Sample records for temperature sensing device

  1. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  2. On-fiber plasmonic interferometer for multi-parameter sensing

    DOE PAGES

    Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...

    2015-01-01

    We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less

  3. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  4. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    PubMed

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  5. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  6. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    NASA Astrophysics Data System (ADS)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  7. GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing

    NASA Astrophysics Data System (ADS)

    Maradan, D.; Casparis, L.; Liu, T.-M.; Biesinger, D. E. F.; Scheller, C. P.; Zumbühl, D. M.; Zimmerman, J. D.; Gossard, A. C.

    2014-06-01

    We present measurements of the electron temperature using gate-defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.

  8. High temperature, minimally invasive optical sensing modules

    DOEpatents

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  9. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    PubMed

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  10. Fiber optic temperature sensor gives rise to thermal analysis in complex product design

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.

  11. Monolithic Silicon Microbolometer Materials forUncooled Infrared Detectors

    DTIC Science & Technology

    2015-05-21

    L. Allara, Mark W. Horn. Vanadium Oxide Thin Films Alloyed with Ti, Zr , Nb , and Mo for Uncooled Infrared Imaging Applications, Journal of...entitled "Thin Film Materials and Devices for Resistive Temperature Sensing Applications" by Hitesh Basantani and the other entitled "Reactive...extension. One was entitled "Thin Film Materials and Devices for Resistive Temperature Sensing Applications" by Hitesh Basantani and the other

  12. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  13. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  14. Temperature measurement with industrial color camera devices

    NASA Astrophysics Data System (ADS)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  15. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    PubMed

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  16. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  17. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    PubMed Central

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  18. Low Power Consumption Gas Sensor Created from Silicon Nanowires/TiO2 Core-Shell Heterojunctions.

    PubMed

    Liu, Dong; Lin, Leimiao; Chen, Qiaofen; Zhou, Hongzhi; Wu, Jianmin

    2017-10-27

    Silicon nanowires/TiO 2 (SiNWs/TiO 2 ) array with core-shell nanostructure was created by sol-gel and drop-casting methods. The hybrid material displayed excellent sensing performance for CH 4 detection at room temperature. The chemiresistor sensor has a linear response toward CH 4 gas in the 30-120 ppm range with a detection limit of 20 ppm, which is well below most CH 4 sensors reported before. The enhanced gas sensing performance at room temperature was attributed to the creation of heterojunctions that form a depletion layer at the interface of SiNWs and TiO 2 layer. Adsorption of oxygen and corresponding gas analyte on TiO 2 layer could induce the change of depletion layer thickness and consequently the width of the SiNWs conductive channel, leading to a sensitive conductive response toward gas analyte. Compared to conventional metal oxide gas sensors, the room temperature gas sensors constructed from SiNWs/TiO 2 do not need an additional heating device and work at power at the μW level. The low power consumption feature is of great importance for sensing devices, if they are widely deployed and connected to the Internet of Things. The innovation of room temperature sensing materials may push forward the integration of gas sensing element with wireless device.

  19. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids.

    PubMed

    Calixto, Sergio; Bruce, Neil C; Rosete-Aguilar, Martha

    2016-01-11

    We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented.

  20. 40 CFR 86.409-78 - Defeat devices, prohibition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motorcycle shall be equipped with a defeat device. (b) Defeat device means any element of design which: (1) Senses temperature, vehicle speed, engine RPM, transmission gear, manifold vacuum, or any other parameter...

  1. 40 CFR 86.409-78 - Defeat devices, prohibition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... motorcycle shall be equipped with a defeat device. (b) Defeat device means any element of design which: (1) Senses temperature, vehicle speed, engine RPM, transmission gear, manifold vacuum, or any other parameter...

  2. 40 CFR 86.409-78 - Defeat devices, prohibition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motorcycle shall be equipped with a defeat device. (b) Defeat device means any element of design which: (1) Senses temperature, vehicle speed, engine RPM, transmission gear, manifold vacuum, or any other parameter...

  3. 40 CFR 86.409-78 - Defeat devices, prohibition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... motorcycle shall be equipped with a defeat device. (b) Defeat device means any element of design which: (1) Senses temperature, vehicle speed, engine RPM, transmission gear, manifold vacuum, or any other parameter...

  4. 40 CFR 86.409-78 - Defeat devices, prohibition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motorcycle shall be equipped with a defeat device. (b) Defeat device means any element of design which: (1) Senses temperature, vehicle speed, engine RPM, transmission gear, manifold vacuum, or any other parameter...

  5. Ultra-miniature wireless temperature sensor for thermal medicine applications

    PubMed Central

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2017-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems. PMID:28989222

  6. Microcantilever heater-thermometer with integrated temperature-compensated strain sensor

    DOEpatents

    King, William P [Champaign, IL; Lee, Jungchul [Champaign, IL; Goericke, Fabian T [Wolfsburg, DE

    2011-04-19

    The present invention provides microcantilever hotplate devices which incorporate temperature compensating strain sensors. The microcantilever hotplate devices of the present invention comprise microcantilevers having temperature compensating strain sensors and resistive heaters. The present invention also provides methods for using a microcantilever hotplate for temperature compensated surface stress measurements, chemical/biochemical sensing, measuring various properties of compounds adhered to the microcantilever hotplate surface, or for temperature compensated deflection measurements.

  7. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  8. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  9. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  10. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  11. Whispering gallery resonators for optical sensing

    NASA Astrophysics Data System (ADS)

    Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle

    2017-04-01

    In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.

  12. Battery system with temperature sensors

    DOEpatents

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  13. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  14. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOEpatents

    DeSteese, John G

    2010-11-16

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  15. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  16. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  17. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary Emission Control Device (AECD) means any element of design which senses temperature, vehicle speed.... Critical emission-related components are those components which are designed primarily for emission control... control system is a unique group of emission control devices, auxiliary emission control devices, engine...

  18. Sensitive and Selective NH₃ Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate).

    PubMed

    Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu

    2018-04-01

    Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.

  19. Miniature optical fiber temperature sensor based on FMF-SCF structure

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Li, Jing; Pei, Li; Wen, Xiaodong

    2018-03-01

    We proposed and experimentally demonstrated a miniature optical fiber temperature sensor consisting of a seven core fiber (SCF) and a few mode fiber (FMF). The device is fabricated by splicing a section of FMF with a segment of SCF to form a FMF-SCF based sensing structure, and during the FMF region, few modes can be excited and will propagate within the SCF. In experiment, the proposed device has good quality interferometric spectra, and the highest extinction ratio of 27 dB was achieved. When the temperature increases from room temperature to 110 °C, the temperature response properties of the sensor have been investigated, the wavelength sensitivity of about 91.8 pm/°C and the amplitude sensitivity of about 1.57 × 10-2 a.u./°C are obtained, respectively. Due to its easy and controllable fabrication, the sensor can be a suitable candidate in temperature sensing applications.

  20. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  1. Liquid-level sensing device

    DOEpatents

    Goldfuss, G.T.

    1975-09-16

    This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)

  2. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  3. Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare

    NASA Astrophysics Data System (ADS)

    Hariz, Alex; Mehmood, Nasir; Voelcker, Nico

    2015-12-01

    Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.

  4. Self-sensing of temperature rises on light emitting diode based optrodes

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick

    2018-04-01

    Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.

  5. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means any device, system, or element of design that someone can adjust (including those which are... emission control device means any element of design that senses temperature, motive speed, engine RPM... on a continuous mixture of those fuels. Emission control system means any device, system, or element...

  6. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.

    PubMed

    Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-12-23

    A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.

  7. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  8. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    PubMed Central

    Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.

    2015-01-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705

  9. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    PubMed

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  10. 40 CFR 1037.801 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  11. 40 CFR 1037.801 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary emission control device means any element of design that senses temperature, motive speed, engine... any device, system, or element of design that controls or reduces the emissions of regulated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  12. Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement.

    PubMed

    Xu, Ben; Yang, Yi; Jia, Zhenbao; Wang, D N

    2017-06-26

    A compact and high sensitivity sensor with a fiber-tip structure is proposed and demonstrated for simultaneously liquid refractive index (RI) and temperature sensing. The device is fabricated by inserting a tiny segment of capillary tube between single-mode fibers (SMFs) to form two cascaded Fabry-Perot interferometers (FPIs). The theoretical and experimental results demonstrate that the ambient liquid RI and temperature can be simultaneously determined by the intensity and shift of the resonant wavelength in the reflection spectrum. Our proposed device has the highest RI sensitivity of ~216.37 dB/RIU at the RI value of 1.30; a high spatial resolution owing to its compact size (with dimension <400 μm) makes it promising for high precision bio/chemical sensing applications.

  13. Neutron-absorber release device

    DOEpatents

    VAN Erp, Jan B.; Kimont, Edward L.

    1976-01-01

    A resettable device is provided for supporting an object, sensing when an environment reaches a critical temperature and releasing the object when the critical temperature is reached. It includes a flexible container having a material inside with a melting point at the critical temperature. The object's weight is supported by the solid material which gives rigidity to the container until the critical temperature is reached at which point the material in the container melts. The flexible container with the now fluid material inside has insufficient strength to support the object which is thereby released. Biasing means forces the container back to its original shape so that when the temperature falls below the melting temperature the material again solidifies, and the object may again be supported by the device.

  14. Comparison of three methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs.

    PubMed

    Greer, Rebecca J; Cohn, Leah A; Dodam, John R; Wagner-Mann, Colette C; Mann, F A

    2007-06-15

    To assess the reliability and accuracy of a predictive rectal thermometer, an infrared auricular thermometer designed for veterinary use, and a subcutaneous temperature-sensing microchip for measurement of core body temperature over various temperature conditions in dogs. Prospective study. 8 purpose-bred dogs. A minimum of 7 days prior to study commencement, a subcutaneous temperature-sensing microchip was implanted in 1 of 3 locations (interscapular, lateral aspect of shoulder, or sacral region) in each dog. For comparison with temperatures measured via rectal thermometer, infrared auricular thermometer, and microchip, core body temperature was measured via a thermistor-tipped pulmonary artery (TTPA) catheter. Hypothermia was induced during anesthesia at the time of TTPA catheter placement; on 3 occasions after placement of the catheter, hyperthermia was induced via administration of a low dose of endotoxin. Near-simultaneous duplicate temperature measurements were recorded from the TTPA catheter, the rectal thermometer, auricular thermometer, and subcutaneous microchips during hypothermia, euthermia, and hyperthermia. Reliability (variability) of temperature measurement for each device and agreement between each device measurement and core body temperature were assessed. Variability between duplicate near-simultaneous temperature measurements was greatest for the auricular thermometer and least for the TTPA catheter. Measurements obtained by use of the rectal thermometer were in closest agreement with core body temperature; for all other devices, temperature readings typically underestimated core body temperature. Among the 3 methods of temperature measurement, rectal thermometry provided the most accurate estimation of core body temperature in dogs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riza, Nabeel Agha; Perez, Frank

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less

  16. 40 CFR 1036.801 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  17. 40 CFR 1036.801 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  18. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H₂S sensor.

    PubMed

    Nie, Yuxin; Deng, Ping; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2014-07-04

    Room-temperature, high H2S sensing has been realized from a CuO/ZnO nanoarray self-powered, active gas sensor. The piezoelectric output of CuO/ZnO nanoarrays can act not only as the power source of the device, but also as the H2S sensing signal at room temperature. Upon exposure to 800 ppm H2S at room temperature, the piezoelectric output of the device greatly decreased from 0.738 V (in air) to 0.101 V. The sensitivity increased to 629.8, much higher than bare ZnO nanoarrays. As the device was exposed to H2S, a CuO/ZnO PN-junction was converted into a CuS/ZnO Ohmic contact, which greatly increased the electron density in the nanowire and enhanced the screen effect on the piezoelectric output. Our results can stimulate a research trend on designing new composite piezoelectric material for high-performance self-powered active gas sensors.

  19. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole

    2016-04-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

  20. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occupancy sensor means a device which uses passive infrared, ultrasonic, or other motion-sensing technology..., frozen, combination chilled and frozen, or variable temperature; (4) Displays or stores merchandise and... doors; (6) Is designed for pull-down temperature applications or holding temperature applications; and...

  1. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    PubMed

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P

    2008-08-01

    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  2. 40 CFR 92.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...

  3. 40 CFR 92.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...

  4. 40 CFR 92.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...

  5. 40 CFR 94.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...

  6. 40 CFR 94.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...

  7. 40 CFR 94.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...

  8. 40 CFR 92.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...

  9. 40 CFR 94.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...

  10. 40 CFR 92.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Auxiliary emission control device (AECD) means any element of design which senses temperature, locomotive... those devices, systems or elements of design which control or reduce the emission of substances from an... Equivalent means the sum of the carbon mass contributions of non-oxygenated hydrocarbons, alcohols and...

  11. 40 CFR 94.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control device (AECD) means any element of design which senses temperature, vessel speed, engine... means those devices, systems or elements of design which control or reduce the emission of substances.... Total Hydrocarbon Equivalent means the sum of the carbon mass contributions of non-oxygenated...

  12. Implanted telemeter for electrocardiogram and body temperature

    NASA Technical Reports Server (NTRS)

    Barrows, W. F.

    1972-01-01

    Measuring system requiring one blocking oscillator to generate modulated pulse repetition rate is implantable in the bodies of small animals. Device has life of two years and transmission range of about three feet. EKG sensing unit also is used to sense electromyogram or electrooculogram of laboratory animals.

  13. High Sensitivity Stress Sensor Based on Hybrid Materials

    NASA Technical Reports Server (NTRS)

    Cao, Xian-An (Inventor)

    2014-01-01

    A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.

  14. A coaxial cable Fabry-Perot interferometer for sensing applications.

    PubMed

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-11-07

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.

  15. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  16. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  17. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  18. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  19. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  20. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  1. 40 CFR 1054.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...

  2. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.

    PubMed

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-06

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  3. Quartz-crystal-oscillator hygrometer

    NASA Technical Reports Server (NTRS)

    Kruger, R.

    1977-01-01

    Measuring device, which eliminates complex and expensive optical components by electronically sensing dewpoint of water vapor in gas, employs piezoelectric crystal oscillator, supportive circuitry, temperature regulators, and readout.

  4. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  5. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  6. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing

    NASA Astrophysics Data System (ADS)

    Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng

    2018-01-01

    Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.

  7. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  8. Method and apparatus for deregistering multi-filament tow and product thereof

    DOEpatents

    Lukhard, Craig R.; Potter, Jerry F.; Todd, Maurice C.

    1995-01-01

    A method and apparatus for deregistering drawn crimped nylon multifilament tow includes the steps of stretching the tow under constant controlled tension at a temperature below the glass transition temperature of the nylon. The apparatus includes means for sensing the tension of the tow between the feed and draw sections of a stretching device and producing a signal representative of the tension sensed and a controller for changing the speed of the draw section actuated by said signal.

  9. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  10. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  11. Design and fabrication of a differential scanning nanocalorimeter

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; Lu, Ming

    2017-02-01

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.

  12. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity.

    PubMed

    Zhang, Hui; Gao, Shecheng; Luo, Yunhan; Chen, Zhenshi; Xiong, Songsong; Wan, Lei; Huang, Xincheng; Huang, Bingsen; Feng, Yuanhua; He, Miao; Liu, Weiping; Chen, Zhe; Li, Zhaohui

    2018-04-17

    A liquid-filled D-shaped fiber (DF) cavity serving as an in-fiber Mach–Zehnder interferometer (MZI) has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs) to form a microcavity (MC) for filling and replacement of various refractive index (RI) liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms), experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis.

  13. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  14. Flexible corner cube retroreflector array for temperature and strain sensing† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13284k

    PubMed Central

    Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.

    2018-01-01

    Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510

  15. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator.

    PubMed

    Larocque, Hugo; Lu, Ping; Bao, Xiaoyi

    2016-04-01

    Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542  rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.

  16. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    NASA Astrophysics Data System (ADS)

    Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  17. Fiber-bragg grating-loop ringdown method and apparatus

    DOEpatents

    Wang, Chuji [Starkville, MS

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  18. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  20. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  1. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    DOEpatents

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  2. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping

    2016-04-01

    To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.

  3. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  4. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  5. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  6. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  7. Real Time Ferrograph Development.

    DTIC Science & Technology

    1979-11-01

    differential temperature of 65 0 C. Since opteo- electronic devices (photodiodes, photoresistors, etc.) have a maximum operating temperature around 85 0 C, it is...flow during the precipitation cycle. This regulator must keep the flow rate constant at any given temperature regardless of the differential pressure...across the sensing head. The pressure regulator achieved this by using the differential pressure across a fixed re;7trictor to move a bellows diaphragm

  8. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity

    PubMed Central

    Zhang, Hui; Gao, Shecheng; Luo, Yunhan; Xiong, Songsong; Wan, Lei; Huang, Xincheng; Huang, Bingsen; Feng, Yuanhua; He, Miao; Liu, Weiping; Chen, Zhe; Li, Zhaohui

    2018-01-01

    A liquid-filled D-shaped fiber (DF) cavity serving as an in-fiber Mach–Zehnder interferometer (MZI) has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs) to form a microcavity (MC) for filling and replacement of various refractive index (RI) liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms), experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis. PMID:29673220

  9. Design and fabrication of a differential scanning nanocalorimeter

    DOE PAGES

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; ...

