Sample records for temperature soil texture

  1. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  2. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  3. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  4. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  5. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  6. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  7. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    PubMed

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  8. Influence of edaphic factors on the mineralization of neem oil coated urea in four Indian soils.

    PubMed

    Kumar, Rajesh; Devakumar, C; Kumar, Dinesh; Panneerselvam, P; Kakkar, Garima; Arivalagan, T

    2008-11-12

    The utility of neem (Azadirachta indica A Juss) oil coated urea as a value-added nitrogenous fertilizer has been now widely accepted by Indian farmers and the fertilizer industry. In the present study, the expeller grade (EG) and hexane-extracted (HE) neem oils, the two most common commercial grades, were used to prepare neem oil coated urea (NOCU) of various oil doses, for which mineralization rates were assessed in four soils at three incubation temperatures (20, 27, and 35 degrees C). Neem oil dose-dependent conservation of ammonium N was observed in NOCU treatments in all of the soils. However, a longer incubation period and a higher soil temperature caused depletion of ammonium N. Overall, the nitrification in NOCU treatment averaged 56.6% against 77.3% for prilled urea in four soils. NOCU prepared from EG neem oil was consistently superior to that derived from hexane-extracted oil. The performance of NOCUs was best in coarse-textured soil and poorest in sodic soil. The nitrification rate (NR) of the NOCUs in the soils followed the order sodic > fine-textured > medium-textured > coarse-textured. The influence of edaphic factors on NR of NOCUs has been highlighted. The utility of the present study in predicting the performance of NOCU in diverse Indian soils was highlighted through the use of algorithms for computation of the optimum neem oil dose that would cause maximum inhibition of nitrification in any soil.

  9. Soil variability effects on canopy temperature in a limited irrigation experiment

    USDA-ARS?s Scientific Manuscript database

    Canopy temperature was monitored on a continuous basis in a limited irrigation maize experiment, with 12 separate irrigation treatments and 4 replicates of each treatment. Soil electroconductivity (EC) was measured and mapped to quantify variation in soil texture throughout the plots, and was correl...

  10. Soil physical properties regulate lethal heating during burning of woody residues

    Treesearch

    Matt Busse; Carol Shestak; Ken Hubbert; Eric Knapp

    2010-01-01

    Temperatures well in excess of the lethal threshold for roots (60°C) have been measured in forest soils when woody fuels are burned. Whether this heat pulse is strongly moderated by soil moisture or soil texture is not fully understood, however. We measured soil heat profi les during 60 experimental burns, identifying changes in maximum soil temperature and heat...

  11. Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico

    Treesearch

    Jonathan D. Coop; Thomas J. Givnish

    2008-01-01

    Montane and subalpine grasslands are prominent, but poorly understood, features of the Rocky Mountains. These communities frequently occur below reversed tree lines on valley floors, where nightly cold air accumulation is spatially coupled with fine soil texture. We used field experiments to assess the roles of minimum temperature, soil texture, grass competition, and...

  12. Decomposition of Organic Carbon in Fine Soil Particles Is Likely More Sensitive to Warming than in Coarse Particles: An Incubation Study with Temperate Grassland and Forest Soils in Northern China

    PubMed Central

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming. PMID:24736659

  13. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil clay content and with study site as a random effect. (III) Threshold values of texture and climatc effects were identified using a regression tree. Three mean annual temperature classes for texture dependent BSC growth limitation were identified: (1) <9 °C with a threshold value of 25% silt and clay (limited growth on coarser soils), (2) 9-19 °C, where texture did have no influence on relative crust biomass, and (3) >19 °C at soils with <4 or >17% silt and clay. Because biocrust development is limited under certain climatic and soil texture conditions, it is suggested to consider soil texture for biocrust rehabilitation purposes and in biogeochemical modeling of cryptogamic ground covers. References Belnap, J. & Eldridge, D. 2001. Disturbance and Recovery of Biological Soil Crusts. In: Belnap, J. & Lange, O. (eds.) Biological Soil Crusts: Structure, Function, and Management, Springer, Berlin. Belnap, J. 2001. Biological Soil Crusts and Wind Erosion. In: Belnap, J. & Lange, O. (eds.) Fischer, T., Subbotina, M. 2014. Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis. Biologia 69/11:1520-1530,

  14. Soil Taxonomy and land evaluation for forest establishment

    Treesearch

    Haruyoshi Ikawa

    1992-01-01

    Soil Taxonomy, the United States system of soil classification, can be used for land evaluation for selected purposes. One use is forest establishment in the tropics, and the soil family category is especially functional for this purpose. The soil family is a bionomial name with descriptions usually of soil texture, mineralogy, and soil temperature classes. If the...

