi, M Y
2014-01-07
Stomata respond in a common pattern to various hydraulic perturbations on any part of the 'soil-plant-air' system: initial transient 'wrong-way' responses and final stationary 'right-way' responses. In order to describe this pattern on the basis of statistical physics, we propose a simple model where turgor pressure of a cell is taken to be a power function of its volume, and obtain results in qualitative agreement with experimental data for responses to a variety of hydraulic perturbations: Firstly, stationary stomatal conductance as a function of the vapor pressure deficit divides into three regimes characterized by sensitivities of the stomatal conductance and the transpiration rate with respect to vapor pressure deficit; secondly, for every hydraulic perturbation, the initial transient 'wrong-way' responses always appear; thirdly, on condition that water is supplied insufficiently, stomatal oscillations are often observed; finally, stomatal responses following leaf excision exhibit, after the initial transient wrong-way responses, slow relaxation to stomatal closing. In particular, comparison of areoles having different numbers of stomata demonstrates that areoles with small numbers of stomata tend to provoke lack of water in the soil as well as in the plant. In addition, our model also describes well dependence of the stomatal conductance on temperature. It may be extended further to describe stomatal responses to other environmental factors such as carbon dioxide, light, and temperature. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
NASA Astrophysics Data System (ADS)
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
A Scaling Model for the Anthropocene Climate Variability with Projections to 2100
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2017-04-01
The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.
Modeling non-linear growth responses to temperature and hydrology in wetland trees
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2016-12-01
Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.
Heat stress-induced effects of photosystem I: an overview of structural and functional responses.
Ivanov, Alexander G; Velitchkova, Maya Y; Allakhverdiev, Suleyman I; Huner, Norman P A
2017-09-01
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
1/f noise: diffusive systems and music
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, R.F.
1975-11-01
Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region inmore » the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)« less
Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence
2015-12-01
Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rutherford, David W.; Wershaw, Robert L.; Reeves, James B.
2008-01-01
Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.
Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.
Sun, Changfeng; Liu, Yu
2016-01-01
The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.
Understanding Biological Rates and their Temperature Dependence, from Enzymes to Ecosystems
NASA Astrophysics Data System (ADS)
Prentice, E.; Arcus, V. L.
2017-12-01
Temperature responses over various scales in biological systems follow a similar pattern; negative curvature results in an optimum temperature (Topt) for activity/growth/turnover, with decreases in rates on either side of Topt. Previously this downturn in rates at high temperatures has been attributed to enzyme denaturation, where a failing of the basic driving units of metabolism was used to describe curvature at the enzyme and organism level. However, recent developments in our understanding of the factors governing enzyme rates at different temperatures have guided a new understanding of the responses of biological systems. Enzymes catalyse reactions by driving the substrate through a high energy species, which is tightly bound to the enzyme. Macromolecular rate theory (MMRT) has recently been developed to account for the changes in the system brought about by this tight binding, specifically the change in the physical parameter heat capacity (ΔCǂp), and the effect this has on the temperature dependence of enzyme reactions. A negative ΔCǂp imparts the signature negative curvature to rates in the absence of denaturation, and finds that Topt, ΔCǂp and curvature are all correlated, placing constraints on biological systems. The simplest of cells comprise thousands of enzymatically catalysed reactions, functioning in series and in parallel in metabolic pathways to determine the overall growth rate of an organism. Intuitively, the temperature effects of enzymes play a role in determining the overall temperature dependence of an organism, in tandem with cellular level regulatory responses. However, the effect of individual Topt values and curvature on overall pathway behaviour is less apparent. Here, this is investigated in the context of MMRT through the in vitro characterisation of a six-step metabolic pathway to understand the steps in isolation and functioning in series. Pathway behaviour is found to be approximately an average of the properties of the individual steps, indicating all enzymes have an influence on organism temperature dependence. This has implications for our understanding of how organisms respond to fluctuations in environmental temperature.
Barman, Kalyan; Asrey, Ram; Pal, R K; Kaur, Charanjit; Jha, S K
2014-01-01
Functional properties (anthocyanins, antioxidant, ascorbic acid and tannin) and sensory score were determined in pomegranate fruits at two storage temperatures (3 and 5 °C) after treatment with 2 mM putrescine and 1 : 10 carnauba wax (carnauba wax : water). The treatments (putrescine and carnauba wax) were given by immersion method followed by storage up to 60 days. Both treatments retained significantly higher anthocyanins, antioxidant, ascorbic acid, tannin and sensory qualities as compared with control fruits under both the storage conditions. Combined application of putrescine + carnauba wax showed better response in retaining functional properties than putrescine treated or nontreated fruits. The impacts of putrescine and carnauba wax treatments were found more pronounced after 30 days at 3-5 °C storage temperature in retaining functional and sensory qualities. After 60 days of storage, putrescine + carnauba wax retained about 25% higher antioxidant activity both at 3 and 5 °C storage temperatures.
Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria
2013-12-01
Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.
NASA Technical Reports Server (NTRS)
Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Luna, Bernadette; Webbon, Bruce W.; Mead, Susan C. (Technical Monitor)
1999-01-01
Personal cooling systems are widely used in industrial and aerospace environments to alleviate thermal stress. Increasingly they are also used by heat sensitive multiple sclerosis (HSMS) patients to relieve symptoms and improve quality of life. There are a variety of cooling systems commercially available to the MS community. However, little information is available regarding the comparative physiological changes produced by routine operation of these various systems. The objective of this study was to document and compare the patient response to two passive cooling vests and one active cooling garment. The Life Enhancement Technology, Inc. (LET) lightweight active cooling vest with cap, the MicroClimate Systems (MCS) Change of Phase garment, and the Steele Vest were each used to cool 13 male and 13 female MS subjects (31 to 67 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 C), were tested with one of the cooling garments. Oral, fight and left ear temperatures were logged manually every 5 min. An-n, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. Each subject was given a series of subjective and objective evaluation tests before and after cooling. The LET and Steele vests test groups had similar, significant (P less than 0.01) cooling effects on oral and ear canal temperature, which decreased approximately 0.4 C, and 0.3 C, respectively. Core temperature increased (N.S.) with all three vests during cooling. The LET vest produced the coldest (P less than 0.01) skin temperature. Overall, the LET vest provided the most improvement on subjective and objective performance measures. These results show that the garment configurations tested do not elicit a similar thermal response in all MS patients. Cooling with the LET active garment configuration resulted in the lowest body temperatures for the MS subjects; cooling with the MCS vest was least effective. For functional responses, the LET test group performed better than the other two vests.
A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor
Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel
2014-01-01
A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771
NASA Astrophysics Data System (ADS)
Wang, Hailong; Guan, Huade; Deng, Zijuan; Simmons, Craig T.
2014-07-01
Canopy conductance (gc) is a critical component in hydrological modeling for transpiration estimate. It is often formulated as functions of environmental variables. These functions are climate and vegetation specific. Thus, it is important to determine the appropriate functions in gc models and corresponding parameter values for a specific environment. In this study, sap flow, stem water potential, and microclimatic variables were measured for three Drooping Sheoak (Allocasuarina verticillata) trees in year 2011, 2012, and 2014. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine 36 gc models that comprise different response functions. Parameters were optimized using the DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training data set in 2012. Use of proper predawn stem water potential function, vapor pressure deficit function, and temperature function improves model performance significantly, while no pronounced difference is observed between models that differ in solar radiation functions. The best model gives a correlation coefficient of 0.97, and root-mean-square error of 0.0006 m/s in comparison to the PM-calculated gc. The optimized temperature function shows different characteristics from its counterparts in other similar studies. This is likely due to strong interdependence between air temperature and vapor pressure deficit in the study area or Sheoak tree physiology. Supported by the measurements and optimization results, we suggest that the effects of air temperature and vapor pressure deficit on canopy conductance should be represented together.
An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform
Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong
2016-01-01
The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints. PMID:27417734
Key ecological responses to nitrogen are altered by climate change
Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity.
Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E
2018-03-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.
2018-01-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.
2010-01-01
We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.
Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults.
Wu, Shaowei; Deng, Furong; Liu, Youcheng; Shima, Masayuki; Niu, Jie; Huang, Qinsheng; Guo, Xinbiao
2013-01-01
Both ambient temperature and air pollution have been associated with alterations in cardiac autonomic function, but the responsive patterns associated with temperature exposure and the interactive effects of temperature and air pollution remain largely unclear. We investigated the associations between personal temperature exposure and cardiac autonomic function as reflected by heart rate variability (HRV) in a panel of 14 healthy taxi drivers in the context of traffic-related air pollution. We collected real-time data on study subjects' in-car exposures to temperature and traffic-related air pollutants including particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and carbon monoxide (CO) and HRV indices during work time (8:30-21:00) on 48 sampling days in the warm season (May-September) and cold season (October-March). We applied mixed-effects models and loess models adjusting for potential confounders to examine the associations between temperature and HRV indices. We found nonlinear relationships between temperature and HRV indices in both the warm and cold seasons. Linear regression stratified by temperature levels showed that increasing temperature levels were associated with declines in standard deviation of normal-to-normal intervals over different temperature strata and increases in low-frequency power and low-frequency:high-frequency ratio in higher temperature range (>25 °C). PM(2.5) and CO modified these associations to various extents. Temperature was associated with alterations in cardiac autonomic function in healthy adults in the context of traffic-related air pollution. Copyright © 2012 Elsevier Inc. All rights reserved.
Wada, Haruka; Kriengwatana, Buddhamas; Allen, Natalie; Schmidt, Kimberly L; Soma, Kiran K; MacDougall-Shackleton, Scott A
2015-09-01
In birds, incubation temperature can vary by several degrees Celsius among nests of a given species. Parents may alter incubation temperature to cope with environmental conditions and/or to manipulate embryonic development, and such changes in incubation behavior could have long-lasting effects on offspring phenotype. To investigate short- and long-term effects of suboptimal incubation temperatures on survival and physiological functions in zebra finches, eggs were incubated at 36.2, 37.4 or 38.4 °C for the entire incubation period. The post-hatch environment was identical among the treatment groups. We found that hatching success was lowest in the 38.4 °C group, while post-hatch survival was lowest in the 36.2 °C group. Incubation temperature had sex-specific effects on offspring phenotype: incubation temperatures affected body mass (Mb) but not physiological parameters of males and conversely, the physiological parameters but not Mb of females. Specifically, males from the 38.4 °C group weighed significantly less than males from the 36.2 °C group from the nestling period to adulthood, whereas females from different incubation temperature groups did not differ in Mb. In contrast, females incubated at 36.2 °C had transient but significantly elevated basal metabolic rate and adrenocortical responses during the nestling and fledgling periods, whereas no treatment effect was observed in males. Innate immunity was not affected by incubation temperature in either sex. These results suggest that a 1 °C deviation from what is considered an optimal incubation temperature can lower offspring performance and offspring survival. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Said, Magdi A.
2004-01-01
The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.
NASA Astrophysics Data System (ADS)
Cao, X.; Du, A.
2014-12-01
We statistically studied the response time of the SYMH to the solar wind energy input ɛ by using the RFA approach. The average response time was 64 minutes. There was no clear trend among these events concerning to the minimum SYMH and storm type. It seems that the response time of magnetosphere to the solar wind energy input is independent on the storm intensity and the solar wind condition. The response function shows one peak even when the solar wind energy input and the SYMH have multi-peak. The response time exhibits as the intrinsic property of the magnetosphere that stands for the typical formation time of the ring current. This may be controlled by magnetospheric temperature, average number density, the oxygen abundance et al.
Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.
Schulte, Patricia M; Healy, Timothy M; Fangue, Nann A
2011-11-01
Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1983-01-01
Satellite data collected over Lake Ontario were processed to observed surface temperature values. This involved computing apparent radiance values for each point where surface temperatures were known from averaged digital count values. These radiance values were then converted by using the LOWTRAN 5A atmospheric propagation model. This model was modified by incorporating a spectral response function for the LANDSAT band 6 sensors. A downwelled radiance term derived from LOWTRAN was included to account for reflected sky radiance. A blackbody equivalent source radiance was computed. Measured temperatures were plotted against the predicted temperature. The RMS error between the data sets is 0.51K.