    2016-12-19

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterizedmore » through the measurement of current–voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. As a result, the noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.« less

  10. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  11. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  12. ATI SAA Annex 3 Button Tensile Test Report I

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.

    2013-01-01

    This report documents the results of a study carried out under Splace Act Agreement SAA-EA-10-004 between the National Aeronautics and Space Administration (NASA) and Astro Technology Incorpporated (ATI). NASA and ATI have entered into this agreement to collaborate on the development of technologies that can benefit both the US government space programs and the oil and gas industry. The report documents the results of a test done on an adnesive system for attaching new monitoring sensor devices to pipelines under Annex III of SAA-EA-10-004: "Proof-of-Concept Design and Testing of a Post Installed Sensing Device on Subsea Risers and Pipelines". The tasks of Annex III are to design and test a proof-of-concept sensing device for in-situ installation on pipelines, risers, or other structures deployed in deep water. The function of the sensor device is to measure various signals such as strain, stress and temperature. This study complements the work done, in Annex I of the SAA, on attaching a fiber optic sensing device to pipe via adhesive bonding. Both Annex I and Annex III studies were conducted in the Crew and Thermal System Division (CTSD) at the Johnson Space Center (JSC) in collaboration with ATI.

  13. Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature

    NASA Astrophysics Data System (ADS)

    Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2017-08-01

    The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.

  14. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  15. Self-correcting electronically scanned pressure sensor

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  16. An evaluation of strain measuring devices for ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bartolotta, Paul A.

    1991-01-01

    A series of tensile tests was conducted on SiC/reaction bonded silicon nitrides (RBSN) composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance, but less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

  17. An evaluation of strain measuring devices for ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bartolotta, Paul A.

    1992-01-01

    A series of tensile tests were conducted on SiC/RBSN composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance strain gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance but significantly less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

  18. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  19. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  20. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  1. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    PubMed

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  2. Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures.

    PubMed

    Pfenning, Andreas; Hartmann, Fabian; Rebello Sousa Dias, Mariama; Castelano, Leonardo Kleber; Süßmeier, Christoph; Langer, Fabian; Höfling, Sven; Kamp, Martin; Marques, Gilmar Eugenio; Worschech, Lukas; Lopez-Richard, Victor

    2015-06-23

    Sensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K(-1), and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.

  3. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  4. Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

    2012-07-01

    A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.

  5. Suspended Carbon Nanotubes for Humidity Sensing

    PubMed Central

    Arunachalam, Shivaram; Gupta, Anubha A.; Izquierdo, Ricardo

    2018-01-01

    A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes. PMID:29786661

  6. Suspended Carbon Nanotubes for Humidity Sensing.

    PubMed

    Arunachalam, Shivaram; Gupta, Anubha A; Izquierdo, Ricardo; Nabki, Frederic

    2018-05-22

    A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes.

  7. Effect of substrate and temperature on the electronic properties of monolayer molybdenum disulfide field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Qizhi; Fang, Jiajia; Zhang, Guangru; Wang, Quan

    2018-03-01

    The use of two-dimensional nanostructured molybdenum disulfide (MoS2) films in field-effect transistors (FETs) in place of graphene was investigated. Monolayer MoS2 films were fabricated by chemical vapor deposition. The output and transfer curves of supported and suspended MoS2 FETs were measured. The mobility of the suspended device reached 364.2 cm2 V-1 s-1 at 150 °C. The hysteresis of the supported device in transfer curves was much larger than that of the suspended device, and it increased at higher temperatures. These results indicate that the device mobility was limited by Coulomb scattering at ambient temperature, and surface/interface phonon scattering at 150 °C, and the injection of electrons, via quantum tunneling through the Schottky barrier at the contact, was enhanced at higher temperatures and led to the increase of the hysteresis. The suspended MoS2 films show potential for application as a channel material in electronic devices, and further understanding the causes of hysteresis in a material is important for its use in technologies, such as memory devices and sensing cells.

  8. P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)

    2018-05-01

    Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.

  9. Tuning the gas sensing performance of single PEDOT nanowire devices.

    PubMed

    Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V

    2011-06-07

    This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.

  10. 40 CFR 1042.901 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  11. 40 CFR 1042.901 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  12. 40 CFR 1042.901 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  13. 40 CFR 1042.901 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  14. 40 CFR 1042.901 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part. Auxiliary emission control device means any element of design that senses temperature, vessel..., system, or element of design that controls or reduces the emissions of regulated pollutants from an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...

  15. Synthesis, Fabrication and Characterization of ZnO-Based Thin Films Prepared by Sol-Gel Process and H2 Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar

    2018-03-01

    In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.

  16. Innovative Ge Quantum Dot Functional Sensing/Metrology Devices

    DTIC Science & Technology

    2015-05-20

    sensitive to charge number and local temperature with unprecedented precision. Accordingly we have made progresses in the innovative functionalities...sensors feature excellent sensitivity on charge number, local temperature, and photoresponsivity in the visible to near IR wavelength.  “Designer” Ge...Detailed knowledge and understanding of how the QDs are created, and especially their interactions with their local environments are therefore crucial to

  17. Recent progress in distributed fiber optic sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  18. Recent Progress in Distributed Fiber Optic Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  19. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  20. Asymmetric structured microfiber-based temperature sensor

    NASA Astrophysics Data System (ADS)

    Xian, Pei; Feng, Guoying; Dai, Shenyu; Zhou, Shouhuan

    2017-04-01

    A temperature sensor formed by a cascaded sphere and an abrupt taper, together in a standard single-mode fiber, was developed. The dip of the measured spectrum signal shifted obviously when the surrounding temperature changed. Measurement sensitivity to 18.36 pm/°C was shown with the surrounding temperature ranging from 35°C to 395°C. Due to its compact size and all-fiber configuration, the proposed sensor has the advantages of simplicity and low-cost fabrication, thus the device would find potential applications in sensing fields.

  1. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  2. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  3. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents.

    PubMed

    You, Hsin-Chiang; Wang, Cheng-Jyun

    2017-02-26

    A low temperature solution-processed thin-film transistor (TFT) using zinc oxide (ZnO) film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs) as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol), non-polar solvents (toluene) and deionized (DI) water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor.

  4. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  5. The Early Development of Programmable Machinery.

    ERIC Educational Resources Information Center

    Collins, Martin D.

    1985-01-01

    Programmable equipment innovations, precursors of today's technology, are examined, including the development of the binary code and feedback control systems, such as temperature sensing devices, interchangeable parts, punched cards carrying instructions, continuous flow oil refining process, assembly lines for mass production, and the…

  6. Pacemakers charging using body energy

    PubMed Central

    Bhatia, Dinesh; Bairagi, Sweeti; Goel, Sanat; Jangra, Manoj

    2010-01-01

    Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient's heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat). Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists – typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery. PMID:21814432

  7. Rugged superconducting detector for monitoring infrared energy sources in harsh environments

    NASA Astrophysics Data System (ADS)

    Laviano, F.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Minetti, B.; Rovelli, A.; Mezzetti, E.

    2010-12-01

    Broadband electromagnetic characterization of hot plasmas, such as in nuclear fusion reactors and related experiments, requires detecting systems that must withstand high flux of particles and electromagnetic radiations. We propose a rugged layout of a high temperature superconducting detector aimed at 3 THz collective Thomson scattering (CTS) spectroscopy in hot fusion plasma. The YBa2Cu3O7 - x superconducting film is patterned by standard photolithography and the sensing area of the device is created by means of high-energy heavy ion irradiation, in order to modify the crystal structure both of the superconducting film and of the substrate. This method diminishes process costs and resulting device fragility due to membrane or air-bridge structures that are commonly needed for MIR and FIR radiation detection. Moreover the sensing area of the device is wired by the same superconducting material and thus excellent mechanical strength is exhibited by the whole device, due to the oxide substrate. Continuous wave operation of prototype devices is demonstrated at liquid nitrogen temperature, for selected infrared spectra of broadband thermal energy sources. Several solutions, which exploit the advantages coming from the robustness of this layout in terms of intrinsic radiation hardness of the superconducting material and of the needed optical components, are analysed with reference to applications of infrared electromagnetic detectors in a tokamak machine environment.

  8. Novel remote sensor systems: design, prototyping, and characterization

    NASA Astrophysics Data System (ADS)

    Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.

    2014-06-01

    We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.

  9. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  10. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    DTIC Science & Technology

    2012-01-05

    oxide -based thin film transistors ( TFTs ) have attracted much attention for applications like flexible electronic devices. The...crystals, and ~ 1.5 cm2.V-1.s-1 for pentacene thin films ). A number of groups have demonstrated TFTs based on α- oxide semiconductors such as zinc oxide ...show excellent long-term stability at room temperature. Results: High-performance amorphous (α-) InGaZnO-based thin film transistors ( TFTs )

  11. Method of forming calthrate ice

    DOEpatents

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  12. Method of forming clathrate ice

    DOEpatents

    Hino, Toshiyuki; Gorski, Anthony J.

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  13. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  14. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  15. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    PubMed Central

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-01-01

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm. PMID:29295573

  16. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas.

    PubMed

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-12-25

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 10 19 cm -3 and 24.7 cm²∙V -1 ∙s -1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  17. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    PubMed

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  18. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents

    PubMed Central

    You, Hsin-Chiang; Wang, Cheng-Jyun

    2017-01-01

    A low temperature solution-processed thin-film transistor (TFT) using zinc oxide (ZnO) film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs) as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol), non-polar solvents (toluene) and deionized (DI) water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor. PMID:28772592

  19. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  20. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  1. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  2. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...

  3. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  4. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  5. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  6. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  7. 40 CFR 1048.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Exhaust-gas recirculation (EGR), turbochargers, and oxygen sensors are not aftertreatment. Aircraft means... device means any element of design that senses temperature, motive speed, engine rpm, transmission gear... oxygen. For example, stoichiometric combustion in a gasoline-fueled engine typically occurs at an air...

  8. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  9. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  10. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  11. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  12. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  13. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  14. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO₂ Gas Sensor.

    PubMed

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-12-19

    Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  16. Electrochemical Sensing for a Rapidly Evolving World

    NASA Astrophysics Data System (ADS)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing. The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.

  17. Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm

    NASA Astrophysics Data System (ADS)

    Dhara, P.; Singh, Vinod K.

    2015-01-01

    A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.

  18. Facile synthesis of layered V2O5/ZnV2O6 heterostructures with enhanced sensing performance

    NASA Astrophysics Data System (ADS)

    Xiao, Bingxin; Huang, Hao; Yu, Xiantong; Song, Jun; Qu, Junle

    2018-07-01

    A low-cost and environment-friendly hydrothermal approach was used for the synthesis of layered V2O5/ZnV2O6 hybrid nanobelts. Characterization results indicate that the V2O5/ZnV2O6 nanobelts are composed of several thin layers. Additionally, it is illustrated that the chemical formation process of V2O5/ZnV2O6 occurred in the solution. The synthesized V2O5/ZnV2O6 heterostructures were subjected to detailed ethanol sensing tests. Results demonstrate that V2O5/ZnV2O6 based sensor shows about 4.3 of response to 100 ppm of ethanol gases, reveals relatively high sensitivity at relatively low optimal operating temperature of 240 °C, as well as relatively good selectivity and stability. The performance of the sensor is better than most of reported vanadium based sensing devices. Thus this work offers a new insight into the rational regulation of vanadium based sensing devices.

  19. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  20. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  1. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  2. Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties

    NASA Astrophysics Data System (ADS)

    Biswas, Subrata; Kumbhakar, Pathik

    2018-01-01

    In this report, we have demonstrated the refractive index and temperature-sensing abilities of polyvinylpyrrolidone (PVP)-protected silver nanostructures of triangular, connected and plate-like shapes. Interestingly, these nanostructures even after 2 and ½ years of syntheses showed plasmonic-sensing ability of temperature in the temperature range of 283-333 K. Also, refractive index (R.I.) sensing has been demonstrated in the aged samples and obtained the highest R.I. sensitivity of 306 nm/RIU in one of the sample. The synthesized samples have been kept in dark (inside desiccators) intentionally for the extended period of 2 and ½ years after synthesis and monitored intermittently their UV-Vis absorption and photoluminescence (PL) emission characteristics to check the functionally of the aged silver nanostructures. It has been found the samples remain well dispersed in different solvents and can forbid agglomeration even in 0.25 M NaCl solution. We have also demonstrated here fabrication of a flexible and transparent thin film of the synthesized samples in polyvinyl alcohol (PVA) matrix and investigated its low power continuous-wave (CW) nonlinear optical properties using spatial self-phase modulation (SSPM) technique. The nonlinear refractive index ( n 2) value of the film has been determined to be 5.6 × 10- 6 cm2/W at the He-Ne laser wavelength of 632.8 nm. In this report we have demonstrated temperature and R.I. sensing and also it has been demonstrated that the synthesized samples remain functional even after 2 and ½ years of synthesis. Also, samples may find potential applications in nonlinear optical phase modulation devices.

  3. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    PubMed

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.

  5. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  6. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

    PubMed

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-11-24

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.

  7. Ionic thermoelectric gating organic transistors

    PubMed Central

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  8. Micromechanical thermogravimetry

    NASA Astrophysics Data System (ADS)

    Berger, R.; Lang, H. P.; Gerber, Ch.; Gimzewski, J. K.; Fabian, J. H.; Scandella, L.; Meyer, E.; Güntherodt, H.-J.

    1998-09-01

    We demonstrate a new method for thermal analysis of nanogram quantities of material using a micromechanical thermogravimetric technique. The cantilever-type device uses an integrated piezoresistor to sense bending and simultaneously to ramp the temperature and control temperature cycles. It has a mass resolution in the picogram range. A quantitative analysis of the dehydration of copper-sulfate-pentahydrate (CuSO 4·5H 2O) is presented. The technique outperforms current thermogravimetric approaches by five orders of magnitude.

  9. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    PubMed

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study.

    PubMed

    Lupan, Oleg; Schütt, Fabian; Postica, Vasile; Smazna, Daria; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-11-07

    In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH 3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm,  with a response of about 4 to 10 ppm NH 3 vapor at room temperature.

  11. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    PubMed Central

    Schorstein, Kai; Popescu, Alexandru; Göbel, Marco; Walther, Thomas

    2008-01-01

    Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter. PMID:27873842

  12. A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications

    NASA Astrophysics Data System (ADS)

    Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.

    2009-03-01

    Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.

  13. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    NASA Astrophysics Data System (ADS)

    Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.

    2014-03-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.

  14. Carbon nanotube vacuum gauges utilizing long, dissipative tubes

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-04-01

    A carbon nanotube-based thermal conductivity vacuum gauge is described which utilizes 5-10 μm long diffusively contacted SWNTs for vacuum sensing. By etching the thermal SiO II beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. The pressure response of unannealed and annealed devices was compared to that of released devices. The released devices showed sensitivity to pressure as low as 1 x 10 -6 Torr. The sensitivity increased more dramatically with power for the released device compared to that of the unreleased device. Low temperature electronic transport measurements of the tubes were suggestive of a thermally activated hopping mechanism where the activation energy for hopping was calculated to be ~ 39 meV.

  15. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    PubMed

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  17. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    PubMed

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  18. A droplet-based passive force sensor for remote tactile sensing applications

    NASA Astrophysics Data System (ADS)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  19. A real-time comparison of mercury accumulation on noble metal thin films using gravimetric device

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Mohibul; Kandjani, Ahmad Esmaielzadeh; Harrison, Christopher J.; Ippolito, Samuel J.; Sabri, Ylias M.; Bhargava, Suresh K.

    2016-12-01

    We simultaneously compared and analyzed the mercury sorption and sensing performance of gold, silver, palladium and platinum using quartz crystal microbalance (QCM). Overall, the Au- and Ag-QCM showed superior Hg sensing performance over the Pd- and Pt-counterparts when tested toward a range of concentrations (24-365 ppbv) at various operating temperatures (35-105 °C). However, it was also found that the Hg sensing performance of each metal varied significantly with the operating temperature and is dependent on the concentration tested. For instance, the Ag-QCM exhibited 57% higher response magnitude than the Au-QCM when exposed toward 24 ppbv of Hg0 vapor at 35 °C; however, the opposite trend was observed when the same concentration of Hg0 vapor was tested at 105 °C, with Au-QCM showing 104% higher response magnitudes compared to the Ag-QCM. Moreover, the Ag-QCM showed higher response magnitudes than the Au-QCM for exposure toward 365 ppbv of Hg0 vapor regardless of the operating temperature.

  20. Smart Materials for Electromagnetic and Optical Applications

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth

    The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.

  1. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2014-05-13

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  2. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL

    2011-07-05

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  3. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2015-08-25

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  4. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  5. Heat detection and compositions and devices therefor

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1975-01-01

    Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.

  6. The Evolution of High Temperature Gas Sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F. H.; Brosha, E. L.; Mukundan, R.

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  7. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  8. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  9. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  10. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    PubMed

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  11. Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks

    NASA Astrophysics Data System (ADS)

    Marchevsky, M.; Gourlay, S. A.