  15. Biochar Properties Influencing Greenhouse Gas Emissions in Tropical Soils Differing in Texture and Mineralogy.

    PubMed

    Butnan, Somchai; Deenik, Jonathan L; Toomsan, Banyong; Antal, Michael J; Vityakon, Patma

    2016-09-01

    The ability of biochar applications to alter greenhouse gases (GHGs) (CO, CH, and NO) has been attracting research interest. However, inconsistent published results necessitate further exploration of potential influencing factors, including biochar properties, biochar rates, soil textures and mineralogy, and their interactions. Two short-term laboratory incubations were conducted to evaluate the effects of different biochars: a biochar with low ash (2.4%) and high-volatile matter (VM) (35.8%) contents produced under low-temperature (350°C) traditional kiln and a biochar with high ash (3.9%) and low-VM (14.7%) contents produced with a high-temperature (800°C) Flash Carbonization reactor and different biochar rates (0, 2, and 4% w/w) on the GHG emissions in a loamy-sand Ultisol and a silty-clay-loam Oxisol. In the coarse-textured, low-buffer Ultisol, cumulative CO and CH emissions increased with increasing VM content of biochars; however, CO emission sharply decreased at 83 μg VM g soil. In the fine-textured, high-buffer Oxisol, there were significant positive effects of VM content on cumulative CO emission without suppression effects. Regarding cumulative NO emission, there were significant positive effects in the Mn-rich Oxisol. Ash-induced increases in soil pH had negative effects on all studied GHG emissions. Possible mechanisms include the roles biochar VM played as microbial substrates, a source of toxic compounds and complexing agents reducing the toxicity of soil aluminum and manganese, and the role of biochar ash in increasing soil pH affecting GHG emissions in these two contrasting soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  17. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate soil temperature and water storage in the arable layer thereby differentiating soil textures exclusively in main types (clay, silt, sand and loam). Similar to the BAT investigation it was of further interest to investigate how the re_clim parameter range behaves per ENZ. We will discuss the analyzed results of both strategies in a comparative manner to assess SOM turnover conditions across Europe. Both concepts help to separate different turnover activities and to indicate organic matter input in order to maintain the given SOM. The assessment could provide local recommendations for local adaptations of soil management practices. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food (Grant Agreement N° 289782).

  18. Comparison of Forest Soil Carbon Dynamics at Five Sites Along a Latitudinal Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T

    2011-01-01

    Carbon stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five forest sites, ranging from 60 to 100 years old, along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. For many measurements (like forest floor carbon stocks, cumulative soil organic carbon stocks to 20 cm, and the fraction of whole soil carbon in POM), there was no significant difference between years at each site despite the use of somewhat different sampling methods.more » With one exception, forest floor and mineral soil carbon stocks increased from warm, southern, sites (with fine-textured soils) to northern, cool, sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic carbon stock similar to those measured at southern sites. Soil carbon at each site was partitioned into two pools (labile and stable) on the basis of carbon measured in the forest floor and POM and MOM fractions from the mineral soil. A two-compartment steady-state model, with randomly varying parameter values, was used in probabilistic calculations to estimate the turnover time of labile soil organic carbon (MRTU) and the annual transfer of labile carbon to stable carbon (k2) at each site in two different years. Based on empirical data, the turnover time of stable soil carbon (MRTS) was determined by mean annual temperature and increased from 30 to 100 years from south to north. Moving from south to north, MRTU increased from approximately 5 to 14 years. Consistent with prior studies, 13C enrichment factors ( ) from the Rayleigh equation, that describe the rate of change in 13C through the soil profile, were an indicator of soil carbon turnover times along the latitudinal gradient. Consistent with its role in stabilization of soil organic carbon, silt-clay content along the gradient was positively correlated (r = 0.91; P 0.001) with parameter k2. Mean annual temperature was indicated as the environmental factor most strongly associated with south to north differences in the storage and turnover of labile soil carbon. However, soil texture appeared to override the influence of temperature when there was too little silt-clay content to stabilize labile soil carbon and thereby protect it from decomposition. Irrespective of latitudinal differences in measured soil carbon stocks, each study site had a relatively high proportion of labile soil carbon (approximately 50% of whole soil carbon to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil carbon are potentially at risk of depletion by decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.« less

  19. Factors affecting transport of bacteria and microspheres through biochar-amended soils

    USDA-ARS?s Scientific Manuscript database

    We have investigated the role of biochar feedstock type (poultry litter extract and pine chips), biochar pyrolysis temperature (350 and 700 oC), biochar application rate (1, 2, and 10%), soil moisture content (saturated and 50% saturation), soil texture (1 and 12 % clay content), and surface propert...

