Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir
2017-02-15
Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.
Analysis of multimode BDK doped POF gratings for temperature sensing
NASA Astrophysics Data System (ADS)
Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing
2012-10-01
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.
Sampath, Umesh; Kim, Daegil; Kim, Hyunjin; Song, Minho
2018-01-20
A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the reflected center wavelengths from a pair of PCFBGs embedded in a composite material. The cryogenic temperature sensing was realized by introducing polymer coatings onto bare FBGs, which resulted in high temperature sensitivity under cryogenic conditions. A comparison of wavelength responses of the Bragg grating with and without a polymer coating toward temperatures ranging from 25°C to -180°C was performed. The polymer-coated FBG exhibited a sensitivity of 48 pm/°C, which is 10 times greater than that of the bare FBGs. In addition, the encapsulation of the FBG in a capillary tube made it possible to evaluate the strain accumulated within the composite during operation under cryogenic conditions.
Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming
2018-04-01
A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.
3D printed sensing patches with embedded polymer optical fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.
2016-05-01
The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.
The honey insertion cladding to improve the sensitivity of temperature polymer optical fiber sensor
NASA Astrophysics Data System (ADS)
Arwani, M.; Kuswanto, H.
2018-04-01
The sensitivity of temperature polymer optical fiber (POF) sensor has been studied. Part of cladding (9 cm) was substituted with honey. Polymer cladding was stripped mechanically and the honey inserted into the tube. Plastic gel closed the two end sides of the tubes. The optical power output was detected by Optical Power Meter (OPM). Honey cladding and temperature changing effect to the internal reflection and optical fiber output intensity. Highest output intensity changing at 20°C was shown by optical fiber coated by longan honey as cladding. The range of 10-50° C, as the rise of surroundings temperature, the attenuation was getting smaller. Best sensitivity was fiber with sensing part coated by Longan honey. Best linearity was sensing fiber with sensing part coated by Pracimantoro honey.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
Quantum dot-containing polymer particles with thermosensitive fluorescence.
Generalova, Alla N; Oleinikov, Vladimir A; Sukhanova, Alyona; Artemyev, Mikhail V; Zubov, Vitaly P; Nabiev, Igor
2013-01-15
Composite polymer particles consisting of a solid poly(acrolein-co-styrene) core and a poly(N-vinylcaprolactam) (PVCL) polymer shell doped with CdSe/ZnS semiconductor quantum dots (QDs) were fabricated. The temperature response of the composite particles was observed as a decrease in their hydrodynamic diameter upon heating above the lower critical solution temperature of the thermosensitive PVCL polymer. Embedding QDs in the PVCL shell yields particles whose fluorescence is sensitive to temperature changes. This sensitivity was determined by the dependence of the QD fluorescence intensity on the distances between them in the PVCL shell, which reversibly change as a result of the temperature-driven conformational changes in the polymer. The QD-containing thermosensitive particles were assembled with protein molecules in such a way that they retained their thermosensitive properties, including the completely reversible temperature dependence of their fluorescence response. The composite particles developed can be used as local temperature sensors, as carriers for biomolecules, as well as in biosensing and various bioassays employing optical detection schemes. Copyright © 2012 Elsevier B.V. All rights reserved.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Background Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Methods Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. Results The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. Conclusion The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection. PMID:23028220
Jiang, Minjie; Wang, Lisheng; Liu, Xu; Yang, Hua; Ren, Fan; Gan, Lizhen; Jiang, Weizhe
2015-01-01
A temperature-sensitive matrine-imprinted polymer was prepared in chloroform by free-radical cross-linking copolymerization of methacrylic acid at 60 °C in the presence of ethylene glycol dimethacrylate as the cross-linker, N-isopropyl acrylamide as the temperature-responsive monomer and matrine as the template molecule. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on molecular imprinted polymer (MIP) at 50 °C. Additionally, the thermoresponsive MIP was tested for its application as a sorbent material for the selective separation of matrine from Chinese medicinal plant radix Sophorae tonkinensis. It was shown that the thermoresponsive MIP displayed different efficiency in clean-up and enrichments using the SPE protocol at different temperatures. PMID:25658797
The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Shi, Shuhui; Wang, Bainian
2015-10-01
Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.
Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.
2015-01-01
Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775
Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud
2018-01-01
In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.
Response of CO2 laser written long period fiber gratings packaged by polymer materials
NASA Astrophysics Data System (ADS)
Wu, Zhaodi; Liu, Yunqi; Zou, Jian; Chen, Na; Pang, Fufei; Wang, Tingyun
2011-12-01
We demonstrate the packaging of CO2 laser written long-period fiber gratings (LPFGs) using different polymer materials. We use three different silicone rubber polymers to package the LPFGs by simply coating it outside the grating. After the polymer coating, the resonance wavelength of LPFG was found to shift towards shorter wavelength by about 6 nm, and the temperature sensitivity of the packaged gratings was studied experimentally. Experiments showed that the gratings packaged by different polymers have different temperature characteristics and all of them have good thermal stability.
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
Molecularly designed water soluble, intelligent, nanosize polymeric carriers.
Pişkin, Erhan
2004-06-11
Intelligent polymers, also referred as "stimuli-responsive polymers" undergo strong property changes (in shape, surface characteristics, solubility, etc.) when only small changes in their environment (changes in temperature, pH, ionic strength light, electrical and magnetic field, etc.). They have been used in several novel applications, drug delivery systems, tissue engineering scaffolds, bioseparation, biomimetic actuators, etc. The most popular member of these type of polymers is poly(N-isopropylacrylamide) (poly(NIPA)) which exhibits temperature-sensitive character, in which the polymer chains change from water-soluble coils to water-insoluble globules in aqueous solution as temperature increases above the lower critical solution temperature (LCST) of the polymer. Copolymerization of NIPA with acrylic acid (AAc) allows the synthesis of both pH and temperature-responsive copolymers. This paper summarizes some of our related studies in which NIPA and its copolymers were synthesized and used as intelligent carriers in diverse applications.
A simultaneous pressure and temperature sensor based on a superstructure fiber grating
NASA Astrophysics Data System (ADS)
Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin
2004-12-01
We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.
Etched Polymer Fibre Bragg Gratings and Their Biomedical Sensing Applications
Rajan, Ginu; Bhowmik, Kishore; Xi, Jiangtao; Peng, Gang-Ding
2017-01-01
Bragg gratings in etched polymer fibres and their unique properties and characteristics are discussed in this paper. Due to the change in material and mechanical properties of the polymer fibre through etching, Bragg gratings inscribed in such fibres show high reflectivity and enhanced intrinsic sensitivity towards strain, temperature, and pressure. The short-term and long-term stability of the gratings and the effect of hysteresis on the dynamic characteristics are also discussed. The unique properties and enhanced intrinsic sensitivity of etched polymer fibre Bragg grating are ideal for the development of high-sensitivity sensors for biomedical applications. To demonstrate their biomedical sensing capabilities, a high-sensitivity pressure transducer that operates in the blood pressure range, and a breathing rate monitoring device are developed and presented. PMID:29027945
Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H
2014-01-28
Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad Azeem; Maaroufi, AbdelKrim
2018-07-01
A beginning has been made in the present study regarding the accurate lifetime predictions of polymer solar cells. Certain reservations about the conventionally employed temperature accelerated lifetime measurements test for its unworthiness of predicting reliable lifetimes of polymer solar cells are brought into light. Critical issues concerning the accelerated lifetime testing include, assuming reaction mechanism instead of determining it, and relying solely on the temperature acceleration of a single property of material. An advanced approach comprising a set of theoretical models to estimate the accurate lifetimes of polymer solar cells is therefore suggested in order to suitably alternate the accelerated lifetime testing. This approach takes into account systematic kinetic modeling of various possible polymer degradation mechanisms under natural weathering conditions. The proposed kinetic approach is substantiated by its applications on experimental aging data-sets of polymer solar materials/solar cells including, P3HT polymer film, bulk heterojunction (MDMO-PPV:PCBM) and dye-sensitized solar cells. Based on the suggested approach, an efficacious lifetime determination formula for polymer solar cells is derived and tested on dye-sensitized solar cells. Some important merits of the proposed method are also pointed out and its prospective applications are discussed.
NASA Astrophysics Data System (ADS)
Pospori, A.; Marques, C. A. F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.
2017-07-01
An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β -transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors.
Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors
NASA Technical Reports Server (NTRS)
Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.
2008-01-01
Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.
Process for crosslinking methylene-containing aromatic polymers with ionizing radiation
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1990-01-01
A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.
Simultaneous Determination of Glass Transition Temperatures of Several Polymers.
He, Jiang; Liu, Wei; Huang, Yao-Xiong
2016-01-01
A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.
NASA Astrophysics Data System (ADS)
Antonov, E. N.; Krotova, L. I.; Minaev, N. V.; Minaeva, S. A.; Mironov, A. V.; Popov, V. K.; Bagratashvili, V. N.
2015-11-01
We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 - 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering.
Diamond turning of thermoplastic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.; Scattergood, R.O.
Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.
Wan, Jiangshan; Geng, Shinan; Zhao, Hao; Peng, Xiaole; Zhou, Qing; Li, Han; He, Ming; Zhao, Yanbing; Yang, Xiangliang; Xu, Huibi
2016-08-10
Doxorubicin (DOX)-induced co-assembling nanomedicines (D-PNAx) with temperature-sensitive PNAx triblock polymers have been developed for regional chemotherapy against liver cancer via intratumoral administration in the present work. Owing to the formation of insoluble DOX carboxylate, D-PNAx nanomedicines showed high drug-loading and entrapment efficacy via a simple mixing of doxorubicin hydrochloride and PNAx polymers. The sustained releasing profile of D-PNA100 nanomedicines indicated that only 9.4% of DOX was released within 1day, and 60% was released during 10days. Based on DOX-induced co-assembling behavior and their temperature sensitive in-situ-forming hydrogels, D-PNA100 nanomedicines showed excellent antitumor activity against H22 tumor using intratumoral administration. In contrast to that by free DOX solution (1.13±0.04 times at 9days) and blank PNA100 (2.11±0.34 times), the tumor volume treated by D-PNA100 had been falling to only 0.77±0.13 times of original tumor volume throughout the experimental period. In vivo biodistribution of DOX indicated that D-PNA100 nanomedicines exhibited much stronger DOX retention in tumor tissues than free DOX solution via intratumoral injection. D-PNA100 nanomedicines were hopeful to be developed as new temperature sensitive in-situ-forming hydrogels via i.t. injection for regional chemotherapy. Copyright © 2016. Published by Elsevier B.V.
Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches
NASA Astrophysics Data System (ADS)
Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole
2016-04-01
This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.
Influence of Lipid Membrane Rigidity on Properties of Supporting Polymer
Jablin, Michael S.; Dubey, Manish; Zhernenkov, Mikhail; Toomey, Ryan; Majewski, Jarosław
2011-01-01
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions. PMID:21723822
Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui
2012-01-01
Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372
Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material
NASA Astrophysics Data System (ADS)
Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho
2018-04-01
This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).
Global method for measuring stress in polymer fibers at elevated temperatures
NASA Astrophysics Data System (ADS)
Anagnostopoulos, G.; Andreopoulos, A. G.; Parthenios, J.; Galiotis, C.
2005-09-01
In this work, a methodology is presented for evaluating the interfacial shear stress as well as the corresponding axial stress in full polymer fiber reinforced materials under elevated temperatures. Its validity was confirmed by deriving interfacial shear and axial stress expressions for embedded Kevlar® 29 fibers within an epoxy matrix by means of Raman microscopy. This approach can be established to other systems such as carbon or polyethylene fiber composites, for which the observed Raman bands are both stress and temperature sensitive.
NASA Astrophysics Data System (ADS)
Caliendo, Cinzia
2006-09-01
The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic alcohol was tested by means of a high-frequency (670MHz) high-sensitivity Si /AlN resonator sensor.
Substrate-dependent temperature sensitivity of soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Myachina, Olga; Blagodatskaya, Evgenia
2015-04-01
Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.
Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir
1997-01-01
Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.
Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating.
Wang, Xiaoxue; Ermez, Sema; Goktas, Hilal; Gradečak, Silvija; Gleason, Karen
2017-06-01
Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3,4-ethylenedioxythiophene-co-3-thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self-seeded metal-organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X-ray diffraction analysis indicates an edge-on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun
2016-03-28
Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of "gate molecules" for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of "killing three birds with one stone", that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.
Simultaneous Determination of Glass Transition Temperatures of Several Polymers
He, Jiang; Liu, Wei; Huang, Yao-Xiong
2016-01-01
Aims A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Methods & Results Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. Conclusion The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers. PMID:26985670
Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov
2016-04-01
Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation
Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.
Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao
2017-01-01
Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.
Active polymer materials for optical fiber CO2 sensors
NASA Astrophysics Data System (ADS)
Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz
2017-04-01
CO2 optical fiber sensors based on polymer active materials are presented in this paper. Ethyl cellulose was proven to be a good candidate for a matrix material of the sensor, since it gives porous, thick and very sensitive layers. Low-cost sensors based on polymer optical fibers have been elaborated. Sensors have been examined for their sensitivity to CO2, temperature and humidity. Response time during cyclic exposures to CO2 have been also determined. Special layers exhibiting irreversible change of color during exposure to carbon dioxide have been developed. They have been verified for a possible use in smart food packaging.
Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien
2005-07-15
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.
NASA Astrophysics Data System (ADS)
Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun
2016-03-01
Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of ``killing three birds with one stone'', that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of ``killing three birds with one stone'', that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus. Electronic supplementary information (ESI) available: The relevant XRD, NMR, IR, UV and photograph. See DOI: 10.1039/c5nr08253f
Development of new resist materials for 193-nm dry and immersion lithography
NASA Astrophysics Data System (ADS)
Sasaki, Takashi; Shirota, Naoko; Takebe, Yoko; Yokokoji, Osamu
2006-03-01
We earlier developed new monocyclic fluoropolymers (FUGU) for F II resist materials. But, it is necessary for FUGU to improve of their characteristics, especially the dry-etching resistance, in order to apply for ArF lithography at fine design rules. We have tried to combine FUGUs with Adamntyl methacrylates based conventional ArF resist polymer. In this paper, we have investigated the role of cyclic fluorinated unit, FUGU, in 193 nm resist polymers by analyzing the dissolution behavior. We found that FGEAM showed high sensitivity and good dissolution contrast, compared with acrylate based conventional samples at low PEB temperature (100 °C). And this difference of sensitivity was clearly found when weak acidity PAGs were used. From the dissolution behaviors of FGEAM, FUGU unit can work to improve the resist sensitivity in acrylate based ArF resist polymers. And we also found that FGEAM showed long acid diffusion length on PEB process, compared with Conventional samples. These result show that FUGU unit has a unique characteristics of the sensitivity with 193nm exposure and the acid diffusion behavior. We also investigated a new series of fluorinated copolymers for 193-nm lithography, combination of FUGU monomer and acrylate units which are used in conventional ArF resist. Six ter-polymers of FUGU, combination of FUGU monomers and EAdMA, GBLMA and HAdMA were prepared. We found that FUGU ter-polymers had a good dry etching resistance keeping high transparency at 193nm. And FUGU ter-polymers showed high sensitivity toward 193nm exposure. FUGU ter-polymers also had a high hydrophobic properties compared conventional type ArF resist polymers. So we also expect FUGU ter-polymers to be useful for ArF dry and immersion lithography.
Zheng, Yulong; Bremer, Kort
2018-01-01
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734
Zheng, Yulong; Bremer, Kort; Roth, Bernhard
2018-05-05
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M
2016-02-01
Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.
Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce
2012-11-01
Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.
Liu, Ming-Qing; Wang, Cong; Kim, Nam-Young
2017-01-01
In this study, a high-sensitivity and low-hysteresis porous metal–insulator–metal-type capacitive humidity sensor is investigated using a functional polymer mixed with TiO2 microparticles. The humidity sensor consists of an optimally designed porous top electrode, a functional polymer humidity sensitive layer, a bottom electrode, and a glass substrate. The porous top electrode is designed to increase the contact area between the sensing layer and water vapor, leading to high sensitivity and quick response time. The functional polymer mixed with TiO2 microparticles shows excellent hysteresis under a wide humidity-sensing range with good long-term stability. The results show that as the relative humidity ranges from 10% RH to 90% RH, the proposed humidity sensor achieves a high sensitivity of 0.85 pF/% RH and a fast response time of less than 35 s. Furthermore, the sensor shows an ultra-low hysteresis of 0.95% RH at 60% RH, a good temperature dependence, and a stable capacitance value with a maximum of 0.17% RH drift during 120 h of continuous test. PMID:28157167
Tunable thermoresponsive pyrrolidone-based polymers from pyroglutamic acid, a bio-derived resource.
Bhat, Rajani; Pietrangelo, Agostino
2013-03-12
A series of pyrrolidone-based polymers is prepared from pyroglutamic acid, a bio-derived resource. Polymers bearing simple alkoxy substituents (e.g., methoxy, ethoxy, and butoxy) are soluble in common organic solvents and possess glass transition temperatures that are dependent on the length of the alkoxy residue. Replacing these substituents with an ether moiety (CH3 OCH2 CH2 O-) affords a highly sensitive and reversible thermoresponsive polymer with a lower critical solution temperature (LCST) of 42 °C in water. Copolymers composed of repeat units bearing both the ether and simple alkoxy residues are found to exhibit LCSTs that are highly dependent on the nature of the hydrophobic alkoxy residue suggesting that the LCSTs of these polymers can be successfully tuned by simply tailoring the copolymer structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study
NASA Astrophysics Data System (ADS)
Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary
Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.
Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.
Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong
2018-06-20
A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.
Cryochemistry of Metal Nanoparticles
NASA Astrophysics Data System (ADS)
Sergeev, Gleb B.
2003-12-01
The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.
Liu, Xu; Lu, Ming; Guo, Zhefei; Huang, Lin; Feng, Xin; Wu, Chuanbin
2012-03-01
To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME). Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ. CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased. By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.
Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J
2016-04-06
The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix
NASA Astrophysics Data System (ADS)
Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa
2018-05-01
We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.
Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil†
Latif, Usman; Dickert, Franz L.
2011-01-01
Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity. PMID:22164094
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.
de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W
2010-10-01
The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers. Copyright 2010 Elsevier Ltd. All rights reserved.
A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow
Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung
2017-01-01
This work proposes the first hot-polymer fiber Fabry–Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry–Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer’s steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W. PMID:28869510
Designing polymers with sugar-based advantages for bioactive delivery applications.
Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E
2015-12-10
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Investigation of Radiation Resistant Polymer Photodetectors for Space Applications
2002-09-11
54 A. XPD Data 54 B. Bibliography 56 iv FIGURES Figure Page 1. Electron transfer in a self-assembled dye-sensitized heterojunction device...electrooptic technology for space applications. By employing molecular engineering to achieve selective orientation of π- electrons within the polymer...temperature, vacuum and radiation induced degradation. Many of these adverse effects are well known for a wide variety of inorganic electronic materials
Gold-on-Polymer-Based Sensing Films for Detection of Organic and Inorganic Analytes in the Air
NASA Technical Reports Server (NTRS)
Manatt, Kenneth; Homer, Margie; Ryan, Margaret; Kisor, Adam; Shevade, Abhijit; Jewell, April; Zhou, Hanying
2008-01-01
A document discusses gold-on-polymer as one of the novel sensor types developed for part of the sensor development task. Standard polymer-carbon composite sensors used in the JPL Electronic Nose (ENose) have been modified by evaporating 15 nm of metallic gold on the surface. These sensors have been shown to respond to alcohols, aromatics, ammonia, sulfur dioxide, and elemental mercury in the parts-per-million and parts-per-billion concentration ranges in humidified air. The results have shown good sensitivity of these films operating under mild conditions (operating temperatures 23-28 C and regeneration temperature up to 40 C). This unique sensor combines the diversity of polymer sensors for chemical sensing with their response to a wide variety of analytes with the specificity of a gold sensor that shows strong reaction/binding with selected analyte types, such as mercury or sulfur.
Molecular dynamics of oligofluorenes: A dielectric spectroscopy investigation
NASA Astrophysics Data System (ADS)
Papadopoulos, P.; Floudas, G.; Chi, C.; Wegner, G.
2004-02-01
The molecular dynamics were investigated in a series of "defect-free" oligofluorenes up to the polymer by dielectric spectroscopy (DS). The method is very sensitive to the presence of keto "defects" that when incorporated on the backbone give rise to poor optical and electronic properties. Two dielectrically active processes were found (β and α process). The latter process (α) displays strongly temperature dependent relaxation times and temperature- and molecular weight-dependent spectral broadening associated with intramolecular correlations. The glass temperature (Tg) obeys the Fox-Flory equation and the polymer Tg is obtained by DS at 332 K. The effective dipole moment associated with the α process is 0.27±0.03 D.
Dynamics of polymer nanoparticles and chains.
NASA Astrophysics Data System (ADS)
Streletzky, Kiril; McKenna, John; Hillier, Gerry
2006-10-01
We present a Dynamic Light Scattering study of transport properties of the polymer chains and nanoparticles made out of the same starting solution. The spectra of both systems are highly non-exponential requiring a spectral time moment analysis. Our findings indicate the existence of several modes of relaxation in both systems. The comparison of the mean relaxation rates and diffusion coefficients of the different modes in two systems under good solvent conditions will be reported. Temperature sensitivity of the polymer nanoparticles and its possible applications in pharmaceutical, coatings, and petroleum industries will also be discussed.
USDA-ARS?s Scientific Manuscript database
The thermo-sensitive polymer, poly(N-isopropylacrylamide) (PNIPAM) undergoes a coil-to-globule transition in an aqueous solution as the temperature is raised through the lower critical solution temperature. Thus far, little is known about the dynamical states of the water molecules that contribute ...
NASA Astrophysics Data System (ADS)
Enneti, Ravi Kumar
2005-07-01
Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)
Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid
2011-08-15
Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Thermally induced chain orientation for improved thermal conductivity of P(VDF-TrFE) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junnan; Tan, Aaron C.; Green, Peter F.
2017-01-01
A large increase in thermal conductivityκwas observed in a P(VDF-TrFE) thin film annealed above melting temperature due to extensive ordering of polymer backbone chains perpendicular to the substrate after recrystallization from the melt. This finding may lay out a straightforward method to improve the thin filmκof semicrystalline polymers whose chain orientation is sensitive to thermal annealing.
Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)
2000-01-01
The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.
NASA Technical Reports Server (NTRS)
Nathan, Richard A.; Mendenhall, G. David; Birts, Michelle A.; Ogle, Craig A.; Golub, Morton A.
1978-01-01
The chemiluminescence emission at 25-60 C was measured from films of cis-1,4-polybutadiene, 1,2-polybutadiene, and trans-polypentenamer. The polymers were autoxidized previously in air 100 C, or allowed to react with singlet molecular oxygen in solution, and then cast into films. Values of beta(or k(sub d,((1)O2 yields (3)03)/k(sub r)((1)O2 + polymer yields products)) were determined in benzene for cis-1,4-polybutadiene and cis-1,4-polyisoprene, and for model compounds cis-3-hexene and cis-3-methyl-3-hexene by independent methods. The chemiluminescence emission from irradiated films of the polymers containing a dye sensitizer showed a complicated time dependence, and the results depended on the length of irradiation.
The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water.
Heath, Charles; Myers, Matthew; Pejcic, Bobby
2017-12-19
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using a polymer coated internal reflection element/waveguide is an established sensor platform for the detection of a range of organic and hydrocarbon molecules dissolved in water. The polymer coating serves two purposes: to concentrate hydrocarbons from the aqueous phase and to exclude water along with other interfering molecules from the surface of the internal reflection element. Crucial to reliable quantification and analytical performance is the calibration of the ATR-FTIR sensor which is commonly performed in water under mild ambient conditions (i.e., 25 °C and 1 atm). However, there is a pressing need to monitor environmental and industrial processes/events that may occur at high pressures and temperatures where this calibration approach is unsuitable. Using a ruggedized optical fiber probe with a diamond-based ATR, we have conducted mid-infrared sensor experiments to understand the influence of high pressure (up to 207 bar) and temperature (up to 80 °C) on the detection of toluene and naphthalene dissolved in water. Using a poly(isobutylene) film, we have shown that the IR spectroscopic response is relatively unaffected by changes in pressure; however, a diminished response was observed with increasing temperature. We reveal that changes in the refractive index of the polymer film with temperature have only a minor effect on sensitivity. A more plausible explanation for the observed significant change in sensor response with temperature is that the partitioning process is exothermic and becomes less favorable with increasing temperature. This Article shows that the sensitivity is relatively invariant to pressure; however, the thermal variations are significant and need to be considered when quantifying the concentration of hydrocarbons in water.