    2017-01-01

    Quench detection capability is essential for reliable operation and protection of superconducting magnets, coils, cables, and machinery. We propose a quench detection technique based on sensing local temperature variations in the bulk of a superconducting winding by monitoring its transient acoustic response. Our approach is primarily aimed at coils and devices built with high-temperature superconductor materials where quench detection using standard voltage-based techniques may be inefficient due to the slow velocity of quench propagation. The acoustic sensing technique is non-invasive, fast, and capable of detecting temperature variations of less than 1 K in the interior of the superconductor cable stack in a 77 K cryogenic environment. We show results of finite element modeling and experiments conducted on a model superconductor stack demonstrating viability of the technique for practical quench detection, discuss sensitivity limits of the technique, and its various applications.

  12. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    PubMed Central

    Bierer, Benedikt; Takabayashi, Alain; Ortiz Perez, Alvaro; Wöllenstein, Jürgen

    2018-01-01

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits. PMID:29373524

  13. The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method.

    PubMed

    Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung

    2012-07-01

    A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

  14. Noninvasive monitoring local variations of fever and edema on human: potential for point-of-care inflammation assessment

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Xianglin; Li, Ting

    2018-02-01

    Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.

  15. Fibre Optic Temperature Sensors Using Fluorescent Phenomena.

    NASA Astrophysics Data System (ADS)

    Selli, Raman Kumar

    Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was excited by sinusoidally modulated light. This system employs a single indicator type green LED to excite the ruby sample and a single very sensitive silicon photodiode detector with an integral amplifier for low optical signal detection. Both of these components were inexpensive. The system yielded very high performance levels in terms of precision and resolution which has the potential for commercial exploitation. The different devices developed are compared and contrasted in the light of the commercial instruments on the market and other published data.

  16. PyzoFlex: a printed piezoelectric pressure sensing foil for human machine interfaces

    NASA Astrophysics Data System (ADS)

    Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; Hartmann, P.

    2013-09-01

    Ferroelectric material supports both pyro- and piezoelectric effects that can be used for sensing pressures on large, bended surfaces. We present PyzoFlex, a pressure-sensing input device that is based on a ferroelectric material (PVDF:TrFE). It is constructed by a sandwich structure of four layers that can easily be printed on any substrate. The PyzoFlex foil is sensitive to pressure- and temperature changes, bendable, energy-efficient, and it can easily be produced by a screen-printing routine. Even a hovering input-mode is feasible due to its pyroelectric effect. In this paper, we introduce this novel, fully printed input technology and discuss its benefits and limitations.

  17. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  18. A Study of Thermistor Performance within a Textile Structure.

    PubMed

    Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L; Morris, Robert H

    2017-08-05

    Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01-0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients.

  19. Prolonged energy harvesting for ingestible devices.

    PubMed

    Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni

    2017-01-01

    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm 2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.

  20. High dielectric constant PrY(x)O(y) sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea.

    PubMed

    Wu, Min-Hsien; Lee, Cheng-Da; Pan, Tung-Ming

    2009-09-28

    In this paper, we describe the structural and sensing properties of high-k PrY(x)O(y) sensing films deposited on Si substrates through reactive co-sputtering. Secondary ion mass spectrometry and atomic force microscopy were employed to analyze the compositional and morphological features of these films after annealing at various temperatures. The electrolyte-insulator-semiconductor (EIS) device incorporating a PrY(x)O(y) sensing membrane that had been annealed at 800 degrees C exhibited good sensing characteristics, including a high sensitivity (59.07 mV pH(-1) in solutions from pH 2 to 12), a low hysteresis voltage (2.4 mV in the pH loop 7-->4-->7-->10-->7), and a small drift rate (0.62 mV h(-1) in the buffer solution at pH 7). The PrY(x)O(y) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the enzymatic EIS-based urea biosensor incorporating a high-k PrY(x)O(y) sensing film annealed at 800 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 1 to 16 mM, with a sensitivity of 9.59 mV mM(-1).

  1. Electrical properties and oxygen functionalities in ethanol-treated and thermally modified graphene oxide

    NASA Astrophysics Data System (ADS)

    Scalese, S.; Baldo, S.; D'Angelo, D.; Filice, S.; Bongiorno, C.; Reitano, R.; Fazio, E.; Conoci, S.; La Magna, A.

    2017-04-01

    Graphene-based materials are among the most innovative and promising materials for the development of high-performance sensing devices, mainly due to the large surface area and the possibility to modify their reactivity by suitable functionalization. In the field of sensing applications, the peculiarities of innovative materials can be exploited only if chemical and physical properties are fully understood and correlated with each other. To this aim, in this work, graphene oxide (GO) and ethanol-treated GO (GOEt) were investigated from chemical and structural points of view. Electrical characterization was performed by depositing GO and GOEt between two electrodes by dielectrophoresis. All the investigations were repeated on GO materials after thermal treatment in a low temperature range (60 °C-300 °C). Furthermore, the electrical conductivity of GO was investigated by changing the temperature and the environment (air or N2) during the characterization: an increase in the conductivity of the as-deposited GO was observed when the device is cooled down and this effect is reversible with the temperature. GOEt and the thermally treated GO and GOEt show an opposite trend, confirming the key role of the oxygen functionalities in the conduction mechanisms and, therefore, in the conductivity of the GO layers.

  2. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the device fabrication process conditions. Additionally, light assisted sensing can be employed to tailor device response towards an analyte as demonstrated in this work. Therefore, there are two control knobs available for these sensor devices which are independent of the nanowire surface properties: i) sensor selectivity, regulated by the nanoparticle material selection ii) percentage response, tuned by the intensity of the incident light. Due to the small magnitude of device operating current and sensor activation at low illumination intensity (375 nW/cm2 at 365 nm wavelength has been used in this work), these sensors have low power consumption which makes them suitable for portable battery assisted operation. A fabrication recipe for freely suspended two-terminal nanowire devices has been developed. The deposition of nanoparticles was performed using the sputter deposition technique. A change in device current was observed when the device was exposed to alcohol vapors (methanol, ethanol, propanol, and butanol) at room temperature under 215 nm--400 nm UV illumination at 365 nm wavelength. The sensor reproducibly responded to a wide range of alcohol vapor concentrations, from 5000 mumol/mol (ppm) down to 200 nmol/mol (ppb) in air. Notably, the devices show low sensitivity to acetone and hexane, which allows them to selectively detect the alcohol vapors mixed with these two common volatile organic compounds (VOCs). The sensor response was not observed without UV excitation. To make a simplified quantitative and qualitative study of the sensitivity variation with variation of light intensity, the behavior of ZnO nanowire sensor devices was investigated in addition to the hybrid metal-oxide nanoparticle/GaN nanowire devices. With an increase in the light intensity, a corresponding increase in the device sensitivity was observed. In addition to the proposed sensor fabrication technique being a highly suitable candidate for making nano-sensor arrays for detection of a wide range of gases, the alcohol sensors fabricated in this work have many practical applications such as monitoring air quality, and testing the blood alcohol content (BAC) for impaired drivers.

  3. Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.

    PubMed

    Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng

    2017-05-15

    We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.

  4. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    PubMed

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for tailoring the selectivity of the hybrid nanosensors for a multitude of environmental and industrial sensing applications.

  5. Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography.

    PubMed

    Lim, Su Hui; Radha, Boya; Chan, Jie Yong; Saifullah, Mohammad S M; Kulkarni, Giridhar U; Ho, Ghim Wei

    2013-08-14

    Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.

  6. Characterization of a Low-Cost Multiparameter Sensor for Solar Resource Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M

    Low-cost, multiparameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electric grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs, Inc., deployed Arable Lab's Mark multiparameter sensor system. The device measures the downwelling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. The system is also equipped with six downward-and upward-facing narrowband spectrometer channels that measure spectral radiation and surface spectral reflectance. This study describes the shortwave calibration, characterization, and validation of measurement accuracy of this instrument bymore » comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.« less

  7. Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.

    In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less

  8. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  9. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  10. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  11. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  12. Thermal annealing and temperature dependences of memory effect in organic memory transistor

    NASA Astrophysics Data System (ADS)

    Ren, X. C.; Wang, S. M.; Leung, C. W.; Yan, F.; Chan, P. K. L.

    2011-07-01

    We investigate the annealing and thermal effects of organic non-volatile memory with floating silver nanoparticles by real-time transfer curve measurements. During annealing, the memory window shows shrinkage of 23% due to structural variation of the nanoparticles. However, by increasing the device operating temperature from 20 to 90 °C after annealing, the memory window demonstrates an enlargement up to 100%. The differences in the thermal responses are explained and confirmed by the co-existence of electron and hole traps. Our findings provide a better understanding of organic memory performances under various operating temperatures and validate their applications for temperature sensing or thermal memories.

  13. A gas sensor comprising two back-to-back connected Au/TiO2 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Dehghani, Niloofar; Yousefiazari, Ehsan

    2018-04-01

    A miniature, but sturdy, gas sensor capable of operation at temperatures as high as 600 °C is presented. The device comprises two back-to-back connected gold/rutile Schottky diodes, which are fabricated on the opposite bases of a self-standing 100 μm-thick pellet of polycrystalline rutile. The rutile layer is formed by the direct oxidation of titanium metal in air at 900 °C, and the Au/rutile diodes are formed by the diffusion bonding of the gold wire segments to the pellet bases. The current versus voltage diagrams and gas sensing properties of the Au/rutile/Au structured device are recorded at different voltage sweeping frequencies and operating temperatures. The interesting features of these diagrams are explained based on an equivalent circuit of the device, which considers Schottky-type contacts at both bases and memristive conduction for the rutile in between. The device current is controlled by the leakage current of the reverse biased diode, which depends on the concentration of the oxygen vacancy at the Au/rutile interface and, hence, on the composition of the surrounding atmosphere. The device current increases 15 times in response to the presence of 1000 ppm of ethanol vapor in air. Consisting only of bulk gold and bulk rutile, the device is resilient to harsh environments and elevated temperatures; a suitable gas sensor for in-exhaust installation.

  14. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  15. Microstructure actuation and gas sensing by the Knudsen thermal force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometricmore » actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.« less

  16. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  17. Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings

    PubMed Central

    Grobnic, Dan; Hnatovsky, Cyril; Walker, Robert B.; Coulas, David; Ding, Huimin

    2017-01-01

    The femtosecond laser-induced fiber Bragg grating is an effective sensor technology that can be deployed in harsh environments. Depending on the optical fiber chosen and the inscription parameters that are used, devices suitable for high temperature, pressure, ionizing radiation and strain sensor applications are possible. Such devices are appropriate for aerospace or energy production applications where there is a need for components, instrumentation and controls that can function in harsh environments. This paper will present a review of some of the more recent developments in this field. PMID:29240721

  18. High-sensitivity two-terminal magnetoresistance devices using InGaAs/AlGaAs two-dimensional channel on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di-Cheng; Pan, You-Wei; Lin, Shih-Wei

    2016-04-25

    We demonstrate experimentally the two-terminal magnetic sensors exhibiting an extraordinary magneto-resistance effect by using an InGaAs quantum well channel with a metal-shunting structure. A high magneto-resistance of 17.3% and a sensitivity of 488.1 Ω/T have been obtained at 1 T and room temperature with our geometrical design. The two-contact configuration and the high-mobility electron transistor-compatible epitaxy structure make the devices promising for high-sensitivity magnetic sensing integration and applications.

  19. Internal combustion engine fuel controls. December 1970-December 1989 (Citations from the US Patent data base). Report for December 1970-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This bibliography contains citations of selected patents concerning fuel control devices, and methods used to regulate speed and load in internal combustion engines. Techniques utilized to control air-fuel ratios by sensing pressure, temperature, and exhaust composition, and the employment of electronic and feedback devices are discussed. Methods used for engine protection and optimum fuel conservation are considered. (This updated bibliography contains 327 citations, 160 of which are new entries to the previous edition.)

  20. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    NASA Astrophysics Data System (ADS)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas and have been compared according to their deviation from the original test route and according to their technology (GPS, A-GPS, GSM, WLAN). In result the performance of the MSDs varies spatially and temporally. Variations mainly depend on the USTs, meteorological conditions, device design and technology. However, the sensors' variation for GPS (3-7m) temperature (1-1.3°C) and PM (800-1100 particles/cu ft) is quite stable over the whole range of value records. Difference measures can be used to consider and correct for mean errors. Furthermore we show that smartphone based GPS-tracking in combination with connected MSDs are a reliable easy-to-use method for PEM. In conclusion our evaluation underpins the applicability of MSDs in combination with GPS for PEM. We observed that especially relative changes in the environmental conditions can be well detected by the devices. Nevertheless, data quality of MSDs remains a relevant concern that needs more investigation especially for applications in citizen science. Eventually the usefulness of mobile MSDs mainly needs to be evaluated depending on the context of application.

  1. Pressure and Temperature Sensors Using Two Spin Crossover Materials.

    PubMed

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-02-02

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  2. Method and apparatus for checking fire detectors

    NASA Technical Reports Server (NTRS)

    Clawson, G. T. (Inventor)

    1974-01-01

    A fire detector checking method and device are disclosed for nondestructively verifying the operation of installed fire detectors of the type which operate on the principle of detecting the rate of temperature rise of the ambient air to sound an alarm and/or which sound an alarm when the temperature of the ambient air reaches a preset level. The fire alarm checker uses the principle of effecting a controlled simulated alarm condition to ascertain wheather or not the detector will respond. The checker comprises a hand-held instrument employing a controlled heat source, e.g., an electric lamp having a variable input, for heating at a controlled rate an enclosed mass of air in a first compartment, which air mass is then disposed about the fire detector to be checked. A second compartment of the device houses an electronic circuit to sense and adjust the temperature level and heating rate of the heat source.

  3. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  4. Phase-tunable temperature amplifier

    NASA Astrophysics Data System (ADS)

    Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.

    2017-06-01

    Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.

  5. Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J; Bhargava, Suresh K

    2016-04-21

    Piezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied. The SAW sensor was fabricated with nickel (Ni) interdigitated transducer (IDT) electrodes and a Ag thin film on the delay line of the device. In the case of the QCM sensor, the electrodes were constructed of Ag thin film and simultaneously employed as a sensitive layer. Mercury sensing experiments were conducted for a range of concentrations between 24-365 ppbv without/with the presence of some common industrial interfering gas species (i.e. ammonia, acetaldehyde, ethyl mercaptan, dimethyl disulphide, methyl ethyl ketone and humidity) at various operating temperatures in the range of 35-95 °C. The SAW sensor was found to possess up to 70 times higher response magnitudes than its QCM counterpart at 35 °C while up to 30 and 23 times higher response magnitudes were observed for the SAW sensor at elevated temperatures of 75 and 95 °C, respectively. Furthermore, the SAW sensor showed good selectivity (>89%) toward Hg(0) vapor in the presence of all the interferents tested at an operating temperature of 75 °C while the QCM sensor exhibited significant cross-sensitivity when ethyl mercaptan was introduced along with Hg(0) vapor. Overall, it is indicative that Ag-based acoustic wave sensors do have great potential for Hg sensing applications, given that right operating conditions are applied.

  6. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  7. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

    PubMed

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-10-24

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

  8. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing

    PubMed Central

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-01-01

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions. PMID:29064438

  9. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    NASA Astrophysics Data System (ADS)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  10. Thermal feedback in virtual reality and telerobotic systems

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars

    1994-01-01

    A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.

  11. Paper as a platform for sensing applications and other devices: a review.

    PubMed

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  12. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  13. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.

  14. A Study of Thermistor Performance within a Textile Structure

    PubMed Central

    Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L.; Morris, Robert H.

    2017-01-01

    Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01–0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients. PMID:28783067

  15. Stand Alone Pressure Measurement Device (SAPMD) for the space shuttle Orbiter, part 1

    NASA Technical Reports Server (NTRS)

    Tomlinson, Bill

    1989-01-01

    The specifications for the Stand Alone Pressure Measurement Device (SAPMD) are as follows: the SAPMD shall measure ambient pressure at the surface of the Orbiter TPS in the range of 0 to 15 pounds per square inch absolute (PSIA). Measurement will begin at solid rocket booster (SRB) ignition as sensed by appropriate vibration sensing elements in the SAPMD. Pressure and corresponding real-time data are to be recorded every one tenth second for 140 seconds and at the end of the recording period, the operation will be discontinued with the data preserved for interrogation subsequent to Orbiter re-entry and landing. The type and size of the battery shall be such as to allow the vibration sensing elements and a real-time clock to be initialized a minimum of 30 day prior to launch and still provide power as necessary to perform the 140 second data recording period after SRB ignition. Battery installation shall be in such a manner as to allow battery replacement without removing the SAPMD from its position or removing more than one TPS tile. The SAPMD must be mounted in specific locations under tile of the TPS. To accommodate such mounting, the absolute maximum physical dimensions much not exceed 6.0 inches in length, 1.5 inches in width, and 0.4 inches in height, and the device shall be of such configuration that it can be bonded to the Orbiter skin at the joint line of two TPS tiles with the pressure sensing port at the surface of the tile. The SAPMD must remain operational in the temperature range of -40 to +85 C and survive storage temperature of -55 to +125 C. The pressure port must withstand 934 C without causing damage to the TPS during entry and must remain functional at 262 C during ascent. The accuracy of the pressure measurement must be plus or minus one-half PSIA over a temperature range of 0 to +36 C. All the specifications were met and verified by prototype testing and documented in the enclosed test data. Four flight-qualified models were fabricated and of these, two were delivered and successfully flown in the cargo bay of STS-26.