  20. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  1. Plant communities on infertile soils are less sensitive to climate change.

    PubMed

    Harrison, Susan; Damschen, Ellen; Fernandez-Going, Barbara; Eskelinen, Anu; Copeland, Stella

    2015-11-01

    Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits. A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949-1951 to 2007-2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils. Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities. Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. CO2 dinamics and priming effect of different Hungarian soils based on laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Zacháry, Dóra; Szalai, Zoltán; Filep, Tibor; Kovács, József; Jakab, Gergely

    2017-04-01

    Soil processes are particularly important in terms of global carbon cycle, as soils globally contain approximately 2000 Gt carbon, which is higher than the carbon stock of the atmosphere and the terrestrial ecosystem together. Therefore small alterations in the soils' carbon sequestration potential can generate rapid and significant changes in the atmosphere carbon concentration. Soil texture is one of the most important soil parameters which plays a significant role in soil carbon sequestration. Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. Our aim was to investigate the influence of the basic soil properties (texture, pH, organic matter content, etc.) on the biological and physicochemical processes determining the soil CO2 emission. Thirteen Hungarian soil samples (depth of 0-20 cm) were incubated during six months. The samples are mainly high clay and organic matter content forest soils, but two forest soils developed on sand were also collected. The soils are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues were added to the soils in order to get natural 13C enrichment for stable isotope measurement purposes and for quantifying the priming effect caused by the crop residue addition. The temperature (20°C) and humidity (70% field capacity) conditions were kept constant in an incubator. The soil respiration was measured at specified intervals (on day 3, 8, 15, 30, 51, 79, 107, 135 and 163) and trapped in 2M NaOH and quantified by titration with 1M HCl. Our first results based on the cumulative CO2 respiration values show positive priming for all type of soils. Results confirm the statement that in certain cases fine textured soils release more CO2. To determine which soil properties influence the most the soil CO2 emission, the linking among the mathematical model parameters and the soil properties would be useful. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledge.

  3. Data documentation for the bare soil experiment at the University of Arkansas

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.

    1980-01-01

    The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.

  4. The Effect of Soil Hydraulic Properties vs. Soil Texture in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Gutmann, E. D.; Small, E. E.

    2005-01-01

    This study focuses on the effect of Soil Hydraulic Property (SHP) selection on modeled surface fluxes following a rain storm in a semi-arid environment. SHPs are often defined based on a Soil Texture Class (STC). To examine the effectiveness of this approach, the Noah land surface model was run with each of 1306 soils in a large SHP database. Within most STCs, the outputs have a range of 350 W/m2 for latent and sensible heat fluxes, and 8K for surface temperature. The average difference between STC median values is only 100 W/m2 for latent and sensible heat. It is concluded that STC explains 5-15% of the variance in model outputs and should not be used to determine SHPs.

  5. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    PubMed

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils

    Treesearch

    Daniel Liptzin; Whendee L. Silver

    2015-01-01

    Humid tropical forest soils are characterized by warm temperatures, abundant rainfall, and high rates of biological activity that vary considerably in both space and time. These conditions, together with finely textured soils typical of humid tropical forests lead to periodic low redox conditions, even in well-drained upland environments. The relationship between redox...

  7. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount. Soil shear resistance was highest on finer textured soil with the highest watering treatment, whereas compression resistance was highest on the coarsest textured soils with the highest watering amounts. Nutrient addition did not influence total cover or biocrust function, but did decrease lichen cover. Taken together, these results suggest that interactions between soil texture, water, and to a lesser degree nutrients, create predictable patterns in biocrust assemblage and offers a mechanistic understanding of edaphic controls over biocrust abundance and structure. These insights add to our increasing understanding of how edaphic gradients structure soil communities.

  8. Soil respiration sensitivities to water and temperature in a revegetated desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  9. Modeling uncertainty and correlation in soil properties using Restricted Pairing and implications for ensemble-based hillslope-scale soil moisture and temperature estimation

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2007-12-01

    Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.

  10. A model for nematode locomotion in soil

    USGS Publications Warehouse

    Hunt, H. William; Wall, Diana H.; DeCrappeo, Nicole; Brenner, John S.