Gas selectivity of SILAR grown CdS nano-bulk junction
NASA Astrophysics Data System (ADS)
Jayakrishnan, R.; Nair, Varun G.; Anand, Akhil M.; Venugopal, Meera
2018-03-01
Nano-particles of cadmium sulphide were deposited on cleaned copper substrate by an automated sequential ionic layer adsorption reaction (SILAR) system. The grown nano-bulk junction exhibits Schottky diode behavior. The response of the nano-bulk junction was investigated under oxygen and hydrogen atmospheric conditions. The gas response ratio was found to be 198% for Oxygen and 34% for Hydrogen at room temperature. An increase in the operating temperature of the nano-bulk junction resulted in a decrease in their gas response ratio. A logarithmic dependence on the oxygen partial pressure to the junction response was observed, indicating a Temkin isothermal behavior. Work function measurements using a Kelvin probe demonstrate that the exposure to an oxygen atmosphere fails to effectively separate the charges due to the built-in electric field at the interface. Based on the benefits like simple structure, ease of fabrication and response ratio the studied device is a promising candidate for gas detection applications.
Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.
Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon
2018-01-01
Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-01-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods. PMID:28429796
Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran
2013-11-01
Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4 weeks. The temperature response curve was almost flat over much of the temperature range. A shift in temperature optimum had thus an insignificant effect on modelled annual shoot C uptake. The combined temperature and [CO2] treatment resulted in a 74% increase in annual shoot C uptake compared with ambient conditions, with no clear interactive effects on parameter values.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1974-01-01
Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.
Rocker, Melissa M; Noonan, Sam; Humphrey, Craig; Moya, Aurelie; Willis, Bette L; Bay, Line K
2015-12-01
Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Xie, Nuli; Huang, Jin; Yang, Xiaohai; He, Xiaoxiao; Liu, Jianbo; Huang, Jiaqi; Fang, Hongmei; Wang, Kemin
2017-11-21
Accurate measurement of intracellular temperature is of great significance in biology and medicine. With use of DNA nanotechnology and inspiration by nature's examples of "protective and reversible responses" exoskeletons, a scallop-inspired DNA nanomachine (SDN) is desgined as a ratiometric nanothermometer for intracellular temperature sensing. The SDN is composed of a rigid DNA tetrahedron, where a thermal-sensitive molecular beacon (MB) is embedded in one edge of the DNA tetrahedron. Relying on the thermal-sensitive MB and fluorescence resonance energy transfer (FRET) signaling mechanism, the "On" to "Off" signal is reversibly responding to "below" and "over" the melting temperature. Mimicking the functional anatomy of a scallop, the SDN exhibits high cellular permeability and resistance to enzymatic degradation, good reversibility, and tunable response range. Furthermore, FRET ratiometric signal that allows the simultaneous recording of two emission intensities at different wavelengths can provide a feasible approach for precise detection, minimizing the effect of system fluctuations.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2010-01-01
A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
A thermosensory pathway that controls body temperature
Nakamura, Kazuhiro; Morrison, Shaun F.
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions governed by the nervous system. Here we show a novel somatosensory pathway, which essentially constitutes the afferent arm of the thermoregulatory reflex triggered by cutaneous sensation of environmental temperature changes. Using rat in vivo electrophysiological and anatomical approaches, we revealed that lateral parabrachial neurons play a pivotal role in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this ‘thermoregulatory afferent’ pathway exists in parallel with the spinothalamocortical somatosensory pathway mediating temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms fundamental to the nervous system and to our survival. PMID:18084288
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
A thermosensory pathway that controls body temperature.
Nakamura, Kazuhiro; Morrison, Shaun F
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary
2006-01-01
This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.
Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera
NASA Astrophysics Data System (ADS)
Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.
2005-01-01
The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.
The study of electrical conduction mechanisms. [dielectric response of lunar fines
NASA Technical Reports Server (NTRS)
Morrison, H. F.
1974-01-01
The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.
Morphological variation of stimuli-responsive polypeptide at air-water interface
NASA Astrophysics Data System (ADS)
Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho
2016-12-01
The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.
Kim, Joo-Young; Ryu, Jae Yong; Baek, Kon; Park, Chung-Mo
2016-01-01
In higher plants, gravitropism proceeds through three sequential steps in the responding organs: perception of gravity signals, signal transduction and asymmetric cell elongation. Light and temperature also influence the gravitropic orientation of plant organs. A series of Arabidopsis shoot gravitropism (sgr) mutants has been shown to exhibit disturbed shoot gravitropism. SGR5 is functionally distinct from other SGR members in that it mediates the early events of gravitropic responses in inflorescence stems. Here, we demonstrated that SGR5 alternative splicing produces two protein variants (SGR5α and SGR5β) in modulating the gravitropic response of inflorescence stems at high temperatures. SGR5β inhibits SGR5α function by forming non-DNA-binding heterodimers. Transgenic plants overexpressing SGR5β (35S:SGR5β) exhibit reduced gravitropic growth of inflorescence stems, as observed in the SGR5-deficient sgr5-5 mutant. Interestingly, SGR5 alternative splicing is accelerated at high temperatures, resulting in the high-level accumulation of SGR5β transcripts. When plants were exposed to high temperatures, whereas gravitropic curvature was reduced in Col-0 inflorescence stems, it was uninfluenced in the inflorescence stems of 35S:SGR5β transgenic plants and sgr5-5 mutant. We propose that the thermoresponsive alternative splicing of SGR5 provides an adaptation strategy by which plants protect the shoots from hot air under high temperature stress in natural habitats. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Effects of changing climate on European stream invertebrate communities: A long-term data analysis.
Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter
2018-04-15
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.
Kokolus, Kathleen M.; Spangler, Haley M.; Povinelli, Benjamin J.; Farren, Matthew R.; Lee, Kelvin P.; Repasky, Elizabeth A.
2013-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function. PMID:24575090
Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A
2014-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.
NASA Astrophysics Data System (ADS)
Wu, S. H.; Jansson, P.-E.
2012-05-01
Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.
Tolman, C J; Kanodia, S; Roberts, M F
1987-08-15
The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.
Radiometric characterization of an LWIR, type-II strained layer superlattice pBiBn photodetector
NASA Astrophysics Data System (ADS)
Treider, L. A.; Morath, C. P.; Cowan, V. M.; Tian, Z. B.; Krishna, S.
2015-05-01
Type-II Strained Layer Superlattice (T2SLS) infrared photodetectors have been in development over the last decade. T2SLS offers a theoretically longer Auger recombination lifetime than traditional mercury cadmium telluride (MCT), which presumably translates to infrared detectors with lower dark-current and higher operating temperatures. However, these improvements did not materialize due to the presence of Shockley-Read-Hall (SRH) defects in T2SLSs, which limits the recombination lifetime well below the Auger-limit. With the recent introduction of the pBiBn, and other similar unipolar barrier detectors, T2SLS material has seen renewed interest since these designs ideally eliminate the SRH-generation and surface currents while retaining the other potential advantages of T2SLS: reduced manufacturing cost, better availability of a durable state-side manufacturing base, ability to tune the cutoff wavelength, and better uniformity. Here, an electrical and optical characterization of a long-wave, pBiBn detector with a T2SLS absorber is presented. Dark-current, spectral response and optical response were measured as functions of temperature and bias. Activation energy was then determined as a function of bias from the dark-current measurements. Quantum efficiency was also determined as a function of bias from the optical response measurements. Additionally, noise spectrum measurements were taken as a function of bias.
Gregor, M. C.; Boni, R.; Sorce, A.; ...
2016-11-29
Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregor, M. C.; Boni, R.; Sorce, A.
Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less
Nairan, Adeela; Khan, Maaz; Khan, Usman; Iqbal, Munawar; Riaz, Saira; Naseem, Shahzad
2016-04-18
In this work Mn x Co 1- x Fe₂O₄ nanoparticles (NPs) were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD). Transmission electron microscopy (TEM) reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR) spectrum was measured in the range of 400-4000 cm -1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM) and ferromagnet (FM) structure were investigated with the aid of a physical property measurement system (PPMS). It was observed that magnetic interactions between the AFM (Mn) and FM (CoFe₂O₄) material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; ...
2016-02-12
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
NASA Astrophysics Data System (ADS)
Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.
2014-12-01
In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon forests will be assessed, where it is expected that predicted die-back will be less.
Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria
Johnson, Carl Hirschie; Egli, Martin
2014-01-01
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782
Nonlinear responses of chiral fluids from kinetic theory
NASA Astrophysics Data System (ADS)
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.
Practical deviations from Henry`s law for water/air partitioning of volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schabron, J.F.; Rovani, J.F. Jr.
A study was conducted to define parameters relating to the use of a down hole submersible photoionization detector (PID) probe to measure volatile organic compounds (VOCs) in an artificial headspace. The partitioning of toluene and trichloroethylene between water and air was studied as a function of analyte concentration and water temperature. The Henry`s law constant governing this partitioning represents an ideal condition at infinite dilution for a particular temperature. The results show that in practice. this partitioning is far from ideal. Conditions resulting in apparent, practical deviations from Henry`s law include temperature and VOC concentration. Thus, a single value ofmore » Henry`s law constant for a particular VOC such as toluene can provide only an approximation of concentration in the field. Detector response in saturated humidity environments as a function of water temperature and analyte concentration was studied also.« less
USDA-ARS?s Scientific Manuscript database
Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...
Differences in 5-HT1A receptor-mediated hypothermia in rats with low or high exploratory activity.
Kõiv, Kadri; Harro, Jaanus
2010-12-01
Alterations in the serotonin (5-HT) system and the 5-HT1A receptor function have a significant role in anxiety-related and depression-related states. This study investigated the stress-induced hyperthermia (SIH) response and sensitivity to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetraline in rats with persistently low or high levels of exploratory activity (LE and HE, respectively), of which the LE rats show more anxiety-like and depressive-like phenotypes. No differences in the SIH in response to novel cage or injection stress were found using rectal temperature measurements. However, the LE rats had significantly less pronounced decreases in SIH in response to the 0.3 mg/kg dose of 8-hydroxy-2-(di-n-propylamino)-tetraline. Exploratory behaviour correlated significantly and positively with the magnitude of change in body temperature in response to the 5-HT1A receptor agonist. This finding suggests a less effective 5-HT1A function in the LE rats and implicates the 5-HT1A receptor in the anxiety component of passive behaviour in novel surroundings.
2017-01-01
trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour. PMID:28972543
ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K
NASA Astrophysics Data System (ADS)
Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J. A.; Dressel, M.
2015-03-01
The organic conductor κ-(BEDT-TTF)2Cu2(CN)3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound.
Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi
2017-10-01
Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.
Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu
2017-01-01
Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain’s normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored. PMID:28981509
Keen, Adam N.; Crossley, Dane A.
2016-01-01
Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in the slider turtle. PMID:27101300
Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan; ...
2015-01-01
Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essentialmore » for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jingcheng; Wei, Hehong; Tian, Chunyuan
Background: Bacteria use alternative sigma factors (σs) to regulate condition-specific gene expression for survival and Shewanella harbors multiple ECF (extracytoplasmic function) σ genes and cognate anti-sigma factor genes. Here we comparatively analyzed two of the rpoE-like operons in the strain MR-1: rpoE-rseA-rseB-rseC and rpoE2-chrR. Results: RpoE was important for bacterial growth at low and high temperatures, in the minimal medium, and high salinity. The degP/htrA orthologue, required for growth of Escherichia coli and Pseudomonas aeruginosa at high temperature, is absent in Shewanella, while the degQ gene is RpoE-regulated and is required for bacterial growth at high temperature. RpoE2 was essentialmore » for the optimal growth in oxidative stress conditions because the rpoE2 mutant was sensitive to hydrogen peroxide and paraquat. The operon encoding a ferrochelatase paralogue (HemH2) and a periplasmic glutathione peroxidase (PgpD) was identified as RpoE2-dependent. PgpD exhibited higher activities and played a more important role in the oxidative stress responses than the cytoplasmic glutathione peroxidase CgpD under tested conditions. The rpoE2-chrR operon and the identified regulon genes, including pgpD and hemH2, are coincidently absent in several psychrophilic and/or deep-sea Shewanella strains. Conclusion: In S. oneidensis MR-1, the RpoE-dependent degQ gene is required for optimal growth under high temperature. The rpoE2 and RpoE2-dependent pgpD gene encoding a periplasmic glutathione peroxidase are involved in oxidative stress responses. But rpoE2 is not required for bacterial growth at low temperature and it even affected bacterial growth under salt stress, indicating that there is a tradeoff between the salt resistance and RpoE2-mediated oxidative stress responses.« less
The effect of prolonged light intensity exercise in the heat on executive function.