Minimizing material damage using low temperature irradiation
NASA Astrophysics Data System (ADS)
Craven, E.; Hasanain, F.; Winters, M.
2012-08-01
Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.
Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane
NASA Astrophysics Data System (ADS)
Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana
2014-07-01
Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.
Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity
NASA Astrophysics Data System (ADS)
Farhood, Bagher; Abtahi, Seyed Mohammad Mahdi; Geraily, Ghazale; Ghorbani, Mehdi; Mahdavi, Seied Rabi; Zahmatkesh, Mohammad Hasan
2018-06-01
Despite many advantages of polymer gel dosimeters, their clinical use is only not realized now. Toxicity of polymer gel dosimeters can be considered as one of their main limitations for use in routine clinical applications. In the current study, a new polymer gel dosimeter is introduced with negligible toxicity. For this purpose, 2-Acrylamido-2-Methy-1-PropaneSulfonic acid (AMPS) sodium salt monomer was replaced instead of acrylamide monomer used in PAGAT gel dosimeter by using %6 T and %50 C to the gel formula and the new formulation is called PASSAG (Poly AMPS Sodium Salt and Gelatin) polymer gel dosimeter. The irradiation of gel dosimeters was carried out using a Co-60 therapy machine. MRI technique was used to quantify the dose responses of the PASSAG gel dosimeter. Then, the MRI responses (R2) of the gel dosimeter was analyzed at different dose values, post-irradiation times, and scanning temperatures. The results showed that the new gel formulation has a negligible toxicity and it is also eco-friendly. In addition, carcinogenicity and genetic toxicity tests are negative for the monomer used in PASSAG. The radiological properties of PASSAG gel dosimeter showed that this substance can be considered as a soft tissue/water equivalent material. Furthermore, dosimetric evaluation of the new polymer gel dosimeter revealed an excellent linear R2-dose response in the evaluated dose range (0-15 Gy). The R2-dose sensitivity and dose resolution of PASSAG gel dosimeter were 0.081 s-1Gy-1 (in 0-15 Gy dose range) and 1 Gy (in 0-10 Gy dose range), respectively. Moreover, it was shown that the R2-dose sensitivity and dose resolution of the new gel dosimeter improves over time after irradiation. It was also found that the R2 response of the PASSAG gel dosimeter has less dependency to the 18, 20, and 24 °C scanning temperature in comparison to that of room temperature (22 °C).
Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.
Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C
2014-09-01
Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.
Thermosensitive liposomes for localized delivery and triggered release of chemotherapy
Ta, Terence; Porter, Tyrone M.
2016-01-01
Liposomes are a promising class of nanomedicine with the potential to provide site-specific chemotherapy, thus improving the quality of cancer patient care. First-generation liposomes have emerged as one of the first nanomedicines used clinically for localized delivery of chemotherapy. Second-generation liposomes, i.e. stimuli-responsive liposomes, have the potential to not only provide site-specific chemotherapy, but also triggered drug release and thus greater spatial and temporal control of therapy. Temperature-sensitive liposomes are an especially attractive option, as tumors can be heated in a controlled and predictable manner with external energy sources. Traditional thermosensitive liposomes are composed of lipids that undergo a gel-to-liquid phase transition at several degrees above physiological temperature. More recently, temperature-sensitization of liposomes has been demonstrated with the use of lysolipids and synthetic temperature-sensitive polymers. The design, drug release behavior, and clinical potential of various temperature-sensitive liposomes, as well as the various heating modalities used to trigger release, are discussed in this review. PMID:23583706
Adsorption behavior of proteins on temperature-responsive resins.
Poplewska, Izabela; Muca, Renata; Strachota, Adam; Piątkowski, Wojciech; Antos, Dorota
2014-01-10
The adsorption behavior of proteins on thermo-responsible resins based on poly(N-isopropylacrylamide) and its copolymer containing an anionic co-monomer has been investigated. The influence of the polymer composition, i.e., the content of the co-monomer and crosslinker on the thermo-sensitivity of the protein adsorption has been quantified. The properties of ungrafted polymer as well grafted onto the agarose matrix have been analyzed and compared. Batch and dynamic (column) experiments have been performed to measure the adsorption equilibrium of proteins and to quantify the phase transition process. As model proteins lysozyme, lactoferrin, α-chymotrypsinogen A and ovalbumin have been used. The adsorption process was found to be governed by ionic interactions between the negatively charged surface of resin and the protein, which enabled separation of proteins differing in electrostatic charge. The interactions enhanced with increase of temperature. Decrease of temperature facilitated desorption of proteins and reduced the salt usage in the desorption buffer. Grafted polymers exhibited markedly higher mechanical stability and, however, weaker temperature response compared to the ungrafted ones. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermo-responsive plasmonic nanohybrids with tunable optical properties
NASA Astrophysics Data System (ADS)
Zhang, Lingyu; Song, Gang
2017-10-01
In this paper, we study the temperature-dependent optical properties of gold-silver core-shell (Au@Ag) nanorods coated by a thermo-responsive polymer poly (N-isopropylacrylamide) (PNIPAM). The wavelength of the plasmonic resonant absorption of the nanohybrids changes with temperature due to the combination effects of the plasmon resonance of the core and the thermal response of the shell. Using effective medium theory, we find that with increase of temperature, the absorption peak red-shifts due to the competition effects from the changes of the thickness and the effective refractive index of the polymer shell. The working wavelength can be tuned by the aspect ratio of nanorods. Moreover, the temperature sensitivity of plasmon resonance increases with the increase of the aspect ratio. Our studies provide a proof-of-concept design of thermal responsive plasmonic smart material.
Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight
Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.
2008-01-01
The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735
Bley, O; Siepmann, J; Bodmeier, R
2009-08-13
The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).
Guo, Zhefei; Lu, Ming; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Wu, Chuanbin
2014-02-01
Interactions between drugs and polymers were utilized to lower the processing temperature of hot-melt extrusion (HME), and thus minimize the thermal degradation of heat-sensitive drugs during preparation of amorphous solid dispersions. Diflunisal (DIF), which would degrade upon melting, was selected as a model drug. Hydrogen bonds between DIF and polymeric carriers (PVP K30, PVP VA64, hydroxypropyl methylcellulose and Soluplus) were revealed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The hot-melt extruded solid dispersion was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). The results of hot-stage polar microscopy indicated that DIF was dissolved in molten polymers at 160°C, much lower than the melting point of DIF (215°C). At this temperature, amorphous solid dispersions were successfully produced by HME, as confirmed by XRD and SEM. The related impurities in amorphous solid dispersions detected by HPLC were lower than 0.3%, indicating that thermal degradation was effectively minimized. The dissolution of DIF from amorphous solid dispersions was significantly enhanced as compared with the pure crystalline drug. This technique based on drug-polymer interactions to prepare chemically stable amorphous solid dispersions by HME provides an attractive opportunity for development of heat-sensitive drugs. © 2013 Royal Pharmaceutical Society.
Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D
2016-10-03
The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.
Yuan, Yuan; Cui, Ying; Zhang, Li; Zhu, Hui-Ping; Guo, Yi-Sha; Zhong, Bo; Hu, Xia; Zhang, Ling; Wang, Xiao-Hui; Chen, Li
2012-07-01
Poloxamer 407 has excellent thermo-sensitive gelling properties. Nevertheless, these gels possess inadequate poor bioadhesiveness and high permeability to water, which limited its' application as a thermoresponsive matrix. The main aim of the present investigation was to develop thermosensitive and mucoadhesive rectal in situ gel of nimesulide (NM) by using mucoadhesive polymers such as sodium alginate (Alg-Na) and HPMC. These gels were prepared by addition of mucoadhesive polymers (0.5%) to the formulations of thermosensitive gelling solution containing poloxamer 407 (18%) and nimesulide (2.0%). Polyethylene glycol (PEG) was used to modify gelation temperature and drug release properties. The gelation temperature and drug release rate of the prepared in situ gels were evaluated. Gelation temperature was significantly increased with incorporation of nimesulide (2.0%) in the poloxamer solution, while the addition of the mucoadhesive polymers played a reverse role on gelation temperature. The addition of PEG polymers increased the gelation temperature and the drug release rate. Among the formulations examined, the poloxamer 407/nimesulide/sodium alginate/PEG 4000 (18/2.0/0.5/1.2%) exhibited the appropriate gelation temperature, acceptable drug release rate and rectal retention at the administration site. Furthermore, the micrographic results showed that in situ gel, given at the dose of 20mg/kg, was safe for no mucosa irritation. In addition, it resulted in significantly higher initial serum concentrations, C(max) and AUC of NM compared to the solid suppository. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.
2006-07-01
In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.
Pressure and Temperature Sensitive Paint Measurements on Rotors
NASA Technical Reports Server (NTRS)
Sullivan, John
1999-01-01
Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of luminescent paints is described followed by applications in wind tunnels and in rotating machinery.
Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng
2015-01-01
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-29
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
NASA Astrophysics Data System (ADS)
Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž
2009-06-01
SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-01
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948
Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J
2007-09-25
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Moiré phase-shifted fiber Bragg gratings in polymer optical fibers
NASA Astrophysics Data System (ADS)
Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz
2018-03-01
We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.
Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon
2012-04-01
TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.
Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology
Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk
2015-01-01
This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466
Yang, Xiaoqing; Xia, Yan
2016-01-01
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van der Waals pressure sensors using reduced graphene oxide composites
NASA Astrophysics Data System (ADS)
Jung, Ju Ra; Ahn, Sung Il
2018-04-01
Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.
Stimuli-responsive magnetic particles for biomedical applications.
Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A
2011-01-17
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.
Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; De Deene, Yves
2013-09-01
A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.
Huang, Jiu; Zhu, Zhuangzhuang; Tian, Chuyuan; Bian, Zhengfu
2018-01-01
With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs) have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs), of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR) crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed, respectively. The sorting efficiency was independent of particle sizes but depended on the power and time of the microwave irradiation. Generally, more than 75% (mass) of the tested polymer materials could be successfully recognized and sorted under an irradiation power of 3 kW. Plastics were much more insensitive to microwave irradiation than elastomers. With this method, the tested mixture of the plastic group (PVC, ABS, PP) and the mixture of elastomer group (EPDM, NBR, CR, and SBR) could be fully separated with an efficiency of 100%. PMID:29702564
Huang, Jiu; Zhu, Zhuangzhuang; Tian, Chuyuan; Bian, Zhengfu
2018-04-27
With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs) have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs), of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85⁻95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR) crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed, respectively. The sorting efficiency was independent of particle sizes but depended on the power and time of the microwave irradiation. Generally, more than 75% (mass) of the tested polymer materials could be successfully recognized and sorted under an irradiation power of 3 kW. Plastics were much more insensitive to microwave irradiation than elastomers. With this method, the tested mixture of the plastic group (PVC, ABS, PP) and the mixture of elastomer group (EPDM, NBR, CR, and SBR) could be fully separated with an efficiency of 100%.
DNA based thin solid films and its application to optical fiber temperature sensor
NASA Astrophysics Data System (ADS)
Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan
2017-04-01
Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.
Detecting Airborne Mercury by Use of Polymer/Carbon Films
NASA Technical Reports Server (NTRS)
Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William
2009-01-01
Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).
Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation
NASA Astrophysics Data System (ADS)
Šarac, T.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.
2016-08-01
The mechanical properties of EPDM polymers, degraded as a result of extensive thermal and radiochemical aging treatment, are studied. The focus is given to dose rate effects in polymer insulation materials extracted from industrial cables in use in Belgian nuclear power plants. All studied mechanical characteristics such as the ultimate tensile stress, the Young's modulus, and the total elongation (or elongation at break) are found to be strongly affected by the irradiation dose. The ultimate tensile stress and Young's modulus are clearly exhibiting the dose rate effect, which originated from oxidation mediated interplay of polymer cross-linking and chain scission processes. The change of crossover between these two processes is found to be gradual, without critical dose rate or temperature values. On the contrary, the total elongation is observed not to be sensitive neither to irradiation temperature nor to the dose rate. Both cross-linking and chain scission seem to affect the total elongation in a similar way by reducing the average polymers chain length. This idea is confirmed by the model which shows that all total elongation data as a function of irradiation time can be reproduced by varying a single parameter, the pre-exponential factor of the irradiation rate constant.
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giron, Nicholas H.; Celina, Mathew C.
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
Giron, Nicholas H.; Celina, Mathew C.
2017-05-19
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
Shock Initiation of Explosives - High Temperature Hot Spots Explained
NASA Astrophysics Data System (ADS)
Bassett, Will
2017-06-01
The pore-collapse mechanism for hot spot creation is currently one of the most intensely studied subjects in the initiation of energetic materials. In the present study, we use 1.5 - 3.5 km s-1 laser-driven flyer plates to impact microgram charges of both polymer-bound and pure pentaerythritol tetranitrate (PETN) while recording the temperature and spatially-averaged emissivity with a high-speed optical pyrometer. The 32-color pyrometer has nanosecond time resolution and a high dynamic range with sensitivity to temperatures from 7000 to 2000 K. Hot spot temperatures of 4000 K at impact are observed in the polymer-bound explosive charges where an elastomeric binder is used to fill void spaces. In pure PETN and more heterogeneous polymer-bound charges, in which significant void space is present, hot spot temperatures of 6000 K are observed, similar to previous reports with significant porosity. We attribute these high temperatures to gas-phase products formed in-situ being compressed under the driving shock. Experiments performed under various gas environments (air, butane, etc.) showed a strong influence on observed temperature upon impact. Control experiments where the PETN in the polymer-bound charges were replaced with sucrose and silica reinforce the result that hot spots are a result of in-situ gas formation from decomposition of organic molecules. US Air Force Office of Scientific Research awards FA9550-14-1-0142 and FA9550-16-1-0042; US Army Research Office award W911NF-13-1-0217; Defense Threat Reduction Agency award HDTRA1-12-1-0011. In collaboration with: Belinda Pacheco and Dana Dlott, University of Illinois at Urbana Champaign.
NASA Astrophysics Data System (ADS)
Yu, Yongqin; Zheng, Jiarong; Yi, Kai; Ruan, Shuangchen; Du, Chenlin; Huang, Jianhui; Zhong, Wansheng
2011-12-01
Long period fiber gratings (LPFGs) with different periods in the standard single mode fiber were fabricated, using laser direct writing method, by femtosecond laser pulses with pulse width of 200 fs and the repetition rate of 250 kHz at a center wavelength of 800 nm in air. Comparative with bare LPFG in temperature sensor, LPFG had been encapsulated using large coefficient of thermal expansion of epoxy polymer and Aluminum to enhance the temperature sensitivity. The results showed that the temperature sensitivity of encapsulated LPFG was 2 times than that of bare LPFG. In addition, we also researched the relationship between resonant wavelength and surrounding refractive index (SRI) when LPFG immersed in refractive index of solution of different index at 20 degree Celsius.
NASA Astrophysics Data System (ADS)
Slyusarenko, N. V.; Gerasimova, M. A.; Slabko, V. V.; Slyusareva, E. A.
2017-07-01
Polymer particles with sizes 0.3-0.4 μm are synthesized based on chitosan and chondroitin sulfate with incorporated CdTe (core) and CdSe/ZnS (core-shell) quantum dots. Their morphological and spectral properties are investigated by the methods of dynamic scattering, electron microscopy, and absorption and luminescence spectroscopy at temperatures from 10 to 80°C. Spectral effects associated with a change in temperature (a red shift and a decrease in the amplitude of the photoluminescence spectrum) can be explained by the temperature expansion of the quantum dots and activation of surface traps. It is shown that the temperature sensitivity of spectra of the quantum dots incorporated into the biopolymer particles is not less than in water. To develop an optical temperature sensor, the core quantum dots are more preferable than the core-shell quantum dots.
NASA Astrophysics Data System (ADS)
Schweizer, Ken
2012-02-01
A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.
Pressure-Sensitive Paint: Effect of Substrate
Quinn, Mark Kenneth; Yang, Leichao; Kontis, Konstantinos
2011-01-01
There are numerous ways in which pressure-sensitive paint can be applied to a surface. The choice of substrate and application method can greatly affect the results obtained. The current study examines the different methods of applying pressure-sensitive paint to a surface. One polymer-based and two porous substrates (anodized aluminum and thin-layer chromatography plates) are investigated and compared for luminescent output, pressure sensitivity, temperature sensitivity and photodegradation. Two luminophores [tris-Bathophenanthroline Ruthenium(II) Perchlorate and Platinum-tetrakis (pentafluorophenyl) Porphyrin] will also be compared in all three of the substrates. The results show the applicability of the different substrates and luminophores to different testing environments. PMID:22247685
NASA Astrophysics Data System (ADS)
Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.
A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.
Ghosh, Indrajit; Snyder, Jennifer; Vippagunta, Radha; Alvine, Marilyn; Vakil, Ronak; Tong, Wei-Qin; Vippagunta, Sudha
2011-10-31
Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei
2015-01-14
Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.
NASA Astrophysics Data System (ADS)
Galliani, Daniela; Battiston, Simone; Ruffo, Riccardo; Trabattoni, Silvia; Narducci, Dario
2018-01-01
Conjugated polymer poly(3,4-dioxyethylenthiofene) (PEDOT) has recently gained attention for room-temperature thermoelectric applications due to its low cost, safety and the possibility of easy processing. This makes it an interesting prospective alternative to tellurides commonly used around room temperature. Still, low thermoelectric efficiencies of polymers might be more easily increased, were a model of its transport properties available. The aim of this paper is to validate a model recently reported, making use of the concept of transport energy to frame the onset of transport properties reported over the last few years in the literature. To this aim, PEDOT and PEDOT-based nanocomposites embedding CuO nanoplatelets were prepared and analysed. We found that the model adequately fits the trends observed in pure PEDOT and in its nanocomposites. Transport and Fermi energy were verified to depend on the polymer oxidation level only,while the transport coefficient was found to be sensitive to PEDOT stacking and was modulated by the introduction of CuO nanoplatelets.
Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking
NASA Astrophysics Data System (ADS)
Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis
2018-03-01
The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.
High Temperature, High Power Piezoelectric Composite Transducers
Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.
2014-01-01
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242
Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers
NASA Astrophysics Data System (ADS)
Yang, Guang-Zhi; Li, Hai-Peng; Yang, Jun-He; Wan, Jia; Yu, Deng-Guang
2017-01-01
Temperature is an important parameter during electrospinning, and virtually, all solution electrospinning processes are conducted at ambient temperature. Nanofiber diameters presumably decrease with the elevation of working fluid temperature. The present study investigated the influence of temperature variations on the formation of polymeric nanofibers during single-fluid electrospinning. The surface tension and viscosity of the fluid decreased with increasing working temperature, which led to the formation of high-quality nanofibers. However, the increase in temperature accelerated the evaporation of the solvent and thus terminated the drawing processes prematurely. A balance can be found between the positive and negative influences of temperature elevation. With polyacrylonitrile (PAN, with N, N-dimethylacetamide as the solvent) and polyvinylpyrrolidone (PVP, with ethanol as the solvent) as the polymeric models, relationships between the working temperature ( T, K) and nanofiber diameter ( D, nm) were established, with D = 12598.6 - 72.9 T + 0.11 T 2 ( R = 0.9988) for PAN fibers and D = 107003.4 - 682.4 T + 1.1 T 2 ( R = 0.9997) for PVP nanofibers. Given the fact that numerous polymers are sensitive to temperature and numerous functional ingredients exhibit temperature-dependent solubility, the present work serves as a valuable reference for creating novel functional nanoproducts by using the elevated temperature electrospinning process.
NASA Astrophysics Data System (ADS)
Razak, N. A.; Hamida, B. A.; Irawati, N.; Habaebi, M. H.
2017-06-01
Adiabaticity is one of the essential criteria in producing good fabricated tapered fibers. Good tapered fibers can be use in sensor application such as humidity sensor, temperature sensor and refractive index sensor. In this paper, good tapering silica fiber is produced by using flame brushing technique and then, the microfiber is coated with polymer Polyaniline (PAni) to sense different type of alcohols with different concentrations. The outcome of this experiment gives excellent repeatability in the detection of alcohol sensing with a sensitivity of 0.1332 μW/% and a resolution of 3.764%. In conclusion, conducting polymer coated optical microfiber sensor for alcohol detection with low cost, effective and simple set-up was successfully achieved in this study.
The rheology and processing of “edge sheared” colloidal polymer opals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Hon Sum; Mackley, Malcolm, E-mail: mrm5@cam.ac.uk; Butler, Simon
This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures.more » A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.« less
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmuganathan; Hidayati, Noor; Liu, I.-Ping; Lee, Yuh-Lang
2016-12-01
Propionitrile (PPN) solvent based iodide/triiodide liquid-electrolyte is utilized to prepare highly efficient poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer gel electrolytes (PGEs) of dye-sensitized solar cells, aiming at improving the energy conversion efficiency as well as the stability of gel-state DSSCs. The concentrations effect of the PVdF-HFP on the properties of PGEs and the performance of the corresponding cells are studied. The results show that the in-situ gelation is performed for the PVdF-HFP concentration range of 8-18% at room temperature. However, increasing the concentration of polymer in the PGEs triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the phase transition temperature of the PGEs. A high phase transition temperature is obtained for the PGEs with 18 wt% PVdF-HFP, which increase the long-term stability of the gel-state DSSC. By using the 18 wt% PVdF-HFP in the presence of 5 wt% TiO2 nanofillers (NFs), gel-state cells with an efficiency of 8.38% can be obtained, which is higher than that achieved by liquid-state cells (7.55%). After 1000 h test at room temperature (RT) and 50 °C, the cell can retain 96% and 82%, respectively, of its initial efficiency.
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
A Polymer Optical Fiber Temperature Sensor Based on Material Features.
Leal-Junior, Arnaldo; Frizera-Netoc, Anselmo; Marques, Carlos; Pontes, Maria José
2018-01-19
This paper presents a polymer optical fiber (POF)-based temperature sensor. The operation principle of the sensor is the variation in the POF mechanical properties with the temperature variation. Such mechanical property variation leads to a variation in the POF output power when a constant stress is applied to the fiber due to the stress-optical effect. The fiber mechanical properties are characterized through a dynamic mechanical analysis, and the output power variation with different temperatures is measured. The stress is applied to the fiber by means of a 180° curvature, and supports are positioned on the fiber to inhibit the variation in its curvature with the temperature variation. Results show that the sensor proposed has a sensitivity of 1.04 × 10 -3 °C -1 , a linearity of 0.994, and a root mean squared error of 1.48 °C, which indicates a relative error of below 2%, which is lower than the ones obtained for intensity-variation-based temperature sensors. Furthermore, the sensor is able to operate at temperatures up to 110 °C, which is higher than the ones obtained for similar POF sensors in the literature.
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
Ahn, Sung Kwang; Ban, Taewon; Sakthivel, P; Lee, Jae Wook; Gal, Yeong-Soon; Lee, Jin-Kook; Kim, Mi-Ra; Jin, Sung-Ho
2012-04-01
In order to overcome the problems associated with the use of liquid electrolytes in dye-sensitized solar cells (DSSCs), a new system composed of liquid crystal embedded, polymer electrolytes has been developed. For this purpose, three types of DSSCs have been fabricated. The cells contain electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVdF-co-HFP) polymer gel electrolyte, with and without doping with the liquid crystal E7 and with a liquid electrolyte. The morphologies of the newly prepared DSSCs were explored using field emission scanning electron microscopy (FE-SEM). Analysis of the FE-SEM images indicate that the DSSC composed of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte has a greatly regular morphology with an average diameter. The ionic conductivity of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte was found to be 2.9 × 10(-3) S/cm at room temperature, a value that is 37% higher than that of e-PVdF-co-HFP polymer gel electrolyte. The DCCS containing the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte was observed to possess a much higher power conversion efficiency (PCE = 6.82%) than that of an e-PVdF-co-HFP nanofiber (6.35%). In addition, DSSCs parameters of the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte (V(oc) = 0.72 V, J(sc) = 14.62 mA/cm(2), FF = 64.8%, and PCE = 6.82% at 1 sun intensity) are comparable to those of a liquid electrolyte (V(oc) = 0.75 V, J(sc) = 14.71 mA/cm(2), FF = 64.9%, and PCE = 7.17%, both at a 1 sun intensity).