  16. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  17. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  18. Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics

    NASA Astrophysics Data System (ADS)

    Reinhardt, Christoph; Müller, Tina; Bourassa, Alexandre; Sankey, Jack C.

    2016-04-01

    In force sensing, optomechanics, and quantum motion experiments, it is typically advantageous to create lightweight, compliant mechanical elements with the lowest possible force noise. Here, we report the fabrication and characterization of high-aspect-ratio, nanogram-scale Si3 N4 "trampolines" having quality factors above 4 ×107 and ringdown times exceeding 5 min (mHz linewidth). These devices exhibit thermally limited force noise sensitivities below 20 aN /Hz1 /2 at room temperature, which is the lowest among solid-state mechanical sensors. We also characterize the suitability of these devices for high-finesse cavity readout and optomechanics applications, finding no evidence of surface or bulk optical losses from the processed nitride in a cavity achieving finesse 40,000. These parameters provide access to a single-photon cooperativity C0˜8 in the resolved-sideband limit, wherein a variety of outstanding optomechanics goals become feasible.

  19. A molecular spin-photovoltaic device.

    PubMed

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2017-08-18

    We fabricated a C 60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Design, implementation, and extension of thermal invisibility cloaks

    NASA Astrophysics Data System (ADS)

    Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2015-05-01

    A thermal invisibility cloak, as inspired by optical invisibility cloaks, is a device which can steer the conductive heat flux around an isolated object without changing the ambient temperature distribution so that the object can be "invisible" to external thermal environment. While designs of thermal invisibility cloaks inherit previous theories from optical cloaks, the uniqueness of heat diffusion leads to more achievable implementations. Thermal invisibility cloaks, as well as the variations including thermal concentrator, rotator, and illusion devices, have potentials to be applied in thermal management, sensing and imaging applications. Here, we review the current knowledge of thermal invisibility cloaks in terms of their design and implementation in cloaking studies, and their extension as other functional devices.

  1. Characteristics of several NIR tuneable diode lasers for spectroscopic based gas sensing: a comparison.

    PubMed

    Weldon, Vincent; McInerney, David; Phelan, Richard; Lynch, Michael; Donegan, John

    2006-04-01

    Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm

  2. Polypyrrol/chitosan hydrogel hybrid microfiber as sensing artificial muscle

    NASA Astrophysics Data System (ADS)

    Ismail, Yahya A.; Martínez, Jose G.; Al Harrasi, Ahmad S.; Kim, Seon J.; Fernández Otero, Toribio F.

    2011-04-01

    An electrochemical actuator demands that it should act as a sensor of the working conditions for its efficient application in devices. Actuation and sensing characteristics of a biopolymer/conducting polymer hybrid microfiber artificial muscle fabricated through wet spinning of a chitosan solution followed by in situ chemical polymerization with pyrrol employing bis(triflouro methane sulfonyl) imide as dopant and ferric chloride as a catalyst is presented. The polypyrrol/chitosan hybrid microfiber was investigated by FTIR, scanning electron microscopy (SEM), electrical conductivity measurement, cyclic voltammetric and chronopotentiometric methods. The electrochemical measurements related to the sensing abilities were performed as a function of applied current, concentration and temperature keeping two of the variables constant at a given time using NaCl as electrolyte. Cyclic voltammograms confirmed that the electro activity is imparted by polypyrrol (pPy). The fiber showed an electrical conductivity of 3.21x10-1 Scm-1and an average linear electrochemical actuation strain of 0.54%. The chronopotentiometric responses during the oxidation/reduction processes of the microfiber for the different anodic/cathodic currents and the linear fit observed for the consumed electrical energy during the reaction for various applied currents suggested that it can act as a sensor of applied current. The chronopotentiometric responses and the linear fit of consumed electrical energy at different temperatures suggested that the actuator can act as a temperature sensor. Similarly a semi logarithmic dependence of the consumed electrical energy with concentration of the electrolyte during reaction is suggestive of its applicability as a concentration sensor. The demand that an electrochemical actuator to be a sensor of the working conditions, for its efficient application in devices is thus verified in this material.

  3. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  4. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  5. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok

    2014-08-27

    We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.

  6. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  7. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef

    2015-12-07

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors;more » and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.« less

  8. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik

    A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperaturemore » map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.« less

  9. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  10. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing.

    PubMed

    Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald

    2013-08-02

    The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.

  11. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.

  12. Microwave produced plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  13. Sensing and Tactile Artificial Muscles from Reactive Materials

    PubMed Central

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V.; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires. PMID:22319265

  14. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04778a

  15. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection.

    PubMed

    Santra, S; Sinha, A K; De Luca, A; Ali, S Z; Udrea, F; Guha, P K; Ray, S K; Gardner, J W

    2016-03-29

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then 'written' directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm(-1) for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.

  16. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection

    NASA Astrophysics Data System (ADS)

    Santra, S.; Sinha, A. K.; De Luca, A.; Ali, S. Z.; Udrea, F.; Guha, P. K.; Ray, S. K.; Gardner, J. W.

    2016-03-01

    Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then ‘written’ directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm-1 for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.

  17. Dual-optical-response photonic crystal fibre interferometer for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Minkovich, Vladimir P.; Zubia, Joseba

    2014-05-01

    An all-fiber mode interferometer consisting of a short segment of photonic crystal fiber (PCF) fusion spliced to standard single mode optical fiber and pressed on localized regions is proposed for multi-parameter sensing. In our configuration, the physical parameter being sensed changes the fringe contrast (or visibility) of the interference pattern and also causes a shift to the same. To achieve this dual effect the device is pressed on localized regions over a few millimeters. In this manner we introduce losses and effective refractive index changes to the interference modes, hence visibility and shift to the interference pattern. Our interferometer is suitable for monitoring diverse physical parameters such as weight, force, pressure, load, etc. The advantage is that no temperature or power fluctuations compensation is required.

  18. Pyrolyzed-parylene based sensors and method of manufacture

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Miserendino, Scott (Inventor); Konishi, Satoshi (Inventor)

    2007-01-01

    A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.

  19. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor.

    PubMed

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-25

    NO x is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NO x sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don't work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NO x detector or sensor. Herein, a novel amperometric solid-state NO x sensor was developed using perovskite-type oxide Gd 1-x Ca x AlO 3-δ (GCA) as the electrolyte and NiO as the sensing electrode. NO x sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NO x concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO 2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO 2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NO x sensing showed the potential application of the sensor in motor vehicles.

  20. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor

    NASA Astrophysics Data System (ADS)

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-01

    NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1-xCaxAlO3-δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.

  1. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less

  2. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  3. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    NASA Astrophysics Data System (ADS)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-03-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  4. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    NASA Astrophysics Data System (ADS)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-07-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  5. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites.

    PubMed

    Chen, Hongjun; Zhang, Meng; Bo, Renheng; Barugkin, Chog; Zheng, Jianghui; Ma, Qingshan; Huang, Shujuan; Ho-Baillie, Anita W Y; Catchpole, Kylie R; Tricoli, Antonio

    2018-02-01

    Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr 3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O 2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O 2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface

    NASA Astrophysics Data System (ADS)

    Rowe, Gabriel I.; Mamishev, Alexander V.

    2004-07-01

    Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.

  7. Properties of reactively sputtered AlxNy thin films for pyroelectric detectors

    NASA Astrophysics Data System (ADS)

    Calvano, Nicholas; Chrostoski, Philip; Voshell, Andrew; Braithwaite, Keesean; Rana, Mukti

    2017-08-01

    Uncooled infrared detectors are utilized in various radiometric devices and cameras because of their low cost, light weight and performance. A pyroelectric detector is a class of uncooled infrared detector whose polarization changes with change in temperature. Infrared radiation from objects falls on top of the sensing layer of the pyroelectric detector and the absorbed radiation causes the temperature of the sensing layer to change. This work describes the deposition and characterization of AlxNy thin films for using them as pyroelectric detector's sensing material. To test the sensitivity of infrared detection or pyroelectric effect of AlxNy thin films, capacitors of various sizes were fabricated. The diameter of the electrodes for capacitor used during testing of the device was 1100 μm while the distances between these two electrodes was 1100 μm. On a 3-inch diameter cleaned silicon wafer, 100 nm thick AlxNy thin films were deposited by radio frequency (RF) sputtering from an Al target in Ar: N2 environment. On top of this, a 100-nm thick Au layer was deposited and lifted off by using conventional photo lithography to form the electrodes of capacitors. All the layers were deposited by RF sputtering at room temperature. The thin film samples were annealed at 700 °C in N2 environment for 10 minutes. X-ray diffraction showed the films are poly-crystalline with peaks in (100), (002) and (101) directions. When the temperature varied between 303 K to 353 K, the pyroelectric coefficient was increased from 8.60 × 10-9 C/m2K to 3.76 × 10-8C/m2K with a room temperature pyroelectric coefficient value of 8.60×10-9C/m2K. The non-annealed films were found to be transparent between the wavelengths of 600 nm to 3000 nm. The refraction coefficient was found to be varied between 2.0 and 2.2 while the extinction coefficient was found to be zero. The optical bandgap determined using Tauc's equation was 1.65 eV.

  8. Cascaded Emission Regions in 2.4 μm GaInAsSb Light Emitting Diode's for Improved Current Efficiency

    NASA Astrophysics Data System (ADS)

    Prineas, John; Yager, Jeff; Olesberg, Jonathon; Cao, Chuanshun; Reddy, Madhu; Coretsopoulos, Chris

    2008-03-01

    Infrared optoelectronics play an important role in sensing of molecules through characteristic vibrational resonances that occur at those wavelengths. For molecules in aqueous and at room temperature, where optical transistions tend to be broad, the broadband emission of light emitting diodes (LEDs) are well suited for obtaining molecular absorption spectra. The 2-2.6 μm range is an advantageous range for sensing of glucose. Voltages available in batteries and control electronics are limited to much higher voltages than those required to turn on an infrared LED, and moreover have limited current supply. Here, we demonstrate room temperature operature of 5-stage cascaded emission regions in 2-2.6 μm GaInAsSb LEDs. We report three times higher turn on voltage, and nine times improved current efficiency compared to a single stage device.

  9. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    NASA Astrophysics Data System (ADS)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  10. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.

    We demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication [T. M. Lu et al., Appl. Phys. Lett. 109, 093102 (2016)]. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triplemore » dot in a triangular configuration is induced leading to regions in the charge stability diagram where three addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart the single dot charge-senses the double dot with relative change of ~2% in the sensor current. We also highlight temporal drifting and metastability of the Coulomb oscillations. These effects are induced if the temperature environment of the device is not kept constant and arise from non-equilibrium charge redistribution and subsequent slow recovery.« less

  11. Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.

    2018-02-01

    Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.

  12. Flammable and noxious gas sensing using a microtripolar electrode sensor with diameter and chirality sorted single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Duan, Zhe min; Zhang, Yong

    2013-08-01

    We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.

  13. Measurement of Respiration Rate and Depth Through Difference in Temperature Between Skin Surface and Nostril by Using Thermal Image.

    PubMed

    Jeong, Hieyong; Matsuura, Yutaka; Ohno, Yuko

    2017-01-01

    The purpose of the present study was to propose a method to measure a respiration rate (RR) and depth at once through difference in temperature between the skin surface and nostril by using a thermal image. Although there have been a lot of devices for contact RR monitoring, it was considered that the subjects could be inconvenienced by having the sensing device in contact with their body. Our algorithm enabled us to make a breathing periodic function (BPF) under the non-contact and non-invasive condition through temperature differences near the nostril during the breath. As a result, it was proved that our proposed method was able to classify differences in breathing pattern between normal, deep, and shallow breath (P < 0.001). These results lead us to conclude that the RR and depth is simultaneously measured by the proposed algorithm of BPF without any contact or invasive procedure.

  14. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    PubMed Central

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  15. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  16. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber.

    PubMed

    Wang, Ying; Wang, D N; Liao, C R; Hu, Tianyi; Guo, Jiangtao; Wei, Huifeng

    2013-02-01

    A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C.

  17. Photonic molecules for application in silicon-on-insulator optical sensors

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Souza, Mario C. M. M.; Moras, Andre L.; Catellan, Alvaro R. G.; Cirino, Giuseppe A.; Von Zuben, Antonio A. G.; Bassani, Jose W. M.; Frateschi, Newton C.

    2018-02-01

    Optical sensors based on integrated photonics have experienced impressive advancements in the past few decades and represent one of the main sensing solutions in many areas including environmental sensing and medical diagnostics. In this context, optical microcavities are extensively employed as refractive index (RI) sensors, providing sharp optical resonances that allow the detection of very small variations in the surrounding RI. With increased sensitivity, however, the device is subjected to environmental perturbations that can also change the RI, such as temperature variations, and therefore compromise their reliability. In this work, we present the concept and experimental realization of a photonic sensor based on coupled microcavities or Photonic Molecules (PM) in which only one cavity is exposed to the sensing solution, allowing a differential measurement of the RI change. The device consists of an exposed 5-μm radius microdisk resonator coupled to an external clad microring resonator fabricated on silicon-on-insulator (SOI) platform. This design allows good sensitivity (26 nm/RIU) for transverse electrical mode (TE-mode) in a compact footprint (40 × 40 μm2), representing a good solution for real-life applications in which measurement conditions are not easily controllable.

  18. From land to water: bringing dielectric elastomer sensing to the underwater realm

    NASA Astrophysics Data System (ADS)

    Walker, Christopher; Anderson, Iain

    2016-04-01

    Since the late 1990's dielectric elastomers (DEs) have been investigated for their use as sensors. To date, there have been some impressive developments: finger displacement controls for video games and integration with medical rehabilitation devices to aid patient recovery. It is clear DE sensing is well established for dry applications, the next frontier, however, is to adapt this technology for the other 71% of the Earth's surface. With proven and perhaps improved water resistance, many new applications could be developed in areas such as diver communication and control of underwater robotics; even wearable devices on land must withstand sweat, washing, and the rain. This study investigated the influence of fresh and salt water on DE sensing. In particular, sensors have been manufactured with waterproof connections and submersed in fresh and salt water baths. Temperature and resting capacitance were recorded. Issues with the basic DE sensor have been identified and compensated for with modifications to the sensor. The electrostatic field, prior and post modification, has been modeled with ANSYS Maxwell. The aim of this investigation was to identify issues, perform modifications and propose a new sensor design suited to wet and underwater applications.

  19. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Satyendra; Kumar, Jitendra; Panda, Siddhartha

    2016-04-01

    Vertically aligned ZnO nanorods were grown on a SiO2/Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively.

  20. Spin polarization measurements and sensor applications in thin films and carbon nanotube-based devices

    NASA Astrophysics Data System (ADS)

    Sanders, Jeff T.

    The unique properties of carbon nanotubes (CNTs) show a great deal of potential for nanoelectronic devices, spintronic devices, biosensing and chemical sensing applications. Their applicability as interconnects for spintronic devices derives from their one-dimensionality and theoretically predicted preservation of spin current. In this work, we combine an investigation of spin polarization in materials such as half-metallic oxides in thin film and bulk form with studies on several aspects of CNTs for sensing and spin transport applications. These two areas of study are intimately related within the umbrella of spin-electronics and nanoscale sensors that are being pursued with great topical interest in recent times. A measurement system has been developed to perform Point-Contact Andreev Reflection (PCAR) in the presence of variable magnetic fields and temperatures. It was designed and built, accepted for patent by the USF, and submitted to the U.S. Patent Office. A study of spin polarization in superconductor-magnet junctions has been performed over a wide range in magnetic fields (0 to 3T) and temperature (2 to 300K) on several systems including Cu, SrRuO3, LaSrMnO3, and CrO2. Spin transport experiments have been extended to single walled carbon nanotube (SWNT) networks in order to explore spin transport in nanotube networks for potential sensor applications. Carbon nanotube networks have been used as the electronic material for chemical and biological sensing where capacitance and conductance response to the adsorbtion of a chemical or biological analyte are simultaneously measured and a very fast response and recovery is observed. Chemical specificity has been investigated through different means since a goal of the U.S. Navy is to have an array of these sensors, each chemically specific to a unique analyte. Finally, research is ongoing in the analysis of our PCAR spectra in the SrRuO3 series and the La1-x(Ca, Ba, Sr)xMnO 3 to investigate the square root dependence of the background conductance data and the fundamental aspects of the fitting procedure by using a chi 2 statistical model to more accurately determine the spin polarization, P.

  1. Performance of Surface-Mount Ceramic and Solid Tantalum Capacitors for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; MacDonald, Thomas L.; Hammoud, Ahmad; Gerber, Scott

    1998-01-01

    Low temperature electronics are of great interest for space exploration programs. These include missions to the outer planets, earth-orbiting and deep-space probes, remote-sensing and communication satellites. Terrestrial applications would also benefit from the availability of low temperature electronics. Power components capable of low temperature operation would, thus, enhance the technologies needed for the development of advanced power systems suitable for use in harsh environments. In this work, ceramic and solid tantalum capacitors were evaluated in terms of their dielectric properties as a function of temperature and at various frequencies. The surface-mount devices were characterized in terms of their capacitance stability and dissipation factor in the frequency range of 50 Hz to 100 kHz at temperatures ranging from room temperature (20 deg. C) to about liquid nitrogen temperature (-190 deg. C). The results are discussed and conclusions made concerning the suitability of the capacitors investigated for low temperature applications.