Parker, Sarah M; Erin, Jennifer R; Pryor, Riana R; Khorana, Priya; Suyama, Joe; Guyette, Frank X; Reis, Steven E; Hostler, David
2013-09-01
When people are involved in outdoor activities, it is important to be able to assess a situation and make rational decisions. The goal of this study is to determine the effects of 90 minutes of light-intensity exercise in a hot environment on executive functioning capabilities of healthy individuals. In this prospective laboratory study, 40 healthy male and female subjects 18 to 45 years of age performed treadmill exercise while wearing athletic clothing and a backpack in either a hot or temperate environment. Vital signs, core and skin temperature, and perceptual measures (thermal sensation, sweating, comfort, and perceived exertion) were measured before, during, and after the treadmill test. Cognitive function was measured before and after the treadmill test using the Wisconsin Card Sorting Test (WCST) and a Psychomotor Vigilance Test (PVT). Subjects in the hot condition reached a similar core temp of 38.2° ± 0.5°C vs 37.7° ± 0.3°C (P = .325) in the temperate group but had a higher heart rate (P < .001) and skin temperature (P < .001). Hot and normal temperature groups did not differ in their PVT performance. There were more correct responses (P < .001), fewer errors (P < .001), and more conceptual responses (P = .001) on the WCST after exertion in both the hot room and normal temperature room conditions. Perseverations and perseverative errors (P = .002) decreased in both groups after exertion. Conditions of mild heat stress coupled with modest rehydration and short hiking treks do not appear to negatively affect executive function or vigilance. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Zhong, Ming; Huang, Ke-Long; Zeng, Jian-Guo; Li, Shuang; She, Jin-Ming; Li, Guiyin; Zhang, Li
2010-07-01
The purpose of the research was to investigate the multiple response optimizations for the extraction of protopine and allocryptopine from the stems of Macleaya cordata (Willd) R. Br. by using microwave-assisted extraction (MAE). A three-level, three-factor Box-Behnken design of response surface methodology was used to develop response model, and desirability function was employed to optimize the effects of main extraction parameters. Three variables, ethanol concentration (20-80%, v/v), extraction temperature (30-70 degrees C) and solvent/solid ratio (10:1 to 30:1, mL/g), were investigated in this study. The results showed that the optimum parameters of MAE were ethanol concentration of 45.2 % (v/v), extraction temperature of 54.7 degrees C and solvent/solid ratio of 20.4:1 (mL/g). Under these conditions, the extraction yields of protopine and allocryptopine were 89.4 and 102.0%, respectively, and the extracta sicca yield was 12.5%. The combination use of response surface methodology, Box-Behnken design and the appropriate desirability function could provide an insight into a lab-scale MAE process, and help to develop procedures for commercial production of active ingredients from medical plants.
Zhang, Yueqiang; O'Brien, William G; Zhao, Zhaoyang; Lee, Cheng Chi
2015-09-04
Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5'-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport. Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice. Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.
Enhanced electron emission from coated metal targets: Effect of surface thickness on performance
NASA Astrophysics Data System (ADS)
Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi
2018-03-01
In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.
Temperature-dependent microindentation data of an epoxy composition in the glassy region
NASA Astrophysics Data System (ADS)
Minster, Jiří; Králík, Vlastimil
2015-02-01
The short-term instrumented microindentation technique was applied for assessing the influence of temperature in the glassy region on the time-dependent mechanical properties of an average epoxy resin mix near to its native state. Linear viscoelasticity theory with the assumption of time-independent Poisson ratio value forms the basis for processing the experimental results. The sharp standard Berkovich indenter was used to measure the local mechanical properties at temperatures 20, 24, 28, and 35 °C. The short-term viscoelastic compliance histories were defined by the Kohlrausch-Williams-Watts double exponential function. The findings suggest that depth-sensing indentation data of thermorheologically simple materials influenced by different temperatures in the glassy region can also be used, through the time-temperature superposition, to extract viscoelastic response functions accurately. This statement is supported by the comparison of the viscoelastic compliance master curve of the tested material with data derived from standard macro creep measurements under pressure on the material in a conformable state.
Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.
2011-12-12
The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function aremore » in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.« less
Eisenach, James C.; Ririe, Douglas G.
2015-01-01
The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873
Temperature-dependent excitonic effects in the optical properties of single-layer MoS2
NASA Astrophysics Data System (ADS)
Molina-Sánchez, Alejandro; Palummo, Maurizia; Marini, Andrea; Wirtz, Ludger
2016-04-01
Temperature influences the performance of two-dimensional (2D) materials in optoelectronic devices. Indeed, the optical characterization of these materials is usually realized at room temperature. Nevertheless, most ab initio studies are still performed without including any temperature effect. As a consequence, important features are thus overlooked, such as the relative height of the excitonic peaks and their broadening, directly related to the temperature and to the nonradiative exciton relaxation time. We present ab initio calculations of the optical response of single-layer MoS2, a prototype 2D material, as a function of temperature using density functional theory and many-body perturbation theory. We compute the electron-phonon interaction using the full spinorial wave functions, i.e., fully taking into account the effects of spin-orbit interaction. We find that bound excitons (A and B peaks) and resonant excitons (C peak) exhibit different behavior with temperature, displaying different nonradiative linewidths. We conclude that the inhomogeneous broadening of the absorption spectra is mainly due to electron-phonon scattering mechanisms. Our calculations explain the shortcomings of previous (zero-temperature) theoretical spectra and match well with the experimental spectra acquired at room temperature. Moreover, we disentangle the contributions of acoustic and optical phonon modes to the quasiparticles and exciton linewidths. Our model also allows us to identify which phonon modes couple to each exciton state, which is useful for the interpretation of resonant Raman-scattering experiments.
Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.
2015-01-01
Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738
Battery model for electrical power system energy balance
NASA Technical Reports Server (NTRS)
Hafen, D. P.
1983-01-01
A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.
Zr Extrusion – Direct Input for Models & Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen Kathleen
As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallepp, G.W.
1977-07-01
Larvae of the stream caddisflies, Brachycentrus americanus and Brachycentrus occidentalis, were studied in eight simulated stream channels to determine their behavioral responses to temperature, food availability (brine shrimp) and current velocity. For both species, filtering, withdrawn and case-building were the primary behavior patterns of larvae that had attached their cases to the substrate. Most larvae not attached to the substrate were crawling or holding. As temperatures increased above 8 C, B. occidentalis larvae filtered more frequantly; but above 20 C the percentage of larvae filtering steadily decreased and the percentage withdrawn increased dramatically with increasing temperature. Percentages of larvae case-buildingmore » and unattached generally decreased over the range of 4 to 27 C. Despite this decrease in case-building, B. occidentalis larvae generally grew faster as temperature increased from 4 to 16 C. Behavior of B. americanus as a function of temperature was similar to behavior of B. occidentalis. Both species responded to decreased ration by increasing the percentage of time filtering. Although many larvae were unattached and probably grazing in Lawrence Creek, few larvae were unattached in the laboratory, even at the lowest ration (1.2 percent of the body weight per day). Growth and case-building activity of B. americanus larvae were directly related to ration. Over the range of current velocities of 7 to 26 cm/sec, behavior of B. occidentalis changed little. At 5 cm/sec fewer larvae filtered and more were unattached; this suggested a threshold response to current velocity. Increasing temperatures from 10 to 20 C caused the percentage withdrawn at low velocities to increase; however, this trend was hardly noticeable at velocities above 10 cm/sec. In these tests, Brachycentrus were more responsive to temperature and food availability than to current velocity.« less
Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
Pollo, Stephen M J; Zhaxybayeva, Olga; Nesbø, Camilla L
2015-09-01
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses.
Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses. PMID:29107972
Hawking radiation, Unruh radiation, and the equivalence principle.
Singleton, Douglas; Wilburn, Steve
2011-08-19
We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society
Strain engineered barium strontium titanate for tunable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khassaf, H.; Khakpash, N.; Sun, F.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.
2012-01-01
Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data
Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment
NASA Astrophysics Data System (ADS)
Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan
2006-10-01
The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.
Naraballobh, Watcharapong; Trakooljul, Nares; Muráni, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus
2016-05-04
In oviparous species accidental variation of incubation temperatures may occur under natural conditions and mechanisms may have evolved by natural selection that facilitate coping with these stressors. However, under controlled artificial incubation modification of egg incubation temperature has been shown to have a wide-ranging impact on post-hatch development in several poultry species. Because developmental changes initiated in-ovo can affect poultry production, understanding the molecular routes and epigenetic alterations induced by incubation temperature differences may allow targeted modification of phenotypes. In order to identify molecular pathways responsive to variable incubation temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 °C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7-10 and 10-13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by microarray analysis and treated samples were compared to controls within each time point. Transcript abundance differed for between 113 and 738 genes, depending on treatment group, compared to the respective control. In particular, higher incubation temperature during E7-10 immediately affected pathways involved in energy and lipid metabolism, cell signaling, and muscle development more so than did other conditions. But lower incubation temperature during E10-13 affected pathways related to cellular function and growth, and development of organ, tissue, and muscle as well as nutrient metabolism pathways at D35. Shifts in incubation temperature provoke specific immediate and long-term transcriptional responses. Further, the transcriptional response to lower incubation temperature, which did not affect the phenotypes, mediates compensatory effects reflecting adaptability. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype, reflecting considerable phenotypic plasticity.
Kavousi, Javid; Reimer, James Davis; Tanaka, Yasuaki; Nakamura, Takashi
2015-08-01
As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 μatm-28 °C, 400 μatm-31 °C, 1000 μatm-28 °C and 1000 μatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng
2017-07-01
Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.
Ryan, Michael P; Neuman-Lee, Lorin A; Durham, Susan L; Smith, Geoffrey D; French, Susannah S
2018-04-01
Behavioral fever in reptiles is often considered an adaptive response used to eliminate pathogens, yet empirical data showing the wide-spread use of this response is mixed. This behavioral change can be beneficial by enhancing the host's immune response and increasing the animal's chance of survival, but it can also be detrimental in terms of host energetic requirements and enzymatic performance. Thus, we examined whether captive-bred African house snakes (Lamprophis fuliginosus) employed behavioral fever in response to pathogen stimulus. Twenty-one African house snakes were injected separately with three different strains of ultraviolet (UV) light-killed bacteria (Escherichia coli, Staphylococcus aureus, Salmonella enterica). We found an increased variance of hourly cloacal temperatures following exposure to pathogens in male but not female house snakes. We did not, however, find a significant febrile response to pathogen exposure as measured via mean cloacal temperature. This research adds critical information to the field of reptilian physiology as this field remains understudied. Reptilian immune function and its relationship with thermal biology is ever more pertinent as new challenges arise, such as novel pathogens and changing climate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3
Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying
2014-01-01
Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453
Breau, Cindy; Cunjak, Richard A; Peake, Stephan J
2011-07-01
1. Temperature governs most physiological processes in animals. Ectotherms behaviourally thermoregulate by selecting habitats with temperatures regulating their body temperature for optimal physiological functioning. However, ectotherms can experience temperature extremes forcing the organisms to seek temperature refuge. 2. Fish actively avoid potentially lethal temperatures by moving to cool-water sites created by inflowing tributaries and groundwater seeps. Juvenile Atlantic salmon (Salmo salar) of different age classes exhibit different behavioural responses to elevated temperatures (>23 °C). Yearling (1+) and 2-year-old (2+) Atlantic salmon often cease feeding, abandon territorial behaviour and swim continuously in aggregations in cool-water sites; whereas young-of-the-year (0+) fish continue defending territories and foraging. 3. This study determined whether the behavioural shift in older individuals (2+) occurred when basal metabolic rate, driven by increasing water temperature, reached the maximum metabolic rate such that anaerobic pathways were recruited to provide energy to support vital processes. Behaviour (feeding and stress responses), oxygen consumption, muscle lactate and glycogen, and circulating blood lactate and glucose concentrations were measured in wild 0+ and 2+ Atlantic salmon acclimated to water temperatures between 16 and 28 °C. 4. Results indicate that oxygen consumption of the 2+ fish increased with temperature and reached a plateau at 24 °C, a temperature that corresponded to cessation of feeding and a significant increase in muscle and blood lactate levels. By contrast, oxygen consumption in 0+ fish did not reach a plateau, feeding continued and muscle lactate did not increase, even at the highest temperatures tested (28 °C). 5. To conclude, the experiment demonstrated that the 0+ and 2+ fish had different physiological responses to the elevated water temperatures. The results suggest that wild 2+ Atlantic salmon employ behavioural responses (e.g. movement to cool-water sites) at elevated temperatures in an effort to mitigate physiological imbalances associated with an inability to support basal metabolism through aerobic metabolic processes. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Marsh, Adam G; Hoadley, Kenneth D; Warner, Mark E
2016-01-01
Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in reef corals and potential roles of epigenetics on survival and fitness in the face of global climate change.
Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio
2014-01-01
In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152
Temperature effect on mineralization of SOM, plant litter and priming: modified by soil type?
NASA Astrophysics Data System (ADS)
Azzaroli Bleken, Marina; Berland Frøseth, Randi
2015-04-01
The purpose of this study was to provide improved temperature response functions to be used in models of soil organic carbon (SOC) and litter mineralization, with focus on the winter period. Our working hypothesis were: 1) decomposition of SOM and plant residue occurs also at temperature close to the freezing point; 2) the effect of temperature on SOC decomposition is stronger in clayey than in sandy soil; 3) decomposition and response to temperature of added plant litter is not affected by soil type. A silty clay loam (27% clay, 3% sand) and a sandy loam (6% clay, 51% sand) with similar weather and cultivation history were pre-incubated at about 15° C for about 4.5 months. Clover leaves labelled with 13C were added to half of the samples, and soil with and without clover was incubated for 142 days at 0, 4, 8.5 or 15 °C. Mineralization of SOC and clover leaves was observed also at 0° C. In the absence of added plant material, SOC decomposition followed a first order reaction which was twice as fast in the sandy soil as in the clay soil. The decomposition rate of clover leaves was also higher in the sandy soil than in the clay soil. However, the influence of temperature on SOC and on clover decomposition was the same in both soils. In presence of plant material, there was a positive priming effect on SOC, which initially correlated with decomposition of plant litter. There was a progressively lower priming effect at higher temperatures, particularly in the sandy soil, that could be understood as substrates exhaustion in a restricted volume of influence around the added clover leaves. We provide parameterised Arrhenius and alternative modifying linear temperature functions together with decay rates at reference temperature, which can be used for predicting decay rates of SOC per se and of the labile pool of clover leaves. We also show the superiority of these functions compared to the use of Q10 as temperature factor. Further, we suggest approaches for modelling the priming effect caused by plant litter. Reference: Frøseth RB, Bleken MA(2015) Effect of low temperature and soil type on the decomposition rate of soil organic carbon and clover leaves, and related priming effect. Soil Biology and Biochemistry 80:156-166.
Box-Behnken statistical design to optimize thermal performance of energy storage systems
NASA Astrophysics Data System (ADS)
Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid
2018-05-01
Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffer, M.A.; Fischer, R.L.
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activatemore » C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.« less
A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen
Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita
2013-01-01
Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature. PMID:23935449
Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure
Tupone, Domenico
2014-01-01
SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813
Song, Hayoung; Dong, Xiangshu; Yi, Hankuil; Ahn, Ju Young; Yun, Keunho; Song, Myungchul; Han, Ching-Tack; Hur, Yoonkang
2018-06-11
For sustainable crop cultivation in the face of global warming, it is important to unravel the genetic mechanisms underlying plant adaptation to a warming climate and apply this information to breeding. Thermomorphogenesis and ambient temperature signaling pathways have been well studied in model plants, but little information is available for vegetable crops. Here, we investigated genes responsive to warming conditions from two Brassica rapa inbred lines with different geographic origins: subtropical (Kenshin) and temperate (Chiifu). Genes in Gene Ontology categories “response to heat”, “heat acclimation”, “response to light intensity”, “response to oxidative stress”, and “response to temperature stimulus” were upregulated under warming treatment in both lines, but genes involved in “response to auxin stimulus” were upregulated only in Kenshin under both warming and minor-warming conditions. We identified 16 putative high temperature (HT) adaptation-related genes, including 10 heat-shock response genes, 2 transcription factor genes, 1 splicing factor gene, and 3 others. BrPIF4 , BrROF2 , and BrMPSR1 are candidate genes that might function in HT adaptation. Auxin response, alternative splicing of BrHSFA2 , and heat shock memory appear to be indispensable for HT adaptation in B. rapa . These results lay the foundation for molecular breeding and marker development to improve warming tolerance in B. rapa .
Gingold, Ruth; Moens, Tom; Rocha-Olivares, Axayácatl
2013-01-01
Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model.
Rubisco, Rubisco activase, and global climate change.
Sage, Rowan F; Way, Danielle A; Kubien, David S
2008-01-01
Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.
van Opstal, Anna M; van den Berg-Huysmans, Annette A; Hoeksma, Marco; Blonk, Cor; Pijl, Hanno; Rombouts, Serge A R B; van der Grond, Jeroen
2018-01-01
Excessive consumption of sugar-sweetened beverages (SSBs) has been associated with obesity and related diseases. SSBs are often consumed cold, and both the energy content and temperature might influence the consumption behavior for SSBs. The main aim of this study was to elucidate whether consumption temperature and energy (i.e., glucose) content modulate homeostatic (hypothalamus) and reward [ventral tegmental area (VTA)] responses. Sixteen healthy men participated in our study [aged 18-25 y; body mass index (kg/m2): 20-23]. High-resolution functional magnetic resonance imaging data were collected after ingestion of 4 different study stimuli: plain tap water at room temperature (22°C), plain tap water at 0°C, a glucose-containing beverage (75 g glucose dissolved in 300 mL water) at 22°C, and a similar glucose drink at 0°C. Blood oxygen level-dependent (BOLD) changes from baseline (7 min preingestion) were analyzed over time in the hypothalamus and VTA for individual stimulus effects and for effects between stimuli. In the hypothalamus, water at 22°C led to a significantly increased BOLD response; all other stimuli resulted in a direct, significant decrease in BOLD response compared with baseline. In the VTA, a significantly decreased BOLD response compared with baseline was found after the ingestion of stimuli containing glucose at 0°C and 22°C. These responses were not significantly modulated by consumption temperature. The consumption of plain water did not have a significant VTA BOLD effect. Our data show that glucose at 22°C, glucose at 0°C, and water at 0°C lowered hypothalamic activity, which is associated with increased satiation. On the contrary, the consumption of water at room temperature increased activity. All stimuli led to a similar VTA response, which suggests that all drinks elicited a similar hedonic response. Our results indicate that, in addition to glucose, the low temperature at which SSBs are often consumed also leads to a response from the hypothalamus and might strengthen the response of the VTA. This trial was registered at www.clinicaltrials.gov as NCT03181217. © 2018 American Society for Nutrition. All rights reserved.
Cooling of a dwelling by nocturnal radiation
NASA Astrophysics Data System (ADS)
Fahim, Othmane; Belouaggadia, Naoual; Taqi, Mohamed; Abid, Chérifa
2018-05-01
Atmospheric transparency in the infrared, responsible for night cooling, is exploited to obtain a cooling effect. Radiative cooling to the night sky is based on the principle of infrared radiation heat loss from a surface to a body at a lower temperature. The use of the emissivity equation allowed us to evaluate its variation as a function of wavelength and temperature. A comparison of the temperature variation was made between granite and the materials most often used in the manufacture of radiant panels of hybrid systems. The results show that the temperature of Tedlar-based plates or plastics considerably decreases, and, therefore are rather promising.
Understanding High Rate Behavior Through Low Rate Analog
2014-04-28
uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression
Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M
2017-06-01
To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.
2014-12-01
From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.
NASA Astrophysics Data System (ADS)
Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.
2016-05-01
To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species (Zea mays) to assess correlations in leaf temperature (Tleaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly change in abundance levels with Tleaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing Tleaf in S. nutans. The differential transcriptomic responses of the co-dominant C4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.
Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity
Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung
2012-01-01
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills.
Chang, Chia-Hao; Tang, Cheng-Hao; Kang, Chao-Kai; Lo, Wan-Yu; Lee, Tsung-Han
2016-01-01
Milkfish is an important aquaculture species in Taiwan, and its high mortality during cold snaps in winter usually causes huge economic losses. To understand the effect of hypothermal stress and the corresponding compensatory stress response in milkfish, this study aimed to compare liver and gill protein levels between milkfish exposed to nonlethal (18°C), lethal (16°C), and control (28°C) temperatures. Using a proteomics approach based on two-dimensional electrophoresis and nano-LC-MS/MS analysis, this study identified thirty unique protein spots from milkfish livers and gills for which protein abundance was significantly different between nonlethal, lethal, and control temperature groups. Proteins identified in the liver were classified into three different categories according to their cellular function: (1) anti-oxidative stress, (2) apoptotic pathway, and (3) cytoskeleton. Similarly, proteins identified in the gill were sorted in five different functional categories: (1) cytoskeleton, (2) immune response, (3) protein quality control, (4) energy production, and (5) intracellular homeostasis. Based on functional information derived from the identified proteins, we assumed that different levels of hypothermal stress had a different effect and induced a different cellular response. Upon nonlethal hypothermal stress, the identified proteins were involved in anti-oxidative stress and anti-inflammation pathways, suggesting that milkfish had high levels of oxidative stress in the liver and exhibited inflammation response in the gill. Upon lethal hypothermal stress, however, identified proteins were associated with apoptosis in the liver and regulation of intracellular homeostasis in the gill. The present study provided evidence to illustrate different multi-physiological responses to nonlethal and lethal hypothermal stress in milkfish livers and gills. PMID:27657931
Zhang, Haicheng; Liu, Shuguang; Regnier, Pierre; Yuan, Wenping
2018-05-01
Constraints of temperature on spring plant phenology are closely related to plant growth, vegetation dynamics, and ecosystem carbon cycle. However, the effects of temperature on leaf onset, especially for winter chilling, are still not well understood. Using long-term, widespread in situ phenology observations collected over China for multiple plant species, this study analyzes the quantitative response of leaf onset to temperature, and compares empirical findings with existing theories and modeling approaches, as implemented in 18 phenology algorithms. Results show that the growing degree days (GDD) required for leaf onset vary distinctly among plant species and geographical locations as well as at organizational levels (species and community), pointing to diverse adaptation strategies. Chilling durations (CHD) needed for releasing bud dormancy decline monotonously from cold to warm areas with very limited interspecies variations. Results also reveal that winter chilling is a crucial component of phenology models, and its effect is better captured with an index that accounts for the inhomogeneous effectiveness of low temperature to chilling rate than with the conventional CHD index. The impact of spring warming on leaf onset is nonlinear, better represented by a logistical function of temperature than by the linear function currently implemented in biosphere models. The optimized base temperatures for thermal accumulation and the optimal chilling temperatures are species-dependent and average at 6.9 and 0.2°C, respectively. Overall, plants' chilling requirement is not a constant, and more chilling generally results in less requirement of thermal accumulation for leaf onset. Our results clearly demonstrate multiple deficiencies of the parameters (e.g., base temperature) and algorithms (e.g., method for calculating GDD) in conventional phenology models to represent leaf onset. Therefore, this study not only advances our mechanistic and quantitative understanding of temperature controls on leaf onset but also provides critical information for improving existing phenology models. © 2017 John Wiley & Sons Ltd.
Using physiology to predict the responses of ants to climatic warming.
Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R
2013-12-01
Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.
Han, Guodong; Zhang, Shu; Dong, Yunwei
2017-09-01
Organisms on rocky shores are frequently exposed to high temperatures, which cause impairment of cardiac function and retard cellular oxygen delivery. However, some gastropods can survive at several degrees Celsius higher than their Arrhenius break temperature of cardiac function (ABT), indicating the importance of anaerobic metabolism for their thermal tolerance. We measured the global molecular responses to heat stress in limpet Cellana toreuma using 454 GS-FLX to investigate the variations of genes involved in anaerobic metabolism at high temperatures. Next, the gene expression levels of 4 anaerobic enzymes and activity of alanopine dehydrogenase (AlDH), which is involved in opine pathway, were measured in response to elevated temperature. A total of 19 heat shock proteins (HSPs) were determined using real-time PCR at different temperatures. At high temperatures, the extensive upregulation of HSP genes was an effective but energetically expensive form of protection to prevent thermal damage. The upregulation of hypoxia-inducible factor 1 alpha mRNA indicated the condition of cellular hypoxia and the high gene expression and enzyme activity of AlDH suggested that opine pathway was the main anaerobic pathway. These results implied that anaerobic metabolism was enhanced to provide energy in the face of thermal stress. Our findings highlight the ecological significance of the anaerobic metabolism of gastropods to thermal adaptation. For predicting the ecological impact of global warming on the distribution of gastropods, the role of anaerobic pathways should be evaluated. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Evolution of nonspectral rhodopsin function at high altitudes.
Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W
2017-07-11
High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.
Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K
2014-06-01
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.
The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity
Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.
2013-01-01
Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845
Frost Induces Respiration and Accelerates Carbon Depletion in Trees.
Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A
2015-01-01
Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.
Frost Induces Respiration and Accelerates Carbon Depletion in Trees
Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.
2015-01-01
Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819
RFQ (radio-frequency quadrupole) accelerator tuning system
Bolie, V.W.