Chojnacka, Aleksandra; Janssen, Hans-Gerd; Schoenmakers, Peter
2014-01-01
Measuring polymer solubility accurately and precisely is challenging. This is especially true at unfavourable solvent compositions, when only very small amounts of polymer dissolve. In this paper, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) is demonstrated to be much more informative and sensitive than conventional methods, such as ultraviolet spectroscopy. By using a programmed-temperature-vapourisation injector as the pyrolysis chamber, we demonstrate that Py-GC-MS can cover up to five orders of magnitude in dissolved polymer concentrations. For polystyrene, a detection limit of 1 ng mL(-1) is attained. Dissolution in poor solvents is demonstrated to be discriminating in terms of the analyte molecular weight. Py-GC-MS additionally can yield information on polymer composition (e.g. in case of copolymers). In combination with size-exclusion chromatography, Py-GC-MS allows us to estimate the molecular weight distributions of minute amounts of a dissolved polymer and variations therein as a function of time.
Kroning, Annika; Furchner, Andreas; Aulich, Dennis; ...
2015-02-10
The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less
Hughey, Justin R; Keen, Justin M; Miller, Dave A; Brough, Chris; McGinity, James W
2012-11-15
The primary aim of the present study was to investigate the ability of hydroxypropyl and methoxyl substituted cellulose ethers to stabilize supersaturated concentrations of itraconazole (ITZ), a poorly water-soluble weak base, after an acid-to-neutral pH transition. A secondary aim of the study was to evaluate the effect of fusion processes on polymer stability and molecular weight. Polymer screening studies showed that stabilization of ITZ supersaturation was related to the molecular weight of the polymer and levels of hydroxypropyl and methoxyl substitution. METHOCEL E50LV (E50LV), which is characterized as having a high melt viscosity, was selected for solid dispersion formulation studies. Hot-melt extrusion processing of E50LV based compositions resulted in high torque loads, low material throughput and polymer degradation. KinetiSol Dispersing, a novel fusion based processing technique, was evaluated as a method to prepare the solid dispersions with reduced levels of polymer degradation. An experimental design revealed that polymer molecular weight was sensitive to shearing forces and high temperatures. However, optimal processing conditions resulted in significantly reduced E50LV degradation relative to HME processing. The technique was effectively utilized to prepare homogenous solid solutions of E50LV and ITZ, characterized as having a single glass transition temperature over a wide range of drug loadings. All prepared compositions provided for a high degree of ITZ supersaturation stabilization. Copyright © 2012 Elsevier B.V. All rights reserved.
Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries
Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin; ...
2018-03-07
Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less
Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin
Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less
Zhang, Wengang; Douglas, Jack F; Starr, Francis W
2018-05-29
There is significant variation in the reported magnitude and even the sign of [Formula: see text] shifts in thin polymer films with nominally the same chemistry, film thickness, and supporting substrate. The implicit assumption is that methods used to estimate [Formula: see text] in bulk materials are relevant for inferring dynamic changes in thin films. To test the validity of this assumption, we perform molecular simulations of a coarse-grained polymer melt supported on an attractive substrate. As observed in many experiments, we find that [Formula: see text] based on thermodynamic criteria (temperature dependence of film height or enthalpy) decreases with decreasing film thickness, regardless of the polymer-substrate interaction strength ε. In contrast, we find that [Formula: see text] based on a dynamic criterion (relaxation of the dynamic structure factor) also decreases with decreasing thickness when ε is relatively weak, but [Formula: see text] increases when ε exceeds the polymer-polymer interaction strength. We show that these qualitatively different trends in [Formula: see text] reflect differing sensitivities to the mobility gradient across the film. Apparently, the slowly relaxing polymer segments in the substrate region make the largest contribution to the shift of [Formula: see text] in the dynamic measurement, but this part of the film contributes less to the thermodynamic estimate of [Formula: see text] Our results emphasize the limitations of using [Formula: see text] to infer changes in the dynamics of polymer thin films. However, we show that the thermodynamic and dynamic estimates of [Formula: see text] can be combined to predict local changes in [Formula: see text] near the substrate, providing a simple method to infer information about the mobility gradient.
Chaiko, David J.
2007-01-02
The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications
NASA Astrophysics Data System (ADS)
Sen, Mani Kuntal
In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.
High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network
Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil
2011-01-01
Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681
Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review.
Maya, S; Sarmento, Bruno; Nair, Amrita; Rejinold, N Sanoj; Nair, Shantikumar V; Jayakumar, R
2013-01-01
Nanogels are nanosized hydrogel particles formed by physical or chemical cross-linked polymer networks. The advantageous properties of nanogels related to the ability of retaining considerable amount of water, the biocompatibility of the polymers used, the ability to encapsulate and protect a large quantity of payload drugs within the nanogel matrix, the high stability in aqueous media, their stimuli responsively behavior potential, and the versatility in release drugs in a controlled manner make them very attractive for use in the area of drug delivery. The materials used for the preparation of nanogels ranged from natural polymers like ovalbumin, pullulan, hyaluronic acid, methacrylated chondroitin sulfate and chitosan, to synthetic polymers like poly (N-isopropylacrylamide), poly (Nisopropylacrylamide- co-acrylic acid) and poly (ethylene glycol)-b-poly (methacrylic acid). The porous nanogels have been finding application as anti-cancer drug and imaging agent reservoirs. Smart nanogels responding to external stimuli such as temperature, pH etc can be designed for diverse therapeutic and diagnostic applications. The nanogels have also been surface functionalized with specific ligands aiding in targeted drug delivery. This review focus on stimuli-sensitive, multi-responsive, magnetic and targeted nanogels providing a brief insight on the application of nanogels in cancer drug delivery and imaging in detail.
Molecular Weight Effects on the Viscoelastic Response of a Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.
Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.
Lubbers, Brad; Baudenbacher, Franz
2011-10-15
We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH. © 2011 American Chemical Society
Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael
2018-06-05
The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.
A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend
Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon
2013-01-01
The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
NASA Astrophysics Data System (ADS)
Hopfenmüller, Bernhard; Zorn, Reiner; Holderer, Olaf; Ivanova, Oxana; Lehnert, Werner; Lüke, Wiebke; Ehlers, Georg; Jalarvo, Niina; Schneider, Gerald J.; Monkenbusch, Michael; Richter, Dieter
2018-05-01
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension dw and the Hausdorff dimension df have been determined on the length scales covered in the neutron scattering experiments.
Polymer deformation and filling modes during microembossing
NASA Astrophysics Data System (ADS)
Rowland, Harry D.; King, William P.
2004-12-01
This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C < Temboss < Tg + 20 °C. Imprint parameters of time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.
Zhang, Wei; Fang, Zhen; Su, Mingjuan; Saeys, Mark; Liu, Bin
2009-09-17
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X
2016-12-01
Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design of electro-active polymer gels as actuator materials
NASA Astrophysics Data System (ADS)
Popovic, Suzana
Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as an actuator material, Nafion 117, was simulated. It was suggested that dominant phenomenon causing the material deformation is non-uniform water distribution within a material, that causes it to expand on one side and shrink on the other, macroscopically inducing bending of membrane. Uneven distribution of water is believed to be under the influence of two processes, electroosmosis and self-diffusion of free water.
Rolling and aging in temperature-ramp soft adhesion
NASA Astrophysics Data System (ADS)
Boniello, Giuseppe; Tribet, Christophe; Marie, Emmanuelle; Croquette, Vincent; Zanchi, Dražen
2018-01-01
Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above Tc=32 ±1∘C , at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x -y ) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α (f ) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.
Thermal sensors to control polymer forming. Challenge and solutions
NASA Astrophysics Data System (ADS)
Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.
2017-10-01
Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.
pH-Dependent, Thermosensitive Polymeric Nanocarriers for Drug Delivery to Solid Tumors
Chen, Ching-Yi; Kim, Tae Hee; Wu, Wen-Chung; Huang, Chi-Ming; Wei, Hua; Mount, Christopher W.; Tian, Yanqing; Jang, Sei-Hum; Pun, Suzie H.; Jen, Alex K-Y
2013-01-01
Polymeric micelles are promising carriers for anticancer agents due to their small size, ease of assembly, and versatility for functionalization. A current challenge in the use of polymeric micelles is the sensitive balance that must be achieved between stability during prolonged blood circulation and release of active drug at the tumor site. Stimuli-responsive materials provide a mechanism for triggered drug release in the acidic tumor and intracellular microenvironments. In this work, we synthesized a series of dual pH- and temperature-responsive block copolymers containing a poly(ε-caprolactone) (PCL) hydrophobic block with a poly(triethylene glycol) block that were copolymerized with an amino acid-functionalized monomer. The block copolymers formed micellar structures in aqueous solutions. An optimized polymer that was functionalized with 6-aminocaproic acid (ACA) possessed pH-sensitive phase transitions at mildly acidic pH and body temperature. Doxorubicin-loaded micelles formed from these polymers were stable at blood pH (~7.4) and showed increased drug release at acidic pH. In addition, these micelles displayed more potent anti-cancer activity than free doxorubicin when tested in a tumor xenograft model in mice. PMID:23498892
Zhou, Hongwei; Xue, Changguo; Weis, Philipp; Suzuki, Yasuhito; Huang, Shilin; Koynov, Kaloian; Auernhammer, Günter K; Berger, Rüdiger; Butt, Hans-Jürgen; Wu, Si
2017-02-01
The development of polymers with switchable glass transition temperatures (T g ) can address scientific challenges such as the healing of cracks in high-T g polymers and the processing of hard polymers at room temperature without using plasticizing solvents. Here, we demonstrate that light can switch the T g of azobenzene-containing polymers (azopolymers) and induce reversible solid-to-liquid transitions of the polymers. The azobenzene groups in the polymers exhibit reversible cis-trans photoisomerization abilities. Trans azopolymers are solids with T g above room temperature, whereas cis azopolymers are liquids with T g below room temperature. Because of the photoinduced solid-to-liquid transitions of these polymers, light can reduce the surface roughness of azopolymer films by almost 600%, repeatedly heal cracks in azopolymers, and control the adhesion of azopolymers for transfer printing. The photoswitching of T g provides a new strategy for designing healable polymers with high T g and allows for control over the mechanical properties of polymers with high spatiotemporal resolution.
High performance polymer development
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1991-01-01
The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.
A simple and highly sensitive colorimetric detection method for gaseous formaldehyde.
Feng, Liang; Musto, Christopher J; Suslick, Kenneth S
2010-03-31
A colorimetric detection method using amine-functionalized polymer films doped with a pH indicator has been developed for the rapid, sensitive, and quantitative detection of gaseous formaldehyde at concentrations well below the immediately dangerous to life or health (IDLH) limit. In 1 min, visible color changes are easily observed, even down to the permissible exposure limit (PEL) at 750 ppb. The limit of detection is below 50 ppb (7% of the PEL) after 10 min of exposure. This sensor is essentially unaffected by changes in humidity or temperature (4 to 50 degrees C) and is not sensitive to common interferents.
Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures
Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B.
2010-01-01
Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 μm) and thick (about 2–3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated. PMID:22205871
Stable polyurethane coatings for electronic circuits. NASA tech briefs, fall 1982, volume 7, no. 1
NASA Technical Reports Server (NTRS)
1982-01-01
One of the most severe deficiencies of polyurethanes as engineering materials for electrical applications has been their sensitivity to combined humidity and temperature environments. Gross failure by reversion of urethane connector potting materials has occurred under these conditions. This has resulted in both scrapping of expensive hardware and reduction in reliability in other instances. A basic objective of this study has been to gain a more complete understanding of the mechanisms and interactions of moisture in urethane systems to guide the development of reversion resistant materials for connector potting and conformal coating applications in high humidity environments. Basic polymer studies of molecular weight and distribution, polymer structure, and functionality were carried out to define those areas responsible for hydrolytic instability and to define polymer structural feature conducive to optimum hydrolytic stability.
Zhao, Yu; Chen, Guohua; Sun, Mingkun; Jin, Zhitao; Gao, Congjie
2006-04-01
Hydroxyethyl chitin (HECH) is a water soluble chitin derivative made by etherification of chitin, ethylene chlorohydrin was used as etherification reagent in this reaction. A novel interpenetrating polymer network (IPN) composed of HECH/PAA was prepared. The IR spectra confirmed that HECH/PAA was formed through chemical bond interaction. The sensitivity of this hydrogel to temperature and pH was studied. The swelling ratio of this hydrogel in artificial intestinal juice is much greater than that in artificial gastric juice. The IPN hydrogel exhibited a typical pH-sensitivity, and its degree of swelling ratio increased with the increase of temperature. The sustained-release drug system of Dichlofenac potassium was prepared by using HECH/PAA as the drug carrier. The release experiment showed a perfect release behavior in artificial intestinal juice. This IPN is expected to be used as a good drug delivery system of enteric medicine.
Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application
NASA Astrophysics Data System (ADS)
Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy
2011-10-01
This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.
Madsen, F; Eberth, K; Smart, J D
1998-06-01
The ability of mucoadhesive materials to produce a large increase in the resistance to deformation when incorporated into a mucus gel, relative to when the mucus gel and test materials are evaluated separately at the same concentration, has been reported in several previous studies. It has been proposed that this phenomenon, termed rheological synergism, can be used as a measure of the strength of the mucoadhesive interaction. This study investigated the interactions between four putative mucoadhesive polymers (Noveon, Pemulen TR-2, carageenan and sodium carboxymethylcellulose) and a homogenised mucus gel, using dynamic oscillatory rheology. It was shown that, with the exception of sodium carboxymethylcellulose, incorporating a mucoadhesive polymer into a mucus gel produces rheological behaviour indicative of a weakly cross-linked gel network, which suggested a structure containing physical chain entanglements and non-covalent (probably hydrogen) bonds. Optimum gel strengthening occurred in a weakly acidic environment, suggesting an optimum conformation and degree of ionisation of the polymer and mucus molecules. Subsequent work suggested that the macromolecular interactions between polymer and mucus are sensitive to temperature, with the dynamic moduli decreasing with increasing temperature, further indicating bonding of a non-covalent nature. This work provide further evidence that rheological methods can be used as a tool to evaluate the interactions between a mucoadhesive macromolecule and a mucus gel. It also adds to the perception that molecular interpenetration may be an important factor in mucoadhesion by strengthening the mucus in the mucoadhesive/mucosal interfacial layer.
Dual stimuli-responsive smart beads that allow "on-off" manipulation of cancer cells.
Kim, Young-Jin; Kim, Soo Hyeon; Fujii, Teruo; Matsunaga, Yukiko T
2016-06-24
Temperature- and electric field-responsive polymer-conjugated polystyrene beads, termed smart beads, are designed to isolate cancer cells. In smart beads, the reversible "on-off" antigen-antibody reaction and dielectrophoresis force on an electrode are accomplished to realize "on-off" remote manipulation of smart beads and cancer cells. Both the zeta-potential and the hydrodynamic diameter of the smart beads are sensitive to temperature, allowing "on-off" reversible capture and release of cancer cells. Cancer cell-captured smart beads are then localized on electrodes by applying an electrical signal.
Thermomechanical properties of polyurethane shape memory polymer-experiment and modelling
NASA Astrophysics Data System (ADS)
Pieczyska, E. A.; Maj, M.; Kowalczyk-Gajewska, K.; Staszczak, M.; Gradys, A.; Majewski, M.; Cristea, M.; Tobushi, H.; Hayashi, S.
2015-04-01
In this paper extensive research on the polyurethane shape memory polymer (PU-SMP) is reported, including its structure analysis, our experimental investigation of its thermomechanical properties and its modelling. The influence of the effects of thermomechanical couplings on the SMP behaviour during tension at room temperature is studied using a fast and sensitive infrared camera. It is shown that the thermomechanical behaviour of the SMP significantly depends on the strain rate: at a higher strain rate higher stress and temperature values are obtained. This indicates that an increase of the strain rate leads to activation of different deformation mechanisms at the micro-scale, along with reorientation and alignment of the molecular chains. Furthermore, influence of temperature on the SMP’s mechanical behaviour is studied. It is observed during the loading in a thermal chamber that at the temperature 20 °C below the glass transition temperature (Tg) the PU-SMP strengthens about six times compared to the material above Tg but does not exhibit the shape recovery. A finite-strain constitutive model is formulated, where the SMP is described as a two-phase material composed of a hyperelastic rubbery phase and elastic-viscoplastic glassy phase. The volume content of phases is governed by the current temperature. Finally, model predictions are compared with the experimental results.
Mechanical Properties of Polymers.
ERIC Educational Resources Information Center
Aklonis, J. J.
1981-01-01
Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)
The Effect of Temperature on Faceplate/Core Delamination in Composite/Titanium Sandwich Plates
NASA Technical Reports Server (NTRS)
Liechti, Kenneth M.; Marton, Balazs
2000-01-01
A study was made of the delamination behavior of sandwich beams made of titanium core bonded to face-plates that consisted of carbon fiber reinforced polymer composite. Nominally mode I behavior was considered at 23C and 180C, by making use of a specially reinforced double cantilever (DCB) specimens. The toughness of the bond between the faceplate and the core was determined on the basis of a beam on elastic foundation analysis. The specimen compliance, and toughness were all independent of temperature in these relatively short-term experiments. The fracture mechanism showed temperature dependence, due to the hygrothermal sensitivity of the adhesive.
NASA Astrophysics Data System (ADS)
Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao
2018-04-01
Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.
On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves
2013-01-01
been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin
NASA Astrophysics Data System (ADS)
Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.
2018-04-01
We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.
Efremov, Mikhail Yu; Nealey, Paul F
2018-05-01
An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.
NASA Astrophysics Data System (ADS)
Efremov, Mikhail Yu.; Nealey, Paul F.
2018-05-01
An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.
Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.
Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won
2017-03-15
The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.
Molecular Probe Fluorescence Monitoring of Polymerization
NASA Technical Reports Server (NTRS)
Bunton, Patrick
2002-01-01
This project investigated the feasibility of using fluorescence spectroscopy to determine viscosity of polymer/monomer in support of Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS). This project will attempt to measure gradient induced flow at a miscible interface during and / or after in-flight polymerization of dodecyl acrylate (lauryl acrylate). Concentration and temperature gradients will be intentionally introduced during polymerization and the resultant fluid flow determined by Particle Imaging Velocimetry (PIV). This report describes an investigation of the feasibility of using fluorescence of a probe molecule to monitor viscosity and/or concentration during and after polymerization. The probe used was pyrene which has been shown to be sensitive to its local environment in methyl methacrylate.
pH- and ion-sensitive polymers for drug delivery
Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro
2013-01-01
Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf; ...
2018-05-29
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick
2014-08-27
In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.
2015-01-01
TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING
Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J
2013-02-01
The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.
NASA Astrophysics Data System (ADS)
Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.
2013-02-01
The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.
ERIC Educational Resources Information Center
Sperling, L. H.
1982-01-01
The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)
Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio
2018-05-03
Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.
Yao, Yuan; Shen, Heyun; Zhang, Guanghui; Yang, Jing; Jin, Xu
2014-10-01
We introduced thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) into the polymer structure of poly(ethylene glycol)-block-poly(phenylboronate ester) acrylate (MPEG-block-PPBDEMA) by block and random polymerization pathways in order to investigate the effect of polymer architecture on the glucose-responsiveness and enhance their insulin release controllability. By following the structure, the continuous PNIPAM shell of the triblock polymer MPEG-block-PNIPAM-block-PPBDEMA collapsing on the glucose-responsive PPBDEMA core formed the polymeric micelles with a core-shell-corona structure, and MPEG-block-(PNIPAM-rand-PPBDEMA) exhibited core-corona micelles in which the hydrophobic core consisted of PNIPAM and PPBDEMA segments when the environmental temperature was increased above low critical solution temperature (LCST) of PNIPAM. The micellar morphologies can be precisely controlled by temperature change between 15 and 37°C. As a result, the introduction of PNIPAM greatly enhanced the overall stability of insulin encapsulated in the polymeric micelles in the absence of glucose over incubation 80 h at 37°C. Comparing to MPEG-block-PNIPAM-block-PPBDEMA, the nanocarriers from MPEG-block-(PNIPAM-rand-PPBDEMA) showed great insulin release behavior which is zero insulin release without glucose, low release at normal blood glucose concentration (1.0 mg/mL). Therefore, these nanocarriers may be served as promising self-regulated insulin delivery system for diabetes treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana
2009-01-01
Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.
Thermally switchable dielectrics
Dirk, Shawn M.; Johnson, Ross S.
2013-04-30
Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.
Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng
2015-01-01
Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Pressure Effects on the Temperature Sensitivity of Fiber Bragg Gratings
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou
2012-01-01
A 3-dimensional physical model was developed to relate the wavelength shifts resulting from temperature changes of fiber Bragg gratings (FBGs) to the thermal expansion coefficients, Young s moduli of optical fibers, and thicknesses of coating polymers. Using this model the Bragg wavelength shifts were calculated and compared with the measured wavelength shifts of FBGs with various coating thickness for a finite temperature range. There was a discrepancy between the calculated and measured wavelength shifts. This was attributed to the refractive index change of the fiber core by the thermally induced radial pressure. To further investigate the pressure effects, a small diametric load was applied to a FBG and Bragg wavelength shifts were measured over a temperature range of 4.2 to 300K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian Curtis
2002-01-01
The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published inmore » the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a summary of the research contained in chapters 2-7 and proposes future research for the gene therapy and drug delivery projects.« less
Biodegradable Polymers Induce CD54 on THP-1 Cells in Skin Sensitization Test.
Jung, Yeon Suk; Kato, Reiko; Tsuchiya, Toshie
2011-01-01
Currently, nonanimal methods of skin sensitization testing for various chemicals, biodegradable polymers, and biomaterials are being developed in the hope of eliminating the use of animals. The human cell line activation test (h-CLAT) is a skin sensitization assessment that mimics the functions of dendritic cells (DCs). DCs are specialized antigen-presenting cells, and they interact with T cells and B cells to initiate immune responses. Phenotypic changes in DCs, such as the production of CD86 and CD54 and internalization of MHC class II molecules, have become focal points of the skin sensitization test. In this study, we used h-CLAT to assess the effects of biodegradable polymers. The results showed that several biodegradable polymers increased the expression of CD54, and the relative skin sensitizing abilities of biodegradable polymers were PLLG (75 : 25) < PLLC (40 : 60) < PLGA (50 : 50) < PCG (50 : 50). These results may contribute to the creation of new guidelines for the use of biodegradable polymers in scaffolds or allergenic hazards.
2008-12-01
glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from
New developments in thermally stable polymers
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1991-01-01
Advances in high-temperature polymers since 1985 are discussed with the emphasis on the chemistry. High-temperature polymers refer to materials that exhibit glass-transition temperatures greater than 200 C and have the chemical structure expected to provide high thermooxidative stability. Specific polymers or series of polymers were selected to show how the chemical structure influences certain properties. Poly(arylene ethers) and polyimides are the two principal families of polymers discussed. Recent work on poly(arylene ethers) has concentrated on incorporating heterocyclic units within the polymer backbone. Recent polyimide work has centered on the synthesis of new polymers from novel monomers, several containing the trifluoromethyl group strategically located on the molecule. Various members in each of these polymer families display a unique combination of properties, heretofore unattainable. Other families of polymers are also briefly discussed with a polymer from an AB maleimidobenzocyclobutene exhibiting an especially attractive combination of properties.
Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik
2015-12-01
Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. Electronic supplementary information (ESI) available: BET surface area and pore distribution of palladium architectures without CPPyNPs; Hydrogen sensing ability of palladium architectures without CPPyNPs; HR-TEM image of Pd@CPPy_C16 after 100 cycle exposure of H2. See DOI: 10.1039/c5nr06193h
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
Thermal Degradation and Identification of Heat-Sensitive Polymers
ERIC Educational Resources Information Center
Clough, Stuart C.; Goldman, Emma W.
2005-01-01
A study demonstrates the thermal degradation of two heat-sensitive polymers, namely, polystyrene and poly (methyl methacrylate). The experiment described in the study introduces undergraduate students to polymer structure as well as the application of spectroscopic techniques to the solution of structural problems.