    2001-01-01

    Locomotion of nematodes in soil is important for both practical and theoretical reasons. We constructed a model for rate of locomotion. The first model component is a simple simulation of nematode movement among finite cells by both random and directed behaviours. Optimisation procedures were used to fit the simulation output to data from published experiments on movement along columns of soil or washed sand, and thus to estimate the values of the model's movement coefficients. The coefficients then provided an objective means to compare rates of locomotion among studies done under different experimental conditions. The second component of the model is an equation to predict the movement coefficients as a function of controlling factors that have been addressed experimentally: soil texture, bulk density, water potential, temperature, trophic group of nematode, presence of an attractant or physical gradient and the duration of the experiment. Parameters of the equation were estimated by optimisation to achieve a good fit to the estimated movement coefficients. Bulk density, which has been reported in a minority of published studies, is predicted to have an important effect on rate of locomotion, at least in fine-textured soils. Soil sieving, which appears to be a universal practice in laboratory studies of nematode movement, is predicted to negatively affect locomotion. Slower movement in finer textured soils would be expected to increase isolation among local populations, and thus to promote species richness. Future additions to the model that might improve its utility include representing heterogeneity within populations in rate of movement, development of gradients of chemical attractants, trade-offs between random and directed components of movement, species differences in optimal temperature and water potential, and interactions among factors controlling locomotion.

  11. Modified centroid for estimating sand, silt, and clay from soil texture class

    USDA-ARS?s Scientific Manuscript database

    Models that require inputs of soil particle size commonly use soil texture class for input; however, texture classes do not represent the continuum of soil size fractions. Soil texture class and clay percentage are collected as a standard practice for many land management agencies (e.g., NRCS, BLM, ...

  12. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  13. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  14. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    NASA Astrophysics Data System (ADS)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.

  15. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-09-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  16. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    USGS Publications Warehouse

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  17. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallgren, Paul

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop amore » biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.« less

  18. The Effects of Soil Texture on the Ability of Human Remains Detection Dogs to Detect Buried Human Remains.

    PubMed

    Alexander, Michael B; Hodges, Theresa K; Wescott, Daniel J; Aitkenhead-Peterson, Jacqueline A

    2016-05-01

    Despite technological advances, human remains detection (HRD) dogs still remain one of the best tools for locating clandestine graves. However, soil texture may affect the escape of decomposition gases and therefore the effectiveness of HDR dogs. Six nationally credentialed HRD dogs (three HRD only and three cross-trained) were evaluated on novel buried human remains in contrasting soils, a clayey and a sandy soil. Search time and accuracy were compared for the clayey soil and sandy soil to assess odor location difficulty. Sandy soil (p < 0.001) yielded significantly faster trained response times, but no significant differences were found in performance accuracy between soil textures or training method. Results indicate soil texture may be significant factor in odor detection difficulty. Prior knowledge of soil texture and moisture may be useful for search management and planning. Appropriate adjustments to search segment sizes, sweep widths and search time allotment depending on soil texture may optimize successful detection. © 2016 American Academy of Forensic Sciences.

  19. Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential

    USDA-ARS?s Scientific Manuscript database

    Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...

  20. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  1. Soil Texture Estimates: A Tool to Compare Texture-by-Feel and Lab Data

    ERIC Educational Resources Information Center

    Franzmeier, D.P.; Owens, P.R.

    2008-01-01

    Soil texture is a fundamental soil property that impacts agricultural and engineering land-use. Comparing texture estimates-by-feel to laboratory-known values to calibrate fingers is a common practice. As educators, it is difficult to assess this field skill consistently and fairly. The instructor may give full credit for the correct texture class…

  2. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2015-07-01

    Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

  3. On soil textural classifications and soil-texture-based estimations

    NASA Astrophysics Data System (ADS)

    Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel

    2018-02-01

    The soil texture representation with the standard textural fraction triplet sand-silt-clay is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.

  4. Influence of soil texture, moisture, and surface cracks on the performance of a root-feeding flea beetle, Longitarsus bethae (Coleoptera: Chrysomelidae), a biological control agent for Lantana camara (Verbenaceae).

    PubMed

    Simelane, David O

    2007-06-01

    Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.

  5. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    PubMed

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  6. Spatial prediction of soil texture in region Centre (France) from summary data

    NASA Astrophysics Data System (ADS)

    Dobarco, Mercedes Roman; Saby, Nicolas; Paroissien, Jean-Baptiste; Orton, Tom G.