1988-04-12
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.
Burbank, Lindsey P; Stenger, Drake C
2016-05-01
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Arun, V. V.; Saharan, Neelam; Ramasubramanian, V.; Babitha Rani, A. M.; Salin, K. R.; Sontakke, Ravindra; Haridas, Harsha; Pazhayamadom, Deepak George
2017-01-01
A novel method, BBD-SSPD is proposed by the combination of Box-Behnken Design (BBD) and Split-Split Plot Design (SSPD) which would ensure minimum number of experimental runs, leading to economical utilization in multi- factorial experiments. The brine shrimp Artemia was tested to study the combined effects of photoperiod, temperature and salinity, each with three levels, on the hatching percentage and hatching time of their cysts. The BBD was employed to select 13 treatment combinations out of the 27 possible combinations that were grouped in an SSPD arrangement. Multiple responses were optimized simultaneously using Derringer’s desirability function. Photoperiod and temperature as well as temperature-salinity interaction were found to significantly affect the hatching percentage of Artemia, while the hatching time was significantly influenced by photoperiod and temperature, and their interaction. The optimum conditions were 23 h photoperiod, 29 °C temperature and 28 ppt salinity resulting in 96.8% hatching in 18.94 h. In order to verify the results obtained from BBD-SSPD experiment, the experiment was repeated preserving the same set up. Results of verification experiment were found to be similar to experiment originally conducted. It is expected that this method would be suitable to optimize the hatching process of animal eggs. PMID:28091611
Langenheder, Silke; Bulling, Mark T; Prosser, James I; Solan, Martin
2012-07-30
Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.
Moore, Julia L; Remais, Justin V
2014-03-01
Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.
Hillman, Stanley S; Hedrick, Michael S
2018-01-04
Body temperature increases in ectothermic vertebrates characteristically lead to both increases in arterial P CO 2 ( P a CO 2 ) and declines in resting arterial pH (pHa) of about 0.017 pH units per 1°C increase in temperature. This 'alphastat' pH pattern has previously been interpreted as being evolutionarily driven by the maintenance of a constant protonation state on the imidazole moiety of histidine protein residues, hence stabilizing protein structure-function. Analysis of the existing data for interclass responses of ectothermic vertebrates shows different degrees of P a CO 2 increases and pH declines with temperature between the classes, with reptiles>amphibians>fish. The P a CO 2 at the temperature where maximal aerobic metabolism ( V̇ O 2 ,max ) is achieved is significantly and positively correlated with temperature for all vertebrate classes. For ectotherms, the P a CO 2 where V̇ O 2 ,max is greatest is also correlated with V̇ O 2 ,max , indicating there is an increased driving force for CO 2 efflux that is lowest in fish, intermediate in amphibians and highest in reptiles. The pattern of increased P a CO 2 and the resultant reduction of pHa in response to increased body temperature would serve to increase CO 2 efflux, O 2 delivery and blood buffering capacity and maintain ventilatory scope. This represents a new hypothesis for the selective advantage of arterial pH regulation from a systems physiology perspective in addition to the advantages of maintenance of protein structure-function. © 2018. Published by The Company of Biologists Ltd.
Collective behaviour of dislocations in a finite medium
NASA Astrophysics Data System (ADS)
Kooiman, M.; Hütter, M.; Geers, M. G. D.
2014-04-01
We derive the grand-canonical partition function of straight and parallel dislocation lines without making a priori assumptions on the temperature regime. Such a systematic derivation for dislocations has, to the best of our knowledge, not been carried out before, and several conflicting assumptions on the free energy of dislocations have been made in the literature. Dislocations have gained interest as they are the carriers of plastic deformation in crystalline materials and solid polymers, and they constitute a prototype system for two-dimensional Coulomb particles. Our microscopic starting level is the description of dislocations as used in the discrete dislocation dynamics (DDD) framework. The macroscopic level of interest is characterized by the temperature, the boundary deformation and the dislocation density profile. By integrating over state space, we obtain a field theoretic partition function, which is a functional integral of the Boltzmann weight over an auxiliary field. The Hamiltonian consists of a term quadratic in the field and an exponential of this field. The partition function is strongly non-local, and reduces in special cases to the sine-Gordon model. Moreover, we determine implicit expressions for the response functions and the dominant scaling regime for metals, namely the low-temperature regime.
2012-01-01
Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species. PMID:22928584
Hori, Tiago S; Gamperl, A Kurt; Booman, Marije; Nash, Gordon W; Rise, Matthew L
2012-08-28
Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen's transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.
NASA Astrophysics Data System (ADS)
Wu, S. H.; Jansson, P.-E.
2013-02-01
Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.
Zherebtsov, Evgeny A; Zherebtsova, Angelina I; Doronin, Alexander; Dunaev, Andrey V; Podmasteryev, Konstantin V; Bykov, Alexander; Meglinski, Igor
2017-04-01
We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system.
NASA Astrophysics Data System (ADS)
Zherebtsov, Evgeny A.; Zherebtsova, Angelina I.; Doronin, Alexander; Dunaev, Andrey V.; Podmasteryev, Konstantin V.; Bykov, Alexander; Meglinski, Igor
2017-04-01
We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system.
NASA Astrophysics Data System (ADS)
Ahmad, Naseer; Kamal, Shahid; Raza, Zulfiqar Ali; Hussain, Tanveer
2017-03-01
The present study investigated multi-response optimization of certain input parameters viz. concentrations of oil and water repellent finish (Oleophobol CP-C®), dimethylol dihydroxy ethylene urea based cross linking agent (Knittex FEL) and curing temperature on some mechanical, (i.e. tear and tensile strengths), functional (i.e., water contact angle ‘WCA’, oil contact angle ‘OCA’) and comfort (i.e. crease recovery angle ‘CRA’, air permeability ‘AP’, and stiffness) properties of an oleo-hydrophobic finished fabric under response surface methodology and the desirability function. The results have been examined using analysis of variance (ANOVA) and desirability function for the identification of optimum levels of input variables. The ANOVA was employed also to identify the percentage contribution of process factors. Under the optimized conditions, which were obtained with a total desirability value of 0.7769, the experimental values of Oleophobol CP-C® (O-CPC), Knittex FEL (K-FEL) and curing temperature (C-Temp) agreed closely with the predicted values. The optimized process parameters for maximum WCA (135°), OCA (129°), AP (290 m s-1), CRA (214°), tear (1492 gf) and tensile (764 N) strengths and minimum stiffness (3.2928 cm) were found to be: concentration of OCP-C as 44.44 g l-1, concentration of cross linker K-FEL as 32.07 g l-1 and C-Temp as 161.81 °C.
Zhang, Shu; Han, Guo-dong; Dong, Yun-wei
2014-04-01
Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boada, M Danilo; Eisenach, James C; Ririe, Douglas G
2016-01-01
The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. Copyright © 2016 the American Physiological Society.
Liu, Shu; Schulze, Ekkehard; Baumeister, Ralf
2012-01-01
Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli.
Ackerly, Kerri L; Ward, Andrea B
2015-12-01
Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Effects of meal size, meal type, and body temperature on the specific dynamic action of anurans.
Secor, Stephen M; Wooten, Jessica A; Cox, Christian L
2007-02-01
Specific dynamic action (SDA), the increase in metabolism stemming from meal digestion and assimilation, varies as a function of meal size, meal type, and body temperature. To test predictions of these three determinants of SDA, we quantified and compared the SDA responses of nine species of anurans, Bombina orientalis, Bufo cognatus, Ceratophrys ornata, Dyscophus antongilli, Hyla cinerea, Kassina maculata, Kassina senegalensis, Pyxicephalus adspersus, and Rana catesbeiana subjected to meal size, meal type, and body temperature treatments. Over a three to seven-fold increase in meal size, anurans experienced predicted increases in postprandial rates of oxygen consumption (VO(2)) the duration of elevated VO(2) and SDA. Meal type had a significant influence on the SDA response, as the digestion and assimilation of hard-bodied, chitinous crickets, mealworms, and superworms required 76% more energy than the digestion and assimilation of soft-bodied earthworms, waxworms, and neonate rodents. Body temperature largely effected the shape of the postprandial metabolic profile; peak VO(2) increased and the duration of the response decreased with an increase in body temperature. Variation in body temperature did not significantly alter SDA for four species, whereas both H. cinerea and R. catesbeiana experienced significant increases in SDA with body temperature. For 13 or 15 species of anurans ranging in mass from 2.4 to 270 g, SMR, postprandial peak VO(2) and SDA scaled with body mass (log-log) with mass exponents of 0.79, 0.93, and 1.05, respectively.
Ranels, Heather J; Griffin, John D
2003-02-21
In response to an immune system challenge with lipopolysaccharide (LPS), recent work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show distinct axonal projections to the anterior perifornical area (APFx) and the paraventricular nucleus (PVN). It has been hypothesized that neurons within the VMPO integrate their local responses to temperature with changes in firing activity that result from LPS induced production of prostaglandin E(2) (PGE(2)). This may be an important mechanism by which the set-point regulation of thermoeffector neurons in the APFx and PVN is altered, resulting in hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. Based on the slope of firing rate as a function of tissue temperature, neurons were classified as either warm sensitive or temperature insensitive. Neurons were then treated with PGE(2) (200 nM) while tissue temperature was held at a constant level ( approximately 36 degrees C). The majority of temperature insensitive neurons responded to PGE(2) with an increase in firing rate activity, while warm sensitive neurons showed a reduction in firing rate. This suggests that both warm sensitive and temperature insensitive neurons in the VMPO may play critical and contrasting roles in the production of a fever during an acute phase response to infection.
Can we detect a nonlinear response to temperature in European plant phenology?
NASA Astrophysics Data System (ADS)
Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
Bolie, V.W.
1990-07-03
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.
Bolie, Victor W.
1990-01-01
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.
Clark, Daniel L; McCormick, Janet L; Velleman, Sandra G
2018-05-01
Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Revised Thomas-Fermi approximation for singular potentials
NASA Astrophysics Data System (ADS)
Dufty, James W.; Trickey, S. B.
2016-08-01
Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.
Hoogenboom, Mia O; Campbell, Douglas A; Beraud, Eric; Dezeeuw, Katrina; Ferrier-Pagès, Christine
2012-01-01
Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate. This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress. Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host.
Near-continuous thermal monitoring of a diverse tropical forest canopy
NASA Astrophysics Data System (ADS)
Pau, S.; Still, C. J.; Kim, Y.; Detto, M.
2015-12-01
Tropical species may be highly sensitive to temperature increases associated with climate change because of their narrow thermal tolerances. Recent work has highlighted the importance of temperature in tropical forest function, however most studies use air temperature measurements from sparse meteorological stations even though surface temperatures are known to deviate from air temperatures. Tropical organisms exist in microclimates that are highly variable in space and time and not easily measured in natural environments. This is in part because of the complex structure of tropical forests and the potential for organisms themselves to modify their own environment. In the case of plants, leaf temperature is linked to the water and surface energy balance of their microenvironment. Here we present results from near-continuous thermal camera monitoring of the forest canopy in Barro Colorado Island, Panama (5-minute intervals for approximately 9 months). We compare daytime (maximum) vs. nighttime (minimum) differences between canopy temperature and air temperature, relative humidity, solar radiation, and precipitation. On average, canopy temperatures are consistently ~2 degrees Celsius higher than air temperatures. These data can paired with flux tower data on-site and used to advance understanding of temperature controls on the structure and function of tropical forests, such as carbon assimilation, phenology, and habitat monitoring, and can be integrated into models to improve predictions of tropical forest response to future climate change.
Behavioural fever is a synergic signal amplifying the innate immune response.
Boltaña, Sebastian; Rey, Sonia; Roher, Nerea; Vargas, Reynaldo; Huerta, Mario; Huntingford, Felicity Anne; Goetz, Frederick William; Moore, Janice; Garcia-Valtanen, Pablo; Estepa, Amparo; Mackenzie, S
2013-09-07
Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene-environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity-environment interactions are likely to be under strong positive selection.
Elevated temperature alters proteomic responses of individual organisms within a biofilm community
Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...
2014-07-22
Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less
Porous Si nanowires for highly selective room-temperature NO2 gas sensing
NASA Astrophysics Data System (ADS)
Kwon, Yong Jung; Mirzaei, Ali; Gil Na, Han; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo
2018-07-01
We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001–0.003 Ω.cm had the highest response to NO2 gas (Rg/Ra = 1.86 for 50 ppm NO2), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO2, toluene, benzene, H2, and ethanol were nearly negligible, demonstrating the excellent selectivity to NO2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.