NASA Astrophysics Data System (ADS)
Back, Seunghyun; Kang, Bongchul
2018-02-01
Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias C.
Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basismore » of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.« less
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun
2017-01-01
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design. PMID:28281646
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
NASA Astrophysics Data System (ADS)
Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun
2017-03-01
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ying; Zhang, Fenghua; Wang, Meng
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less
Improvements in opti-chromic dosimeters for radiation processing
NASA Astrophysics Data System (ADS)
Humpherys, K. C.; Kantz, A. D.
"Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
Zhong, Ying; Zhang, Fenghua; Wang, Meng; ...
2017-03-10
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less
NASA Astrophysics Data System (ADS)
Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.
2018-04-01
A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.
2015-05-20
TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...temperature thermosetting polymer via dynamic mechanical analysis alone. These difficulties result from the residual cure of samples heated beyond their...98) Prescribed by ANSI Std. 239.18 Effect of In-Situ Cure on Measurement of Glass Transition Temperatures in High-Temperature Thermosetting
Porous PZT ceramics for receiving transducers.
Kara, Hudai; Ramesh, Rajamani; Stevens, Ron; Bowen, Chris R
2003-03-01
PZT-air (porous PZT) and PZT-polymer (polymer impregnated porous PZT) piezocomposites with varying porosity/polymer volume fractions have been manufactured. The composites were characterized in terms of hydrostatic charge (dh) and voltage (gh) coefficients, permittivity, hydrostatic figure of merit (dh.gh), and absolute sensitivity (M). With decreasing PZT ceramic volume, gh increased, and dh.gh had a broad maximum around 80 to 90% porosity/polymer content. The absolute sensitivity was also increased. In each case, PZT-air piezocomposites performed better than PZT-polymer piezocomposites. Hydrophones constructed from piezocomposites showed slightly lower measured receiving sensitivities than calculated values for piezocomposite materials, which was due to the loading effect of the cable and the low permittivity associated with the piezocomposites.
Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures
NASA Astrophysics Data System (ADS)
Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon
2013-09-01
We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.
Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji
2011-01-05
Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.
Nanostructured polymer membranes for proton conduction
Balsara, Nitash Pervez; Park, Moon Jeong
2013-06-18
Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.
21 CFR 177.1520 - Olefin polymers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components... (expressed as percent by weight of the polymer) in N-hexane at specified temperatures Maximum soluble fraction (expressed as percent by weight of polymer) in xylene at specified temperatures 1.1a...
21 CFR 177.1520 - Olefin polymers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components... (expressed as percent by weight of the polymer) in N-hexane at specified temperatures Maximum soluble fraction (expressed as percent by weight of polymer) in xylene at specified temperatures 1.1a...
Fu, Yi; Lau, Yiu-Ting R; Weng, Lu-Tao; Ng, Kai-Mo; Chan, Chi-Ming
2014-10-01
Poly (2, 3, 4, 5, 6-pentafluorostyrene) (5FPS) was prepared by bulk radical polymerization. The spin-cast films of this polymer were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) at various temperatures ranging from room temperature to 120°C. Principal component analysis (PCA) of the ToF-SIMS data revealed a transition temperature (T(T)) at which the surface structure of 5FPS was rearranged. A comparison between the results of the PCA of ToF-SIMS spectra obtained on 5FPS and polystyrene (PS) indicate that the pendant groups of 5FPS and PS moved in exactly opposite directions as the temperature increased. More pendant groups of 5FPS and PS migrated from the bulk to the surface and verse versa, respectively, as the temperature increased. These results clearly support the view that the abrupt changes in the normalized principal component 1 value was caused by the surface reorientation of the polymers and not by a change in the ion fragmentation mechanism at temperatures above the T(T). Contact angle measurement, which is another extremely surface sensitive technique, was used to monitor the change in the surface tension as a function of temperature. A clear T(T) was determined by the contact angle measurements. The T(T) values determined by contact angle measurements and ToF-SIMS were very similar. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yanina, I. Yu.; Volkova, E. K.; Zaharevich, A. M.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.
2017-03-01
The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis.
Food-packaging interactions influencing quality and safety.
Hotchkiss, J H
1997-01-01
Interactions between foods and packaging can be detrimental to quality and/or safety. Changes in product flavour due to aroma sorption and the transfer of undesirable flavours from packaging to foods are important mechanisms of deterioration when foods are packaged in polymer-based materials. Careful consideration must be given to those factors affecting such interactions when selecting packaging materials in order to maximize product quality, safety, and shelf-life while minimizing undesirable changes. Product considerations include sensitivity to flavour and related deteriorations, colour changes, vitamin loss, microbial activity, and amount of flavour available. Storage considerations include temperature, time, and processing method. Polymer considerations include type of polymer and processing method, volume or mass of polymer to product ratio, and whether the interaction is Fickian or non-Fickian. Methodology to determine the extent of such interactions must be developed. Direct interactions between food and packaging are not necessarily detrimental. The same principles governing undesirable interactions can be used to affect desirable outcomes. Examples include films which directly intercept or absorb oxygen, inhibit microorganisms, remove undesirable flavours by sorption, or indicate safety and product shelf-life.
Temperature-Responsive Polymers for Biological Applications
2003-06-01
polymer temperature response in water by varying chemical composition of the monomer. In order to achieve this a series of polymers were designed and...varying the m/n composition and polymer type. Polymer grafting onto the silicon surface exhibits similar solubility behaviour. Adhesion energy...Driven by the high promise for biomedical applications, polymers that exhibit a response in water at about 37ºC are of particular interest. Taylor and
Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J
2017-07-14
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Kramschuster, Adam; Turng, Lih-Sheng
2010-02-01
In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.
NASA Astrophysics Data System (ADS)
Zhu, Yuanyuan; Xia, Tifeng; Zhang, Qi; Cui, Yuanjing; Yang, Yu; Qian, Guodong
2018-03-01
A series of lanthanide coordination polymers LnBTPTA (Ln = Eu, Tb, EuxTb1-x), was synthesized using a tricarbocylic ligand 4,4‧,4‧‧-(benzene-1,3,5-triyltris(1H-pyrazole-3,1-diyl))tribenzoic acid (H3BTPTA). X-ray single crystal analyses reveal that the asymmetric unit cell contains seven crystallographically independent metal ions and seven crystallographically independent ligands which is quite unusual. The 3D framework is comprised of 2D thick layers stacked through van der Waals force, π-π interactions and hydrogen bonding interactions. Eu0.0316Tb0.9684BTPTA presents a dual-emission of Tb3+ at 543 nm and Eu3+ at 617 nm, and the intensity ratio shows an excellent linear relationship with the temperature changing in 25-225 K. The relative sensitivity 0.45-5.12% K-1 is much higher than those have been reported in the same detection range.
Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M
2015-11-01
Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.
Nanoparticle/Polymer Nanocomposite Bond Coat or Coating
NASA Technical Reports Server (NTRS)
Miller, Sandi G.
2011-01-01
This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)
1989-01-01
A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)
1990-01-01
A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Han, Young-Geun
2014-05-01
A highly sensitive current sensor based on an optical microfiber loop resonator (MLR) incorporating low index polymer is proposed and experimentally demonstrated. The microfiber with a waist diameter of 1 μm is wrapped around the nicrhrome wire with low index polymer coating and the optical MLR is realized. The use of the microfiber and low index polymer with high thermal property can effectively improve the current sensitivity of the proposed MLR-based sensing probe to be 437.9 pm/A2, which is ~10 times higher than the previous result.
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of solution preparation of polyolefin class polymers for electrospinning processing included
NASA Technical Reports Server (NTRS)
Rabolt, John F. (Inventor); Givens, Steven R. (Inventor); Lee, Keun-Hyung (Inventor)
2011-01-01
A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.
Soroushian, Parviz
2002-01-01
A thermoplastic polymer of relatively low melt temperature is blended with at least one of thermosets, elastomers, and thermoplastics of relatively high melt temperature in order to produce a polymer blend which absorbs relatively high quantities of latent heat without melting or major loss of physical and mechanical characteristics as temperature is raised above the melting temperature of the low-melt-temperature thermoplastic. The polymer blend can be modified by the addition of at least one of fillers, fibers, fire retardants, compatibilisers, colorants, and processing aids. The polymer blend may be used in applications where advantage can be taken of the absorption of excess heat by a component which remains solid and retains major fractions of its physical and mechanical characteristics while absorbing relatively high quantities of latent heat.
pH-Sensitive Microparticles with Matrix-Dispersed Active Agent
NASA Technical Reports Server (NTRS)
Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)
2014-01-01
Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.
Ladder polymers for use as high temperature stable resins or coatings
NASA Technical Reports Server (NTRS)
Meador, Mary Ann (Inventor)
1990-01-01
An object of the invention is to synthesize a new class of ladder and partial ladder polymers. In accordance with the invention, the new class of ladder and partial ladder polymers are synthesized by polymerizing a bis-dienophile with a bis-diene. Another object of the invention is to provide a fabricated, electrically conducting, void free composite comprising the new class of the ladder and partial ladder polymers described above. The novelty of the invention relates to a new class of ladder and partial ladder polymers and a process for synthesizing these polymers. These polymers are soluble in common organic solvents and are characterized with a unique dehydration property at temperatures of 300 to 400 C to provide thermo-oxidatively stable pentiptycene units along the polymeric backbone. These polymers are further characterized with high softening points and good thermo-oxidative stability properties. Thus these polymers have potential as processable, matrix resins for high temperature composite applications.
Developing upconversion nanoparticle-based smart substrates for remote temperature sensing
NASA Astrophysics Data System (ADS)
Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.
2018-02-01
Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.
Davaran, Soodabeh; Alimirzalu, Samira; Nejati-Koshki, Kazem; Nasrabadi, Hamid Tayef; Akbarzadeh, Abolfazl; Khandaghi, Amir Ahmad; Abbasian, Mojtaba; Alimohammadi, Somayeh
2014-01-01
Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles (Fe3O4) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA- VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at 37 °C. Magnetic iron oxide nanoparticles (Fe3O4) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at 40 °C and in acidic pH compared to that 37 °C and basic pH. This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, Jia-Mo
1990-01-01
The crystallization behavior and the melt flow properties of two batches of 1500 series LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) were investigated. The characterization methods include Differential Scanning Calorimetry, the x ray diffractography and the melt rheology. The as-received materials possess initial crystalline melting peak temperatures of 295 and 305 C, respectively. These materials are less readily recrystallizable at elevated temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at temperatures below 330 C, a semicrystalline polymer can be obtained. On the other hand, a purely amorphous structure is realized in the samples annealed at temperatures above 330 C. Isothermal crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic properties at elevated temperatures below and above glass transition temperature of the polymers were measured. Information with regard to the molecule sizes and distributions in these polymers were also extracted from melt rheology.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel
2018-04-01
Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.
van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D
2014-07-21
An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.
Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter.
Venning, A J; Mather, M L; Baldock, C
2005-06-01
The effect of vacuum pumping on the dose response of the MAGAS polymer gel dosimeter has been investigated. A delay of several days post-manufacture before irradiation was previously necessary due to the slow oxygen scavenging of ascorbic acid. The MAGAS polymer gel dosimeter was vacuum pumped before gelation to remove dissolved oxygen. The MAGAS polymer gel dosimeter was poured into glass screw-top vials, which were irradiated at various times, post-manufacture to a range of doses. Magnetic resonance imaging techniques were used to determine the R2-dose response and R2-dose sensitivity of the MAGAS polymer gel. The results were compared with a control batch of MAGAS polymer gel that was not vacuum pumped. It was shown that vacuum pumping on the MAGAS polymer gel solution immediately prior to sealing in glass screw-top vials initially increases the R2-dose response and R2-dose sensitivity of the dosimeter. An increase in the R2-dose response and R2-dose sensitivity was observed with increasing time between manufacture and irradiation. Over the range of post-manufacture irradiation times investigated, the greatest R2-dose response and R2-dose sensitivity occurred at 96 hours.
Infrared emission spectra from operating elastohydrodynamic sliding contacts
NASA Technical Reports Server (NTRS)
Lauer, J. L.
1976-01-01
Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (Interferometric) techniques were employed. Band Intensities and band intensity ratios found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.
Electron spin-echo techniques for the study of protein motion
NASA Astrophysics Data System (ADS)
Kar, Leela; Johnson, Michael E.; Bowman, Michael K.
Electron spin-echo (ESE) spectroscopy has been used to make the first direct measurements of spin-spin relaxation times of a spin-labeled protein at physiological temperatures. Results from experiments using maleimide-labeled deoxygenated hemoglobin (dHb) from individuals homozygous for sickle cell anemia (dHbS) have been compared with those from control experiments using dHb from normal adults (dHbA). Hb "immobilized" by ammonium sulfate precipitation and by siloxane polymer entrapment have been studied for a suitable "rigid" reference. Two-dimensional ESE (2D-ESE) experiments have been performed using all of these systems. The 2D contour plots show that 2D-ESE is sensitive to the slow motion of dHbS polymers and can differentiate it from both that of immobilized Hb and of HbA molecules in solution at the same temperature and concentration. More importantly, the 2D-ESE technique enables one to select for slower motion and thereby extract the dHbS polymer signal from the total signal generated by the heterogeneous system containing dHbS molecules in solution as well as in the polymer. Computer simulations using current slow motional theories show that detailed motional and structural information may be obtained by such studies. The considerable potential of 2D-ESE spectroscopy in the study of macromolecular motion is illustrated by comparing 2D-ESE with the nonlinear technique of saturation transfer electron paramagnetic resonance.
Martelo, Liliana M; das Neves, Tiago F Pimentel; Figueiredo, João; Marques, Lino; Fedorov, Alexander; Charas, Ana; Berberan-Santos, Mário N; Burrows, Hugh D
2017-11-03
Conjugated polymers (CPs) have proved to be promising chemosensory materials for detecting nitroaromatic explosives vapors, as they quickly convert a chemical interaction into an easily-measured high-sensitivity optical output. The nitroaromatic analytes are strongly electron-deficient, whereas the conjugated polymer sensing materials are electron-rich. As a result, the photoexcitation of the CP is followed by electron transfer to the nitroaromatic analyte, resulting in a quenching of the light-emission from the conjugated polymer. The best CP in our studies was found to be poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). It is photostable, has a good absorption between 400 and 450 nm, and a strong and structured fluorescence around 550 nm. Our studies indicate up to 96% quenching of light-emission, accompanied by a marked decrease in the fluorescence lifetime, upon exposure of the films of F8T2 in ethyl cellulose to nitrobenzene (NB) and 1,3-dinitrobenzene (DNB) vapors at room temperature. The effects of the polymeric matrix, plasticizer, and temperature have been studied, and the morphology of films determined by scanning electron microscopy (SEM) and confocal fluorescence microscopy. We have used ink jet printing to produce sensor films containing both sensor element and a fluorescence reference. In addition, a high dynamic range, intensity-based fluorometer, using a laser diode and a filtered photodiode was developed for use with this system.
NASA Astrophysics Data System (ADS)
Ballone, P.; Jones, R. O.
2002-10-01
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard
2005-11-01
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. Themore » overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.« less
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149
Shear sensitive monomer-polymer laminate structure and method of using same
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); Parmar, Devendra S. (Inventor)
1993-01-01
Monomer cholesteric liquid crystals have helical structures which result in a phenomenon known as selective reflection, wherein incident white light is reflected in such a way that its wavelength is governed by the instantaneous pitch of the helix structure. The pitch is dependent on temperature and external stress fields. It is possible to use such monomers in flow visualization and temperature measurement. However, the required thin layers of these monomers are quickly washed away by a flow, making their application time dependent for a given flow rate. The laminate structure according to the present invention comprises a liquid crystal polymer substrate attached to a test surface of an article. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface. Novel aspects of the invention include its firm bonding of a liquid crystal monomer to a model and its use of a coating to reduce interference from light unreflected by the monomer helical structure.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo; Frizera, Anselmo; Marques, Carlos; Pontes, Maria José
2018-07-01
This paper presents the dynamic mechanical analysis (DMA) in polymer optical fibers (POFs) made of Polymethyl Methacrylate (PMMA) that were submitted to different thermal and chemical treatments, namely annealing and etching processes. The prepared samples were submitted to stress-strain cycles to evaluate the Young's modulus of each fiber. Also, test with constant stress and temperature variation were performed to estimate the thermal expansion coefficient of the fibers submitted to each thermal and chemical treatment. The samples were also tested under different temperature, humidity and strain cycle frequency conditions to analyze the variation of their mechanical properties with these parameters. Results show that the thermal and chemical treatments lead to a reduction of Young's modulus and an increase of the thermal expansion coefficient, which can produce sensors based on intensity variation or fiber Bragg grating with higher dynamic range, stress and temperature sensitivity. Furthermore, the etching and annealing resulted in fiber that presents lower Young's modulus variation with temperature, humidity and strain cycling frequency in most cases. However, the annealing made under water and the combinations of etching and annealing resulted in POFs with higher modulus variation with humidity, which enable their application as intensity variation or FBG-based sensors in humidity/moisture assessment.
Sakaguchi, Naoki; Kojima, Chie; Harada, Atsushi; Kono, Kenji
2008-05-01
We have previously shown that modification with succinylated poly(glycidol) (SucPG) provides stable egg yolk phosphatidylcholine (EYPC) liposomes with pH-sensitive fusogenic property. Toward production of efficient pH-sensitive liposomes, in this study, we newly prepared three carboxylated poly(glycidol) derivatives with varying hydrophobicities by reacting poly(glycidol) with glutaric anhydride, 3-methylglutaric anhydride, and 1,2-cyclohexanedicarboxylic anhydride, respectively, designated as GluPG, MGluPG, and CHexPG. Correlation between side-chain structures of these polymers and their respective abilities to sensitize stable liposomes to pH was investigated. These polymers are soluble in water at neutral pH but became water-insoluble in weakly acidic conditions. The pH at which the polymer precipitated was higher in the order SucPG < GluPG < MGluPG < CHexPG, which is consistent with the number of carbon atoms of these polymers' side chains. Although CHexPG destabilized EYPC liposomes even at neutral pH, attachment of other polymers provided pH-sensitive properties to the liposomes. The liposomes bearing polymers with higher hydrophobicity exhibited more intense responses, such as content release and membrane fusion, at mildly acidic pH and achieved more efficient cytoplasmic delivery of membrane-impermeable dye molecules. As a result, modification with appropriate hydrophobicity, MGluPG, produced highly potent pH-sensitive liposomes, which might be useful for efficient cytoplasmic delivery of bioactive molecules, such as proteins and genes.
Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.
Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo
2015-08-19
We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.
NASA Astrophysics Data System (ADS)
Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie
2015-02-01
Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''.Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''. Electronic supplementary information (ESI) available: Fig. S1: (a) 1H NMR spectra vs. temperature for Jeffamine® M-2005, (b) and M-2070 at 30 mg mL-1 in D2O; Fig. S2: FT-IR spectra of iron oxide nanoparticles (a) just after coprecipitation and (b) after coating with TEPSA; Fig. S3: Thermogravimetric analyses (TGA) of USPIOs silanized by TEPSA (red curve) and after coupling with Jeffamine® M-2005 (green curve) and M-2070 (blue curve); Fig. S4: FT-IR spectra (a) of the difference between the normalised spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine® M-2005 and (b) of Jeffamine® M-2005 alone; Fig. S5: FT-IR spectra (a) of the difference between the normalised spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine® M-2070, and (b) of Jeffamine® M-2070 alone; Fig. S6: NMRD profiles of the longitudinal relaxivity vs. proton Larmor frequency for (a) TEPSA-coated USPIOs and (b) USPIOs grafted with Jeffamine® M-2070 as a function of temperature; Fig. S7: (a) Outer sphere radius RNMR and saturation magnetisation MSvs. temperature for USPIOs coated with Jeffamine® M-2070 (green markers) and TEPSA only (purple markers); Fig. S8: longitudinal r1 and transverse r2 relaxivities of USPIOs grafted with Jeffamine® M-2005, normalised by the corresponding r1 or r2 of TEPSA-coated USPIOs, as a function of temperature ranging from 10 to 50 °C, for clinically relevant frequencies: 8.25, 20, 60, and 300 MHz. Movie 1: 8.25 MHz MR image of Jeffamine® M-2005 NP-coated and NP-TEPSA control tubes during a temperature cycle with the T1-weighted sequence. Movie 2: 8.25 MHz MR image of Jeffamine® M-2005 NP-coated and NP-TEPSA control tubes during a temperature cycle with the T2*-weighted sequence. See DOI: 10.1039/c4nr07064j
Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng
2010-06-25
The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.
Kitano, Hiromi; Kondo, Takuya; Suzuki, Hisatomo; Ohno, Kohji
2010-05-15
A polymer brush of 2-(2-methoxyethoxy)ethyl methacrylate (MDM) was prepared by atom transfer radical polymerization (ATRP) using a 11-(2-bromoisobutyroyloxy)undecyl moiety-carrying initiator covalently fixed to a glass substrate. An aqueous solution of the MDM polymer (E-PMDM), which had been prepared for comparison, turned to be opaque above certain temperature (26.2 °C for E-PMDM (M(n,GPC)=1.84×10(4))), which was corresponding to the lower critical solution temperature (LCST) of the polymer. The PMDM polymer brush accumulated on the glass surface also indicated temperature-responsive changes in contact angle of air bubble in the air-in-water system. Furthermore, non-specific adsorption of various proteins (bovine serum albumin (BSA), human immunoglobulin G (IgG) and bovine plasma fibrinogen (BPF)) to the surface of polymer brush on the glass plate was examined by the bicinchoninic acid method. The PMDM brush did not adsorb IgG and BPF significantly below the LCST of the polymer chain, whereas adsorbed a larger amount of the proteins above the LCST. A similar but less significant temperature-responsive adsorption was observed in the case of BSA. These results suggest usability of the temperature-responsive polymer-brushes with pendent ω-methoxy oligo(ethylene glycol) groups to coat various materials for bio-medical applications. Copyright © 2010. Published by Elsevier Inc.
Cinquemani, Claudio
2011-01-01
Implantable polymers, as used for biomedical applications, inherently have to be sterile. Nonetheless, most implants, particularly those comprised of biomaterials developed in recent years for tissue engineering, are heat sensitive. Therefore, use of hazardous (radio)chemicals--due to lack of alternative methods--is still state of the art for sterilization processes. The drawbacks of these techniques, both drastic and well known, lead to the demand for an alternative sterilization method, which is equally obvious and urgent. High-pressure fluid treatment is a low-temperature technique that is already in use for pasteurization of liquid food products. This paper explores inactivation of vegetative microorganisms, spores, and endotoxins adherent to solid surfaces using compressed CO(2). Pressures ranging from 50 to 100 bar and temperatures from 25 °C to 50 °C were explored to investigate liquid, gaseous or supercritical state. Analysis of variance (ANOVA) and statistical modeling were used to identify the optimum parameter settings for inactivation of pathogenic bacteria and fungi (Candida albicans, Staphylococcus aureus). The addition of small amounts of ozone ensures inactivation of persistent spores (Bacillus stearothermophilus, B. subtilis) up to 10(6) cfu/ml, while endotoxins remain in practically unchanged concentration on the polymer surface. We then discuss environmental issues of the process and inactivation mechanisms. The replacement of conventional chemicals with nonpersistent ones resolves organizational and safety-related issues and protects natural resources as well as handling staff. The pressurized-fluid-based method exhibits mild treatment parameters, thus protecting sensitive textures. Finally, an outlook on possible applications of this innovative technique is presented.