    2015-04-01

    Soil texture is a key controlling factor of important soil functions like water and nutrient holding capacity, retention of pollutants, drainage, soil biodiversity, and C cycling. High resolution soil texture maps enhance our understanding of the spatial distribution of soil properties and provide valuable information for decision making and crop management, environmental protection, and hydrological planning. We predicted the soil texture of agricultural topsoils in the Region Centre (France) combining regression and area-to-point kriging. Soil texture data was collected from the French soil-test database (BDAT), which is populated with soil analysis performed by farmers' demand. To protect the anonymity of the farms the data was treated by commune. In a first step, summary statistics of environmental covariates by commune were used to develop prediction models with Cubist, boosted regression trees, and random forests. In a second step the residuals of each individual observation were summarized by commune and kriged following the method developed by Orton et al. (2012). This approach allowed to include non-linear relationships among covariates and soil texture while accounting for the uncertainty on areal means in the area-to-point kriging step. Independent validation of the models was done using data from the systematic soil monitoring network of French soils. Future work will compare the performance of these models with a non-stationary variance geostatistical model using the most important covariates and summary statistics of texture data. The results will inform on whether the later and statistically more-challenging approach improves significantly texture predictions or whether the more simple area-to-point regression kriging can offer satisfactory results. The application of area-to-point regression kriging at national level using BDAT data has the potential to improve soil texture predictions for agricultural topsoils, especially when combined with existing maps (i.e., model ensemble).

  7. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Growth patterns of red pine on fine-textured soils.

    Treesearch

    David H. Alban; Donald H. Prettyman; Gary J. Brand

    1987-01-01

    Compares growth of 28- to 49-year-old red pine plantations on sandy and fine-textured soils. Red pine growing on these two contrasting soils did not differ in bole form, live crown ratio, or mortality, and tree growth predicted by models (STEMS and REDPINE) developed from trees growing on sandy soils worked equally well for trees growing on fine-textured soils.

  9. Evaluation of thermal X/5-detector Skylab S-192 data for estimating evapotranspiration and thermal properties of soils for irrigation management

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Horton, M. L.; Russell, M. J.; Myers, V. I.

    1975-01-01

    An energy budget approach to evaluating the SKYLAB X/5-detector S-192 data for prediction of soil moisture and evapotranspiration rate was pursued. A test site which included both irrigated and dryland agriculture in Southern Texas was selected for the SL-4 SKYLAB mission. Both vegetated and fallow fields were included. Data for a multistage analysis including ground, NC-130B aircraft, RB-57F aircraft, and SKYLAB altitudes were collected. The ground data included such measurements as gravimetric soil moisture, percent of the ground covered by green vegetation, soil texture, net radiation, soil temperature gradients, surface emittance, soil heat flux, air temperature and humidity gradients, and cultural practices. Ground data were used to characterize energy budgets and to evaluate the utility of an energy budget approach for determining soil moisture differences among twelve specific agricultural fields.

  10. Ammonia volatilization loss from surface applied livestock manure.

    PubMed

    Paramasivam, S; Jayaraman, K; Wilson, Takela C; Alva, Ashok K; Kelson, Luma; Jones, Leandra B

    2009-03-01

    Ammonia (NH(3)) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH(3)emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg(-1)) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg(-1)) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha(-1) in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH(3) volatilization. Results indicated a greater NH(3) loss from soils amended with SM compared to that with PL. The cumulative NH(3)volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH(3) was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH(3) from soils. A significant portion (> 50%) of cumulative NH(3) emission over 19 d occurred during the first 5-7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (< or = 5.60 Mg ha(-1)) is recommended to minimize NH(3) emissions.

  11. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  12. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  13. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7 days, germination rate of sunflower was calculated, and shoot and root lengths were also measured. According to the results of germination tests, the seeds germination rates were reduced with increasing heavy metal concentrations in both loam soil and sandy loam soil. The SVI values in loam soil in more than in sandy loam soil. Keywords: phytoremediation, sunflower, soil texture, germination test ACKNOWLEDGEMENT This work is supported by the Korea Ministry of the Environment as 'The GAIA (Geo-Advanced Innovative Action) Project'.