Porous Si nanowires for highly selective room-temperature NO2 gas sensing.
Kwon, Yong Jung; Mirzaei, Ali; Na, Han Gil; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo
2018-07-20
We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001-0.003 Ω.cm had the highest response to NO 2 gas (R g /R a = 1.86 for 50 ppm NO 2 ), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO 2 , toluene, benzene, H 2 , and ethanol were nearly negligible, demonstrating the excellent selectivity to NO 2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.
Measurements of observables during detonator function
NASA Astrophysics Data System (ADS)
Smilowitz, Laura; Henson, Bryan; Remelius, Dennis
Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.
Enhanced superconducting transition temperature in electroplated rhenium
NASA Astrophysics Data System (ADS)
Pappas, D. P.; David, D. E.; Lake, R. E.; Bal, M.; Goldfarb, R. B.; Hite, D. A.; Kim, E.; Ku, H.-S.; Long, J. L.; McRae, C. R. H.; Pappas, L. D.; Roshko, A.; Wen, J. G.; Plourde, B. L. T.; Arslan, I.; Wu, X.
2018-04-01
We show that electroplated Re films in multilayers with noble metals such as Cu, Au, and Pd have an enhanced superconducting critical temperature relative to previous methods of preparing Re. The dc resistance and magnetic susceptibility indicate a critical temperature of approximately 6 K. The magnetic response as a function of field at 1.8 K demonstrates type-II superconductivity, with an upper critical field on the order of 2.5 T. Critical current densities greater than 107 A/m2 were measured above liquid-helium temperature. Low-loss at radio frequency was obtained below the critical temperature for multilayers deposited onto resonators made with Cu traces on commercial circuit boards. These electroplated superconducting films can be integrated into a wide range of standard components for low-temperature electronics.
Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment.
Ding, Chendi; Tong, Ling; Feng, Jing; Fu, Jiajun
2016-12-20
Benefiting from the development of nanotechnology, drug delivery systems (DDSs) with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs), quantum dots (QDs) and carbon nanotubes (CNTs). The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules) and extrinsic (temperature, light irradiation, magnetic field and ultrasound) ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.
The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.
The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
NASA Astrophysics Data System (ADS)
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
NASA Astrophysics Data System (ADS)
Song, Uhram; Mun, Saeromi; Ho, Chang-Hoi; Lee, Eun Ju
2012-06-01
The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO2 concentrations differed significantly between the urban (14.8 °C and 439 ppm CO2) and suburban (13.0 °C and 427 ppm CO2) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.
Song, Uhram; Mun, Saeromi; Ho, Chang-Hoi; Lee, Eun Ju
2012-06-01
The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban-suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO(2) concentrations differed significantly between the urban (14.8 °C and 439 ppm CO(2)) and suburban (13.0 °C and 427 ppm CO(2)) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.
Goessling, Jeffrey M; Guyer, Craig; Mendonça, Mary T
Organisms possess a range of thermoregulatory strategies that may vary in response to sickness, thereby driving important life-history consequences. Because the immune system is vital to maintaining organism function, understanding the suite of immune responses to infection indicates basic costs and benefits of physiological strategies. Here, we assessed consequences of thermoregulation and seasonality on immune function in both immunologically stimulated and nonstimulated gopher tortoises (Gopherus polyphemus). An ectothermic vertebrate was used as an experimental model because the effects of thermoregulation on immunity remain understudied and are of increasing importance in light of anthropogenic alterations to thermal environments. We found that G. polyphemus increased body temperature (T b ) at 1 h after injection with lipopolysaccharide (LPS) when compared with saline controls (P = 0.04), consistent with behavioral fever. LPS increased plasma bactericidal ability (BA; P = 0.006), reduced plasma iron concentration (P = 0.041), and increased heterophil∶lymphocyte ratios (P < 0.001). In nonstimulated animals, thermoregulatory strategy had a strong effect on innate immunity, which demonstrated that individuals have the ability to facultatively adjust immune function when infection burden is low; this relationship was not present in LPS-injected animals, which suggested that animals stimulated with LPS maximize bactericidal ability independently of temperature. Seasonal acclimation state did not influence responses to LPS, although baseline plasma iron was significantly lower in animals acclimated to winter. These results support that a trade-off exists between immunity and other conflicting physiological interests. Moreover, these results clearly demonstrate the ability of individuals to modulate immune function as a direct result of thermoregulatory decisions.
Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.
2008-01-01
The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858
NASA Astrophysics Data System (ADS)
Dong, Shidu; Yang, Xiaofan; He, Bo; Liu, Guojin
2006-11-01
Radiance coming from the interior of an uncooled infrared camera has a significant effect on the measured value of the temperature of the object. This paper presents a three-phase compensation scheme for coping with this effect. The first phase acquires the calibration data and forms the calibration function by least square fitting. Likewise, the second phase obtains the compensation data and builds the compensation function by fitting. With the aid of these functions, the third phase determines the temperature of the object in concern from any given ambient temperature. It is known that acquiring the compensation data of a camera is very time-consuming. For the purpose of getting the compensation data at a reasonable time cost, we propose a transplantable scheme. The idea of this scheme is to calculate the ratio between the central pixel’s responsivity of the child camera to the radiance from the interior and that of the mother camera, followed by determining the compensation data of the child camera using this ratio and the compensation data of the mother camera Experimental results show that either of the child camera and the mother camera can measure the temperature of the object with an error of no more than 2°C.
Blier, P U; Lemieux, H
2001-04-01
To assess if cytochrome c oxidase could determine the response of mitochondrial respiration to changes in environmental temperature in ectotherms, we performed KCN titration of the respiration rate and cytochrome c oxidase activity in mitochondria from Arctic charr (Salvelinusfontinalis) muscle at four different temperatures (1 degrees C, 6 degrees C, 12 degrees C, and 18 degrees C). Our data showed an excess of cytochrome c oxidase activity over the mitochondrial state 3 respiration rate. Mitochondrial oxygen consumption rates reached approximately 12% of the cytochrome c oxidase maximal capacity at every temperature. Also, following titration, the mitochondrial respiration rate significantly decreased when KCN reached concentrations that inhibit almost 90% of the cytochrome c oxidase activity. This strongly supports the idea that the thermal sensitivity of the maximal mitochondrial respiration rate cannot be dictated by the effect of temperature on cytochrome c oxidase catalytic capacity. Furthermore, the strong similarity of the Q10s of mitochondrial respiration and cytochrome c oxidase activity suggests a functional or structural link between the two. The functional link could be coevolution of parts of the mitochondrial system to maintain optimal functions in most of the temperature range encountered by organisms.
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.
Ha, Jang Ho; Kim, Han Soo
2013-11-01
The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dielectric response of branched copper phthalocyanine
NASA Astrophysics Data System (ADS)
Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.
2017-09-01
The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.
NASA Astrophysics Data System (ADS)
Suzuki, Masato; Nagata, Kazuma; Tanushi, Yuichiro; Yokoyama, Shin
2007-04-01
We have fabricated Mach-Zhender interferometers (MZIs) using the (Ba,Sr)TiO3 (BST) film sputter-deposited at 450 °C, which is a critical temperature for the process after metallization. An optical modulation of about 10% is achieved when 200 V is applied (electric field in BST is 1.2× 104 V/cm). However, the response time of optical modulation to step function voltage is slow (1.0-6.3 s). We propose a model for the slow transient behavior based on movable ions and a long dielectric relaxation time for the BST film, and good qualitative agreement is obtained with experimental results.
Diurnal and nocturnal skin temperature regulation in chronic complex regional pain syndrome.
Schilder, Johanna C M; Niehof, Sjoerd P; Marinus, Johan; van Hilten, Jacobus J
2015-03-01
Skin temperature changes due to vasomotor disturbances are important features of complex regional pain syndrome (CRPS). Because this phenomenon has only been studied under controlled conditions, information on daily circadian variability is lacking. Also, studies in chronic CRPS patients with abnormal posturing, in which coldness of the affected extremity is more common, do not exist. We examined the response to external heating as well as circadian temperature changes over several days in the affected legs of 14 chronic CRPS patients with abnormal posturing and 17 controls. Skin temperatures were recorded hourly for 14 days using wireless sensors. Although the patients' affected extremities were significantly colder before external heating, the vasodilatory response was similar in the 2 groups. Additionally, median skin temperature differences between both legs and their variability was larger in patients than in controls during the day, but not during the night. These findings indicate that the mechanisms underlying impaired skin circulation in CRPS during daytime are reversible under certain circumstances. The large variation in skin temperature differences during the day questions the validity of using a single measurement in the diagnosis of CRPS, and our results indicate that only temperature differences >1.0 °C should be considered to reflect vasomotor disturbances. This article shows that chronic CRPS patients have a normal vasodilatory response to external heating and that skin temperature differences between the affected and unaffected lower limbs, which were highly variable during daytime, disappeared during sleep. This indicates that part of the vasomotor regulation in these patients is still functional. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Decreased precision contributes to the hypoxic thermoregulatory response in lizards.
Cadena, Viviana; Tattersall, Glenn J
2009-01-01
The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.
Capo, A; Ismail, E; Cardone, D; Celletti, E; Auriemma, M; Sabatini, E; Merla, A; Amerio, P
2015-11-01
Functional infrared imaging (fIRI) is used to provide information on circulation, thermal properties and thermoregulatory function of the cutaneous tissue in several clinical settings. This study aims to evaluate the application of fIRI in Psoriatic Arthritis (PsA) assessment, evaluating the thermoregulatory alterations due to joint inflammation in PsA patients both in basal conditions and after a mild functional (isometric) exercise; fIRI outcomes were compared with those provided by Power Doppler Ultrasonography (PWD-US). 10 patients with PsA and 11 healthy controls were enrolled in the study. The cutaneous temperature dynamics of 20 regions of interest located on the dominant hand were recorded by means of high-resolution thermal imaging at baseline and after a functional exercise. Higher temperature values and faster temperature variations characterized the PsA group compared to healthy controls, confirming that the PsA-related inflammatory state alters the normal thermal proprieties of the skin overlying inflamed joints. fIRI outcomes correlated with the PWD-US findings. fIRI applied to the study of the response to a functional stimulus may represent an innovative, non-invasive, and operator-independent method for the assessment of peripheral PsA. Copyright © 2015 Elsevier Inc. All rights reserved.
The Evaporative Function of Cockroach Hygroreceptors
Tichy, Harald; Kallina, Wolfgang
2013-01-01
Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the higher the temperature, the greater the evaporative temperature depression and the power to desiccate. PMID:23342058
The evaporative function of cockroach hygroreceptors.
Tichy, Harald; Kallina, Wolfgang
2013-01-01
Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the higher the temperature, the greater the evaporative temperature depression and the power to desiccate.
Centritto, Mauro; Brilli, Federico; Fodale, Roberta; Loreto, Francesco
2011-03-01
The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.
Agroecosystem productivity in a warmer and CO2 enriched atmosphere
NASA Astrophysics Data System (ADS)
Bernacchi, Carl; Köhler, Iris; Ort, Donald; Long, Steven; Clemente, Thomas
2017-04-01
A number of in-field manipulative experiments have been conducted that address the response of key ecosystem services of major agronomic species to rising CO2. Global warming, however, is inextricably linked to rising greenhouse gases in general, of which CO2 is the most dominant. Therefore, agroecosystem functioning in future conditions requires an understanding of plant responses to both rising CO2 and increased temperatures. Few in-field manipulative experiments have been conducted that supplement both heating and CO2 above background concentrations. Here, the results of six years of experimentation using a coupled Free Air CO2 Enrichment (FACE) technology with variable output infrared heating arrays are reported. The manipulative experiment increased temperatures (+ 3.5˚ C) and CO2 (+ 200 μmol mol-1) above background levels for on two major agronomic crop species grown throughout the world, Zea mays (maize) and Glycine max (soybean). The first phase of this research addresses the response of plant physiological parameters to growth in elevated CO2 and warmer temperatures for maize and soybean grown in an open-air manipulative experiment. The results show that any increase in ecosystem productivity associated with rising CO2 is either similar or is offset by growth at higher temperatures, inconsistent with the perceived benefits of higher CO2 plus warmer temperatures on agroecosystem productivity. The second phase of this research addresses the opportunity to genetically modify soybean to allow for improved productivity under high CO2 and warmer temperatures by increasing a key photosynthetic carbon reduction cycle enzyme, SPBase. The results from this research demonstrates that manipulation of the photosynthetic pathway can lead to higher productivity in high CO2 and temperature relative to the wild-type control soybean. Overall, this research advances the understanding of the physiological responses of two major crops, and the impact on ecosystem services, to atmospheric conditions with the ultimate goals of better understanding agronomic responses to global change and improved representation of these processes in ecosystem models.