Ryu, J M; Chung, S J; Lee, M H; Kim, C K; ShimCK
1999-05-20
Mucoadhesive liquid suppositories were prepared by adding mucoadhesive polymers (0.6%) to a formulation of thermally gelling suppositories that contained poloxamer 407 (15%), poloxamer 188 (15%) and propranolol HCl (2%). Hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), carbopol, polycarbophil and sodium alginate were examined as mucoadhesive polymers. The characteristics of the suppositories differed depending on the choice of mucoadhesive polymer. For example, the gelation temperature was between 30 and 36 degrees C, the mucoadhesive force was between 430 and 5800 dyne/cm2, the apparent first-order release rate constant in phosphate buffer, pH 6.8, was between 0.399 and 0.271 h-1, the migration distance of the suppository in the rectum 4 h after administration was between 1 and 5 cm, and the bioavailability of propranolol was between 60.9 and 84.7%. Rectal bioavailability increased as the mucoadhesive force increased (r=0.984, p<0.0005), and the migration distance decreased (r=-0.951, p<0.005). No relationship was found between the bioavailability and the gelation temperature, drug release or irritation of the rectal mucosal membrane by the suppository. Therefore, retaining propranolol at the dosed site in the rectum by the addition of appropriate mucoadhesives to the formulation of liquid suppositories appears to be a very important factor in avoiding first-pass hepatic elimination and thereby increasing the bioavailability of the drug. Among the mucoadhesive polymers examined, sodium alginate and polycarbophil exhibited the largest mucoadhesive force and the smallest intrarectal migration resulting in the largest bioavailability of propranolol (84.7 and 82.3%, respectively). In contrast to other polymers, sodium alginate alone caused no irritation of the rectal mucosal membrane. Thus, poloxamer liquid suppositories containing sodium alginate appears to be a preferred formulation for drugs that are sensitive to extensive first-pass metabolism.
Thermal Flow Sensors for Harsh Environments.
Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-09-08
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.
Thermal Flow Sensors for Harsh Environments
Dinh, Toan; Dao, Dzung Viet
2017-01-01
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595
Direct fabrication of silicone lenses with 3D printed parts
NASA Astrophysics Data System (ADS)
Kamal, Tahseen; Watkins, Rachel; Cen, Zijian; Lee, W. M.
2016-11-01
The traditional process of making glass lenses requires grinding and polishing of the material which is a tedious and sensitive process. Existing polymer lens making techniques, such as high temperature reflow techniques, have been significantly simple lens making processes which cater well to customer industry. Recently, the use of UV-curing liquid lens has ushered in customized lens making (Printed Optics), but contains undesirable yellowing effects. Polydimethylsiloxane (PDMS) is a transparent polymer curable at low temperature (<100°C) provides an alternative to lens making. In this work, we showed that PDMS lenses are fabricated using single silicone droplets which are formed in a guided and controlled passive manner using 3D printed tools. These silicone lenses have attributes such as smoothness of curvature, resilience to temperature change, low optical aberrations, high transparency (>95%) and minimal aging (yellowing). Moreover, these lenses have a range of focal lengths (3.5 mm to 14.5 mm as well as magnifications (up to 160X). In addition, we created smartphone attachment to turn smart device (tablet or smartphone) into a low-powered microscope. In future we plan to extend this method to produce microlens array.
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
Tavano, Lorena; Oliviero Rossi, Cesare; Picci, Nevio; Muzzalupo, Rita
2016-09-25
Inclusion of lipids or polymers with a transition temperature closer to physiological body temperature (40-42°C) is a strategy used in tumor therapy for more than 30 years, because it allows induction of drug release from delivery systems by mild hyperthermia. Unfortunately, most of these thermo-sensitive carriers are removed from circulation before completion of their function. Thus, novel multi-functional niosomes possessing spontaneous stealth and thermo-sensitive properties were developed from L64 Pluronic(®) and L64ox as its derivative, in presence or absence of cholesterol. The use of L64 both as amphiphilic constituent and thermo-sensitive molecule, gave the possibility to bypass the use of additional excipients and increased the system biocompatibility. Niosomes diameter ranged from 400 to 750nm and were long term stable. Calcein and 5-FU possess great affinity to niosomal matrices rich in PEO groups. Negative Z-potential values were attributed to the negative charges onto the niosomes surface and generally change according to the temperature. The in vitro drugs release studies were performed at 25°C, 37°C and 42°C, that are representative of certain conditions (storage, physiological condition and mild hyperthermia, respectively). Results showed that L64-based niosomes possess spontaneous thermo-sensitive properties: drugs releases were found to be more pronounced at 42°C. These early results are a promising first step for the development of multi-functional devices that combine several advantages such as stealth properties and temperature controllability at the desired location and time, for a more specific and efficient pharmacological therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Artifact Correction in Temperature-Dependent Attenuated Total Reflection Infrared (ATR-IR) Spectra.
Sobieski, Brian; Chase, Bruce; Noda, Isao; Rabolt, John
2017-08-01
A spectral processing method was developed and tested for analyzing temperature-dependent attenuated total reflection infrared (ATR-IR) spectra of aliphatic polyesters. Spectra of a bio-based, biodegradable polymer, 3.9 mol% 3HHx poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), were analyzed and corrected prior to analysis using two-dimensional correlation spectroscopy (2D-COS). Removal of the temperature variation of diamond absorbance, correction of the baseline, ATR correction, and appropriate normalization were key to generating more reliable data. Both the processing steps and order were important. A comparison to differential scanning calorimetry (DSC) analysis indicated that the normalization method should be chosen with caution to avoid unintentional trends and distortions of the crystalline sensitive bands.
NASA Astrophysics Data System (ADS)
Yougoubare, Y. Quentin; Pang, Su-Seng
2014-02-01
In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.
Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan
2014-01-28
We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.
Sun, Ye; Tao, Jing; Zhang, Geoff G Z; Yu, Lian
2010-09-01
A previous method for measuring solubilities of crystalline drugs in polymers has been improved to enable longer equilibration and used to survey the solubilities of indomethacin (IMC) and nifedipine (NIF) in two homo-polymers [polyvinyl pyrrolidone (PVP) and polyvinyl acetate (PVAc)] and their co-polymer (PVP/VA). These data are important for understanding the stability of amorphous drug-polymer dispersions, a strategy actively explored for delivering poorly soluble drugs. Measuring solubilities in polymers is difficult because their high viscosities impede the attainment of solubility equilibrium. In this method, a drug-polymer mixture prepared by cryo-milling is annealed at different temperatures and analyzed by differential scanning calorimetry to determine whether undissolved crystals remain and thus the upper and lower bounds of the equilibrium solution temperature. The new annealing method yielded results consistent with those obtained with the previous scanning method at relatively high temperatures, but revised slightly the previous results at lower temperatures. It also lowered the temperature of measurement closer to the glass transition temperature. For D-mannitol and IMC dissolving in PVP, the polymer's molecular weight has little effect on the weight-based solubility. For IMC and NIF, the dissolving powers of the polymers follow the order PVP > PVP/VA > PVAc. In each polymer studied, NIF is less soluble than IMC. The activities of IMC and NIF dissolved in various polymers are reasonably well fitted to the Flory-Huggins model, yielding the relevant drug-polymer interaction parameters. The new annealing method yields more accurate data than the previous scanning method when solubility equilibrium is slow to achieve. In practice, these two methods can be combined for efficiency. The measured solubilities are not readily anticipated, which underscores the importance of accurate experimental data for developing predictive models.
Dynamics of Hyperbranched Polymers under Confinement
NASA Astrophysics Data System (ADS)
Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano
2015-03-01
The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.
Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle
NASA Astrophysics Data System (ADS)
Thipdech, Pacharavalee; Sirivat, Anuvat
2007-03-01
Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.
Nair, Jijeesh R; Porcarelli, Luca; Bella, Federico; Gerbaldi, Claudio
2015-06-17
Profoundly ion-conducting, self-standing, and tack-free ethylene oxide-based polymer electrolytes encompassing a room-temperature ionic liquid (RTIL) with specific amounts of lithium salt are successfully prepared via a rapid and easily upscalable process including a UV irradiation step. All prepared materials are thoroughly characterized in terms of their physical, chemical, and morphological properties and eventually galvanostatically cycled in lab-scale lithium batteries (LIBs) exploiting a novel direct polymerization procedure to get intimate electrode/electrolyte interfacial characteristics. The promising multipurpose characteristics of the newly elaborated materials are demonstrated by testing them in dye-sensitized solar cells (DSSCs), where the introduction of the iodine/iodide-based redox mediator in the polymer matrix assured the functioning of a lab-scale test cell with conversion efficiency exceeding 6% at 1 sun. The reported results enlighten the promising prospects of the material to be successfully implemented as stable, durable, and efficient electrolyte in next-generation energy conversion and storage devices.
Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V
2011-12-01
The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.
NASA Astrophysics Data System (ADS)
Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.
1997-03-01
Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.
Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning
NASA Astrophysics Data System (ADS)
Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo
2018-07-01
In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
Construction of ferrocene modified conducting polymer based amperometric urea biosensor.
Dervisevic, Muamer; Dervisevic, Esma; Senel, Mehmet; Cevik, Emre; Yildiz, Huseyin Bekir; Camurlu, Pınar
2017-07-01
Herein, an electrochemical urea sensing bio-electrode is reported that has been constructed by firstly electropolymerizing 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline monomer (SNS-Aniline) on Pencil Graphite Electrode (PGE), then modifying the polymer coated electrode surface with di-amino-Ferrocene (DAFc) as the mediator, and lastly Urease enzyme through glutaraldehyde crosslinking. The effect of pH, temperature, polymer thickness, and applied potential on the electrode current response was investigated besides performing storage and operational stability experiments with the interference studies. The resulting urea biosensor's amperometric response was linear in the range of 0.1-8.5mM with the sensitivity of 0.54μA/mM, detection limit of 12μM, and short response time of 2s. The designed bio-electrode was tested with real human blood and urine samples where it showed excellent analytical performance with insignificant interference. Copyright © 2017 Elsevier Inc. All rights reserved.
Complementary p- and n-type polymer doping for ambient stable graphene inverter.
Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk
2014-01-28
Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.
2014-01-29
DISTRIBUTION A: Approved for public release; distribution is unlimited. Thermosetting Polymers Have a TG Envelope – Not Just a TG 4 • The glass transition...glass transition temperature of a thermosetting polymer can vary over a wide range of temperatures depending on how the polymer is processed • A... thermosetting polymer with only one kind of network formation and negligible side reactions, the conversion may be determined at every point in the scan. • By
New Polymer Coatings for Chemically Selective Mass Sensors
NASA Technical Reports Server (NTRS)
Sims, S. C.; Wright, Cassandra; Cobb, J.; McCalla, T.; Revelle, R.; Morris, V. R.; Pollack, S. K.
1997-01-01
There is a current need to develop sensitive and chemically specific sensors for the detection of nitric acid for in-situ measurements in the atmosphere. Polymer coatings have been synthesized and tested for their sensitivity and selectivity to nitric acid. A primary requirement for these polymers is detectability down to the parts per trillion range. The results of studies using these polymers as coatings for quartz crystal microbalances (QCM) and surface acoustic wave (SAW) devices will be presented.
Multiple emulsions controlled by stimuli-responsive polymers.
Besnard, Lucie; Marchal, Frédéric; Paredes, Jose F; Daillant, Jean; Pantoustier, Nadège; Perrin, Patrick; Guenoun, Patrick
2013-05-28
The phase inversion of water-toluene emulsions stabilized with a single thermo- and pH-sensitive copolymer occurs through the formation of multiple emulsions. At low pH and ambient temperature, oil in water emulsions are formed which transform into highly stable multiple emulsions at pHs immediately lower than the inversion border. At higher pHs, the emulsion turns into a water in oil one. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés
2014-01-01
Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520
Controlled Release of Antimicrobial ClO2 Gas from a Two-Layer Polymeric Film System.
Bai, Zhifeng; Cristancho, Diego E; Rachford, Aaron A; Reder, Amy L; Williamson, Alexander; Grzesiak, Adam L
2016-11-16
We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO 2 gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid. Both of the films were prepared on low ClO 2 -absorbing substrate films from stable aqueous systems of the polymers with high reagent loading. Rapid and sustained releases of significant amounts of ClO 2 gas from the label system were observed in an in situ quantification system using UV-vis spectroscopy. It was found that the ClO 2 release is slower at a lower temperature and can be accelerated by moisture in the atmosphere and the films. Controlled release of ClO 2 gas from the label system was demonstrated by tailoring film composition and thickness. A model was developed to extract release kinetics and revealed good conversions of the label system. This two-component system can potentially be applied as a two-part label without premature release for applications in food packaging.
Polymer dual ring resonators for label-free optical biosensing using microfluidics.
Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M
2013-04-18
We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.
Flow properties of a series of experimental thermoplastic polymides
NASA Technical Reports Server (NTRS)
Burks, H. D.; Nelson, J. B.; Price, H. L.
1981-01-01
The softening temperature to degradation temperature range of the polymers was about 440 to 650 K. All of the polymers retained small amounts of solvent as indicated by an increase in T(sub g) as the polymers were dried. The flow properties showed that all three polymers had very high apparent viscosities and would require high pressures and/or high temperatures and/or long times to obtain adequate flow in prepregging and molding. Although none was intended for such application, two of the polymers were combined with carbon fibers by solution prepregging. The prepregs were molded into laminates at temperatures and times, the selection of which was guided by the results from the flow measurements. These laminates had room temperature short beam shear strength similar to that of carbon fiber laminates with a thermosetting polyimide matrix. However, the strength had considerable scatter, and given the difficult processing, these polymides probably would not be suitable for continuous fiber composites.
NASA Astrophysics Data System (ADS)
Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.
1999-07-01
The dependence of physical and mechanical properties of oligoether-based foam polyurethanes on the molecular mass (Mc) of polymer chains between the nodes of the polymer network and on the content of rigid segments in the polymer is investigated at 293 and 98K. The values of Mc at which the foam plastics have the best mechanical properties at low temperatures are determined. The content of rigid segments in the polymer at which foam polyurethanes have the best combination of the linear thermal expansion coefficient and mechanical properties in tension at a temperature of 98K is found.
Temperature gradient interaction chromatography of polymers: A molecular statistical model.
Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun
2010-11-01
A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
pH-sensitive methacrylic copolymer gels and the production thereof
Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA
2007-05-15
The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.
Temperature-independent zero-birefringence polymer for liquid crystal displays
NASA Astrophysics Data System (ADS)
Shikanai, M. D.; Tagaya, A.; Koike, Y.
2016-03-01
A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.
Poly(Capro-Lactone) Networks as Actively Moving Polymers
NASA Astrophysics Data System (ADS)
Meng, Yuan
Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double network" that behaves as a real thermal "actuator". This approach places sub-chains under different degrees of configurational bias within the network to utilize the material's propensity to undergo stress-induced crystallization. Reconfiguration of model shape-memory networks containing photo-sensitive linkages can also be employed to program two-way actuator. Chain reshuffling of a partially reconfigurable network is initiated upon exposure to light under specific strains. Interesting photo-induced creep and stress relaxation behaviors were demonstrated and understood based on a novel transient network model we derived. In summary, delicate manipulation of shape-memory network architectures addressed critical issues constraining the application of this type of functional polymer material. Strategies developed in this thesis may provide new opportunity to the field of shape-memory polymers.
Condon, Joshua E; Jayaraman, Arthi
2017-10-04
Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.
Thermal Protective Coating for High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Barron, Andrew R.
1999-01-01
The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.
Energy dissipation in polymer-polymer adhesion contacts
NASA Astrophysics Data System (ADS)
Garif, Yev Skip
This study focuses on self-adhesion in elastomers as a way of approaching a broader polymer adhesion problem. The model systems studied are cross-linked acrylic pressure-sensitive adhesives (PSA-LNs) synthesized to attain four surface types: neutral, acidic, basic, and polar. As the study progressed, it distinguished itself as the first of its kind to consistently report the effect of temperature on measurable intrinsic parameters of polymer adhesion. The main goal of the study was to understand why the magnitude of the practical adhesion energies of the four PSA-LN systems tested varies disproportionately greater than their respective surface energies. To achieve this goal, continuous sweeps of adhesion energy as a function of rate of interfacial separation were performed using three different adhesion-probing techniques--- peel, micro-scratch, and normal contact. The answer was found in the sub-micron-per-second limit of separation rates. In approaching this limit, the power law behavior of adhesion gradually transitioned into a linear region of markedly weaker sensitivity to rate. Referred to as the "intrinsic window", this linear region was characterized by three parameters: (1) the intrinsic adhesion energy at zero rate of separation; (2) the intrinsic rate sensitivity equal to the proportionality constant of the linear fit; and (3) the critical separation rate in the middle of the transition to the power law. All three were found to be thermally activated. Activation energies suggested that interfacial processes are attributed mainly to dispersive and electrostatic molecular interactions such as hydrogen bonding or van der Waals attraction. Comparative analysis of the intrinsic window of the four PSA-LNs tested showed that an increase in the intrinsic adhesion energy associated with higher surface energy is inherently coupled with an increase in the intrinsic rate sensitivity and reduction in the critical separation rate. When combined, the three parameters reshape the intrinsic window such that the entire power-law portion of the adhesion response is shifted to a level that appears disproportionately high based on the false assumption that there is only one intrinsic parameter contributing to the shift. Thus, the goal of explaining this disproportionality was achieved.
Modeling of polymer photodegradation for solar cell modules
NASA Technical Reports Server (NTRS)
Somersall, A. C.; Guillet, J. E.
1982-01-01
It was shown that many of the experimental observations in the photooxidation of hydrocarbon polymers can be accounted for with a computer simulation using an elementary mechanistic model with corresponding rate constants for each reaction. For outdoor applications, however, such as in photovoltaics, the variation of temperature must have important effects on the useful lifetimes of such materials. The data bank necessary to replace the isothermal rate constant values with Arrhenius activation parameters: A (the pre-exponential factor) and E (the activation energy) was searched. The best collection of data assembled to data is summarized. Note, however, that the problem is now considerably enlarged since from a theoretical point of view, with 51 of the input variables replaced with 102 parameters. The sensitivity of the overall scheme is such that even after many computer simulations, a successful photooxidation simulation with the expanded variable set was not completed. Many of the species in the complex process undergo a number of competitive pathways, the relative importance of each being often sensitive to small changes in the calculated rate constant values.
In situ insights into shock-driven reactive flow
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana
2017-06-01
Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.
Potentiometric Detection of Pathogens
2012-01-01
nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally
Behavior of polymer cladding materials under extremely high temperatures
NASA Astrophysics Data System (ADS)
Clark, Timothy E.; Chang, Selee; Kwak, SeungJo; Oh, Jung Hyun
2012-01-01
Polymer claddings with low refractive indices for silica core fibers were developed. Applications include fiber lasers and transmission of high power lasers in surgery. For many applications, operating fibers under high temperatures is desirable. In a previous publication, the results of testing polymer cladded silica core fiber at 150°C for 6400 hours were given, along with 5000 hours of testing polymer films. The results at 150°C were encouraging, with little additional loss measured. Here we test polymers under more severe conditions, at 270°C, for periods up to 10 hours. The polymers' cured indices range from 1.374 to 1.397 (at 852 nm). Changes in Young's modulus, refractive index, yellowing, weight, hardness, strength, and elongation were observed. While these polymers cannot function at 270°C for extended periods, it is possible to expose them for shorter durations without significant damage. Some polymer properties actually improved after 4 hours of heating. Fibers clad with such polymers have been successfully jacketed with extruded materials, and have endured high temperatures for a few minutes. It is possible that a sensor, fiber laser or other fiber device could function in these temperatures for short periods without the coating properties changing beyond values required for operation.
Temperature Dependence Of Elastic Constants Of Polymers
NASA Technical Reports Server (NTRS)
Simha, Robert; Papazoglou, Elisabeth
1989-01-01
Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.
Investigations on birefringence effects in polymer optical fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Hu, X.; Sáez-Rodríguez, D.; Bang, O.; Webb, D. J.; Caucheteur, C.
2014-05-01
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed.
Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection
NASA Astrophysics Data System (ADS)
Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo
2018-01-01
The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.
A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.
Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan
2016-06-01
A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.
Ackerman, L K; Noonan, G O; Begley, T H
2009-12-01
The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.
Polymer/Solvent and Polymer/Polymer Interaction Studies
1980-09-01
temperatures up to 450 12 before serious degradation occurs. They have good hydrolytic stability, good solvent resistance, and excellent thermo- oxidative ...Concentration for Sorption in Glassy PVC 5 Temperature Dependence of the Flory-Huggins Interaction Parameters 115 6 Solubility of Dichloromethane in Polysulfone...116 7 Test of Applicability of the Langmuir Equation for Describing Sorption Data 117 8 Temperature Dependence of the Specific Volume of an Amorphous
FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less
Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.
Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei
2016-05-03
Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.
NASA Astrophysics Data System (ADS)
Condon, Joshua; Martin, Tyler; Jayaraman, Arthi
We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.
NASA Astrophysics Data System (ADS)
Praher, Bernhard; Straka, Klaus; Steinbichler, Georg
2013-08-01
The polymer melt temperature in the screw ante-chamber of an injection moulding machine influences a number of parameters during the polymer process and therefore the final product quality. For measurement of this temperature, a sensor must be non-invasive (because of the axial moved screw during the injection of the plasticized polymer into the mould) and withstand the high pressure (>1000 bar) and temperature (>200 °C) during the injection moulding process. It is well known that the temperature of the polymer melt in the screw ante-chamber is inhomogeneous, and for that reason the sensor system must be able to measure the temperature spatially resolved. Due to the fact that sound velocity is temperature dependent, we developed a non-invasive tomography system using the transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in a polymer melt. Simulation results and example experiments at a test measurement setup are shown. Moreover, different strategies for the ultrasonic probe design (buffer rods, generation of wide beam angle) are discussed. The results of the proposed system are important for the validation of numerical simulations, a better understanding of the plasticizing process and can be used for the input of a novel temperature control system.
Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites
NASA Astrophysics Data System (ADS)
Kaur, Ramneek; Tripathi, S. K.
2018-04-01
This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.
Integrated chemiresistor array for small sensor platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUGHES,ROBERT C.; CASALNUOVO,STEPHEN A.; WESSENDORF,KURT O.
2000-04-13
Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabricationmore » and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.« less
Plasma deposited polymers as gas sensitive films
NASA Astrophysics Data System (ADS)
Radeva, E.; Georgieva, V.; Lazarov, J.; Vergov, L.; Donkov, N.
2012-03-01
The possibility is presented of producing thin plasma polymers with desired properties by using nanofillers. Composite films are synthesized from a mixture of hexamethyldisiloxane (HMDSO) and detonation nanodiamond particles (DNDs). The chemical structure of the composite consists of DNDs distributed in the polymer matrix. The effect of DNDs on the humidity and ammonia sorptive properties of the polymers obtained is studied by measuring the mass changes as a result of gas sorption by using a quartz crystal microbalance (QCM). The results show that, in view of building a sensing element for measuring humidity, ammonia or other gases, it is possible to maximize the sensor sensitivity to a certain gas by using an appropriate concentration of DNDs in HMDSO. Thus, a high degree of sensor sensitivity, together with short response time and minimum hysteresis, can be achieved. Composites of plasma-polymerized HMDSO with DNDs can be used as gas sensitive layers for the development of quartz resonator sensors.
Niranjan, Ramesh; Koushik, Chandru; Saravanan, Sekaran; Moorthi, Ambigapathi; Vairamani, Mariappanadar; Selvamurugan, Nagarajan
2013-03-01
Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Temperature effects on polymer-carbon composite sensors
NASA Technical Reports Server (NTRS)
Lim, J. R.; Homer, M. L.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A.; Ryan, M. A.
2003-01-01
At JPL we have investigated the effects of temperature on polymer-carbon black composite sensors. While the electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how these properties affect sensor characteristics and responses.
Electrical detection of proton-spin motion in a polymer device at room temperature
NASA Astrophysics Data System (ADS)
Boehme, Christoph
With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.
Molding process for imidazopyrrolone polymers
NASA Technical Reports Server (NTRS)
Johnson, C. L. (Inventor)
1973-01-01
A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.
Polymer compositions based on PXE
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2015-09-15
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.
Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc
2016-03-30
Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
NASA Astrophysics Data System (ADS)
Smith, Christopher M.; Rowley, Matthew J.
2004-04-01
A fiber-optic/infrared (F-O/IR), non-contact temperature measurement system was characterized, and the existing technique for data collection improved, resulting in greater repeatability and precision of data collected. The F-O/IR system is a dual-waveband measurement apparatus that was recently enhanced by the installation of a tuning fork chopper directly into the fiber optical head. This permits a shortened distance between fiber and detector pair, and therefore a stronger signal can be collected. A simple closed box with the inside painted flat black was constructed and used to prevent stray radiation and convection, thus minimizing undesired effects on the measurement process. Analyses of the new data sets demonstrate that system improvements provide a cleaner and more reliable data collection capability. The exponential relationship between detector output voltage and object temperature indicates that the instrument is operating within its nominal range. The overall goal of this project was to develop a reliable technique to measure the temperature of Kapton HN, an aluminized polymer material being studied for potential future NASA missions. A spectral model that emulates the instrument was also developed in this study. Our measurements and characterization of KaptonÓ HN will be incorporated into the spectral model in order to determine the sensitivity of the instrument to background radiation, spectral emittance of Kapton HN, and other parameters that may affect thermal measurements.