  2. Localized heating on silicon field effect transistors: device fabrication and temperature measurements in fluid.

    PubMed

    Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid

    2009-10-07

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.

  3. Pressure-relieving properties of a intra-operative warming device.

    PubMed

    Baker, E A; Leaper, D J

    2003-04-01

    The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.

  4. Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source

    NASA Astrophysics Data System (ADS)

    Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi

    2017-09-01

    Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.

  5. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  6. TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Kang, B. S.; Kim, Suku; Ren, F.; Gila, B. P.; Abernathy, C. R.; Lin, Jenshan; Chu, S. N. G.

    2004-07-01

    There is renewed emphasis on development of robust solid-state sensors capable of uncooled operation in harsh environments. The sensors should be capable of detecting chemical, gas, biological or radiation releases as well as sending signals to central monitoring locations. We discuss the advances in use of GaN-based solid-state sensors for these applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization-induced two-dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization-induced surface and interface charges can be used to develop very sensitive but robust sensors to detect gases, polar liquids and mechanical pressure. AlGaN/GaN HEMT structures have been demonstrated to exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2. Of particular interest is detection of ethylene (C2H4), which has strong double bonds and hence is difficult to dissociate at modest temperatures. Apart from combustion gas sensing, the AlGaN/GaN heterostructure devices can be used as sensitive detectors of pressure changes. In addition, large changes in source-drain current of the AlGaN/GaN HEMT sensors can be detected upon adsorption of biological species on the semiconductor surface. Finally, the nitrides provide an ideal platform for fabrication of surface acoustic wave (SAW) devices. The GaN-based devices thus appear promising for a wide range of chemical, biological, combustion gas, polar liquid, strain and high temperature pressure-sensing applications. In addition, the sensors are compatible with high bit-rate wireless communication systems that facilitate their use in remote arrays.

  7. Probe-pin device for optical neurotransmitter sensing in the brain

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  8. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    PubMed Central

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  9. Ozone sensing based on palladium decorated carbon nanotubes.

    PubMed

    Colindres, Selene Capula; Aguir, Khalifa; Cervantes Sodi, Felipe; Vargas, Luis Villa; Salazar, José Moncayo; Febles, Vicente Garibay

    2014-04-14

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO₂ substrate. The sensor exhibited a resistance change to ozone (O₃) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.

  10. Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm

    NASA Astrophysics Data System (ADS)

    Vizbaras, Augustinas; Greibus, Mindaugas; Dvinelis, Edgaras; Trinkūnas, Augustinas; Kovalenkovas, Deividas; Šimonytė, Ieva; Vizbaras, Kristijonas

    2014-02-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, environmental and defense applications. Major requirement for these applications is the availability of laser sources in this spectral window. Type-I GaSb-based laser diodes are ideal candidates for these applications being compact, electrically pumped, power efficient and able to operate at room temperature in continuous-wave. Moreover, due to the nature of type-I transition; these devices have a characteristic low operation voltage, typically below 1 V, resulting in low power consumption, and high-temperature of operation. In this work, we present recent progress of 2.7 μm - 3.0 μm wavelength single-spatial mode GaSb type-I laser diode development at Brolis Semiconductors. Experimental device structures were grown by solid-source multi-wafer MBE, consisting of an active region with 2 compressively strained (~1.3 %-1.5 %) GaInAsSb quantum wells with GaSb barriers for 2.7 μm devices and quinternary AlGaInAsSb barriers for 3.0 μm devices. Epi-wafers were processed into a narrow-ridge (2-4 μm) devices and mounted p-side up on CuW heatsink. Devices exhibited very low CW threshold powers of < 100 mW, and single spatial mode (TE00) operation with room-temperature output powers up to 40 mW in CW mode. Operating voltage was as low as 1.2 V at 1.2 A. As-cleaved devices worked CW up to 50 deg C.

  11. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  12. Energy harvesting: small scale energy production from ambient sources

    NASA Astrophysics Data System (ADS)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  13. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  14. α,ω-dihexyl-sexithiophene thin films for solution-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Schamoni, Hannah; Noever, Simon; Nickel, Bert; Stutzmann, Martin; Garrido, Jose A.

    2016-02-01

    While organic semiconductors are being widely investigated for chemical and biochemical sensing applications, major drawbacks such as the poor device stability and low charge carrier mobility in aqueous electrolytes have not yet been solved to complete satisfaction. In this work, solution-gated organic field-effect transistors (SGOFETs) based on the molecule α,ω-dihexyl-sexithiophene (DH6T) are presented as promising platforms for in-electrolyte sensing. Thin films of DH6T were investigated with regard to the influence of the substrate temperature during deposition on the grain size and structural order. The performance of SGOFETs can be improved by choosing suitable growth parameters that lead to a two-dimensional film morphology and a high degree of structural order. Furthermore, the capability of the SGOFETs to detect changes in the pH or ionic strength of the gate electrolyte is demonstrated and simulated. Finally, excellent transistor stability is confirmed by continuously operating the device over a period of several days, which is a consequence of the low threshold voltage of DH6T-based SGOFETs. Altogether, our results demonstrate the feasibility of high performance and highly stable organic semiconductor devices for chemical or biochemical applications.

  15. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  16. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  17. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  18. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  19. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  20. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.

    PubMed

    Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice

    2018-05-01

    Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

  1. Polycrystalline silicon ion sensitive field effect transistors

    NASA Astrophysics Data System (ADS)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  2. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    PubMed

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  3. Material requirements for bio-inspired sensing systems

    NASA Astrophysics Data System (ADS)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  4. Ice Detection and Mitigation Device

    NASA Technical Reports Server (NTRS)

    Gambino, Richard J. (Inventor); Gouldstone, Christopher (Inventor); Gutleber, Jonathan (Inventor); Hubble, David (Inventor); Trelewicz, Jason (Inventor)

    2016-01-01

    A method for deicing an aerostructure includes driving a sensing current through a heater element coated to an aerostructure, the heater element having a resistance that is temperature dependent. A resistance of the heater element is monitored. It is determined whether there is icing at the heater element using the monitored resistance of the heater element. A melting current is driven through the heater element when it is determined that there is icing at the heater element.

  5. Hair Styling Appliances

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Key tool of Redken Laboratories new line of hair styling appliances is an instrument called a thermograph, a heat sensing device originally developed by Hughes Aircraft Co. under U.S. Army and NASA funding. Redken Laboratories bought one of the early models of the Hughes Probeye Thermal Video System or TVS which detects the various degrees of heat emitted by an object and displays the results in color on a TV monitor with colors representing different temperatures detected.

  6. Innovative Ge Quantum Dot Functional Sensing and Metrology Devices

    DTIC Science & Technology

    2017-08-21

    information latency and power consumption . In contrast, optical interconnects have shown tremendous promise for replacing electrical wires thanks to...single oxidation step of Si0.85Ge0.15 nano-pillars patterned over a buffer layer of Si3N4 on top of the n-Si substrate. During the high- temperature ...exquisitely-controlled dynamic balance between the fluxes of oxygen and silicon interstitials. Results and Discussion: 1. Self-organized, gate

  7. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Christine Cardinal; Graham, Alan; Nemer, Martin

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  8. Control System for Prosthetic Devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  9. Control method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  10. Control system and method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  11. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures.

    PubMed

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  12. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    PubMed

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-07

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.

  13. Silicon Nanowire-Based Devices for Gas-Phase Sensing

    PubMed Central

    Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699

  14. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, Ivan, E-mail: prochiva@gmail.com; Blazej, Josef; Kodet, Jan

    2016-05-15

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stabilitymore » is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of −55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.« less

  15. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  16. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  17. Localized Heating on Silicon Field Effect Transistors: Device Fabrication and Temperature Measurements in Fluid

    PubMed Central

    Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2010-01-01

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115

  18. Using a Floating-Gate MOS Transistor as a Transducer in a MEMS Gas Sensing System

    PubMed Central

    Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M.; Avila-García, Alejandro; Vazquez-Acosta, E. N.; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar

    2010-01-01

    Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe2O3 layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane. PMID:22163478

  19. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors.

    PubMed

    Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2014-05-15

    Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively. © 2013 Published by Elsevier B.V.

  20. Device Engineered Organic Transistors for Flexible Sensing Applications.

    PubMed

    Zang, Yaping; Huang, Dazhen; Di, Chong-An; Zhu, Daoben

    2016-06-01

    Organic thin-film transistors (OFETs) represent a promising candidate for next-generation sensing applications because of the intrinsic advantages of organic semiconductors. The development of flexible sensing devices has received particular interest in the past few years. The recent efforts of developing OFETs for sensitive and specific flexible sensors are summarized from the standpoint of device engineering. The tuning of signal transduction and signal amplification are highlighted based on an overview of active-layer thickness modulation, functional receptor implantation and device geometry optimization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well-aligned ZnO nanorods, and two-dimensional ZnO flakes. Solid-state gas sensors based on single piece of these nanostructures demonstrated superior gas sensing performances. These size-tunable nanostructures could be the building blocks of or a template for fabrication of functional devices. In summary, this research has developed new ways for fabrication of high-performance solid-state ionic devices and has helped generating fundamental understanding of the correlation between processing conditions, microstructure, and properties of the synthesized structures.

  2. Real-time dangling objects sensing: A preliminary design of mobile headset ancillary device for visual impaired.

    PubMed

    Lin, C H; Cheng, P H; Shen, S T

    2014-01-01

    Blinds and severe visual impairments can utilize tactile sticks to assist their walking. However, they cannot fully understand the dangling objects in front of their walking routes. This research proposed a mobile real-time dangling objects sensing (RDOS) prototype, which is located on the cap to sense any front barrier. This device utilized cheap ultrasonic sensor to act as another complement eye for blinds to understand the front dangling objects. Meanwhile, the RDOS device can dynamically adjust the sensor's front angle that is depended on the user's body height and promote the sensing accuracy. Meanwhile, two major required algorithms, height-angle measurement and ultrasonic sensor alignment, are proposed with this prototype. The research team also integrated the RDOS device prototype with mobile Android devices by communicating with Bluetooth to record the walking route.

  3. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor

    PubMed Central

    Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali

    2018-01-01

    Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed. PMID:29673203

  4. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor.

    PubMed

    Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali

    2018-04-17

    Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed.

  5. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  6. UV radiation and CH4 gas detection with a single ZnO:Pd nanowire

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Adelung, R.; Postica, V.; Ababii, N.; Chow, L.; Viana, B.; Pauporté, T.

    2017-02-01

    There is an increasing demand for sensors to monitor environmental levels of ultraviolet (UV) radiation and pollutant gases. In this work, an individual nanowire of Pd modified ZnO nanowire (ZnO:Pd NW) was integrated in a nanosensor device for efficient and fast detection of UV light and CH4 gas at room temperature. Crystalline ZnO:Pd nanowire/nanorod arrays were synthesized onto fluorine doped tin oxide (FTO) substrates by electrochemical deposition (ECD) at relative low-temperatures (90 °C) with different concentrations of PdCl2 in electrolyte solution and investigated by SEM and EDX. Nanodevices were fabricated using dual beam focused electron/ion beam (FIB/SEM) system and showed improved UV radiation response compared to pristine ZnO NW, reported previously by our group. The UV response was increased by one order in magnitude (≈ 11) for ZnO:Pd NW. Gas sensing measurements demonstrated a higher gas response and rapidity to methane (CH4 gas, 100 ppm) at room temperature, showing promising results for multifunctional applications. Also, due to miniature size and ultra-low power consumption of these sensors, it is possible to integrate them into portable devices easily, such as smartphones, digital clock, flame detection, missile lunching and other smart devices.

  7. Calibration and energy measurement of optically levitated nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas

    2018-03-01

    Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.

  8. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    PubMed

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  9. Introduction: Historical perspective on the HCMM program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When some thermal radiation sensitive devices on U.S. meteorological satellites generated low resolution images showing temperature variations on Earth's land and sea surfaces during the middle 1960's, interest was aroused in the potential of thermal sensing in geology, agriculture, soil moisture, ground water, water temperature, and vegetation applications. The concept of using the property of thermal inertia to identify materials, particularly those of a geologic nature can be traced to the same time period that marks the flight of the first LANDSAT - Spacecraft systems and their performance, and capabilities are reviewed as well as achievements in hydrology, geology, agriculture, pedology, and urban climate effects applications.

  10. Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M

    Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Kasdan, Harvey L. (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor); Tai, Yu-Chong (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  13. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  14. Mechanics of Multifunctional Materials & Microsystems

    DTIC Science & Technology

    2012-03-09

    Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self

  15. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  16. Laboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.; Fulford, Janice M.; Brooks, Myron H.

    2013-01-01

    The Level TROLL 100 manufactured by In-Situ Inc. was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s accuracy specifications for measuring pressure throughout the device’s operating temperature range. The Level TROLL 100 is a submersible, sealed, water-level sensing device with an operating pressure range equivalent to 0 to 30 feet of water over a temperature range of −20 to 50 degrees Celsius (°C). The device met the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of 0 to 50 °C. The device’s accuracy specifications did not meet established USGS requirements for primary water-stage sensors used in the operation of streamgages, but the Level TROLL 100 may be suitable for other hydrologic data-collection applications. As a note, the Level TROLL 100 is not designed to meet USGS accuracy requirements. Manufacturer accuracy specifications were evaluated, and the procedures followed and the results obtained are described in this report. USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the HIF.

  17. A novel interferometric characterization technique for 3D analyses at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred

    2018-04-01

    Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).

  18. Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Beheim, Glenn M.; Okojie, Robert S.; Chang, Carl W.; Meredith, Roger D.; Ferrier, Terry L.; Evans, Laura J.; Krasowski, Michael J.; hide

    2008-01-01

    The fabrication and testing of the first semiconductor transistors and small-scale integrated circuits (ICs) to achieve up to 3000 h of stable electrical operation at 500 C in air ambient is reported. These devices are based on an epitaxial 6H-SiC junction field-effect transistor process that successfully integrated high temperature ohmic contacts, dielectric passivation, and ceramic packaging. Important device and circuit parameters exhibited less than 10% of change over the course of the 500 C operational testing. These results establish a new technology foundation for realizing durable 500 C ICs for combustion-engine sensing and control, deep-well drilling, and other harsh-environment applications.

  19. Ozone Sensing Based on Palladium Decorated Carbon Nanotubes

    PubMed Central

    Colindres, Selene Capula; Aguir, Khalifa; Sodi, Felipe Cervantes; Vargas, Luis Villa; Moncayo Salazar, José A.; Febles, Vicente Garibay

    2014-01-01

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO2 substrate. The sensor exhibited a resistance change to ozone (O3) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response. PMID:24736133

  20. Miniature Cavity-Enhanced Diamond Magnetometer

    NASA Astrophysics Data System (ADS)

    Chatzidrosos, Georgios; Wickenbrock, Arne; Bougas, Lykourgos; Leefer, Nathan; Wu, Teng; Jensen, Kasper; Dumeige, Yannick; Budker, Dmitry

    2017-10-01

    We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042-nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT /√{Hz } , a projected photon shot-noise-limited sensitivity of 22 pT /√{Hz } , and an estimated quantum projection-noise-limited sensitivity of 0.43 pT /√{Hz } with the sensing volume of ˜390 μ m ×4500 μ m2 . The presented miniaturized device is the basis for an endoscopic magnetic-field sensor for biomedical applications.

  1. Nanocomposite thin films for optical temperature sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohodnicki, Jr., Paul R.; Brown, Thomas D.; Buric, Michael P.

    2017-02-14

    The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500.degree. C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10.sup.-1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition ofmore » a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches. In some embodiments, the dielectric matrix provides additional functionality due to a temperature dependent band-edge, an optimized chemical sensing response, or an optimized refractive index of the temperature sensing material for integration with optical waveguides.« less

  2. Noise thermometry at ultra-low temperatures.

    PubMed

    Rothfuss, D; Reiser, A; Fleischmann, A; Enss, C

    2016-03-28

    The options for primary thermometry at ultra-low temperatures are rather limited. In practice, most laboratories are using (195)Pt NMR thermometers in the microkelvin range. In recent years, current sensing direct current superconducting quantum interference devices (DC-SQUIDs) have enabled the use of noise thermometry in this temperature range. Such devices have also demonstrated the potential for primary thermometry. One major advantage of noise thermometry is the fact that no driving current is needed to operate the device and thus the heat dissipation within the thermometer can be reduced to a minimum. Ultimately, the intrinsic power dissipation is given by the negligible back action of the readout SQUID. For thermometry in low-temperature experiments, current noise thermometers and magnetic flux fluctuation thermometers have proved to be most suitable. To make use of such thermometers at ultra-low temperatures, we have developed a cross-correlation technique that reduces the amplifier noise contribution to a negligible value. For this, the magnetic flux fluctuations caused by the Brownian motion of the electrons in our noise source are measured inductively by two DC-SQUID magnetometers simultaneously and the signals from these two channels are cross-correlated. Experimentally, we have characterized a thermometer made of a cold-worked high-purity copper cylinder with a diameter of 5 mm and a length of 20 mm for temperatures between 42 μK and 0.8 K. For a given temperature, a measuring time below 1 min is sufficient to reach a precision of better than 1%. The extremely low power dissipation in the thermometer allows continuous operation without heating effects. © 2016 The Author(s).