Comprehensive thermoelectric properties of n- and p-type 78a/o Si - 22a/o Ge alloy
NASA Technical Reports Server (NTRS)
Raag, V.
1978-01-01
The time and temperature dependence of the thermoelectric properties on n- and p-type 78 a/o Si - 22 a/o Ge alloy are presented in detail for the range of temperatures of zero to 1000 C and operating times up to twelve years. The mechanisms responsible for the time dependence of the properties are discussed and mathematical models used in the derivation of the property values from experimental data are presented. The thermoelectric properties for each polarity type of the alloy are presented as a function of temperature for various operating times.
Hidden multiparticle excitation in a weakly interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Watabe, Shohei
2018-03-01
We investigate multiparticle excitation effect on a collective density excitation as well as a single-particle excitation in a weakly interacting Bose-Einstein condensate (BEC). We find that although the weakly interacting BEC offers weak multiparticle excitation spectrum at low temperatures, this multiparticle excitation effect may not remain hidden, but emerges as bimodality in the density response function through the single-particle excitation. Identification of spectra in the BEC between the single-particle excitation and the density excitation is also assessed at nonzero temperatures, which has been known to be unique nature in the BEC at absolute zero temperature.
Wirelessly Interrogated Wear or Temperature Sensors
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2010-01-01
Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.
Magnetic Resonance of Polymers at Surfaces
1989-08-28
are similar in their response to solvent Znd temperature in bulk poly(vinyl acetate) ( PVAc ). 2 5 This technique has been used for comparison with bulk...polymer for the PVAc -silica and polystyrene (PS)-silica systems. 2 6 As a function of temperature, comparison of the surface labelled polymer with the...the coverage was increased, the ESR spectra of the polymer also became more bulk-like. The mobility of the PVAc on silica was also shown to depend on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
Quantum Fisher Information as a function response to a weak external perturbation
NASA Astrophysics Data System (ADS)
Rojas, Fernando; Maytorena, Jesus A.
The quantum fisher information (QFI) is known as a good indicator of entanglement in a multipartite systems. In this work we show that it can be treated as an induced response to an external field, in the same spirit of the usual linear response theory, with respect to a linear combination of observables of each subsystem. We derive an expression for a corresponding linear dynamical susceptibilitywhich contains relevant information about entanglement properties of a multipartite system. This approach is applied to investigate the hybrid entanglement in the driven Jaynes-Cummings model. The Fisher susceptibility response function is obtained and allows us to characterize the changes on quantum correlations between the qubit and photon states, in terms of the driving frequency, atom-field coupling, and temperature. We acknowledge financial support from DGAPA PAPPIT IN105717.
Polymeric blends for sensor and actuation dual functionality
NASA Technical Reports Server (NTRS)
St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)
2004-01-01
The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.
NASA Astrophysics Data System (ADS)
Taylor, Nicholas; Williamson, David; Jardine, Andrew
2013-06-01
Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in PMMA. However, their results disagree strongly above 2 GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 μs, allowing temperature measurement within the duration of a plate impact experiment.
Bacterial production of sunscreen pigments increase arid land soil surface temperature
NASA Astrophysics Data System (ADS)
Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran
2015-04-01
Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on estimates of the global biomass of cyanobacteria in soil crusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin accumulated on the surface of arid soils worldwide, whose role on soils temperature has been ignored so far.
Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations
NASA Astrophysics Data System (ADS)
Sánchez-Mejorada, G.; Frias, D.
2006-09-01
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less
Diffusion and Stability of Hydrogen in Mg-Doped GaN: A Density Functional Study
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, Kee Joo
2012-06-01
Using hybrid functional calculations, we study the diffusion and thermal stability of hydrogen in Mg-doped GaN. Compared with the generalized gradient approximation, we obtain a higher activation barrier for dissociating a Mg-H complex, which is attributed to the increase in the binding energy of Mg-H. Kinetic Monte Carlo simulations yield the annealing temperature of around 800 °C for activating Mg acceptors, close to the measured values. The results provide an insight to understanding the annealing effect such that the annealing temperature generally increases with the Mg-H concentration, and the retrapping of H is partly responsible for the low doping efficiencies at high Mg concentrations.
Thermal adaptation of net ecosystem exchange
USDA-ARS?s Scientific Manuscript database
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Chandler, G.A.; Biggs, F.
X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parametersmore » (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.« less
Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii
Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin
2016-01-01
Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties. PMID:27467884
Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii.
Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin
2016-01-01
Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties.
Zero-field magnetic response functions in Landau levels
Gao, Yang; Niu, Qian
2017-01-01
We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849
Spectral responses of gravel beaches to tidal signals
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Boufadel, Michel C.
2017-01-01
Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.
Development of Design Analysis Methods for C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.
2006-01-01
The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.
NASA Astrophysics Data System (ADS)
Shen, Yanbai; Bi, Hongshan; Li, Tingting; Zhong, Xiangxi; Chen, Xiangxiang; Fan, Anfeng; Wei, Dezhou
2018-03-01
Hierarchically nanostructured WO3 microspheres that had two types of Au functionalization modes (i.e., Au-loaded mode and Au-doped mode) were characterized in terms of their microstructure and NO2 sensing performance. Pure, Au-loaded, and Au-doped WO3 microspheres were synthesized using a hydrothermal method, followed by a dipping method for Au-loaded WO3 microspheres. Microstructure characterization indicated that uniform microspheres with 3-6 μm in diameter were assembled from numerous well-defined individual WO3 nanorods with a single crystal hexagonal structure. The morphology and size of the WO3 microspheres were not affected by the functionalization of the Au nanoparticles, and the W, O, and Au elements were well-distributed in the WO3 microspheres. The NO2 sensing properties indicated that the Au nanoparticles not only improved the sensor response and reproducibility but also decreased the operating temperature at which the sensor response reached a maximum. Gas sensors based on pure, Au-loaded, and Au-doped WO3 microspheres exhibited a linear relationship between the sensor response and NO2 concentration. The sensing performance was significantly enhanced in the following order: pure, Au-loaded, and Au-doped WO3 microspheres. This result is due to the modulation of the depletion layer via oxygen adsorption as well as chemical and electronic sensitization of Au nanoparticles.
How light competition between plants affects their response to climate change.
van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R
2014-09-01
How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Can trait patterns along gradients predict plant community responses to climate change?
Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis
2016-10-01
Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.
A 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor.
Wu, Jin; Tao, Kai; Guo, Yuanyuan; Li, Zhong; Wang, Xiaotian; Luo, Zhongzhen; Feng, Shuanglong; Du, Chunlei; Chen, Di; Miao, Jianmin; Norford, Leslie K
2017-03-01
Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO 3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO 2 and NH 3 , respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.
Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi
2016-11-01
A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.
Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function.
Renaudeau, D; Anais, C; Tel, L; Gourdine, J L
2010-11-01
Ninety-six Large White growing barrows were used to determine the effect of temperature on thermoregulatory responses during acclimation to increased ambient temperature. Pigs were exposed to 24°C for 10 d and thereafter to a constant temperature of 24, 28, 32, or 36°C for 20 d. The study was conducted in a climate-controlled room at the INRA experimental facilities in Guadeloupe, French West Indies. Relative humidity was kept constant at 80% throughout the experimental period. Rectal temperature, cutaneous temperature, and respiratory rate were measured [breaths per minute (bpm)] 3 times daily (0700, 1200, and 1800 h) every 2 or 3 d during the experiment. The thermal circulation index (TCI) was determined from rectal, cutaneous, and ambient temperature measurements. Changes in rectal temperature, respiratory rate, TCI, and ADFI over the duration of exposure to hot temperatures were modeled using nonlinear responses curves. Within 1 h of exposure to increased temperature, rectal temperature and respiratory rate increased by 0.46°C/d and +29.3 bpm/d, respectively, and ADFI and TCI decreased linearly by 44.7 g•d(-2)•kg(-0.60) and 1.32°C/d, respectively until a first breakpoint time (td(1)). This point marked the end of the short-term heat acclimation phase and the beginning of the long-term heat acclimation period. The td(1) value for ADFI was greater at 28°C than at 32 and 36°C (2.33 vs. 0.31 and 0.26 d, respectively, P < 0.05), whereas td(1) for the TCI increase was greater at 36°C than at 28 and 32°C (1.02 vs. 0.78 and 0.67 d, respectively; P < 0.05). For rectal temperature and respiratory rate responses, td(1) was not influenced by temperature (P > 0.05) and averaged 1.1 and 0.89 d, respectively. For respiratory rate and rectal temperature, the long-term heat acclimation period was divided in 2 phases, with a rapid decline for both variables followed by a slight decrease (P < 0.05). These 2 phases were separated by a second threshold day (td(2)). For rectal temperature, td(2) increased significantly with temperature (1.60 vs. 5.16 d from 28 to 36°C; P < 0.05). After td(2), the decline in rectal temperature during the exposure to thermal challenge was not influenced by temperature, suggesting that the magnitude of heat stress would affect thermoregulatory responses only at the beginning of the long-term heat acclimation period. The inclusion of random effects in the nonlinear model showed that whatever the temperature considered, interindividual variability of thermoregulatory responses would exist.
Nanocomposite thin films for optical temperature sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohodnicki, Jr., Paul R.; Brown, Thomas D.; Buric, Michael P.
2017-02-14
The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500.degree. C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10.sup.-1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition ofmore » a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches. In some embodiments, the dielectric matrix provides additional functionality due to a temperature dependent band-edge, an optimized chemical sensing response, or an optimized refractive index of the temperature sensing material for integration with optical waveguides.« less
Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents
2016-01-01
Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418
Arana, María Verónica; Tognacca, Rocío Soledad; Estravis-Barcalá, Maximiliano; Sánchez, Rodolfo Augusto; Botto, Javier Francisco
2017-12-01
The relief of dormancy and the promotion of seed germination are of extreme importance for a successful seedling establishment. Although alternating temperatures and light are signals promoting the relief of seed dormancy, the underlying mechanisms of their interaction in seeds are scarcely known. By exposing imbibed Arabidopsis thaliana dormant seeds to two-day temperature cycles previous of a red light pulse, we demonstrate that the germination mediated by phytochrome B requires the presence of functional PSEUDO-RESPONSE REGULATOR 7 (PRR7) and TIMING OF CAB EXPRESSION 1 (TOC1) alleles. In addition, daily cycles of alternating temperatures in darkness reduce the protein levels of DELAY OF GERMINATION 1 (DOG1), allowing the expression of TOC1 to induce seed germination. Our results suggest a functional role for some components of the circadian clock related with the action of DOG1 for the integration of alternating temperatures and light signals in the relief of seed dormancy. The synchronization of germination by the synergic action of light and temperature through the activity of circadian clock might have ecological and adaptive consequences. © 2017 John Wiley & Sons Ltd.
Morphology-based differences in the thermal response of freshwater phytoplankton.
Segura, Angel M; Sarthou, Florencia; Kruk, Carla
2018-05-01
The thermal response of maximum growth rate in morphology-based functional groups (MBFG) of freshwater phytoplankton is analysed. Contrasting an exponential Boltzmann-Arrhenius with a unimodal model, three main features were evaluated: (i) the activation energy of the rise ( E r ), (ii) the presence of a break in the thermal response and (iii) the activation energy of the fall ( E f ). The whole dataset ( N = 563) showed an exponential increase ( E r ∼ 0.5), a break around 24°C and no temperature dependence after the breakpoint ( E f = 0). Contrasting thermal responses among MBFG were found. All groups showed positive activation energy ( E r > 0), four showed no evidence of decline in growth rate (temperature range = 0-35°C) and two presented a breakpoint followed by a sharp decrease in growth rate. Our results evidenced systematic differences between MBFG in the thermal response and a coherent response significantly related to morphological traits other than size (i.e. within MBFG). These results provide relevant information for water quality modelling and climate change predictions. © 2018 The Author(s).
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Cheng, K. S.; Pines, D.
1989-01-01
The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.
Ultrafast IR detector response in high Tc superconducting thin films
NASA Technical Reports Server (NTRS)
Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.
1991-01-01
The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.
Mining a sea of data: deducing the environmental controls of ocean chlorophyll.
Irwin, Andrew J; Finkel, Zoe V
2008-01-01
Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.