  14. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

    PubMed

    Leibar, Urtzi; Aizpurua, Ana; Unamunzaga, Olatz; Pascual, Inmaculada; Morales, Fermín

    2015-05-01

    While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53% relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65% RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8% of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

  15. Coccidioides niches and habitat parameters in the southwestern United States: A matter of scale

    USGS Publications Warehouse

    Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E.; ,

    2007-01-01

    To determine habitat attributes and processes suitable for the growth of Coccidioides, soils were collected from sites in Arizona, California, and Utah where Coccidioides is known to have been present. Humans or animals or both have been infected by Coccidioides at all of the sites. Soil variables considered in the upper 20 cm of the soil profile included pH, electrical conductivity, salinity, selected anions, texture, mineralogy, vegetation types and density, and the overall geomorphologic and ecological settings. Thermometerswere buried to determine the temperature range in the upper part of the soil where Coccidioides is often found. With the exception of temperature regimes and soil textures, it is striking that none of the other variables or group of variables that might be definitive are indicative of the presence of Coccidioides. Vegetation ranges from sparse to relatively thick cover in lower Sonoran deserts, Chaparral-upper Sonoran brush and grasslands, and Mediterranean savannas and forested foothills. No particular grass, shrub, or forb is definitive. Material classified as very fine sand and silt is abundant in all of the Coccidioides-bearing soils and may be their most common shared feature. Clays are not abundant (less than 10%). All of the examined soil locations are noteworthy as generally 50% of the individuals who were exposed to the dust or were excavating dirt at the sites were infected. Coccidioides has persisted in the soil at a site in Dinosaur National Monument, Utah for 37 years and at a Tucson, Arizona site for 41 years. ?? 2007 New York Academy of Sciences.

  16. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    PubMed

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  18. Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition - a mesocosm experiment

    Treesearch

    Cinzia Fissore; Martin F. Jurgensen; James Pickens; Chris Miller; Deborah Page-Dumroese; Christian P. Giardina

    2016-01-01

    Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%,...

  19. A Case Study of Petroleum Degradation in Different Soil Textural Classes.

    PubMed

    Kogbara, Reginald B; Ayotamuno, Josiah M; Worlu, Daniel C; Fubara-Manuel, Isoteim

    2016-01-01

    Patents have been granted for a number of techniques for petroleum biodegradation including use of micro-organisms for degradation of hydrocarbon-based substances and for hydrocarbon degradation in oil reservoirs, but there is a dearth of information on hydrocarbon degradation in different soil textures. Hence, this work investigated the effects of different soil textures on degradation of petroleum hydrocarbons during a six-week period. Five soil textural classes commonly found in Port Harcourt metropolis, Nigeria, namely sand, loamy sand, sandy loam, silty clay and clay, were employed. The soils were contaminated with the same amount of crude oil and then remediated by biostimulation. Selected soil properties were monitored over time. Bacterial numbers declined significantly in the fine soil textures after petroleum contamination, but were either unaffected or increased significantly in the coarser soil textures. Hydrocarbon losses ranged from 42% - 99%; the sandy loam had the highest, while the clay soil had the least total hydrocarbon content (THC) reduction. The total heterotrophic bacterial (THB) counts generally corroborated the THC results. Fold increase in bacterial numbers due to remediation treatment decreased with increasing clay content. The results suggest that higher sand than clay content of soil favours faster hydrocarbon degradation. Hydrocarbon degradation efficiency increased with silt content among soil groupings such as fine and coarse soils but not necessarily with increasing silt content of soil. Thus, there seems to be cut-off sand and clay contents in soil at which the effect of the silt content becomes significant.

  20. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    Various agricultural sectors are sensitive to projected climate change. In this sense, the strong link between climate and grapevine phenology and berry quality suggests a relevant impact. Within the concept of terroir, climate is a factor that influences ripening of a specific variety and resulting wine style. Furthermore, the effect of soil on grape potential is complex, because the soil acts on grapevine water and nutrient supply, and influences root zone temperature. The aim of this work was to evaluate the effect of climate change (increased CO2, higher temperature and lower relative humidity), soil texture and irrigation on the physiology, yield and berry quality of grapevine (Vitis vinifera L.) cv. Tempranillo. A greenhouse experiment was carried out with potted, own-rooted fruit-bearing cuttings. Three factors were studied: a) climate change (700 μmol CO2 mol-1 air, 28/18°C and 45/65% day/night relative humidity) vs. current conditions (375 μmol CO2 mol-1 air, 24/14ºC and 33/53% day/night relative humidity), b) soil texture (9, 18 and 36% soil clay content) and c) irrigation; well-irrigated (20-35% of soil water content) vs. water deficit (60% of the water applied to the irrigated plants). Berries were harvested at ripeness (21-23 ºBrix). Climate change shortened the time between veraison and full maturity up to 9 days and reduced the number of berries per bunch. Grapes grown under climate change conditions had higher pH and lower acidity (due to malic and tartaric acids), anthocyanins content and colour intensity. Water-deficit delayed ripening up to 10 days and reduced final leaf area and root weight. Berries from water stressed plants had an increased skin/pulp ratio and pH, and lower acidity (malic acid) and polyphenol content. Regarding soil texture, plants grown in the soil with lower clay content increased root fresh weight and had higher total anthocyanins content. There were no interactions between factors. In conclusion, both climate change and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  1. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  2. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  3. Transfer of the nationwide Czech soil survey data to a foreign soil classification - generating input parameters for a process-based soil erosion modelling approach