  3. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  4. Mobile Networked Sensors for Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Kaiser, W. J.

    2005-12-01

    The development of the first embedded networked sensing (ENS) systems has been rapidly followed by their successful deployment for investigations in environments ranging from forest ecosystems, to rivers and lakes, and to subsurface soil observations. As ENS systems have been deployed, many technology challenges have been successfully addressed. For example, the requirements for local and remote data access and long operating life have been encountered and solved with a novel hierarchical network architecture and unique, low power platforms. This presentation will describe this progress and also the development and applications of a new ENS system addressing the most current challenges: A robotic ENS platform providing precise, reliable, and sustained observation capability with diverse sensing capabilities that may adapt to environmental dynamics. In the development of methods for autonomous observation by networked sensors, many applications have emerged requiring spatially and temporally intensive data sampling. Examples include the mapping of forest understory solar radiation, autonomous acquisition of imaging for plant phenology, and mapping of contaminant concentration in aquatic systems. Common to these applications is the need to actively and continuously configure the location and orientation of sensors for high fidelity mapping of the spatial distribution of phenomena. To address this primary environmental observation need, a new sensing platform, Networked Infomechanical Systems (NIMS) has been developed. NIMS relies on deployed aerial infrastructure (for example, cable suspension systems) in the natural environment to permit robotic devices to precisely and reliably move or remain stationary as required at elevations that may lie directly in or above the forest canopy or within a river or stream. NIMS systems are suspended to allow devices to translate a sensor node horizontally, and also to raise and lower devices. Examples of sensors that are now carried by NIMS include sensors for visible wavelength imaging, thermal infrared temperature mapping, microclimate, solar radiation, and for water quality and physical characterization of aquatic systems. NIMS devices include compact embedded computing, wireless network connectivity to surrounding static sensors, and remote Internet access. Exploiting this onboard computing allows NIMS devices to follow precise scanning protocols and self-calibration procedures. This presentation will describe permanent facility NIMS systems deployed at the James San Jacinto Mountains Reserve. Rapidly deployable NIMS permitting short term, highly mobile experiments will also be discussed. This includes the Thermal Mapper system that simultaneously samples plant physical structure (using laser position sensing and imaging) along with plant surface temperature (using high spatial resolution thermal infrared sensing). This compact system has been applied to the investigation of thermal characteristics of alpine plants in varying soil surfaces at the White Mountains Research Station. Other NIMS applications and results to be described include novel spatial mapping of nitrate concentration and other variables in flowing streams. Finally, this presentation will also address the many future applications of observatories linking investigators with remote mobile and static sensor networks. This research is supported by the NSF0331481 ITR program. Research has been performed in collaboration with R. Ambrose, K. Bible, D. Estrin, E. Graham, M. Hamilton, M. Hanson, T. Harmon, G. Pottie, P. Rundel, M. Srivastava, and G. Sukhatme

  5. Thermally modulated biomolecule transport through nanoconfined channels

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhu, Lizhong

    2015-04-01

    In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.

  6. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.

    PubMed

    Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun

    2017-12-13

    By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec.more » Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.« less

  8. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network

    PubMed Central

    Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2011-01-01

    Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681

  9. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    DTIC Science & Technology

    2015-05-21

    materials are metals, their alloys, semiconducting materials, and thermistor materials such as spinels of manganese, cobalt and nickel oxides. 16 10...improved by doping of the thin films to increase the available carriers for transport. In the case of SiGe:H thin films, Ajmera et al. and Saint John et al...Conference, Freiburg, Fed. Rep. of Germany, 1989. [55] M. Stutzmann, J. Stuke and H. Dersch, "Electron Spin Resonance of Doped Glow-discharge

  10. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  11. A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor.

    PubMed

    Pan, Tung-Ming; Huang, Ming-De; Lin, Wan-Ying; Wu, Min-Hsien

    2010-06-11

    A urea biosensor based on pH-sensitive Sm(2)TiO(5) electrolyte-insulator-semiconductor (EIS) has been described. We used X-ray diffraction, Auger electron spectroscopy, and atomic force microscopy to investigate the structural and morphological features of high-k Sm(2)TiO(5) sensing membranes that had been subjected to annealing at different temperatures. The EIS device incorporating a high-k Sm(2)TiO(5) sensing film that had been annealed at 900 degrees C exhibited good sensing characteristics, including a high sensitivity of 60.5 mV/pH (in solutions from pH 2 to 12), a small hysteresis voltage of 2.72 mV (in the pH loop 7-->4-->7-->10-->7), and a low drift rate of 1.15 mV h(-1) (in the buffer solution at pH 7). The Sm(2)TiO(5) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the urea biosensor based on pH-sensitive EIS incorporating a Sm(2)TiO(5) sensing membrane annealed at 900 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 0.1 to 32 mM, with a sensitivity of 72.85 mV/purea. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  13. Development of Numerical Models for Performance Predictions of Single-Photon Avalanche Photodetectors (SPAP) for the 2-Micron Regime

    NASA Technical Reports Server (NTRS)

    Joshi, Ravindra P.; Abedin, M. Nurul (Technical Monitor)

    2001-01-01

    Field dependent drift velocity results are presented for electron transport in bulk Indium Arsenide (InAs) material based on a Monte Carlo model, which includes an analytical treatment of band-to-band impact ionization. Avalanche multiplication and related excess noise factor (F) are computed as a function of device length and applied voltage. A decrease in F with increases in device length is obtained. The results suggest an inherent utility for InAs-based single-photon avalanche detectors, particularly around the 2 microns region of interest for atmospheric remote sensing applications. The dark current response was also evaluated. The role of the various components has been analyzed. For shorter devices, the tunneling component is shown to dominate at low temperatures. Finally, possible structures for enhanced photodetection are proposed for future research.

  14. Monolithic integration of GMR sensors for standard CMOS-IC current sensing

    NASA Astrophysics Data System (ADS)

    De Marcellis, A.; Reig, C.; Cubells-Beltrán, M.-D.; Madrenas, J.; Santos, J. D.; Cardoso, S.; Freitas, P. P.

    2017-09-01

    In this work we report on the development of Giant Magnetoresistive (GMR) sensors for off-line current measurements in standard integrated circuits. An ASIC has been specifically designed and fabricated in the well-known AMS-0.35 μm CMOS technology, including the electronic circuitry for sensor interfacing. It implements an oscillating circuit performing a voltage-to-frequency conversion. Subsequently, a fully CMOS-compatible low temperature post-process has been applied for depositing the GMR sensing devices in a full-bridge configuration onto the buried current straps. Sensitivity and resolution of these sensors have been investigated achieving experimental results that show a detection sensitivity of about 100 Hz/mA, with a resolution of about 5 μA.

  15. Electro-mechanical sine/cosine generator

    NASA Technical Reports Server (NTRS)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  16. Mapping Sensory Spots for Moderate Temperatures on the Back of Hand.

    PubMed

    Yang, Fan; Chen, Guixu; Zhou, Sikai; Han, Danhong; Xu, Jingjing; Xu, Shengyong

    2017-12-04

    Thermosensation with thermoreceptors plays an important role in maintaining body temperature at an optimal state and avoiding potential damage caused by harmful hot or cold environmental temperatures. In this work, the locations of sensory spots for sensing moderate temperatures of 40-50 °C on the back of the hands of young Chinese people were mapped in a blind-test manner with a thermal probe of 1.0 mm spatial resolution. The number of sensory spots increased along with the testing temperature; however, the surface density of sensory spots was remarkably lower than those reported previously. The locations of the spots were irregularly distributed and subject-dependent. Even for the same subject, the number and location of sensory spots were unbalanced and asymmetric between the left and right hands. The results may offer valuable information for designing artificial electronic skin and wearable devices, as well as for clinical applications.

  17. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations.

    PubMed

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  18. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  19. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less

  20. Practical considerations for coil-wrapped Distributed Temperature Sensing setups

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick

    2015-04-01

    Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.

  1. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  2. Low-noise and wideband hot-electron superconductive mixer for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; Skalare, Anders; McGrath, William R.; Bumble, Bruce; Leduc, Henry G.; Barner, J. B.; Kleinsasser, Alan W.; Burke, P. J.; Schoelkopf, Robert J.; Prober, Daniel E.

    1998-11-01

    Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz. The mixer device is a 0.15 - 0.3 micrometer microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is expected to be at least 10 GHz for a 0.1 micrometer long device. The local oscillator (LO) power dissipated in the HEB microbridge was 20 - 100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for use on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-(delta ) (YBCO) HEB are discussed. The expected LO power of 1 - 10 (mu) W and SSB noise temperature of approximately equals 2000 K may make this mixer attractive for various remote sensing applications.

  3. Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

    PubMed Central

    Villani, F; Schiattarella, C; Capua, R Di; Loffredo, F; Alfano, B; Miglietta, M L; Massera, E; Verdoliva, L; Francia, G Di

    2017-01-01

    The extremely high sensitivity to the external environment and the high specific surface area, as well as the absence of bulk phenomena that could interfere with the response signal, make graphene highly attractive for the applications in the field of sensing. Among the various methods for producing graphene over large areas, liquid phase exfoliation (LPE) appears to be very promising, especially if combined with inkjet printing (IJP), which offers several advantages, including the selective and controlled deposition of small ink volumes and the versatility of the exploitable inks and substrates. Herein we present a feasibility study of chemiresistive gas sensors inkjet-printed onto paper substrates, in which a LPE graphene suspension dispersed in a water/isopropanol (H2O/IPA) mixture is used as sensing ink. The device performances, in terms of relative conductance variations, upon exposure to NO2 at standard ambient temperature and pressure, are analysed. In addition, we examine the effect of the substrate morphology and, more specifically, of the ink/substrate interaction on the device performances, by comparing the response of different chemiresistors fabricated by dispensing the same suspension also onto Al2O3 and Si/SiO2 substrates and carrying out a supportive atomic force microscopy analysis. The results prove the possibility to produce sensor devices by means of a wholly environmentally friendly, low-cost process that meets the requests coming from the increasing field of paper-based electronics and paving the way towards a flexible, green-by-design mass production. PMID:28546896

  4. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.

  5. High-κ GdTixOy sensing membrane-based electrolyte-insulator-semiconductor with magnetic nanoparticles as enzyme carriers for protein contamination-free glucose biosensing.

    PubMed

    Wu, Min-Hsien; Yang, Hung-Wei; Hua, Mu-Yi; Peng, Yen-Bo; Pan, Tung-Ming

    2013-09-15

    This paper reports an electrolyte-insulator-semiconductor (EIS) device featuring a novel high-κ GdTixOy sensing membrane for high-performance pH sensing and glucose biosensing. The effect of the annealing temperature (700, 800, or 900°C) on the sensing properties of the GdTixOy membranes was investigated. The GdTixOy EIS device annealed at 900°C exhibited the greatest pH sensing performance, including the highest sensitivity (62.12mV/pH), the smallest hysteresis voltage (5mV), and the lowest drift rate (0.4mV/h), presumably because of its well-crystallized GdTixOy structure. To overcome the problems typically encountered during the practical application of biosensors (e.g., protein adsorption; preservation of enzymatic activity), we employed Fe3O4-based magnetic nanoparticles (MNPs) as enzyme carriers. The adsorption of serum protein on the unmodified sensing membrane led to poor EIS-based pH sensing (r(2)=0.71); the performance was greatly improved, however, after attaching the MNPs to the sensing membrane, thereby blocking protein adsorption significantly (by 98%) and allowing excellent pH sensing (r(2)=0.99). Moreover, we prepared a hybrid configuration of the proposed GdTixOy membrane-EIS, with magnetically attached glucose oxidase-immobilized MNPs, for glucose biosensing. The use of MNPs as enzyme carriers effectively preserved the enzymatic activity of glucose oxidase, with 45.3% of the original enzymatic activity retained after 120h of storage at 4°C (compared with complete loss of the free enzyme's activity under the same storage conditions). In addition, the proposed biosensor exhibited superior detection sensitivity of 11.03mV/mM relative to that (8.17mV/mM) obtained using the conventional enzyme immobilization method. Finally, we established the accuracy of the proposed method for blood glucose measurement; gratifyingly, blood glucose detection was comparable with the high-sensitivity glucose quantification obtained using a commercial glucose assay kit. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tool actuation and force feedback on robot-assisted microsurgery system

    NASA Technical Reports Server (NTRS)

    Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)

    2002-01-01

    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.

  7. A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Vijayalakshmi, K. A.; Sadasivuni, Kishor Kumar; Thomas, Ajith; Ponnamma, Deepalekshmi; Cabibihan, John-John

    2017-11-01

    Microwave-assisted successive ionic layer adsorption and reaction was employed to synthesize Sn-ZnO (tin-doped zinc oxide), and its sensitivity to ultraviolet radiation is compared with zinc oxide (ZnO). The sensing films were made by the dip-coated method on an indium titanium oxide glass substrate, and the sensing performance was monitored using the 300-700 nm wavelength of UV-Vis light. Excellent sensitivity and recovery were observed for the Sn-doped ZnO sensor device, especially at 380 nm wavelength of ultraviolet (UV) light (response and recovery time 2.26 s and 8.63 s, respectively, at 5 V bias voltage). The variation in photocurrent with respect to dark and light illumination atmosphere was well illustrated based on the Schottky and inter-particle network effects. Doping of Sn on ZnO nanoparticles varied the surface roughness and crystallite size as observed from scanning electron microscopic and x-ray diffraction studies. Here, we demonstrate a simple and economical fabrication technique for designing a high-performance UV light sensor. The developed device works at room temperature with high durability and stability.

  8. Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance

    NASA Astrophysics Data System (ADS)

    Almazán, Fernando; Pellejero, Ismael; Morales, Alberto; Urbiztondo, Miguel A.; Sesé, Javier; Pina, M. Pilar; Santamaría, Jesús

    2016-08-01

    A novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0  ±  0.5 μm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.

  9. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  10. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  12. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks.

    PubMed

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-04-26

    With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction.

  13. Devices and methods to detect and quantify trace gases

    DOEpatents

    Allendorf, Mark D.; Robinson, Alex

    2016-05-03

    Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.

  14. A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation

    PubMed Central

    Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu

    2009-01-01

    Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812

  15. Microfludic Sensing Devices Employing In Situ-Formed Liquid Crystal Thin Film for Detection of Biochemical Interactions1†

    PubMed Central

    Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L.; Jiang, Hongrui

    2012-01-01

    Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A2 (PLA2). PMID:22842797

  16. Mechanically detected terahertz electron spin resonance using SOI-based thin piezoresistive microcantilevers

    NASA Astrophysics Data System (ADS)

    Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi

    2018-02-01

    We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.

  17. Development of Advanced Laser Diode Sources

    NASA Technical Reports Server (NTRS)

    Coleman, J. J.; Papen, G. C.

    1998-01-01

    The design and operation of InGaAs-GaAs-AlGaAs asymmetric cladding ridge waveguide distributed Bragg reflector lasers is presented. Targeted for the remote sensing of water vapor with absorption lines in the lambda approximately 930 nm region, these devices operate CW with threshold currents as low as 11 MA and slope efficiencies as high as 0.37 W/A. Tbey also operate with over 30-dB side-mode suppression, and the typical CW characteristic temperature, T(sub o), is 95 K.

  18. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, Charles S.

    1993-01-01

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  19. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, C.S.

    1993-08-31

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  20. Gas sensor protection device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, David; Magera, Craig

    A gas sensor includes a sensor housing and a sensing element located within the sensor housing. The sensing element has a distal end and defines an axis. The gas sensor also includes a sensor protection device coupled to the sensor housing and at least partially surrounding the distal end of the sensing element. The sensor protection device includes a first member coupled to the housing, the first member having a generally rectangular cross-sectional shape in a plane perpendicular to the axis. The first member includes a gas inlet and a gas outlet. The sensor protection device also includes a secondmore » member coupled to the housing.« less

  1. Design and fabrication of a 1-DOF drive mode and 2-DOF sense mode micro-gyroscope using SU-8 based UV-LIGA process

    NASA Astrophysics Data System (ADS)

    Verma, Payal; Juneja, Sucheta; Savelyev, Dmitry A.; Khonina, Svetlana N.; Gopal, Ram

    2016-04-01

    This paper presents design and fabrication of a 1-DOF (degree-of-freedom) drive mode and 2-DOF sense mode micro-gyroscope. It is an inherently robust structure and offers a high sense frequency bandwidth. The proposed design utilizes resonance of the1-DOF drive mode oscillator and employs dynamic amplification concept in sense modes to increase the sensitivity while maintaining robustness. The 2-DOF in the sense direction renders the device immune to process imperfections and environmental effects. The design is simulated using FEA software (CoventorWare®). The device is designed considering process compatibility with SU-8 based UV-LIGA process, which is an economical fabrication technique. The complete fabrication process is presented along with SEM images of the fabricated device. The device has 9 µm thick Nickel as the key structural layer with an overall reduced key structure size of 2.2 mm by 2.1 mm.

  2. Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.

    PubMed

    Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J

    2018-05-02

    This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.