Determination of rock properties by low-frequency AC electrokinetics
NASA Astrophysics Data System (ADS)
Pengra, David B.; Xi Li, Sidney; Wong, Po-Zen
1999-12-01
In brine-saturated rock the existence of a mobile space charge at the fluid/solid interface leads to the electrokinetic phenomena of electroosmotic pressure and streaming potential. The coupling coefficients of these electrokinetic effects, when combined with the conductivity of the brine-saturated rock, determine the brine permeability of rock exactly. A sensitive low-frequency AC technique has been used to measure electrokinetic response of a collection of eight rock and four glass bead samples saturated with NaCl brine as a function of salt concentration (fluid conductivity of 0.5 to 6.38 S/m); the response of four of the original 12 samples has also been measured as a function of temperature from 0° to 50°C. All data verify the predicted permeability relationship. Additionally, the frequency response of the electroosmotic pressure signal alone can also be used to determine the permeability, given knowledge of experimental parameters. The concentration and temperature dependence of electroosmosis and streaming potential is found to mostly conform to the predictions of a simple model based on the Helmholtz-Smoluchowski equation, the Stern model of the electrochemical double layer, and an elementary theory of ionic conduction.
Miller, N W; Deuter, A; Clem, L W
1986-01-01
Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817
NASA Astrophysics Data System (ADS)
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.
2015-06-01
Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.
Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)
Alcorn, S.W.; Murray, A.L.; Pascho, R.J.
2002-01-01
To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in its scope because it was the first quantitative assessment of salmon immune functions for an entire life-cycle. ?? 2002 Elsevier Science Ltd.
NASA Technical Reports Server (NTRS)
Deroshia, C. W.; Winget, C. M.; Bond, G. H.
1976-01-01
A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria
2012-08-01
Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Holman, Gordon D.
2012-01-01
Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94, 131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightenedsimultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK.Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94,131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functionsavailable through SSWIDL with (2) EUV spectral line data observed in a flare loop
Central Nervous System Regulation of Brown Adipose Tissue
Morrison, Shaun F.; Madden, Christopher J.
2015-01-01
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857
Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro
2008-01-01
The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673
Depino, Amaicha Mara; Gross, Cornelius
2007-02-27
In humans, anxiety is accompanied by changes in autonomic nervous system function, including increased heart rate, body temperature, and blood pressure, and decreased heart rate variability. In rodents, anxiety is inferred by examining anxiety-related behavioral responses such as avoidance and freezing, and more infrequently by assessing autonomic responses to anxiogenic stimuli. However, few studies have simultaneously measured behavioral and autonomic responses to aversive stimuli in rodents and it remains unclear whether autonomic measures are reliable correlates of anxiety-related behavior in these animal models. Here we recorded for the first time heart rate and body temperature in freely moving BALB/c and C57BL/6 mice during exposure to an unfamiliar environment. Our data show that upon exposure to a novel open field, BALB/c mice showed increased anxiety-related behavior, reduced heart rate and higher heart rate variability (HRV) when compared with C57BL/6 mice. Regression analysis revealed a significant correlation between both heart rate and long-term HRV measures and locomotor activity and time spent in the center of the open field, but no correlation between body temperature and any behavioral variables. In the free exploration test, in which animals were allowed direct access to a novel environment from a familiar environment without experimenter handling, significant correlations were found only between heart rate and total locomotor activity, but not time spent in the unfamiliar chamber despite increased anxiety-related behavior in BALB/c mice. These findings demonstrate that increased anxiety-related behavior in BALB/c mice is not associated with specific changes in heart rate, HRV, or body temperature.
Evaluation of the Absolute Regional Temperature Potential
NASA Technical Reports Server (NTRS)
Shindell, D. T.
2012-01-01
The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.
Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa
2016-01-01
The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.
Paranjpe, Dhanashree A; Bastiaans, Elizabeth; Patten, Amy; Cooper, Robert D; Sinervo, Barry
2013-01-01
Natural populations respond to selection pressures like increasing local temperatures in many ways, including plasticity and adaptation. To predict the response of ectotherms like lizards to local temperature increase, it is essential to estimate phenotypic variation in and determine the heritability of temperature-related traits like average field body temperature (Tb) and preferred temperature (Tp). We measured Tp of Uta stansburiana in a laboratory thermal gradient and assessed the contribution of sex, reproductive status and throat color genotype to phenotypic variation in Tb of adult lizards. Females had higher Tp than males. However, they temporarily preferred lower temperature when gravid than when nongravid. Using a nested half-sib design for genetic crosses in the laboratory, we estimated relative contributions of additive genetic variation and maternal effects to Tp of hatchlings. Our results show that maternal effects, but not additive genetic variation, influence Tp of hatchlings in U. stansburiana. Maternal Tp and the presence or absence of blue throat color alleles significantly influenced Tp of hatchlings. We discuss ecological and evolutionary consequences of these maternal effects in the context of rapid climate change and natural selection that we measure on progeny survival to maturity as a function of maternal Tp. PMID:23919144
Paranjpe, Dhanashree A; Bastiaans, Elizabeth; Patten, Amy; Cooper, Robert D; Sinervo, Barry
2013-07-01
Natural populations respond to selection pressures like increasing local temperatures in many ways, including plasticity and adaptation. To predict the response of ectotherms like lizards to local temperature increase, it is essential to estimate phenotypic variation in and determine the heritability of temperature-related traits like average field body temperature (T b) and preferred temperature (T p). We measured T p of Uta stansburiana in a laboratory thermal gradient and assessed the contribution of sex, reproductive status and throat color genotype to phenotypic variation in T b of adult lizards. Females had higher T p than males. However, they temporarily preferred lower temperature when gravid than when nongravid. Using a nested half-sib design for genetic crosses in the laboratory, we estimated relative contributions of additive genetic variation and maternal effects to T p of hatchlings. Our results show that maternal effects, but not additive genetic variation, influence T p of hatchlings in U. stansburiana. Maternal T p and the presence or absence of blue throat color alleles significantly influenced T p of hatchlings. We discuss ecological and evolutionary consequences of these maternal effects in the context of rapid climate change and natural selection that we measure on progeny survival to maturity as a function of maternal T p.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.
2016-05-13
To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C 4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species ( Zea mays) to assess correlations in leaf temperature (T leaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly changemore » in abundance levels with T leaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing T leaf in S. nutans. Furthermore, the differential transcriptomic responses of the co-dominant C 4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.« less
Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing
NASA Astrophysics Data System (ADS)
Qin, Yuxiang; Wang, Liping; Wang, Xiaofei
2018-07-01
Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg2+ and Al3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5–200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing.
Qin, Yuxiang; Wang, Liping; Wang, Xiaofei
2018-07-06
Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg 2+ and Al 3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5-200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
Kahle, Juliette J.; Neas, Lucas M.; Devlin, Robert B.; Case, Martin W.; Schmitt, Michael T.; Madden, Michael C.
2014-01-01
Background: Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbidity and mortality and can reduce lung function and alter systemic markers of fibrinolysis. The interaction between ozone and temperature is unclear. Methods: Sixteen healthy volunteers were exposed in a randomized crossover study to 0.3 ppm ozone and clean air for 2 hr at moderate (22°C) temperature and again at an elevated temperature (32.5°C). In each case lung function was performed and blood taken before and immediately after exposure and the next morning. Results: Ozone exposure at 22°C resulted in a decrease in markers of fibrinolysis the next day. There was a 51.8% net decrease in PAI-1 (plasminogen activator inhibitor-1), a 12.1% net decrease in plasminogen, and a 17.8% net increase in D-dimer. These significantly differed from the response at 32.5°C, where there was a 44.9% (p = 0.002) and a 27.9% (p = 0.001) increase in PAI-1 and plasminogen, respectively, and a 12.5% (p = 0.042) decrease in D-dimer. In contrast, decrements in lung function following ozone exposure were comparable at both moderate and elevated temperatures (forced expiratory volume in 1 sec, –12.4% vs. –7.5%, p > 0.05). No changes in systemic markers of inflammation were observed for either temperature. Conclusion: Ozone-induced systemic but not respiratory effects varied according to temperature. Our study suggests that at moderate temperature ozone may activate the fibrinolytic pathway, while at elevated temperature ozone may impair it. These findings provide a biological basis for the interaction between temperature and ozone on mortality observed in some epidemiologic studies. Citation: Kahle JJ, Neas LM, Devlin RB, Case MW, Schmitt MT, Madden MC, Diaz-Sanchez D. 2015. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers. Environ Health Perspect 123:310–316; http://dx.doi.org/10.1289/ehp.1307986 PMID:25514459
cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.
Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob
2008-08-07
Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.
Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung
2018-02-27
Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.
pH-Dependent, Thermosensitive Polymeric Nanocarriers for Drug Delivery to Solid Tumors
Chen, Ching-Yi; Kim, Tae Hee; Wu, Wen-Chung; Huang, Chi-Ming; Wei, Hua; Mount, Christopher W.; Tian, Yanqing; Jang, Sei-Hum; Pun, Suzie H.; Jen, Alex K-Y
2013-01-01
Polymeric micelles are promising carriers for anticancer agents due to their small size, ease of assembly, and versatility for functionalization. A current challenge in the use of polymeric micelles is the sensitive balance that must be achieved between stability during prolonged blood circulation and release of active drug at the tumor site. Stimuli-responsive materials provide a mechanism for triggered drug release in the acidic tumor and intracellular microenvironments. In this work, we synthesized a series of dual pH- and temperature-responsive block copolymers containing a poly(ε-caprolactone) (PCL) hydrophobic block with a poly(triethylene glycol) block that were copolymerized with an amino acid-functionalized monomer. The block copolymers formed micellar structures in aqueous solutions. An optimized polymer that was functionalized with 6-aminocaproic acid (ACA) possessed pH-sensitive phase transitions at mildly acidic pH and body temperature. Doxorubicin-loaded micelles formed from these polymers were stable at blood pH (~7.4) and showed increased drug release at acidic pH. In addition, these micelles displayed more potent anti-cancer activity than free doxorubicin when tested in a tumor xenograft model in mice. PMID:23498892
D. M. Jimenez; B. W. Butler; J. Reardon
2003-01-01
Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
NASA Astrophysics Data System (ADS)
Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.
2015-03-01
The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.
From blood oxygenation level dependent (BOLD) signals to brain temperature maps.
Sotero, Roberto C; Iturria-Medina, Yasser
2011-11-01
A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.
Transcriptional Activation by Heat and Cold of a Thiol Protease Gene in Tomato
Schaffer, Mark A.; Fischer, Robert L.
1990-01-01
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases (MA Schaffer, RL Fischer [1988] Plant Physiol 87: 431-436). We now demonstrate that C14 mRNA accumulation is a response common to both high (40°C) and low (4°C) temperature stresses. Exposure of tomato fruit to 40°C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4°C, but slower than the induction of many heat shock messages by 40°C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667644
Low TCR nanocomposite strain gages
NASA Technical Reports Server (NTRS)
Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)
2012-01-01
A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.
Fabrication of angleply carbon-aluminum composites
NASA Technical Reports Server (NTRS)
Novak, R. C.
1974-01-01
A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.
Solutions of the heat conduction equation in multilayers for photothermal deflection experiments
NASA Technical Reports Server (NTRS)
Mcgahan, William A.; Cole, K. D.
1992-01-01
Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.
Pandey, Ashish; Pandey, Siddharth
2014-12-18
Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate.
Liu, Shu; Schulze, Ekkehard; Baumeister, Ralf
2012-01-01
Background Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli. PMID:22448218
Functionalized membranes for environmental remediation and selective separation
NASA Astrophysics Data System (ADS)
Xiao, Li
Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF) between UF and RO presents selectivity controlled by both steric and electrostatic repulsions, which are widely used to reject charged species, particularly multivalent ions. In this work, selective permeation of CaCl2 and high sucrose retention are obtained through the modification of nanofiltration membranes with lower charge compared to commercial nanofiltration membrane. The membrane module also shows high stability with constant water permeability in a long-term (two months) test. Extended Nernst-Planck equation were further used to evaluate the experimental results and it fits well. KEY WORDS: Functionalized Membrane, Dechlorination, Responsive, Tunable, Full-scale.
Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films
NASA Astrophysics Data System (ADS)
Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.
2014-04-01
In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.
Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.
2017-01-01
Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi, E-mail: hiro@bs.naist.jp
Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiologicalmore » role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.« less
High Tc superconducting IR detectors from Y-Ba-Cu-O thin films
NASA Technical Reports Server (NTRS)
Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.
1990-01-01
A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.
Smith, Caroline J; Johnson, John M
2016-04-01
Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat production. Small discrepancies between heat production and heat elimination would, over time, lead to significant changes in heat storage and body temperature. When heat production or environmental temperature is high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat production is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat loss. These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory reflexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular responses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vasodilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of autonomic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.