    NASA Astrophysics Data System (ADS)

    Beitlerová, Hana; Hieke, Falk; Žížala, Daniel; Kapička, Jiří; Keiser, Andreas; Schmidt, Jürgen; Schindewolf, Marcus

    2017-04-01

    Process-based erosion modelling is a developing and adequate tool to assess, simulate and understand the complex mechanisms of soil loss due to surface runoff. While the current state of available models includes powerful approaches, a major drawback is given by complex parametrization. A major input parameter for the physically based soil loss and deposition model EROSION 3D is represented by soil texture. However, as the model has been developed in Germany it is dependent on the German soil classification. To exploit data generated during a massive nationwide soil survey campaign taking place in the 1960s across the entire Czech Republic, a transfer from the Czech to the German or at least international (e.g. WRB) system is mandatory. During the survey the internal differentiation of grain sizes was realized in a two fractions approach, separating texture into solely above and below 0.01 mm rather than into clayey, silty and sandy textures. Consequently, the Czech system applies a classification of seven different textures based on the respective percentage of large and small particles, while in Germany 31 groups are essential. The followed approach of matching Czech soil survey data to the German system focusses on semi-logarithmic interpolation of the cumulative soil texture curve additionally on a regression equation based on a recent database of 128 soil pits. Furthermore, for each of the seven Czech texture classes a group of typically suitable classes of the German system was derived. A GIS-based spatial analysis to test approaches of interpolation the soil texture was carried out. First results show promising matches and pave the way to a Czech model application of EROSION 3D.

  4. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    PubMed Central

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466

  5. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    PubMed

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.

  6. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.

  7. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357

  8. A reexamination of soil textural effects on microwave emission and backscattering

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Kouyate, F.; Ulaby, F. T.

    1984-01-01

    Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.

  9. Effects of shrub encroachment on soil organic carbon in global grasslands.

    PubMed

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-07-08

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0-50 cm) were altered by shrub encroachment, with changes ranging from -50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.

  10. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition

    Treesearch

    Eric J. Gustafson; Brian R. Miranda; Arjan M.G. De Bruijn; Brian R. Sturtevant; Mark E. Kubiske

    2017-01-01

    Forest landscape models (FLM) are increasingly used to project the effects of climate change on forested landscapes, yet most use phenomenological approaches with untested assumptions about future forest dynamics. We used a FLM that relies on first principles to mechanistically simulate growth (LANDIS-II with PnET-Succession) to systematically explore how landscapes...

  11. Hygrothermal Material Properties for Soils in Building Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrer, Manfred; Pallin, Simon B.

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferredmore » and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing« less

  12. How much fertilizer nitrogen does sugarcane need?

    USDA-ARS?s Scientific Manuscript database

    Nitrogen rate recommendations for sugarcane in Louisiana take into account crop age (plant cane or stubble) and soil texture (light or heavy). Recommended rates in the 1950s ranged from 40 pounds N/A for plant cane on light-textured soil to 100 pounds of N/A for stubble cane on heavy-textured soil a...

  13. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  14. Riverbank restoration in the southern United States: The effects of soil texture and moisture regime on survival and growth of willow posts

    Treesearch

    S. Reza Pezeshki; Steven D. Schaff; F. Douglas Shields

    2000-01-01

    Field studies were conducted to quantify the relationship between soil conditions and growth of black willow posts planted for riverbank erosion control along Harland Creek (HC) and Twentymile Creek (TC) sites in Mississippi. Both sites had a wide range of soil texture and moisture regimes. Soil texture, water level, redox potential (Eh), and willow survival and growth...

  15. Fertilization effects on the electrical conductivity measured by EMI, ERT, and GPR

    NASA Astrophysics Data System (ADS)

    Weihermueller, L.; Kaufmann, M.; Steinberger, P.; Pätzold, S.; Vereecken, H.; Van Der Kruk, J.