  3. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.

    PubMed

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-09-15

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.

  4. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  5. 33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...

  6. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  7. Development of a new instrument for direct skin friction measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.

  8. Investigation on dielectrophoretic assembly of nanostructures and its application on chemical sensors

    NASA Astrophysics Data System (ADS)

    Tao, Quan

    Because of their extraordinary characteristics such as quantum confinement and large surface-tovolume ratio, semiconducting nanostructures such as nanowires or nanotubes hold great potential in sensing chemical vapors. Nanowire or nanotube based gas sensors usually possess appealing advantages such as high sensitivity, high stability, fast recovery time, and electrically controllable properties. To better predict the composition and concentration of target gas, nanostructures made from heterogeneous materials are employed to provide more predictors. In recent years, nanowires and nanotubes can be synthesized routinely through different methods. The techniques of fabricating nanowire or nanotube based sensor arrays, however, encounter obstacles and deserve further investigations. Dielectrophoresis (DEP), which refers to the motion of submicron particles inside a non-uniform electric field, has long been recognized as a nondestructive, easily implementable, and efficient approach to manipulate nanostructures onto electronic circuitries. However, due to our limited understandings, devices fabricated through DEP often end up with unpredictable number of arbitrarily aligned nanostructures. In this study, we first optimize the classical DEP formulas such that it can be applied to a more general case that a nanostructure is subjected to a non-uniform electric field with arbitrary orientation. A comprehensive model is then constructed to investigate the trajectory and alignment of DEP assembled nanostructures, which can be verified by experimental observations. The simulation results assist us to fabricate a gas sensor array with zinc oxide (ZnO) nanowires and carbon nanotubes (CNTs). It is then demonstrated that the device can well sense ammonia (NH3) at room temperature, which circumvents the usually required high temperature condition for nanowire based gas sensor application. An effective approach to recover the device using DC biases to locally heat up the nanostructures is then proposed and implemented to accelerate the recovery process of the device without the requirement of heating up the whole device. As the sensors are characterized under different NH3 concentrations, the outputs are analyzed using regression methods to estimate the concentration of NH3. The quadratic model with the lasso is demonstrated to provide best performance for the collected data.

  9. Distributed Compressive Sensing vs. Dynamic Compressive Sensing: Improving the Compressive Line Sensing Imaging System through Their Integration

    DTIC Science & Technology

    2015-01-01

    streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications

  10. Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor

    NASA Astrophysics Data System (ADS)

    Lone, Mohd Yaseen; Kumar, Avshish; Husain, Samina; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-03-01

    In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.

  11. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. T.; Hussain, M. M.

    2015-08-01

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  12. Tuning Fork Oscillators as Downhole Viscometers in Oilfield Applications

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Bernero, Greg; Alvarez, Oliverio; Ham, Gregory; Max, Deffenbaugh; Sensors Development Team

    2015-03-01

    The commerciality of oil wells is greatly influenced by the physical properties of the fluids being produced. A key parameter in determining how producible the hydrocarbons are is their viscosity. Pressure and temperature changes in recovering a downhole sample to the surface can alter viscosity while accurate downhole measurement of this critical property remains a rudimentary effort in the industry. In this presentation we describe the challenges of measuring and quantifying the viscosity of reservoir fluids in situ at downhole conditions, as well as present an overview of some of the different measurement techniques currently used. Additionally, we show our characterization of a piezoelectric tuning fork oscillator used as a viscosity sensor. In an attempt to recreate the environment found in oil wells, its mechanical and electrical properties were studied while the device was immersed in different fluids and, separately, under different conditions of pressure and temperature. This device is a first step toward the development of an inexpensive, integrated, and miniaturized sensing platform for the in situ characterization of reservoir fluids.

  13. Controlling heat and particle currents in nanodevices by quantum observation

    NASA Astrophysics Data System (ADS)

    Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel

    2017-07-01

    We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.

  14. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Li; Chen, Zhao-Chi

    2015-12-01

    The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  15. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  16. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    PubMed Central

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548

  17. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    PubMed

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  18. Numerical modeling and performance analysis of zinc oxide (ZnO) thin-film based gas sensor

    NASA Astrophysics Data System (ADS)

    Punetha, Deepak; Ranjan, Rashmi; Pandey, Saurabh Kumar

    2018-05-01

    This manuscript describes the modeling and analysis of Zinc Oxide thin film based gas sensor. The conductance and sensitivity of the sensing layer has been described by change in temperature as well as change in gas concentration. The analysis has been done for reducing and oxidizing agents. Simulation results revealed the change in resistance and sensitivity of the sensor with respect to temperature and different gas concentration. To check the feasibility of the model, all the simulated results have been analyze by different experimental reported work. Wolkenstein theory has been used to model the proposed sensor and the simulation results have been shown by using device simulation software.

  19. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  20. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.

    1996-01-01

    Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.

  1. Medical devices of the head, neck, and spine.

    PubMed

    Hunter, Tim B; Yoshino, Mark T; Dzioba, Robert B; Light, Rick A; Berger, William G

    2004-01-01

    There are many medical devices used for head, neck, and spinal diseases and injuries, and new devices are constantly being introduced. Many of the newest devices are variations on a previous theme. Knowing the specific name of a device is not important. It is important to recognize the presence of a device and to have an understanding of its function as well as to be able to recognize the complications associated with its use. The article discusses the most common and important devices of the head, neck, and spine, including cerebrospinal fluid shunts and the Codman Hakim programmable valve; subdural drainage catheters, subdural electrodes, intracranial electrodes, deep brain stimulators, and cerebellar electrodes; coils, balloons, adhesives, particles, and aneurysm clips; radiation therapy catheters, intracranial balloons for drug installation, and carmustine wafers; hearing aids, cochlear implants, and ossicular reconstruction prostheses; orbital prostheses, intraocular silicone oil, and lacrimal duct stents; anterior and posterior cervical plates, posterior cervical spine wiring, odontoid fracture fixation devices, cervical collars and halo vests; thoracic and lumbar spine implants, anterior and posterior instrumentation for the thoracic and lumbar spine, vertebroplasty, and artificial disks; spinal column stimulators, bone stimulators, intrathecal drug delivery pumps, and sacral stimulators; dental and facial implant devices; gastric and tracheal tubes; vagus nerve stimulators; lumboperitoneal shunts; and temperature- and oxygen-sensing probes. Copyright RSNA, 2004

  2. Optical Graphene Gas Sensors Based on Microfibers: A Review

    PubMed Central

    Wu, Yu; Yao, Baicheng; Yu, Caibin; Rao, Yunjiang

    2018-01-01

    Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations. PMID:29565314

  3. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    NASA Astrophysics Data System (ADS)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same material. Essentially, we have formulated simple processes for improving current thin film sensors as well as a means of incorporating nanostructures directly into miniature sensing devices. Apart from gas sensing applications, the approaches described in this work are suitable for designing future nanoelectronic devices such as gas-ionization, capacitive and calorimetric sensors, miniature sensor arrays for electronic nose applications, field emitters, as well as photonic devices such as nanoscale LEDs and lasers.

  4. Human‐Like Sensing and Reflexes of Graphene‐Based Films

    PubMed Central

    Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan

    2016-01-01

    Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005

  5. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  6. Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation

    PubMed Central

    Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan

    2017-01-01

    Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174

  7. Etched Polymer Fibre Bragg Gratings and Their Biomedical Sensing Applications

    PubMed Central

    Rajan, Ginu; Bhowmik, Kishore; Xi, Jiangtao; Peng, Gang-Ding

    2017-01-01

    Bragg gratings in etched polymer fibres and their unique properties and characteristics are discussed in this paper. Due to the change in material and mechanical properties of the polymer fibre through etching, Bragg gratings inscribed in such fibres show high reflectivity and enhanced intrinsic sensitivity towards strain, temperature, and pressure. The short-term and long-term stability of the gratings and the effect of hysteresis on the dynamic characteristics are also discussed. The unique properties and enhanced intrinsic sensitivity of etched polymer fibre Bragg grating are ideal for the development of high-sensitivity sensors for biomedical applications. To demonstrate their biomedical sensing capabilities, a high-sensitivity pressure transducer that operates in the blood pressure range, and a breathing rate monitoring device are developed and presented. PMID:29027945

  8. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    PubMed

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

  9. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  10. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  11. Contribution to the application of two-colour imaging to diesel combustion

    NASA Astrophysics Data System (ADS)

    Payri, F.; Pastor, J. V.; García, J. M.; Pastor, J. M.

    2007-08-01

    The two-colour method (2C) is a well-known methodology for the estimation of flame temperature and the soot-related KL factor. A 2C imaging system has been built with a single charge-coupled device (CCD) camera for visualization of the diesel flame in a single-cylinder 2-stroke engine with optical accesses. The work presented here focuses on methodological aspects. In that sense, the influence of calibration uncertainties on the measured temperature and KL factor has been analysed. Besides, a theoretical study is presented that tries to link the true flame temperature and soot distributions with those derived from the 2C images. Finally, an experimental study has been carried out in order to show the influence of injection pressure, air density and temperature on the 2C-derived parameters. Comparison with the expected results has shown the limitations of this methodology for diesel flame analysis.

  12. Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors.

    PubMed

    Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien

    2005-07-15

    Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.

  13. Pd/CeO2/SiC Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature <450 C for these sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky diode, the nanostructured interfacial CeO2 layer would contribute to thermal stability and, by contributing to transfer of electrons, would also contribute to sensitivity.

  14. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  15. Method and apparatus of assessing down-hole drilling conditions

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  16. Development of an Open Source, Air-Deployable Weather Station

    NASA Astrophysics Data System (ADS)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  17. Thin film materials and devices for resistive temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.

  18. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices

    NASA Astrophysics Data System (ADS)

    Amani, E.; Khojier, K.; Zoriasatain, S.

    2018-01-01

    This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.

  19. Traffic data collection and anonymous vehicle detection using wireless sensor networks.

    DOT National Transportation Integrated Search

    2012-05-01

    New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...

  20. NO.sub.x sensing devices having conductive oxide electrodes

    DOEpatents

    Montgomery, Frederick C.; West, David L.; Armstrong, Timothy R.; Maxey, Lonnie C.

    2010-03-16

    A NO.sub.x sensing device includes at least one pair of spaced electrodes, at least one of which is made of a conductive oxide, and an oxygen-ion conducting material in bridging electrical communication with the electrodes.

  1. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  2. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  3. Fire and Ice: Thermoluminescent Temperature Sensing in High-Explosive Detonations and Optical Characterization Methods for Glacier Ice Boreholes

    NASA Astrophysics Data System (ADS)

    Mah, Merlin Lyn

    The environment around a detonating high explosive is incredibly energetic and dynamic, generating shock waves, turbulent mixing, chemical reactions, and temperature excursions of thousands of Kelvin. Probing this violent but short-lived phenomena requires durable sensors with fast response times. By contrast, the glacier ice sheets of Antarctica and Greenland change on geologic time scales; the accumulation and compression of snow into ice preserves samples of atmospheric gas, dust, and volcanic ash, while the crystal orientations of the ice reflect its conditions and movement over hundreds of thousands of years. Here, difficulty of characterization stems primarily from the location, scale, and depth of the ice sheet. This work describes new sensing technologies for both of these environments. Microparticles of thermoluminescent materials are proposed as high-survivability, bulk-deployable temperature sensors for applications such as assessing bioagent inactivation. A technique to reconstruct thermal history from subsequent thermoluminescence observations is described. MEMS devices were designed and fabricated to assist in non-detonation testing: large-area electrostatic membrane actuators were used to apply mechanical stress to thermoluminescent Y2O3 :Tb thin film, and microheaters impose rapid temperature excursions upon particles of Mg2SiO4:Tb,Co to demonstrate predictable thermoluminescent response. Closed- and open-chamber explosive detonation tests using dosimetric LiF:Mg,Ti and two experimental thermometry materials were performed to test survivability and attempt thermal event reconstruction. Two borehole logging devices are described for optical characterization of glacier ice. For detecting and recording layers of volcanic ash in glacier ice, we developed a lightweight, compact probe which uses optical fibers and purely passive downhole components to detect single-scattered long-wavelength light. To characterize ice fabric orientation, we propose a technique which uses reflection measurements from a small, fixed set of geometries. The design and construction of a borehole logger implementing these techniques is described, and its testing discussed.

  4. Sensing Device with Whisker Elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2013-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  5. Sensing device with whisker elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2010-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  6. A Master Trainer Class for Professionals in Teaching the UltraCane Electronic Travel Device

    ERIC Educational Resources Information Center

    Penrod, William; Corbett, Michael D.; Blasch, Bruce

    2005-01-01

    Electronic travel devices are used to transform information about the environment that would normally be perceived through the visual sense into a form that can be perceived by people who are blind or have low vision through another sense (Blasch, Long, & Griffin-Shirley, 1989). They are divided into two broad categories: primary devices and…

  7. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review

    PubMed Central

    Bocan, Kara N.; Sejdić, Ervin

    2016-01-01

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154

  8. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.

    PubMed

    Bocan, Kara N; Sejdić, Ervin

    2016-03-18

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.

  9. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  10. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability.

    PubMed

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-08-31

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human's daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

  11. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    NASA Technical Reports Server (NTRS)

    Kim, Jong Dae (Inventor); Nagarajaiah, Satish (Inventor); Barrera, Enrique V. (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  12. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.

    PubMed

    Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang

    2015-11-01

    A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05  GHz·T(-1) when T=230  K. This multifunctional magneto-metasurface has broad potential in THz application systems.

  13. Wireless ZigBee home automation system

    NASA Astrophysics Data System (ADS)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  14. High performance NO2 sensor using MoS2 nanowires network

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh

    2018-01-01

    We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.

  15. Ethical implications of location and accelerometer measurement in health research studies with mobile sensing devices.

    PubMed

    Fuller, Daniel; Shareck, Martine; Stanley, Kevin

    2017-10-01

    Quantification of individual behaviours using mobile sensing devices, including physical activity and spatial location, is a rapidly growing field in both academic research and the corporate world. In this case study, we summarize the literature examining the ethical aspects of mobile sensing and argue that a robust discussion about the ethical implications of mobile sensing for research purposes has not occurred sufficiently in the literature. Based on our literature summary and guided by basic ethical principles set out in Canadian, US, and International Ethics documents we propose four areas where further discussion should occur: consent, privacy and confidentiality, mitigating risk, and consideration of vulnerable populations. We argue that ongoing consent is crucial for participants to be aware of the precision and volume of data that is collected with mobile sensing devices. Related to privacy we discuss that participants may not agree that anonymized data is sufficient for privacy and confidentiality when mobile sensing data are collected. There has been some discussion about mitigating risk in the literature. We highlight that the researchers' obligations toward mitigating risks that are not directly related to the study purpose are unclear and require considerable discussion. Finally, using mobile sensing devices to study vulnerable populations requires careful consideration, particularly with respect to balancing research needs with participant burden. Based on our discussion, we identify a broad set of unanswered questions about the ethics of mobile sensing that should be addressed by the research community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vital sign monitoring for elderly at home: development of a compound sensor for pulse rate and motion.

    PubMed

    Sum, K W; Zheng, Y P; Mak, A F T

    2005-01-01

    This paper describes the development of a miniaturized wearable vital sign monitor which is aimed for use by elderly at home. The development of a compound sensor for pulse rate, motion, and skin temperature is reported. A pair of infrared sensor working in reflection mode was used to detect the pulse rate from various sites over the body including the wrist and finger. Meanwhile, a motion sensor was used to detect the motion of the body. In addition, the temperature on the skin surface was sensed by a semiconductor temperature sensor. A prototype has been built into a box with a dimension of 2 x 2.5 x 4 cm3. The device includes the sensors, microprocessor, circuits, battery, and a wireless transceiver for communicating data with a data terminal.

  17. Thermal effects on nonlinear vibration of a carbon nanotube-based mass sensor using finite element analysis

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik

    2017-01-01

    In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.

  18. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  19. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  20. Surface charge sensing by altering the phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.

    2014-08-01

    Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.

  1. Temperature effect on refractive index sensing performance of a U-shape tapered plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Teng, Chuanxin; Yu, Fangda; Jing, Ning; Zheng, Jie

    2016-11-01

    The temperature dependence of a refractive index (RI) sensing probe based on a U-shape tapered plastic optical fiber (POF) was investigated experimentally. The changes in light propagation loss in the probe induced by temperature are of the same order of magnitude as those induced by measured RI changes. The temperature dependence loss and temperature dependence RI deviation of the sensing probe were measured (at the wavelength of 635 nm) in temperature of 10-60 °C. By extracting pure temperature dependence of the sensing probe alone, the influence of temperature to the sensor was characterized.

  2. A Low Cost Device for Monitoring the Urine Output of Critical Care Patients

    PubMed Central

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients’ physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals. PMID:22163495

  3. A low cost device for monitoring the urine output of critical care patients.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients' physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals.

  4. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the device's Q factor has been realized by shifting the device's working wavelength to near-visible wavelength and further reducing the device's sidewall roughness. A record new high Q-˜x105 has been measured and the device's NEP as low as 21Pa has been measured. Furthermore, a smaller size polymer microring device has been developed and fabricated to realize larger angle beam forming applications.

  5. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.