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.
2003-04-01
The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures ( Tm and Tc) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (Δ Hm) and the degree of crystallinity ( Xc) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films.
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Kim, Do Yeob; Lee, Hyung-Kun; Tae, Heung-Sik
2016-09-30
This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ) technique. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) results show that the plasma-polymerized pyrrole (pPPy) nanoparticles have a fast deposition rate of 0.93 µm·min -1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.
Smart polyaniline nanoparticles with thermal and photothermal sensitivity
NASA Astrophysics Data System (ADS)
Bongiovanni Abel, Silvestre; Molina, María A.; Rivarola, Claudia R.; Kogan, Marcelo J.; Barbero, Cesar A.
2014-12-01
Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, in the presence of polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that the size of the nanoparticles obtained depends on the polymeric stabilizer used, suggesting a mechanism where the aggregation of polyaniline molecules is arrested by adsorption of the polymeric stabilizer. Indeed, polymerization in the presence of a mixture of two polymers having different stabilizing capacity (PVP and PNIPAM) allows tuning of the size of the nanoparticles. Stabilization with biocompatible PVP, HPC and PNIPAM allows use of the nanoparticle dispersions in biological applications. The nanoparticles stabilized by thermosensitive polymers (PNIPAM and HPC) aggregate when the temperature exceeds the phase transition (coil to globule) temperature of each stabilizer (Tpt = 32 °C for PNIPAM or Tpt = 42 °C for HPC). This result suggests that an extended coil form of the polymeric stabilizer is necessary to avoid aggregation. The dispersions are reversibly restored when the temperature is lowered below Tpt. In that way, the effect could be used to separate the nanoparticles from soluble contaminants. On the other hand, the PANI NPs stabilized with PVP are unaffected by the temperature change. UV-visible spectroscopy measurements show that the nanoparticle dispersion changes their spectra with the pH of the external solution, suggesting that small molecules can easily penetrate the stabilizer shell. Near infrared radiation is absorbed by PANI NPs causing an increase of their temperature which induces the collapse of the thermosensitive polymer shell and aggregation of the NPs. The effect reveals that it is possible to locally heat the nanoparticles, a phenomenon that can be used to destroy tumor cells in cancer therapy or to dissolve protein aggregates of neurodegenerative diseases (e.g. Alzheimer). Moreover, the long range control of aggregation can be used to modulate the nanoparticle residence inside biological tissues.
Acid-degradable and bioerodible modified polyhydroxylated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.
Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single andmore » double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.« less
Temperature-Dependent Conformations of Model Viscosity Index Improvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie
2015-05-01
Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to anmore » uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.« less
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
Hu, Huawei; Chow, Philip C Y; Zhang, Guangye; Ma, Tingxuan; Liu, Jing; Yang, Guofang; Yan, He
2017-10-17
Bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted intensive research attention over the past two decades owing to their unique advantages including mechanical flexibility, light weight, large area, and low-cost fabrications. To date, OSC devices have achieved power conversion efficiencies (PCEs) exceeding 12%. Much of the progress was enabled by the development of high-performance donor polymers with favorable morphological, electronic, and optical properties. A key problem in morphology control of OSCs is the trade-off between achieving small domain size and high polymer crystallinity, which is especially important for the realization of efficient thick-film devices with high fill factors. For example, the thickness of OSC blends containing state-of-the-art PTB7 family donor polymers are restricted to ∼100 nm due to their relatively low hole mobility and impure polymer domains. To further improve the device performance and promote commercialization of OSCs, there is a strong demand for the design of new donor polymers that can achieve an optimal blend morphology containing highly crystalline yet reasonably small domains. In this Account, we highlight recent progress on a new family of conjugated polymers with strong temperature-dependent aggregation (TDA) property. These polymers are mostly disaggregated and can be easily dissolved in solution at high temperatures, yet they can strongly aggregate when the solution is cooled to room temperature. This unique aggregation property allows us to control the disorder-order transition of the polymer during solution processing. By preheating the solution to high temperature (∼100 °C), the polymer chains are mostly disaggregated before spin coating; as the temperature of the solution drops during the spin coating process, the polymer can strongly aggregate and form crystalline domains yet that are not excessivelylarge. The overall blend morphology can be optimized by various processing conditions (e.g., temperature, spin-rates, concentration, etc.). This well-controlled and near-optimal BHJ morphology produced over a dozen cases of efficient OSCs with an active layer nearly 300 nm thick that can still achieve high FFs (70-77%) and efficiencies (10-11.7%). By studying the structure-property relationships of the donor polymers, we show that the second position branched alkyl chains and the fluorination on the polymer backbone are two key structural features that enable the strong TDA property. Our comparative studies also show that the TDA polymer family can be used to match with non-fullerene acceptors yielding OSCs with low voltage losses. The key difference between the empirical matching rules for fullerene and non-fullerene OSCs is that TDA polymers with slightly reduced crystallinity appear to match better with small molecular acceptors and yield higher OSC performances.
A study of photothermal laser ablation of various polymers on microsecond time scales.
Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S
2014-01-01
To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.
New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells
NASA Technical Reports Server (NTRS)
Kinder, James D.
2004-01-01
Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been produced and which incorporates strongly acidic (proton donating) functional groups into the polymer backbone. Both of these polymer films have demonstrated significantly higher proton conductivity than Nafion at elevated temperatures and low relative humidities. An added advantage is that these polymers are very inexpensive to produce because their starting materials are commodity chemicals that are commercially available in large volumes.
NASA Astrophysics Data System (ADS)
Song, Li
The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature. Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter. The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis. A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.
Processes for preparing carbon fibers using gaseous sulfur trioxide
Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.
2016-01-05
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.
2008-09-01
Infiltration (CVI), Chemical Vapor Deposition (CVD) and polymer impregnation/ pyrolysis (PIP) [5:20, 32]. The SiC fibers currently... composite was infiltrated with a mixture of polymer , filler particles and solvent. During pyrolysis under nitrogen at temperatures > 1000 °C, the...using polymer infiltration and pyrolysis (PIP) method. Polymer infiltration and pyrolysis processing method allows near-net-shape molding and
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of Temperature on Polymer/Carbon Chemical Sensors
NASA Technical Reports Server (NTRS)
Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth
2009-01-01
Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Flexible high-temperature dielectric materials from polymer nanocomposites.
Li, Qi; Chen, Lei; Gadinski, Matthew R; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Iagodkine, Elissei; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing
2015-07-30
Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.
Flexible high-temperature dielectric materials from polymer nanocomposites
NASA Astrophysics Data System (ADS)
Li, Qi; Chen, Lei; Gadinski, Matthew R.; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing
2015-07-01
Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.
Chemistry of the metal-polymer interfacial region.
Leidheiser, H; Deck, P D
1988-09-02
In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-01-01
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-11-24
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
Recent Advances in the Development of Processable High-Temperature POLYMERS1
NASA Astrophysics Data System (ADS)
Meador, Michael A.
1998-08-01
High-temperature polymers have found widespread use in aerospace and electronics applications. This review deals with recent developments in the chemistry of these materials that have led to improvements in processability and high-temperature stability.
NASA Astrophysics Data System (ADS)
Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam
2017-06-01
A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.
NASA Astrophysics Data System (ADS)
Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael
2015-03-01
One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.
Development of polysilsesquioxane composites
NASA Technical Reports Server (NTRS)
Srinivasan, K.; Tiwari, S. N.
1990-01-01
Polymer composites are increasingly being required to operate for prolonged durations at higher temperatures than in the past. Hence there have been increased efforts devoted to synthesizing and characterizing polymers capable of withstanding temperatures greater than 300 C for long periods. Several such organic polymers have been investigated in recent times. This research effort seeks to enquire if inorganic polymers can be utilized to provide the same result. Ceramics have long been recognized as providing superior thermal properties for demanding applications. However, the extremely high softening temperatures preclude their being shaped into complex shapes through melt processing techniques common to organic polymers. One approach towards solving this problem has been through the development of preceramic polymers. These are capable of being processed in the polymeric state with ease, and subsequently being pyrolyzed to ceramic structures. This experimental study is aimed at studying the feasibility of using preceramic polymers (that have not been subject to the pyrolysis step) as high performance composite matrices for high temperature applications. A preliminary study of this nature is not geared towards optimizing mechanical properties suitable for such composites. Rather, this study attempts to process such resins in composite form and suitably characterize their properties.
Optical temperature sensing on flexible polymer foils
NASA Astrophysics Data System (ADS)
Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans
2016-04-01
In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.
An, Ran; Zhao, Hui; Hu, Huai-Ming; Wang, Xiaofang; Yang, Meng-Lin; Xue, Ganglin
2016-01-19
Two series of Eu(III)/Tb(III) coordination polymers, [LnL(glu)]n·2nH2O (Ln = Eu (1), Tb (2)) and [LnL(glu)(H2O)]n (Ln = Eu (3), Tb (4)) [HL = (2-(2-sulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline, H2glu = glutaric acid] have been hydrothermally synthesized by controlling the pH values and characterized by elemental analysis, infrared spectra, and single-crystal X-ray diffraction. Isomorphic compounds 1 and 2 exhibit 6-connected 3D network with the pcu topological net, containing left- and right-handed helical chains. Isomorphic compounds 3 and 4 show 3,4-connected 2D new topology with the point symbol of (4(2)·6(3)·8)(4(2)·6). Multicolor luminescence can be tailored from red to green regions by singly varying the mixing molar ratio of Eu(III)/Tb(III) cations. The mixing component of 1Eu/2Tb = 4:6 not only achieves white-light emission with the CIE coordinate of (0.323, 0.339) upon excitation at 405 nm but also presents a temperature recognition property with the significantly high sensitivity of 0.68% per K in the 50-225 K temperature range upon excitation at 370 nm.
Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
2007-01-01
Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3- mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.
Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
2006-01-01
Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3-mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.
On nonlinear thermo-electro-elasticity.
Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul
2016-06-01
Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.
On nonlinear thermo-electro-elasticity
Mehnert, Markus; Hossain, Mokarram
2016-01-01
Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings. PMID:27436985
One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications
NASA Astrophysics Data System (ADS)
Weintraub, Benjamin A.
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
Glass transition temperature of polymer nano-composites with polymer and filler interactions
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi
2012-02-01
We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.
Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Sung Yup; Ahn, Kwangseok; Kim, Doris Yangsoo
2014-04-21
We studied the early-stage growth structures of pentacene organic crystals grown on polymer brushes using real-time x-ray scattering techniques. In situ x-ray reflectivity and atomic force microscopy analyses revealed that at temperatures close to the glass transition temperature of polymer brush, the pentacene overlayer on a polymer brush film showed incomplete condensation and 3D island structures from the first monolayer. A growth model based on these observations was used to quantitatively analyze the real-time anti-Bragg x-ray scattering intensities measured during pentacene growth to obtain the time-dependent layer coverage of the individual pentacene monolayers. The extracted total coverage confirmed significant desorptionmore » and incomplete condensation in the pentacene films deposited on the polymer brushes. These effects are ascribed to the change in the surface viscoelasticity of the polymer brushes around the glass transition temperature.« less
Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases
Senses, Erkan; Faraone, Antonio; Akcora, Pinar
2016-01-01
Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056
Effect of molecular weight on polyphenylquinoxaline properties
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
1991-01-01
A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.
Preparation and rheological behavior of polymer-modified asphalts
NASA Astrophysics Data System (ADS)
Yousefi, Ali Akbar
1999-09-01
Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.
Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji
2018-01-17
For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.
Shin, Jong Won; Jeong, Ah Rim; Jeoung, Sungeun; Moon, Hoi Ri; Komatsumaru, Yuki; Hayami, Shinya; Moon, Dohyun; Min, Kil Sik
2018-04-24
We report a three-dimensional Fe(ii) porous coordination polymer that exhibits a spin crossover temperature change following CO2 sorption (though not N2 sorption). Furthermore, single crystals of the desolvated polymer with CO2 molecules at three different temperatures were characterised by X-ray crystallography.
Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich
2015-01-01
A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity. PMID:26569248
The reactivity of 1,3-butadiene with butadiene-derived popcorn polymer.
Levin, M E; Hill, A D; Zimmerman, L W; Paxson, T E
2004-11-11
Adiabatic calorimetry performed on butadiene-derived popcorn polymer samples from industrial facilities has revealed exothermic behavior accompanied by non-condensible gas production, indicative of possible decomposition, at elevated temperatures. In the presence of low concentrations of 1,3-butadiene, reactivity is observed at temperatures of 60-70 degrees C; that is, 20-30 degrees C below those usually seen for butadiene alone. Once the butadiene is consumed, the reaction behavior reverts to that of the popcorn polymer alone. At higher butadiene concentrations, the low temperature reaction persists, eventually merging with typical butadiene behavior. The butadiene reactivity with popcorn polymer is attributed to polymerization reaction at free radical sites in the popcorn polymer. Different popcorn polymer samples exhibit distinct extents of reactivity, presumably depending on the nature and concentration of the free radical sites and the structure of the material. Uninhibited butadiene exposed to 100 psia air, which may act to generate peroxide species, shows a small, additional exotherm around 50-80 degrees C. Contact of butadiene with lauroyl peroxide, providing free radicals upon decomposition, generates an exotherm at temperatures as low as 60 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Seiki; Hoshino, Takeshi; Ito, Len
A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. Bymore » coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.« less
Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)
2006-08-01
preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Morgan, Cassandra D.
1988-01-01
Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, R.H.; Morgan, C.D.
1988-10-01
Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin. 16 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham
1999-05-19
The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an arraymore » to distinguish the responses to methanol-water mixtures.« less
Dynamical studies of confined fluids and polymers
NASA Astrophysics Data System (ADS)
Grabowski, Christopher A.
Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.
Isojima, Tatsushi; Lattuada, Marco; Vander Sande, John B; Hatton, T Alan
2008-09-23
Janus nanoparticles have been synthesized consisting of approximately 5 nm magnetite nanoparticles coated on one side with a pH-dependent and temperature-independent polymer (poly(acrylic acid), PAA), and functionalized on the other side by a second (tail) polymer that is either a pH-independent polymer (polystyrene sodium sulfonate, PSSNa) or a temperature-dependent polymer (poly(N-isopropyl acrylamide), PNIPAM). These Janus nanoparticles are dispersed stably as individual particles at high pH values and low temperatures, but can self-assemble at low pH values (PSSNa) or at high temperatures (>31 degrees C) (PNIPAM) to form stable dispersions of clusters of approximately 80-100 nm in hydrodynamic diameter. The Janus nanoparticle compositions were verified using FTIR and XPS, and their structures observed directly by TEM. Their clustering behavior is analyzed by dynamic light scattering and zeta potential measurements.
Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin
2014-09-01
Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.
Roper, D Keith; Berry, Keith R; Dunklin, Jeremy R; Chambers, Caitlyn; Bejugam, Vinith; Forcherio, Gregory T; Lanier, Megan
2018-06-12
Embedding soft matter with nanoparticles (NPs) can provide electromagnetic tunability at sub-micron scales for a growing number of applications in healthcare, sustainable energy, and chemical processing. However, the use of NP-embedded soft material in temperature-sensitive applications has been constrained by difficulties in validating the prediction of rates for energy dissipation from thermally insulating to conducting behavior. This work improved the embedment of monodisperse NPs to stably decrease the inter-NP spacings in polydimethylsiloxane (PDMS) to nano-scale distances. Lumped-parameter and finite element analyses were refined to apportion the effects of the structure and composition of the NP-embedded soft polymer on the rates for conductive, convective, and radiative heat dissipation. These advances allowed for the rational selection of PDMS size and NP composition to optimize measured rates of internal (conductive) and external (convective and radiative) heat dissipation. Stably reducing the distance between monodisperse NPs to nano-scale intervals increased the overall heat dissipation rate by up to 29%. Refined fabrication of NP-embedded polymer enabled the tunability of the dynamic thermal response (the ratio of internal to external dissipation rate) by a factor of 3.1 to achieve a value of 0.091, the largest reported to date. Heat dissipation rates simulated a priori were consistent with 130 μm resolution thermal images across 2- to 15-fold changes in the geometry and composition of NP-PDMS. The Nusselt number was observed to increase with the fourth root of the Rayleigh number across thermally insulative and conductive regimes, further validating the approach. These developments support the model-informed design of soft media embedded with nano-scale-spaced NPs to optimize the heat dissipation rates for evolving temperature-sensitive diagnostic and therapeutic modalities, as well as emerging uses in flexible bioelectronics, cell and tissue culture, and solar-thermal heating.
Magnetic Resonance of Polymers at Surfaces
1989-08-28
are similar in their response to solvent Znd temperature in bulk poly(vinyl acetate) ( PVAc ). 2 5 This technique has been used for comparison with bulk...polymer for the PVAc -silica and polystyrene (PS)-silica systems. 2 6 As a function of temperature, comparison of the surface labelled polymer with the...the coverage was increased, the ESR spectra of the polymer also became more bulk-like. The mobility of the PVAc on silica was also shown to depend on
Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi
2017-01-01
Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning
2017-04-01
Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetic Spin Effects in Photoprocesses inside Polymeric Photoconductors
NASA Astrophysics Data System (ADS)
Rumyantsev, B. M.; Berendyaev, V. I.; Pebalk, A. V.
2018-06-01
Magnetic spin effects are detected and studied in the processes of sensitized current-carrier photogeneration and luminescence inside polymer photoconductor films based on polyimides and composites of polymers with carbazole moieties combined with electron acceptors (chemical sensitization) and dyes (spectral sensitization). The effect an electric field has on the quantum yield of photogeneration and the luminescence of excited charge-transfer complexes (reversible and irreversible effects) at spectral sensitization is studied in the presence of O2.
Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2000-01-01
We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.
2018-01-01
We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.
Escorihuela, Sara; Brinkmann, Torsten
2018-01-01
Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid®, and 4.30 wt. % for P84®. A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84® ≥ Matrimid® >> 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H2, CH4, N2, O2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures. PMID:29518942
Işıklan, Nuran; Tokmak, Şeyma
2018-07-01
The functionalization of polysaccharides with synthetic polymers has attracted great attention owing to its application in many industrial fields. The aim of this work was to study the impact of pectin functionalization with N,N-diethylacrylamide (DEAAm). Pectin was modified via microwave-induced graft copolymerization of DEAAm using ceric ammonium nitrate (CAN) and N,N,N',N'-tetramethylethylenediamine (TEMED). FTIR, 13 C NMR, DSC/TGA, XRD, and SEM techniques were used to verify the structure of graft copolymers. Various reaction conditions such as microwave irradiation time, temperature, microwave power, monomer, initiator, and TEMED concentrations were investigated to get a maximum grafting yield of 192%. Lower critical solution temperatures (LCST) of graft copolymers were determined by UV spectroscopy. Graft copolymers were found to be thermo-sensitive, with LCST of 31°C and high thermal resistance. Biocompatibility test of copolymers showed that copolymers were not cytotoxic to L929 fibroblasts cells and can be used as a biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.
Alexander, Shirin; Dunnill, Charles W; Barron, Andrew R
2016-03-15
The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack. Copyright © 2015 Elsevier Inc. All rights reserved.
Azizi, Amin; Gadinski, Matthew R; Li, Qi; AlSaud, Mohammed Abu; Wang, Jianjun; Wang, Yi; Wang, Bo; Liu, Feihua; Chen, Long-Qing; Alem, Nasim; Wang, Qing
2017-09-01
Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm -3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
2018-02-19
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
Ionic thermoelectric gating organic transistors
Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier
2017-01-01
Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738
Understanding temperature tuning of the all polymer co-extruded laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, Jim; Aviles, Michael; Dawson, Nathan; Petrus, Joshua; Mazzocco, Anthony; Singer, Ken; Baer, Eric; Song, Hyunmin
2012-10-01
We investigate the effects of elevated temperatures on a few types of all-polymer multilayer films that were fabricated using a co-extrusion melt-process technique. We report on the anisotropic thermal expansion of the multilayer films, which affects the photonic crystal structure via constituent wise induced anisotropic strains and a change in the relative refractive indices. In addition to the characterization of these films in the temperature range of approximately 20-95 degrees C, we show the application to non-contact temperature sensing and wavelength tuning of all polymer Distributed FeedBack (DFB) lasers and Distributed Bragg Reflector (DBR) lasers.
Radiation Durability of Candidate Polymer Films for the Next Generation Space Telescope Sunshield
NASA Technical Reports Server (NTRS)
Dever, Joyce; Semmel, Charles; Edwards, David; Messer, Russell; Peters, Wanda; Carter, Amani; Puckett, David
2002-01-01
The Next Generation Space Telescope (NGST), anticipated to be launched in 2009 for a 10-year mission, will make observations in the infrared portion of the spectrum to examine the origins and evolution of our universe. Because it must operate at cold temperatures in order to make these sensitive measurements, it will use a large, lightweight, deployable sunshield, comprised of several polymer film layers, to block heat and stray light. This paper describes laboratory radiation durability testing of candidate NGST sunshield polymer film materials. Samples of fluorinated polyimides CP1 and CP2, and a polvarylene ether benzimidazole. TOR-LM(TM), were exposed to 40 keV electron and 40 keV proton radiation followed by exposure to vacuum ultraviolet (VUV) radiation in the 115 to 200 nm wavelength range. Samples of these materials were also exposed to VUV without prior electron and proton exposure. Samples of polyimides Kapton HN, Kapton E, and Upilex-S were exposed to electrons and protons only, due to limited available exposure area in the VUV facility. Exposed samples were evaluated for changes in solar absorptance and thermal emittance and mechanical properties of ultimate tensile strength and elongation at failure. Data obtained are compared with previously published data for radiation durability testing of these polymer film materials.
Study of drug release and tablet characteristics of silicone adhesive matrix tablets.
Tolia, Gaurav; Li, S Kevin
2012-11-01
Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis and Characterization of Polymers for Fuel Cells Application
NASA Technical Reports Server (NTRS)
Tytko, Stephen F.
2003-01-01
The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.
Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds
NASA Astrophysics Data System (ADS)
Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman
2015-03-01
Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.
High Temperature Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
1985-01-01
These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.
NASA Technical Reports Server (NTRS)
Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel
1993-01-01
Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.
Heat Stable Polymers: Polyphenylene and Other Aromatic Polymers
1977-01-01
crystalline transition temperature . Model reactions on 4- and 6-phienyl-2-pyrones show that this monomer type is unsuitable for the syntheses of... temperature to a rod-like molecule with a high glass transition temperature . The polymerization reaction is acid catalyzed, but is carried out most...Polymerization Reactions...................24 Solution Properties......................27 Phase Transition Temperatures , Thermal Stability and Thermomechanical
Solubilization and spore recovery from silicone polymers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsiao, Y. C.
1974-01-01
A non-sporicidal technique for solvent degradation of cured silicone polymers was developed which involves chemical degradation of cured silicone polymers by amine solvents at room temperature. Substantial improvements were obtained in the recovery of seeded spores from room temperature cured polymers as compared to the standard recovery procedures, which indicates that the curing process is not sufficiently exothermic to reduce spore viability. The dissolution reaction of cured silicone polymers whith amine solvents is proposed to occur by bimolecular nucleophilic displacement. The chemical structure of silicone polymers was determined by spectroscopic methods. The phenyl to methyl ratio, R/Si ratio, molecular weight, and hydroxyl content of the silicone resins were determined.
NASA Astrophysics Data System (ADS)
Michalovic, Mark Stephen
A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to cyclopolymerize, but only in DMF at 122°C and at a 10:1 solvent:monomer ratio. A multimedia educational program called The Macrogalleria dealing with polymer science was created and distributed by the world wide web and on cd-rom. The site is made in the form of a virtual shopping mall in which each store is a lesson on some aspect of polymer science. The lessons are written in informal language to make the material more accessible. Also, the lessons are connected by hypertext links in a nonlinear fashion to allow students to create their own pathways through the material. The Macrogalleria has been very successful, being used by educational institutions to incorporate polymer science into the undergraduate chemistry curriculum, and by many industrial users as well. It has received numerous awards as well.
Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris
2013-12-15
The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol
2017-06-01
The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.
Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent
Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon
2015-12-29
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.
Intradermal needle-free powdered drug injection by a helium-powered device.
Liu, John; Hogan, N Catherine; Hunter, Ian W
2012-01-01
We present a new method for needle-free powdered drug injection via a bench-top gas-powered device. This injector provides an alternative method of vaccine delivery to address the cold chain problem--the cost and risk of transporting temperature sensitive vaccines to developing countries. The device houses interchangeable nozzle inserts to vary orifice geometries and is capable of delivering polymer beads (1-5 µm diameter) into the dermal layer of porcine tissue. Results for injection shape and injection depth versus nozzle orifice diameter demonstrate the device's controllability.
Polymer substrate temperature sensor array for brain interfaces.
Kim, Insoo; Fok, Ho Him R; Li, Yuanyuan; Jackson, Thomas N; Gluckman, Bruce J
2011-01-01
We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS.
Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less
Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.
2011-01-01
A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.
Yang, Hui; Leow, Wan Ru; Chen, Xiaodong
2018-03-01
Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo
2012-09-26
Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.
Water-Based Coating Simplifies Circuit Board Manufacturing
NASA Technical Reports Server (NTRS)
2008-01-01
The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.
Statistical Mechanical Theory of Penetrant Diffusion in Polymer Melts and Glasses
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth
We generalize our force-level, self-consistent nonlinear Langevin equation theory of activated diffusion of a dilute spherical penetrant in hard sphere fluids to predict the long-time diffusivity of molecular penetrants in supercooled polymer liquids and non-aging glasses. Chemical complexity is treated using an a priori mapping to a temperature-dependent hard sphere mixture model where polymers are disconnected into effective spheres based on the Kuhn length as the relevant coarse graining scale. A key parameter for mobility is the penetrant to polymer segment diameter ratio, R. Our calculations agree well with experimental measurements for a wide range of temperatures, penetrant sizes (from gas molecules with R ~0.3 to aromatic molecules with R ~1) and diverse amorphous polymers, over 10 decades variation of penetrant diffusivity. Structural parameter transferability is good. We have also formulated a theory at finite penetrant loading for the coupled penetrant-polymer dynamics in chemically (nearly) matched mixtures (e.g., toluene-polystyrene) which captures well the increase of penetrant diffusivity and decrease of polymer matrix vitrification temperature with increasing loading.
Homogeneous crystal nucleation in polymers.
Schick, C; Androsch, R; Schmelzer, J W P
2017-11-15
The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.
Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E
2004-05-01
Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles.
Liquid crystal materials and tunable devices for optical communications
NASA Astrophysics Data System (ADS)
Du, Fang
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ˜12 V rms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime. Another major achievement in this thesis is the first demonstration of an electrically tunable LC-infiltrated photonic crystal fiber (PCF). Two different LC PCF configurations are studied. For the first time, electrically tunable LC PCFs are demonstrated experimentally. The guiding mechanism and polarization properties are studied. Preliminary experimental results are also given for the thermo-optical properties of a LC filled air-core PCF. In conclusion, this dissertation has solved important issues related to PSLC and enables its applications as VOAs and light shutters in optical communications. Through experimental investigations of the LC filled PCFs, a new possibility of developing tunable micro-sized fiber devices is opened for optical communications as well.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Watarai, Shinobu; Kono, Kenji
2013-04-01
Highly pH-sensitive liposomes that deliver antigenic molecules into cytosol through fusion with or destabilization of endosome were prepared by surface modification of egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine (1/1, mol/mol) liposomes with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched structure (MGlu-HPG). These polymer-modified liposomes were stable at neutral pH, but they became strongly destabilized below pH 6, which corresponds to the pH of endosome. These polymer-modified liposomes were taken up by murine dendritic cells (DCs) more efficiently than the unmodified liposomes were through an endocytic pathway. They introduced entrapped ovalbumin (OVA) molecules into cytosol. Subcutaneous or nasal administration of the polymer-modified liposomes loaded with OVA induced generation of OVA-specific cytotoxic T cells (CTL) much more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of the polymer-modified OVA-loaded liposomes to mice bearing E.G7-OVA tumor significantly reduced the tumor burden, although the OVA-loaded unmodified liposomes only slightly affected tumor growth. Results suggest that the polymer-modified liposomes with highly pH-sensitive destabilizing property are promising as antigen carriers for efficient cancer immunotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
In-volume structuring of a bilayered polymer foil using direct laser interference patterning
NASA Astrophysics Data System (ADS)
Rößler, Florian; Günther, Katja; Lasagni, Andrés F.
2018-05-01
Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.
Porous polymer film calcium ion chemical sensor and method of using the same
Porter, M.D.; Chau, L.K.
1991-02-12
A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porous polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction. 1 figure.
Porous polymer film calcium ion chemical sensor and method of using the same
Porter, Marc D.; Chau, Lai-Kwan
1991-02-12
A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porour polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction.
Magnetism in Pristine Pi-conjugated Polymers
2014-09-07
highly regioregular poly(3-alkylthiophene)s and subsequently a ferromagnetic hysteretic behavior at low temperature (< 20K) in these polymers...and subsequently a ferromagnetic hysteretic behavior at low temperature (T < 20k) in these polymers. Concomitantly nanoscopic doughnut structures...the reproducibility, of this very new magneto-optic material . Ferromagnetism in polythiophenes A first and very important
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
NASA Astrophysics Data System (ADS)
Khan, Motiur Rahman; Rao, K. S. R. Koteswara; Menon, R.
2017-05-01
Temperature dependent current-voltage measurements have been performed on poly(3-methylthiophene) based devices in metal/polymer/metal geometry in temperature range 90-300 K. Space charge limited current (SCLC) controlled by exponentially distributed traps is observed at all the measured temperatures at intermediate voltage range. At higher voltages, trap-free SCLC is observed at 90 K only while slope less than 2 is observed at higher temperatures which is quiet unusual in polymer devices. Impedance measurements were performed at different bias voltages. The unusual behavior observed in current-voltage characteristics is explained by Cole-Cole plot which gives the signature of interface dipole on electrode/polymer interface. Two relaxation mechanisms are obtained from the real part of impedance vs frequency spectra which confirms the interface related phenomena in the device
Comparison of two DSC-based methods to predict drug-polymer solubility.
Rask, Malte Bille; Knopp, Matthias Manne; Olesen, Niels Erik; Holm, René; Rades, Thomas
2018-04-05
The aim of the present study was to compare two DSC-based methods to predict drug-polymer solubility (melting point depression method and recrystallization method) and propose a guideline for selecting the most suitable method based on physicochemical properties of both the drug and the polymer. Using the two methods, the solubilities of celecoxib, indomethacin, carbamazepine, and ritonavir in polyvinylpyrrolidone, hydroxypropyl methylcellulose, and Soluplus® were determined at elevated temperatures and extrapolated to room temperature using the Flory-Huggins model. For the melting point depression method, it was observed that a well-defined drug melting point was required in order to predict drug-polymer solubility, since the method is based on the depression of the melting point as a function of polymer content. In contrast to previous findings, it was possible to measure melting point depression up to 20 °C below the glass transition temperature (T g ) of the polymer for some systems. Nevertheless, in general it was possible to obtain solubility measurements at lower temperatures using polymers with a low T g . Finally, for the recrystallization method it was found that the experimental composition dependence of the T g must be differentiable for compositions ranging from 50 to 90% drug (w/w) so that one T g corresponds to only one composition. Based on these findings, a guideline for selecting the most suitable thermal method to predict drug-polymer solubility based on the physicochemical properties of the drug and polymer is suggested in the form of a decision tree. Copyright © 2018 Elsevier B.V. All rights reserved.
Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer
NASA Technical Reports Server (NTRS)
Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)
2000-01-01
Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is not less than 300 ppm per 2pi phase shift. The proposed sensor can be used as a robust stand-alone instrument for continuous environment pollution monitoring.
Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Aziza, Zeineb; School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798; XLIM UMR 7252 Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges
2015-09-28
In this work, we show that the sensing performance of graphene based humidity sensors can be largely improved through polymer functionalization. Chemical vapor deposited graphene is functionalized with amine rich polymer, leading to electron transfer from amine groups in the polymer to graphene. The functionalized graphene humidity sensor has demonstrated good sensitivity, recovery, and repeatability. Charge transfer between the functionalized graphene and water molecules and the sensing mechanism are studied systemically using field effect transistor geometry and scanning Kelvin probe microscopy.
Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.
2007-01-01
A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
Development of pressure-sensitive dosage forms with a core liquefying at body temperature.
Wilde, Lisa; Bock, Mona; Wolf, Marieke; Glöckl, Gunnar; Garbacz, Grzegorz; Weitschies, Werner
2014-04-01
Pressure-sensitive dosage forms have been developed that are intended for pulsatile delivery of drugs to the proximal small intestine. The novel dosage forms are composed of insoluble shell and either a hard fat W32 or polyethylene glycol (PEG) 1000 core that are both liquidizing at body temperature. The release is triggered by predominant pressure waves such as contractions of the pylorus causing rupture of the shell and an immediate emptying of the liquefied filling containing the active ingredient. In consequence immediately after the trigger has been effective the total amount of the drug is intended to be available for absorption in the upper small intestine. Both core types were coated with a cellulose acetate film that creates a pressure-sensitive shell in which mechanical resistance is depending on the coating thickness. Results of the texture analysis confirmed a correlation between the polymer load of the coating and the mechanical resistance. The dissolution test performed under conditions of physiological meaningful mechanical stress showed that the drug release is triggered by pressure waves of ⩾300 mbar which are representing the maximal pressure occurring during the gastric emptying. Copyright © 2013 Elsevier B.V. All rights reserved.
Antioxidant effect of green tea on polymer gel dosimeter
NASA Astrophysics Data System (ADS)
Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.
2015-01-01
Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.
Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa
2017-01-01
A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764
Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa
2017-08-30
A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.
Impact of environmental factors on PADC radon detector sensitivity during long term storage
NASA Astrophysics Data System (ADS)
Wasikiewicz, J. M.
2018-01-01
A broad set of data on poly-allyl diglycol carbonate (PADC) exposure to various environmental conditions has been collected for a period of 1 year in order to study the aging effect on the sensitivity to radon detection. Aging is a phenomenon that occurs during long PADC storage resulting in a loss of sensitivity and/or creation of false tracks. Conditions under investigation were storages under pure nitrogen or air atmospheres, in water solutions of different pHs, in a range of temperatures, humidity and exposure to UV, gamma and neutron radiations. It was found that PADC strongly responds to some external conditions through physical changes in the polymer material; for example, etching of UV exposed detectors led to 10% loss of their thickness and the removal of the tracks layer. Performance of detectors was compared with a control that was the sensitivity of detectors from the same sheet at the time of primary calibration - within 1 month of each sheet being manufactured. Substantial difference in performance was found between storage under pure, dry nitrogen and in the presence of water. The former preserves PADC radon detection properties for the period of one year without noticeable change. The latter, on the other hand significantly reduces its performance even after 3 months' storage. It was also established that storage under low temperature is not a suitable means to preserve PADC sensitivity to radon detection due to significant loss in the detector sensitivity.
Ruckh, Timothy T.; Mehta, Ankeeta A.; Dubach, J. Matthew; Clark, Heather A.
2013-01-01
This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging. PMID:24284431
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Desolvation of polymers by ultrafast heating: Influence of hydrophilicity
NASA Astrophysics Data System (ADS)
Sun, Si Neng; Urbassek, Herbert M.
2010-10-01
Using molecular-dynamics simulation, we investigate the consequences of ultrafast laser-induced heating of a small water droplet containing a solvated polymer. Two polymers are studied: polyethylene as an example of a hydrophobic, and polyketone as an example of a hydrophilic polymer. In both cases, when the droplet is heated below the critical temperature of water, strong water evaporation is started, but the polymer remains in contact with a central water cluster. However, upon heating beyond the critical temperature, the hydrophilic polyethylene becomes completely desolvated, while polyketone still remains solvated. We analyze this behavior in terms of the intermolecular interactions and of the expansion dynamics of the heated droplet.
Accelerated Testing Of Photothermal Degradation Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow
1989-01-01
Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.
Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores
Adiga, Shashishekar P.; Brenner, Donald W.
2012-01-01
Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529
Temperature dependence of conductivity measurement for conducting polymer
NASA Astrophysics Data System (ADS)
Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining
2014-03-01
Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant
Dielectric studies on PEG-LTMS based polymer composites
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-02-01
PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.
Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.
Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber
NASA Astrophysics Data System (ADS)
Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang
2017-01-01
This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.
Thermosetting Phthalocyanine Polymers
NASA Technical Reports Server (NTRS)
Fohlen, G.; Parker, J.; Achar, B.
1985-01-01
Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.
Semi-2-interpenetrating polymer networks of high temperature systems
NASA Technical Reports Server (NTRS)
Hanky, A. O.; St. Clair, T. L.
1985-01-01
A semi-interpenetrating (semi-IPN) polymer system of the semi-2-IPN type is described in which a polymer of acetylene-terminated imidesulfone (ATPISO2) is cross linked in the presence of polyimidesulfone (PISO2). Six different formulations obtained by mixing of either ATPISO2-1n or ATPISO2-3n with PISO2 in three different proportions were characterized in terms of glass transition temperature, thermooxidative stability, inherent viscosity, and dynamic mechanical properties. Adhesive (lap shear) strength was tested at elevated temperatures on aged samples of adhesive scrim cloth prepared from each resin. Woven graphite (Celion 1000)/polyimide composites were tested for flexural strength, flexural modulus, and shear strength. The network polymers have properties intermediate between those of the component polymers alone, have greatly improved processability over either polyimide, and are able to form good adhesive bonds and composites, making the semi-2-IPN systems superior materials for aerospace structures.
Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.
2005-01-01
Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.
Recombination in polymer-fullerene bulk heterojunction solar cells
NASA Astrophysics Data System (ADS)
Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.
2010-12-01
Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.
Kuhnhold, A; Paul, W
2014-09-28
We present a Molecular Dynamics simulation study of a micro-rheological probing of the glass transition in a polymer melt. Our model system consists of short bead-spring chains and the temperature ranges from well above the glass transition temperature to about 10% above it. The nano-particle clearly couples to the slowing down of the polymer segments and the calculated storage and loss moduli reveal the approach to the glass transition. At temperatures close to the mode coupling Tc of the polymer melt, the micro-rheological moduli measure the local viscoelastic response of the cage of monomers surrounding the nano-particle and no longer reveal the true melt moduli. The incoherent scattering function of the nano-particle exhibits a stretched exponential decay, typical for the α-process in glass forming systems. We find no indication of a strong superdiffusive regime as has been deduced from a recent experiment in the same temperature range but for smaller momentum transfers.
A synthetic polymer system with repeatable chemical recyclability
NASA Astrophysics Data System (ADS)
Zhu, Jian-Bo; Watson, Eli M.; Tang, Jing; Chen, Eugene Y.-X.
2018-04-01
The development of chemically recyclable polymers offers a solution to the end-of-use issue of polymeric materials and provides a closed-loop approach toward a circular materials economy. However, polymers that can be easily and selectively depolymerized back to monomers typically require low-temperature polymerization methods and also lack physical properties and mechanical strengths required for practical uses. We introduce a polymer system based on γ-butyrolactone (GBL) with a trans-ring fusion at the α and β positions. Such trans-ring fusion renders the commonly considered as nonpolymerizable GBL ring readily polymerizable at room temperature under solvent-free conditions to yield a high–molecular weight polymer. The polymer has enhanced thermostability and can be repeatedly and quantitatively recycled back to its monomer by thermolysis or chemolysis. Mixing of the two enantiomers of the polymer generates a highly crystalline supramolecular stereocomplex.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing✩
Seppala, Jonathan E.; Migler, Kalman D.
2016-01-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters. PMID:29167755
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing.
Seppala, Jonathan E; Migler, Kalman D
2016-10-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)
NASA Astrophysics Data System (ADS)
Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie
2015-04-01
The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.
Advances in the high performance polymer electrolyte membranes for fuel cells.
Zhang, Hongwei; Shen, Pei Kang
2012-03-21
This critical review tersely and concisely reviews the recent development of the polymer electrolyte membranes and the relationship between their properties and affecting factors like operation temperature. In the first section, the advantages and shortcomings of the corresponding polymer electrolyte membrane fuel cells are analyzed. Then, the limitations of Nafion membranes and their alternatives to large-scale commercial applications are discussed. Secondly, the concepts and approaches of the alternative proton exchange membranes for low temperature and high temperature fuel cells are described. The highlights of the current scientific achievements are given for various aspects of approaches. Thirdly, the progress of anion exchange membranes is presented. Finally, the perspectives of future trends on polymer electrolyte membranes for different applications are commented on (400 references).
Crystallization of Polymers Investigated by Temperature-Modulated DSC
Righetti, Maria Cristina
2017-01-01
The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807
Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders
Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...
2016-08-30
We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less
Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders
NASA Astrophysics Data System (ADS)
Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans
2017-01-01
Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.
Sedlák, Marián
2012-03-01
A new approach to polymer self-assembly was presented recently [M. Sedlák, Č. Koňák, J. Dybal, Macromolecules 2009, 2, 7430-7438 and 7439-7446.] (1, 2) where stable polymeric nanoparticles were formed from poly(ethylacrylic acid) homopolymers without any assembly triggering additives, simply by heating polymer solution under conditions of thermosensitivity to certain temperature. In the current Article, we present successful results on poly(propylacrylic acid), which is a more hydrophobic polymer. We also present results on a less hydrophobic polymer from this series, poly(methacrylic acid), from which nanoparticles cannot be formed. Comparison of results on all three polymers gives a solid physicochemical insight and supports the molecular mechanism of the self-assembly previously suggested: The solvent quality gradually worsens upon heating of a thermosensitive polymer solution, and polymer-polymer contacts are preferred over polymer-solvent contacts, which leads to the formation of polymer assemblies. The presence of a significant amount of charge on chains prevents macroscopic phase separation. Upon subsequent cooling to laboratory temperature, the assemblies (nanoparticles) should eventually dissolve; however, this is not the case due to the fact that polymer chains brought to a close proximity at elevated temperatures become hydrogen-bonded. In addition, hydrogen bonds strengthen upon cooling. Mainly carboxylic-carboxylate hydrogen bonds (COOH····COO(-)) are responsible for the irreversibility of the process and the stability of nanoparticles. Conclusions are supported by results from static and dynamic light scattering, FTIR spectroscopy, and cryo-TEM microscopy. Size of nanoparticles can be monitored during the growth and custom-tailored by tuning critical parameters, especially the degree of ionization, temperature, and time of heating. Nanoparticles are stable over long periods of time. They are stable in a broad range of salt concentrations, including physiological conditions, and possess a mild acceptable degree of polydispersity.
NASA Astrophysics Data System (ADS)
Arya, Anil; Sharma, A. L.
2018-01-01
Free-standing solid polymer nanocomposite (PEO-PVC) + LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5 × 10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion = 0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a rechargeable lithium-ion battery system.
Smart membranes: Hydroxypropyl cellulose for flavor delivery
NASA Astrophysics Data System (ADS)
Heitfeld, Kevin A.
2007-12-01
This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.
Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing
Gu, Kevin L.; Zhou, Yan; Gu, Xiaodan; ...
2016-11-01
Despite having achieved the long sought-after performance of 10% power conversion efficiency, high performance organic photovoltaics (OPVs) are still mostly constrained to lab scale devices fabricated by spin coating. Efforts to produce printed OPVs lag considerably behind, and the sensitivity to different fabrication methods highlights the need to develop a comprehensive understanding of the processing-morphology relationship in printing methods. Here we present a systematic experimental investigation of a model low bandgap polymer/fullerene system, poly-isoindigo thienothiophene/PC 61BM, using a lab-scale analogue to roll-to-roll coating as the fabrication tool in order to understand the impact of processing parameters on morphological evolution. Wemore » report that domain size and polymer crystallinity can be tuned by a factor of two by controlling the temperature and coating speed. Lower fabrication temperature simultaneously decreased the phase separation domain size and increased the relative degree of crystallinity in those domains, leading to improved photocurrent. We conclude that domain size in isoindigo/PCBM is dictated by spontaneous phase separation rather than crystal nucleation and growth. Moreover we present a model to describe the temperature dependence of domain size formation in our system, which demonstrates that morphology is not necessarily strictly dependent on the evaporation rate, but rather on the interplay between evaporation and diffusion during the printing process.« less
Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption
NASA Astrophysics Data System (ADS)
Lantz, Kevin Richard
The ability to detect infrared radiation is vital for a host of applications that include optical communication, medical diagnosis, thermal imaging, atmospheric monitoring, and space science. The need to actively cool infrared photon detectors increases their operation cost and weight, and the focus of much recent research has been to limit the dark current and create room-temperature infrared photodetectors appropriate for mid-to-long-wave infrared detection. Quantum dot infrared photodetectors (QDIPs) provide electron quantum confinement in three dimensions and have been shown to demonstrate high temperature operation (T>150 K) due to lower dark currents. However, these inorganic devices have not achieved sensitivity comparable to state-of-the-art photon detectors, due in large part to the inability to control the uniformity (size and shape) of QDs during strained-layer epitaxy. The purpose of this dissertation research was to investigate the feasibility of room-temperature infrared photodetection that could overcome the shortfalls of QDIPs by using chemically synthesized inorganic colloidal quantum dots (CQDs). CQDs are coated with organic molecules known as surface ligands that prevent the agglomeration of dots while in solution. When CQDs are suspended in a semiconducting organic polymer, these materials are known as organic/inorganic hybrid nanocomposites. The novel approach investigated in this work was to use intraband transitions in the conduction band of the polymer-embedded CQD for room-temperature photodetection in the mid-wave, and possibly long-wave, infrared ranges. Hybrid nanocomposite materials promise room-temperature operation due to: (i) large bandgaps of the inorganic CQDs and the semiconducting polymer that reduce thermionic emission; and (ii) low dark current due to the three-dimensional electron confinement in the CQD and low carrier mobility in the semiconducting polymer. The primary material system investigated in this research was CdSe CQDs embedded in the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV). Photoluminescence (PL) spectroscopy of MEH-CN-PPV thin films was conducted to determine the dependence of polymer morphology on deposition method in order to identify a reliable device fabrication technique. Three different deposition methods were investigated: drop-casting and spin-casting, which are solution-based; and matrix-assisted pulsed laser evaporation (MAPLE), which is a vacuum-based method that gently evaporates polymers (or hybrid nanocomposites) and limits substrate exposure to solvents. It was found that MAPLE deposition provides repeatable control of the thin film morphology and thickness, which is important for nanocomposite device optimization. Ultra-fast PL spectroscopy of MEH-CN-PPV/CdSe thin films was investigated to determine the charge generation and relaxation dynamics in the hybrid nanocomposite thin films. The mathematical fitting of time-integrated and time-resolved PL provided a rigorous and unique model of the charge dynamics, which enabled calculation of the radiative and non-radiative decay lifetimes in the polymer and CQD. These results imply that long-lived electrons exist in the conduction band of the CQD, which demonstrate that it should be possible to generate a mid- to long-wave infrared photocurrent based on intraband transitions. In fact, room-temperature, intraband, mid-infrared absorption was measured in thin films of MEH-CN-PPV/CdSe hybrid nanocomposites by Fourier transform infrared (FTIR) absorbance spectroscopy. In addition, the hybrid nanocomposite confined energy levels and corresponding oscillator strengths were calculated in order to model the absorption spectrum. The calculated absorption peaks agree well with the measured peaks, demonstrating that the developed computer model provides a useful design tool for determining the impact of important materials system properties, such as CQD size, organic surface ligand material choice, and conduction band offset due to differences in CQD and polymer electron affinities. Finally, a room-temperature, two terminal, hybrid nanocomposite mid-infrared photoconductor based on intraband transitions was demonstrated by FTIR spectral response measurements, measuring a spectral responsivity peak of 4.32 microA/W at 5.5microm (5 volts), and calibrated blackbody spectral photocurrent measurements, measuring a spectral responsivity peak of 4.79 microA/W at 5.7 microm (22 volts). This device characterization demonstrated that while the novel approach of intraband infrared photodetection in hybrid nanocomposites is feasible, significant challenges exist related to device fabrication and operation. Future work is proposed that could address some of these important issues.