  6. Spillage detector for liquid chromatography systems

    NASA Technical Reports Server (NTRS)

    Jarvis, M. J.; Fulton, D. S. (Inventor)

    1986-01-01

    A spillage detector device for use in conjunction with fractionation of liquid chromatography systems which includes a spillage recieving enclosure beneath the fractionation area is described. A sensing device having a plurality of electrodes of alternating polarity is mounted within the spillage recieving enclosure. Detection circuitry, responsive to conductivity between electrodes, is operatively connected to the sensing device. The detection circuitry feeds into the output circuitry. The output circuit has relaying and switching circuitry directed to a solenoid, an alarm system and a pump. The solenoid is connected to the pliable conduit of the chromatography system. The alarm system comprises an audio alarm and a visual signal. A 115-volt power system interconnected with the pump, the solenoid, the sensing device, and the detection and output circuitry.

  7. Thermoelectric Generator Used in Fire-Alarm Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Wu, Wenchang; Du, Zhengliang; Cui, Jiaolin; Shi, Zhongtao; Deng, Yuan

    2015-06-01

    Here we present a thermoelectric (TE) generator used in fire-alarm temperature sensing. The TE module, a core component of this generator, has a sandwich-like structure consisting of a Cu/Sn95Ag5/coated Ni/sprayed Ni/TE/sprayed Ni/coated Ni/Sn95Ag5/Cu multilayer that exhibits a low internal resistance of 5.5 Ω to 5.9 Ω and a contact resistance of 0.51 Ω to 0.91 Ω at room temperature (RT), enabling the TE generator to attain an open-circuit voltage ( V op) of 1.50 V at RT and 2.97 V at ~90°C. Moreover, its maximum output power ( p max) was estimated to be 11.6 mW and 428.7 mW, respectively, for a temperature difference (Δ T) of 9.3°C and 52.9°C. These values are comparable to those for the bulk TE generator developed by Thermonamic. According to these figures, we obtain corresponding power densities of ~7.25 × 103 nW/mm2 and 2.68 × 105 nW/mm2, respectively. Although there is still much room to improve the performance of the generator when the source temperature rises above 90°C, the output voltages and maximum output powers attained in the current testing conditions are large enough to drive small electronic devices such as fire-alarm systems etc. Therefore, it is believed that the fabrication technology and designed structure of the generator are appropriate for such applications.

  8. Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers

    NASA Astrophysics Data System (ADS)

    Giazotto, F.; Solinas, P.; Braggio, A.; Bergeret, F. S.

    2015-10-01

    We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal-ferromagnetic-insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz-1 /2 , a realistic amplifying chain will reduce the sensitivity up to 10 μ K Hz-1 /2 . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum-interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz-1 /2 . We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz /K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz-1 /2 thereby being potentially attractive for radiation-sensing applications.

  9. Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity.

    PubMed

    Tan, Si; Wang, Suwen; Saraf, Shailendhar; Lipa, John A

    2017-02-20

    Ultra-high sensitivity temperature sensing and stable thermal control are crucial for many science experiments testing fundamental theories to high precision. Here we report the first pico-kevin scale thermometer operating at room temperature with an exceptionally low theoretical noise figure of ~70pK/Hz at 1 Hz and a high dynamic range of ~500 K. We have experimentally demonstrated a temperature sensitivity of <3.8nK/Hz at 1 Hz near room temperature, which is an order of magnitude improvement over the state of the art. We have also demonstrated an ultra-high stability thermal control system using this thermometer, achieving 3.7 nK stability at 1 s and ∼ 120 pK at 104 s, which is 10-100 times more stable than the state of the art. With some upgrades to this proof-of-principle device, we can expect it to be used for very high resolution tests of special relativity and in critical point phenomena.

  10. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  11. Micro environmental sensing device

    DOEpatents

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  12. Wavelength metrology with a color sensor integrated chip

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Jones, Tyler; Otterstrom, Nils; Archibald, James; Durfee, Dallin

    2016-03-01

    We have developed a method of wavelength sensing using the TCS3414 from AMS, a color sensor developed for use in cell phones and consumer electronics. The sensor datasheet specifies 16 bits of precision and 200ppm/C° temperature dependence, which preliminary calculations showed might be sufficient for picometer level wavelength discrimination of narrow linewidth sources. We have successfully shown that this is possible by using internal etalon effects in addition to the filters' wavelength responses, and recently published our findings in OpticsExpress. Our device demonstrates sub picometer precision over short time periods, with about 10pm drift over a one month period. This method requires no moving or delicate optics, and has the potential to produce inexpensive and mechanically robust devices. Funded by Brigham Young University and NSF Grant Number PHY-1205736.

  13. Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber.

    PubMed

    Kang, Xuexue; Zhang, Weigang; Zhang, Yanxin; Yang, Jiang; Chen, Lei; Kong, Lingxin; Zhang, Yunshan; Yu, Lin; Yan, Tieyi; Geng, Pengcheng

    2018-05-01

    An intensity-demodulated torsion sensor is designed and realized, which consists of a polarization ring as the sensing part and a section of thin-core polarization-maintaining fiber as the demodulation part. An intensity map of a sinusoidal change can be obtained at some specific wavelengths, and the experimental results correspond to the theoretical analysis well. The maximum sensitivity is about 0.29 dB/deg at the wavelength of 1584.6 nm, and the minimum sensitivity is about 0.10 dB/deg at the wavelength of 1510.2 nm. Meanwhile, the temperature characteristic is measured in the experiment. More broadly, the proposed structure can be used in an integrated smart device for loose-screw detection in devices in aeronautics and astronautics.

  14. Optimized Geometry for Superconducting Sensing Coils

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob

    2008-01-01

    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.

  15. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, James W.

    1998-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  16. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1998-03-03

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units. 12 figs.

  17. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  18. Sensing of molecules using quantum dynamics

    PubMed Central

    Migliore, Agostino; Naaman, Ron; Beratan, David N.

    2015-01-01

    We design sensors where information is transferred between the sensing event and the actuator via quantum relaxation processes, through distances of a few nanometers. We thus explore the possibility of sensing using intrinsically quantum mechanical phenomena that are also at play in photobiology, bioenergetics, and information processing. Specifically, we analyze schemes for sensing based on charge transfer and polarization (electronic relaxation) processes. These devices can have surprising properties. Their sensitivity can increase with increasing separation between the sites of sensing (the receptor) and the actuator (often a solid-state substrate). This counterintuitive response and other quantum features give these devices favorable characteristics, such as enhanced sensitivity and selectivity. Using coherent phenomena at the core of molecular sensing presents technical challenges but also suggests appealing schemes for molecular sensing and information transfer in supramolecular structures. PMID:25911636

  19. Invited: Advances Toward Practical Detection of Trace Chemical Hazards with Solid State Microarray Devices

    NASA Astrophysics Data System (ADS)

    Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve

    2011-09-01

    We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.

  20. Modeling of SAW Delay Lines

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. To aid in the development of SAW sensors for IVHM applications, a first order model of a SAW Delay line has been created.

  1. Concentric-electrode organic electrochemical transistors: case study for selective hydrazine sensing

    NASA Astrophysics Data System (ADS)

    Pecqueur, S.; Lenfant, S.; Guérin, D.; Alibart, F.; Vuillaume, D.

    2017-12-01

    We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting in concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, PEDOT:PSS-based OECTs have been studied as aqueous sensors, specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10-5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for 9 other water soluble common analytes, the capability to recover entirely its base signal after water flushing and a very low voltage operation. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode and enables increasing the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 μm and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device, more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talking, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore promotes further the development of OECT biosensors.

  2. Boltless flange

    DOEpatents

    Kirkham, R.J.

    1997-04-15

    A boltless, reusable flange system for joining metal piping includes a circular, wedge-shaped tongue on an upper flange for mating with a groove containing a fusible alloy in a lower flange. The lower flange includes a heating element for melting the fusible alloy, and a thermocouple device to sense the alloy temperature. Heat can be controlled and supplied from a remote source and monitored by a remote temperature indicator. The upper flange is positioned above the lower flange, tongue and groove aligned, and the lower flange is heated until the fusible alloy melts to allow the upper tongue to settle down within the lower groove. Upon removal of the heat, the alloy hardens to further bring the two flanges together in a solid and sealed couple, compressing an optional gasket. 4 figs.

  3. Boltless flange

    DOEpatents

    Kirkham, Robert J.

    1997-01-01

    A boltless, reusable flange system for joining metal piping includes a circular, wedge-shaped tongue on an upper flange for mating with a groove containing a fusible alloy in a lower flange. The lower flange includes a heating element for melting the fusible alloy, and a thermocouple device to sense the alloy temperature. Heat can be controlled and supplied from a remote source and monitored by a remote temperature indicator. The upper flange is positioned above the lower flange, tongue and groove aligned, and the lower flange is heated until the fusible alloy melts to allow the upper tongue to settle down within the lower groove. Upon removal of the heat, the alloy hardens to further bring the two flanges together in a solid and sealed couple, compressing an optional gasket.

  4. Structural and optical properties of silicon-carbide nanowires produced by the high-temperature carbonization of silicon nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlikov, A. V., E-mail: pavlikov@physics.msu.ru; Latukhina, N. V.; Chepurnov, V. I.

    Silicon-carbide (SiC) nanowire structures 40–50 nm in diameter are produced by the high-temperature carbonization of porous silicon and silicon nanowires. The SiC nanowires are studied by scanning electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and infrared reflectance spectroscopy. The X-ray structural and Raman data suggest that the cubic 3C-SiC polytype is dominant in the samples under study. The shape of the infrared reflectance spectrum in the region of the reststrahlen band 800–900 cm{sup –1} is indicative of the presence of free charge carriers. The possibility of using SiC nanowires in microelectronic, photonic, and gas-sensing devices is discussed.

  5. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  6. Threaded average temperature thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W. (Inventor)

    1990-01-01

    A threaded average temperature thermocouple 11 is provided to measure the average temperature of a test situs of a test material 30. A ceramic insulator rod 15 with two parallel holes 17 and 18 through the length thereof is securely fitted in a cylinder 16, which is bored along the longitudinal axis of symmetry of threaded bolt 12. Threaded bolt 12 is composed of material having thermal properties similar to those of test material 30. Leads of a thermocouple wire 20 leading from a remotely situated temperature sensing device 35 are each fed through one of the holes 17 or 18, secured at head end 13 of ceramic insulator rod 15, and exit at tip end 14. Each lead of thermocouple wire 20 is bent into and secured in an opposite radial groove 25 in tip end 14 of threaded bolt 12. Resulting threaded average temperature thermocouple 11 is ready to be inserted into cylindrical receptacle 32. The tip end 14 of the threaded average temperature thermocouple 11 is in intimate contact with receptacle 32. A jam nut 36 secures the threaded average temperature thermocouple 11 to test material 30.

  7. Differential solute gas response in ionic-liquid-based QCM arrays: elucidating design factors responsible for discriminative explosive gas sensing.

    PubMed

    Rehman, Abdul; Hamilton, Andrew; Chung, Alfred; Baker, Gary A; Wang, Zhe; Zeng, Xiangqun

    2011-10-15

    An eight-sensor array coupling a chemoselective room-temperature ionic liquid (RTIL) with quartz crystal microbalance (QCM) transduction is presented in this work in order to demonstrate the power of this approach in differentiating closely related analytes in sensory devices. The underlying mechanism behind the specific sensory response was explored by (i) studying mass loading and viscoelasticity effects of the sensing layers, predominantly through variation in damping impedance, the combination of which determines the sensitivity; (ii) creation of a solvation model based on Abraham's solvation descriptors which reveals the fact that polarizability and lipophilicity are the main factors influencing the dissolution of gas analytes into the RTILs; and (iii) determination of enthalpy and entropy values for the studied interactions and comparison via a simulation model, which is also effective for pattern discrimination, in order to establish a foundation for the analytical scientist as well as inspiration for synthetic pathways and innovative research into next-generation sensory approaches. The reported sensors displayed an excellent sensitivity with detection limit of <0.2%, fast response and recovery, and a workable temperature range of 27-55 °C and even higher. Linear discriminant analysis (LDA) showed a discrimination accuracy of 86-92% for nitromethane and 1-ethyl-2-nitrobenzene, 71% for different mixtures of nitromethane, and 100% for these analytes when thermodynamic parameters were used as input data. We envisage applications to detecting other nitroaromatics and security-related gas targets, and high-temperature or real-time situations where manual access is restricted, opening up new horizons in chemical sensing. © 2011 American Chemical Society

  8. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  9. All-polymer whispering gallery mode sensor system.

    PubMed

    Petermann, Ann Britt; Varkentin, Arthur; Roth, Bernhard; Morgner, Uwe; Meinhardt-Wollweber, Merve

    2016-03-21

    Sensors based on whispering gallery modes have been extensively investigated with respect to their possible application as physical or biological sensors. Instead of using a single resonator, we use an all polymer resonator array as sensing element. A tunable narrowband laser is coupled into a PMMA plate serving as an optical wave guide. PMMA spheres are placed in the evanescent field on the surface of the plate. Due to small size variations, some spheres are in resonance at a given wavelength while others are not. We show that this device is well suited for the determination of an unknown wavelength or for temperature measurements. Moreover, we discuss several general aspects of the sensor concept such as the number and size of sensing elements which are necessary for a correct measurement result, or the maximum acceptable linewidth of the laser.

  10. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.

    PubMed

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-07-25

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.

  11. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    NASA Astrophysics Data System (ADS)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  12. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  13. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  14. Radiometric Thermometry for Wearable Deep Tissue Monitoring

    NASA Astrophysics Data System (ADS)

    Momenroodaki, Parisa

    Microwave thermometry is an attractive non-invasive method for measuring internal body temperature. This approach has the potential of enabling a wearable device that can continuously monitor core body temperature. There are a number of health-related applications in both diagnostics and therapy, which can benefit from the knowledge of core body temperature. However,there are a limited number of device solutions, which are usually not wearable or cannot continuously monitor internal body temperature non-invasively. In this thesis, a possible path toward implementing such a thermometer is presented. The device operates in the "quiet" frequency band of 1.4 GHz which is chosen as a compromise between sensing depth and radio frequency interference (RFI). A major challenge in microwave thermometry is detecting small temperature variations of deep tissue layers from surface (skin) measurements. The type and thickness of tissue materials significantly affect the design of the probe, which has the function of receiving black-body radiation from tissues beneath it and coupling the power to a sensitive radiometric receiver. High dielectric constant contrast between skin, fat (/bone), and muscle layers suggests structures with dominant tangential component of the electric field, such as a patch or slot. Adding a layer of low-loss,low-dielectric constant superstrate can further reduce the contribution of superficial tissue layers in the received thermal noise. Several probe types are designed using a full-wave electromagnetic simulator, with a goal of maximizing the power reception from deep tissue layers. The designs are validated with a second software tool and various measurements. A stable, narrow-band, and highly sensitive radiometer is developed, enabling the device to operate in a non-shielded RF environment.To use the microwave thermometer in a RF congested environment, not only narrow-band probe and radiometers are used but an additional probe is introduced for observing the environmental interference. By applying an adaptive filter, the effect of RFI is mitigated in long-term measurements. Several solid and liquid tissue phantoms, required for accurate modeling of the probe and human body interaction, are also developed. The concept of human body microwave thermometry is validated through several measurements on the single-layer and multiple-layer tissue phantoms as well as on the surface of the human body, specifically on the cheek where the internal temperature can easily be changed and independently measured with a thermocouple. Measurement results prove the capability of the device in tracking the temperature of buried tissue layer phantoms to within 0.2K, as well as monitoring internal human body temperature.

  15. Converting the Conducting Behavior of Graphene Oxides from n-Type to p-Type via Electron-Beam Irradiation.

    PubMed

    Mirzaei, Ali; Kwon, Yong Jung; Wu, Ping; Kim, Sang Sub; Kim, Hyoun Woo

    2018-02-28

    We studied the effects of electron-beam irradiation (EBI) on the structural and gas-sensing properties of graphene oxide (GO). To understand the effects of EBI on the structure and gas-sensing behavior of irradiated GO, the treated GO was compared with nonirradiated GO. Characterization results indicated an enhancement in the number of oxygen functional groups that occurs with EBI exposure at 100 kGy and then decreases with doses in the range of 100-500 kGy. Data from Raman spectra indicated that EBI could generate defects, and NO 2 -sensing results at room temperature showed a decreased NO 2 response after exposure to EBI at 100 kGy; further increasing the dose to 500 kGy resulted in p-type semiconducting conductivity. The conversion of GO from n-type to p-type via EBI is explained not only through the generation of holes but also the variation in the amount of residual functional groups, including carboxyl (COOH) and hydroxyl groups (C-OH). The obtained results suggest that EBI can be a useful tool to convert GO into a diverse range of sensing devices.

  16. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    PubMed

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  17. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability

    PubMed Central

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-01-01

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human’s daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner. PMID:27589759

  18. Prospects of Nanotechnology in Clinical Immunodiagnostics

    PubMed Central

    Ansari, Anees A.; Alhoshan, Mansour; Alsalhi, Mohamad S.; Aldwayyan, Abdullah S.

    2010-01-01

    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety. PMID:22163566

  19. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    NASA Astrophysics Data System (ADS)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  20. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    PubMed

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

Top