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
NASA Astrophysics Data System (ADS)
Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni
2001-06-01
Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.
Highly efficient monolithic dye-sensitized solar cells.
Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok
2013-03-01
Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated.
Jang, Young-Wook; Won, Du-Hyun; Kim, Young-Keun; Hwang, Won-Pill; Jang, Sung-Il; Jeong, Sung-Hoon; Kim, Mi-Ra; Lee, Jin-Kook
2014-08-01
We prepared electrospun polymer nanofibers by electrospnning method and investigated about their applications to dye-sensitized solar cells (DSSCs). Electrospun polymer nanofibers applied to the polymer matrix in electrolyte for DSSCs. To improve the stiffness of polymer nanofiber, poly(vinylidene fluoride-hexafluoro propylene)/Poly(methyl methacrylate) (PVDF-HFP/PMMA) blend nanofibers were prepared and examined. In the electrospun PVDF-HFP/PMMA (1:1) blend nanofibers, the best results of VOC, JSC, FF, and efficiency of the DSSC devices showed 0.71 V, 12.8 mA/cm2, 0.61, and 5.56% under AM 1.5 illumination.
Characterization of temperature-dependent optical material properties of polymer powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen
2015-05-22
In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less
Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.
Araujo, J F D F; Bruno, A C; Louro, S R W
2015-10-01
We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.
Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles
NASA Astrophysics Data System (ADS)
Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.
2015-10-01
We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.
Rheology of polyelectrolyte complex materials
NASA Astrophysics Data System (ADS)
Tirrell, Matthew
Fluid polyelectrolyte complexes, sometimes known as complex coacervates, have rheological properties that are very sensitive to structure and salt concentration. Dynamic moduli of such viscoelastic materials very many orders of magnitude between solutions of no added salt to of order tenth molar salt, typical, for example of physiological saline. Indeed, salt plays a role in the rheology of complex coacervates analogous to that which temperature plays on polymer melts, leading to an empirical observation of what may be termed time-salt or frequency salt superposition. Block copolymers containing complexing ionic blocks also exhibit strong salt sensitivity of their rheological properties. Data representing these phenomena will be presented and discussed. Support from NIST, Department of Commerce, via the Center for Hierarchical Materials Design at Northwestern University and the University of Chicago is gratefully acknowledged.
Controlling the Degradation of Bioresorbable Polymers
NASA Astrophysics Data System (ADS)
Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi
Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
2009-09-01
semiconducting VA-SWNTs, and muiltcomponent micropatterns of VA- CNTs . We also designed and synthesized several classes of novel low bandgap...photovoltaic active polymers, and polymer-/TiO2–coated VA- CNTs , critical to developing high efficient polymer photovoltaic cells and dye-sensitized solar...an efficient solar absorption and charge separation/collection. Besides, novel N-doped CNT fuel cells, polymer/quantum dot light-emitting diodes, and
High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies
NASA Technical Reports Server (NTRS)
Eberts, Kenneth; Ou, Runqing
2013-01-01
Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.
Dehkordi, Davoud Khodadadi
2018-06-01
In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.
Turner, Johnathan; Gadisa, Abay
2016-12-07
Charge transport is a central issue in all types of organic electronic devices. In organic films, charge transport is crucially limited by film microstructure and the nature of the substrate/organic interface interactions. In this report, we discuss the influence of active layer thickness on space-charge limited hole transport in pristine polymer and polymer/fullerene bulk heterojunction thin films (∼15-300 nm) in a diode structure. According to the results, the out-of-plane hole mobility in pristine polymers is sensitive to the degree of polymer chain aggregation. Blending the polymers with a fullerene molecule does not change the trend of hole mobility if the polymer tends to make an amorphous structure. However, employing an aggregating polymer in a bulk heterojunction blend gives rise to a marked difference in charge carrier transport behavior compared to the pristine polymer and this difference is sensitive to active layer thickness. In aggregating polymer films, the thickness-dependent interchain interaction was found to have direct impact on hole mobility. The thickness-dependent mobility trend was found to correspond well with the trend of fill factors of corresponding bulk heterojunction solar cells. This investigation has a vital implication for material design and the development of efficient organic electronic devices, including solar cells and light-emitting diodes.
Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E
2015-09-14
Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.
A preliminary study of the thermal measurement with nMAG gel dosimeter by MRI
NASA Astrophysics Data System (ADS)
Chuang, Chun-Chao; Shao, Chia-Ho; Shih, Cheng-Ting; Yeh, Yu-Chen; Lu, Cheng-Chang; Chuang, Keh-Shih; Wu, Jay
2014-11-01
The methacrylic acid (nMAG) gel dosimeter is an effective tool for 3-dimensional quality assurance of radiation therapy. In addition to radiation induced polymerization effects, the nMAG gel also responds to temperature variation. In this study, we proposed a new method to evaluate the thermal response in thermal therapy using nMAG gel and magnetic resonance image (MRI) scans. Several properties of nMAG have been investigated including the R2 relaxation rate, temperature sensitivity, and temperature linearity of the thermal dose response. nMAG was heated by the double-boiling method in the range of 37-45 °C. MRI scans were performed with the head coil receiver. The temperature to R2 response curve was analyzed and simple linear regression was performed with an R-square value of 0.9835. The measured data showed a well inverse linear relationship between R2 and temperature. We conclude that the nMAG polymer gel dosimeter shows great potential as a technique to evaluate the temperature rise during thermal surgery.
Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xun; An, Linan; Xu, Chengying
2013-06-30
The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in thismore » project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.« less
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
Cationic Polymers Developed for Alkaline Fuel Cell Applications
2015-01-20
into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works
NASA Astrophysics Data System (ADS)
Aleman, K.; Sanchez Juarez, A.; Kosarev, A.; Mansurova, S.; Koeber, S.; Meerholz, K.
2010-06-01
The results on characterization of the main photoelectric properties of the polymer:fulleren based composite material by using the non-steady-state photo-electromotive force (p-EMF) and modulated photocurrent technique are presented. By measuring this current under different experimental conditions, important material photoelectric parameters such as drift L0 and diffusion length LD, photocarrier's lifetime τ ; quantum efficiency of charge generation φ can be determined. The 50% of the composite weight consists of a mixture of the hole-conducting polymer PF6:TPD (poly-hexyle-triophene:N,N'-bis(4-methylphenyl)-N,N'-bis-(phenyl)-benzidine) sensitized with the highly soluble C60 derivative PCBM (phenyl-C61-butyric acid methyl ester) . Seven samples with varied polymer:sensitizer weight ratio (49:1wt.-%, 45:5wt.-%, 40:10wt.-%, 15:35wt.-%, 25:25wt.-%, 10:40wt.-%, 5:45wt.-%) where prepared. The remaining 50% were two azo-dyes 2,5-dimethyl-(4-p-nitrophenylazo)-anisole (DMNPAA) and 3- methoxy-(4-p-nitrophenylazo)-anisole (MNPAA) (25wt.-% each). Photoconductive composite film was sandwiched between two glass plates covered by transparent ITO electrodes. Two counter-propagating beams derived from a cw HeNe laser (λ = 633nm) intersected inside the detector creating an interference pattern. The output photo-EMF current (SEE MANUSCRIPT FOR EQUATION) was detected as a voltage drop by a lock-in amplifier. At polymer sensitizer ratio 25:25wt.-% the signal sign changes to the opposite revealing that the majority carriers at this and higher concentration of sensitizer are electrons. Our results show that the majority carrier's lifetime τ is only slightly affected by the variations of sensitizer concentration. Mobility-lifetime product μhτh of holes, on its turn decreases at the increasing sensitizer concentration, while μeτe of electrons keeps increasing. All this indicates that the carrier's mobility is strongly influenced by the changes on sensitizer concentrations.
NASA Technical Reports Server (NTRS)
Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Shevade, A. V.; Ryan, M. A.
2003-01-01
We report the effect of environmental condtions coupled with varying polymer properties and carbon loadings on the performance of polymer-carbon black composite film, used as sensing medium in the JPL Electronic Nose.
NASA Astrophysics Data System (ADS)
Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.
1991-07-01
We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.
Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z
2007-01-01
Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.
NASA Astrophysics Data System (ADS)
Lambiase, F.; Genna, S.; Kant, R.
2018-01-01
The quality of the joints produced by means of Laser-Assisted Metal to Polymer direct joining (LAMP) is strongly influenced by the temperature field produced during the laser treatment. The main phenomena including the adhesion of the plastic to the metal sheet and the development of bubbles (on the plastic surface) depend on the temperature reached by the polymer at the interface. Such a temperature should be higher than the softening temperature, but lower than the degradation temperature of the polymer. However, the temperature distribution is difficult to be measured by experimental tests since the most polymers (which are transparent to the laser radiation) are often opaque to the infrared wavelength. Thus, infrared analysis involving pyrometers and infrared camera is not suitable for this purpose. On the other hand, thermocouples are difficult to be placed at the interface without influencing the temperature conditions. In this paper, an integrated approach involving both experimental measurements and a Finite Element (FE) model were used to perform such an analysis. LAMP of Polycarbonate and AISI304 stainless steel was performed by means of high power diode laser and the main process parameters i.e. laser power and scanning speed were varied. Comparing the experimental measurements and the FE model prediction of the thermal field, a good correspondence was achieved proving the suitability of the developed model and the proposed calibration procedure to be ready used for process design and optimization.
Claisen thermally rearranged (CTR) polymers
Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker
2016-01-01
Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538
Claisen thermally rearranged (CTR) polymers.
Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker
2016-07-01
Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications.
New materials drive high-performance aircraft
NASA Technical Reports Server (NTRS)
Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.
1992-01-01
This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.
NASA Astrophysics Data System (ADS)
Johan, Mohd Rafie; Ibrahim, Suriani
2012-01-01
In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.
NASA Astrophysics Data System (ADS)
Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura
Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi
2017-04-01
This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.
Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H
2015-08-01
A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer Substrate Temperature Sensor Array for Brain Interfaces
Kim, Insoo; Fok, Ho Him R.; Li, Yuanyuan; Jackson, Thomas N.; Gluckman, Bruce J.
2012-01-01
We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25~100 μm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 20~40 °C using a surface mounted thermocouple and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041
Paint stripping with a XeCl laser: basic research and processing techniques
NASA Astrophysics Data System (ADS)
Raiber, Armin; Plege, Burkhard; Holbein, Reinhold; Callies, Gert; Dausinger, Friedrich; Huegel, Helmut
1995-03-01
This work investigates the possibility of ablating paint from aerospace material with a XeCl- laser. The main advantage of this type of laser is the low heat generation during the ablation process. This is important when stripping thermally sensitive materials such as polymer composites. The dependence of the ablation process on energy density, pulse frequency as well as other laser parameters are presented. The results show the influence of chemical and UV artificial aging processes on ablation depth. Further, the behavior of the time-averaged transmission of the laser beam through the plasma is described as a function of the energy density. The time-varying temperature in the substrate at the point of ablation was measured during the process. An abrupt change in the temperature variation indicates the end of point ablation. This measured temperature variation is compared with the calculated temperatures, which are derived from the 1D heat equations. Finally, first results of repaintability and ablation rates will be presented.
ERIC Educational Resources Information Center
Chen, Yueh-Huey; He, Yu-Chi; Yaung, Jing-Fun
2014-01-01
Hydrogels of the so-called smart polymers or environment-sensitive polymers are important modern biomaterials. Herein, we describe a hands-on activity to explore the pH-responsive characteristics of hydrogels using a commercially available ionic soft contact lens that is a hydrogel of poly(2-hydroxyethyl methacrylate-"co"-methacrylic…
Effect of polymer electrolyte on the performance of natural dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.
2015-10-01
Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.
NASA Astrophysics Data System (ADS)
Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.
A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.
Process for introducing electrical conductivity into high-temperature polymeric materials
Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.
1993-12-21
High-temperature electrically conducting polymers are described. The in situ reactions: AgNO[sub 3] + RCHO [yields] Ag + RCOOH and R[sub 3]M [yields] M + 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R[sub 3]M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrone.
High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature
NASA Astrophysics Data System (ADS)
Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel
2015-12-01
Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.
Process for introducing electrical conductivity into high-temperature polymeric materials
Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.
1993-01-01
High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.Ag.degree.+RCOOH and R.sub.3 M.fwdarw.M.degree.+3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.
Process for introducing electrical conductivity into high-temperature polymeric materials
Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.
1989-01-01
High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.AG.sup.0 +RCOOH and R.sub.3 M.fwdarw.M.sup.0 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.
Process for introducing electrical conductivity into high-temperature polymeric materials
Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.
1987-08-27
High-temperature electrically conducting polymers. The in situ reactions: AgNO/sub 3/ + RCHO ..-->.. Ag/sup 0/ + RCOOH and R/sub 3/M ..-->.. M/sup 0/ + 3R, where M = Au or Pt have been found to introduce either substantial bulk or surface conductivity in high- temperature polymers. The reactions involving the R/sub 3/M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone. 3 tabs.
Kochmann, Sven; Baleizão, Carlos; Berberan-Santos, Mário N; Wolfbeis, Otto S
2013-02-05
We report on a new method for sensing trace oxygen in the gas phase. It is based on the extreme efficiency of the quenching of the thermally activated delayed fluorescence of isotopically enriched carbon-13 fullerene C(70) ((13)C(70)). This fullerene was dissolved in polymer matrixes of varying oxygen permeability, viz., polystyrene (PS), ethyl cellulose (EC) and an organically modified silica gel ("ormosil"; OS). The sensor films (5-10 μm thick), on photoexcitation at 470 nm, display a strong delayed photoluminescence with peaks between 670 and 700 nm. Its quenching by molecular oxygen was studied at 25 and 60 °C and at concentrations from zero up to 150 ppmv of oxygen in nitrogen. The rapid lifetime determination (RLD) method was applied to determine oxygen-dependent lifetimes and for fluorescence lifetime imaging of oxygen. The lower limits of detection (at 1% quenching) vary with the polymer used (EC ∼250 ppbv, OS ∼320 ppbv, PS ∼530 ppbv at 25 °C) and with temperature. The oxygen sensors reported here are the most sensitive ones described so far.
Development of a chemiresistor sensor based on polymers-dye blend for detection of ethanol vapor.
dos Reis, Marcos A L; Thomazi, Fabiano; Del Nero, Jordan; Roman, Lucimara S
2010-01-01
The conductive blend of the poly (3,4-ethylene dioxythiophene) and polystyrene sulfonated acid (PEDOT-PSS) polymers were doped with Methyl Red (MR) dye in the acid form and were used as the basis for a chemiresistor sensor for detection of ethanol vapor. This Au | Polymers-dye blend | Au device was manufactured by chemical vapor deposition and spin-coating, the first for deposition of the metal electrodes onto a glass substrate, and the second for preparation of the organic thin film forming ∼1.0 mm2 of active area. The results obtained are the following: (i) electrical resistance dependence with atmospheres containing ethanol vapor carried by nitrogen gas and humidity; (ii) sensitivity at 1.15 for limit detection of 26.25 ppm analyte and an operating temperature of 25 °C; and (iii) the sensing process is quickly reversible and shows very a low power consumption of 20 μW. The thin film morphology of ∼200 nm thickness was analyzed by Atomic Force Microscopy (AFM), where it was observed to have a peculiarly granulometric surface favorable to adsorption. This work indicates that PEDOT-PSS doped with MR dye to compose blend film shows good performance like resistive sensor.
JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep
2016-09-01
Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stirmore » Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less
Monitoring the Cure State of Thermosetting Resins by Ultrasound.
Lionetto, Francesca; Maffezzoli, Alfonso
2013-09-05
The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.
Monitoring the Cure State of Thermosetting Resins by Ultrasound
Lionetto, Francesca; Maffezzoli, Alfonso
2013-01-01
The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing. PMID:28788306
Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
Zainal, M A; Ahmad, A; Mohamed Ali, M S
2017-03-01
This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.
Fabrication and mechanical behavior of dye-doped polymer optical fiber
NASA Astrophysics Data System (ADS)
Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.
2002-07-01
The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.
Joining Dissimilar Materials Using Friction Stir Scribe Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep
2016-10-03
Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low costmore » joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less
Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei
2012-11-01
The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.
Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin
2012-06-01
This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.
Epoxy resin monomers with reduced skin sensitizing potency.
O'Boyle, Niamh M; Niklasson, Ida B; Tehrani-Bagha, Ali R; Delaine, Tamara; Holmberg, Krister; Luthman, Kristina; Karlberg, Ann-Therese
2014-06-16
Epoxy resin monomers (ERMs), especially diglycidyl ethers of bisphenol A and F (DGEBA and DGEBF), are extensively used as building blocks for thermosetting polymers. However, they are known to commonly cause skin allergy. This research describes a number of alternative ERMs, designed with the aim of reducing the skin sensitizing potency while maintaining the ability to form thermosetting polymers. The compounds were designed, synthesized, and assessed for sensitizing potency using the in vivo murine local lymph node assay (LLNA). All six epoxy resin monomers had decreased sensitizing potencies compared to those of DGEBA and DGEBF. With respect to the LLNA EC3 value, the best of the alternative monomers had a value approximately 2.5 times higher than those of DGEBA and DGEBF. The diepoxides were reacted with triethylenetetramine, and the polymers formed were tested for technical applicability using thermogravimetric analysis and differential scanning calorimetry. Four out of the six alternative ERMs gave polymers with a thermal stability comparable to that obtained with DGEBA and DGEBF. The use of improved epoxy resin monomers with less skin sensitizing effects is a direct way to tackle the problem of contact allergy to epoxy resin systems, particularly in occupational settings, resulting in a reduction in the incidence of allergic contact dermatitis.
Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...
2017-03-24
Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less
Method for separating water soluble organics from a process stream by aqueous biphasic extraction
Chaiko, David J.; Mego, William A.
1999-01-01
A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.
1987-01-01
1,4,5,8-Tetrahydro-1,4;5,8-diepoxyanthracene reacts with various anthracene endcapped polyimide oligomers to form Diels-Alder cycloaddition copolymers. The polymers are soluble in common organic solvents, and have molecular weights of approximately 21,000 to 32,000. Interestingly, these resins appear to be more stable in air then in nitrogen. This is shown to be due to a unique dehydration (loss of water ranges from 2 to 5 percent) at temperatures of 390 to 400 C to give thermo-oxidatively stable pentiptycene units along the polymer backbone. Because of their high softening points and good thermo-oxidative stability, the polymers have potential as processible, matrix resins for high temperature composite applications.
Development of polyphenylquinoxaline graphite composites
NASA Technical Reports Server (NTRS)
Shdo, J. D.
1976-01-01
Six polyphenylquinoxalines (PPQ) containing pendant cyano (CN) groups were synthesized. The polymers were characterized in terms of inherent viscosity, glass transition temperature, softening temperature and weight loss due to aging in air at 316 C (600 F). The potential for crosslinking PPQs by trimerization of pendant CN groups was investigated. A polymer derived from 1 mole 3,3,4,4 -tetraaminobenzophenone, .2 mole p-bis(p -cyanophenoxyphenylglyoxalyl)benzene and .8 mole p-bis(phenylglyoxalyl)benzene was selected for more extensive characterization in HM-S graphite fiber-reinforced composites. Mechanical properties were determined using composites made from HM-S fiber and polymer and composites made from HM-S fiber, polymer and a potential CN group trimerization catalyst. Composite mechanical properties, inter-laminar shear strength and flexure properties, were determined over the temperature range of +21 C to 316 C.
Thermochemical characterization of polymers for improved fire safety
NASA Technical Reports Server (NTRS)
Lerner, N. R.
1977-01-01
Apparatus has been constructed for studying the thermal decomposition of polymers as a function of temperature. Such data is needed to evaluate the toxic threat presented by polymeric materials under fire conditions such as the smoldering fire of the type that occurs in closed areas such as coat closets in which anaerobic decomposition of polymers occurs. The apparatus allows the products of thermal decomposition to be collected and analyzed by infrared spectrometry and mass spectrometry. Data obtained from dog hair, an aromatic polyamide, polyphenylene sulfide, and polybenzimidazole are presented. It was found that significant amounts of toxic gas were evolved from dog hair at temperatures as low as 250 C, while temperatures in excess of 500 C were necessary in order for the evolution of toxic gas from the aromatic polymers to become significant.
Study of Polymer Crystallization by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jeong, Hyuncheol
When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.
Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon
2018-03-28
We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.
NASA Astrophysics Data System (ADS)
Nicholas, James Robert
The current work is on the development of continuous fiber reinforced ceramic materials (CFCCs) for use in ultra high temperature applications. These applications subject materials to extremely high temperatures(> 2000°C). Monolithic ceramics are currently being used for these applications, but the tendency to fail catastrophically has driven the need for the next generation of material. Reinforcing with continuous fibers significantly improves the toughness of the monolithic materials; however, this is a manufacturing challenge. The development of commercial, low-viscosity preceramic polymers provides new opportunities to fabricate CFCCs. Preceramic polymers behave as polymers at low temperatures and are transformed into ceramics upon heating to high temperatures. The polymer precursors enable the adaptation of well-established polymer processing techniques to produce high quality materials at relatively low cost. In the present work, SMP-10 from Starfire Systems, and PURS from KiON Corp. were used to manufacture ZrB2-SiC/SiC CFCCs using low cost vacuum bagging process in conjunction with the polymer infiltration and pyrolysis process. The microstructure was investigated using scanning electron microscopy and it was determined that the initial greenbody cure produced porosity of both closed and open pores. The open pores were found to be more successfully re-infiltrated using neat resin compared to slurry reinfiltrate; however, the closed pores were found to be impenetrable during subsequent reinfiltrations. The mechanical performance of the manufactured samples was evaluated using flexure tests and found the fiber reinforcement prevented catastrophic failure behavior by increasing fracture toughness. Wedge sample were fabricated and evaluated to demonstrate the ability to produce CFCC of complex geometry.
Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa
2014-11-01
Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
The descent into glass formation in polymer fluids.
Freed, Karl F
2011-03-15
Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel-Fulcher equation, whereas pressure and concentration analogs of the Vogel-Fulcher expression follow naturally from the theory with no additional assumptions. The computed dependence of T(g) and fragility on the length of the side group in poly(α-olefins) agrees quite well with observed trends, demonstrating that the theory can be utilized, for instance, to guide the tailoring of T(g) and the fragility of glass-forming polymer fluids in the fabrication of new materials. Our calculations also elucidate the molecular characteristics of small-molecule diluents that promote antiplasticization, a lowering of T(g) and a toughening of the material. © 2011 American Chemical Society
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Observing phthalate leaching from plasticized polymer films at the molecular level.
Zhang, Xiaoxian; Chen, Zhan
2014-05-06
Phthalates, the most widely used plasticizers in poly(vinyl chloride) (PVC), have been extensively studied. In this paper, a highly sensitive, easy, and effective method was developed to examine short-term phthalate leaching from PVC/phthalate films at the molecular level using sum frequency generation vibrational spectroscopy (SFG). Combining SFG and Fourier transform infrared spectroscopy (FTIR), surface and bulk molecular structures of PVC/phthalate films were also comprehensively evaluated during the phthalate leaching process under various environments. The leaching processes of two phthalates, diethyl phthalate (DEP) and dibutyl phthalate (DBP), from the PVC/phthalate films with various weight ratios were studied. Oxygen plasma was applied to treat the PVC/phthalate film surfaces to verify its efficacy on preventing/reducing phthalate leaching from PVC. Our results show that DBP is more stable than DEP in PVC/phthalate films. Even so, DBP molecules were still found to very slowly leach to the environment from PVC at 30 °C, at a rate much slower than DEP. Also, the bulk DBP content substantially influences the DBP leaching. Higher DBP bulk concentration yields less stable DBP molecules in the PVC matrix, allowing molecules to leach from the polymer film more easily. Additionally, DBP leaching is very sensitive to temperature changes; higher temperature can strongly enhance the leaching process. For most cases, the oxygen plasma treatment can effectively prevent phthalate leaching from PVC films (e.g., for samples with low bulk concentrations of DBP-5 and 30 wt %). It is also capable of reducing phthalate leaching from high DBP bulk concentration PVC samples (e.g., 70 wt % DBP in PVC/DBP mixture). This research develops a highly sensitive method to detect chemicals at the molecular level as well as provides surface and bulk molecular structural changes. The method developed here is general and can be applied to detect small amounts of chemical/biological environmental contaminants.