    2017-12-01

    Near surface geophysics such as electromagnetic induction (EMI), electrical resistivity tomography (ERT), and ground penetrating radar (GPR) are widely used for field characterization, to delineate soil units, and to estimate soil texture, bulk densities and/or soil water contents. Hereby, the measured soil apparent conductivity (ECa) is often used. Soil ECa is governed by horizontal and vertical changes in soil texture, mineralogy, soil water content, and temperature, and the single contributions are not easy to disentangle. Within single fields and between fields fertilization management may vary spatially, which holds especially for field trials. As a result, ECa might vary due to differences in electrolyte concentration and subsequent pore fluid conductivity, but secondary fertilization effects might also play a major role in ECa differences such as differences in soil water uptake by growing plants. To study the direct effect of mineral fertilization on ECa, a field experiment was performed on 21 bare soil plots each of a size of 9 m2, where 7 different fertilization treatments were established in triplicates. As mineral fertilizers, commercial calcium ammonium nitrate and potassium chloride were chosen and applied in dosages of 200, 400, and 2000 kg ha-1 N equivalent. Additionally, soil water, soil temperature, and EC were recorded in a pit at different depths using commercial sensors. Changes in ECa were measured every 10 days using EMI and monthly using GPR and ERT. Additionally, soil samples were monthly taken at all plots and nitrate, chloride, and potassium contents were measured in the lab. The poster will show the effect of ECa changes due to fertilization and corresponding leaching of the fertilized elements over time. The experimental results provide information of how fertilization is influencing ECa readings and how long the fertilizers are influencing ECa measurements with geophysical instruments. This study helps to overcome restricted interpretation of ECa measurements on managed agricultural soils.

  16. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    NASA Astrophysics Data System (ADS)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  17. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    PubMed

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  18. Water repellency of two forest soils after biochar addition

    Treesearch

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  19. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    NASA Astrophysics Data System (ADS)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  20. The nature and classification of Australian soils affected by sodium

    NASA Astrophysics Data System (ADS)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups including the Vertisols, Luvisols, Calcisols and Planosols which would have some relationship to Australia's sodic soils.

  1. Detection of moisture and moisture related phenomena from Skylab. [Texas

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1973-01-01

    The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.

  2. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach.

    PubMed

    Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin

    2016-01-01

    In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.

  3. Uncertainty in Pedotransfer Functions from Soil Survey Data

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Rawls, W. J.

    2002-05-01

    Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty

  4. Thermal Conductivity Prediction of Soil in Complex Plant Soil System using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wardani, A. K.; Purqon, A.

    2016-08-01

    Thermal conductivity is one of thermal properties of soil in seed germination and plants growth. Different soil types have different thermal conductivity. One of soft-computing promising method to predict thermal conductivity of soil types is Artificial Neural Network (ANN). In this study, we estimate the thermal conductivity of soil prediction in a soil-plant complex systems using ANN. With a feed-forward multilayer trained with back-propagation with 4, 10 and 1 on the input, hidden and output layers respectively. Our input are heating time, temperature and thermal resistance with thermal conductivity of soil as a target. ANN prediction demonstrates a good agreement with Mean Squared Error-testing (MSEte) of 9.56 x 10-7 for soils with green beans and those of bare soils is 7.00 × 10-7 respectively Green beans grow only on black-clay soil with a thermal conductivity of 0.7 W/m K with a sufficient water content. Our results demonstrate that temperature, moisture content, colour, texture and structure of soil are greatly affect to the thermal conductivity of soil in seed germination and plant growth. In future, it is potentially applied to estimate more complex compositions of plant-soil systems.

  5. Responses of plant available water and forest productivity to variably layered coarse textured soils

    NASA Astrophysics Data System (ADS)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil textures and vegetative types. The simulated results showed that the presence of 50 cm of coarser graded sand overlying 50 cm of finer graded sand is the most effective reclaimed prescription to increase AWHC and forest productivity among the studied soil profiles.

  6. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    PubMed

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  7. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    PubMed Central

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil. PMID:24575252

  8. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    NASA Astrophysics Data System (ADS)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at the three different temperatures. Amino acid concentrations and at% 15N of amino acids were measured in soil extracts at two time points by a novel approach based on the conversion of α-amino groups to N2O and purge-and-trap isotope ratio mass spectrometry. Protein availability was measured by extraction in solvents of increasing extraction efficiency (water, salt, metaphosphate, hydroxide), followed by acid hydrolysis to free amino acids and reaction with orthophthaldialdehyde. Peptidase activity was also measured at 5, 15 and 25˚ C using fluorescence probes. We expect that soil texture (clay content) and pH will affect protein sorption and availability and thereby affect depolymerization rates. Soil C:N ratios may control the N demand of microorganisms and thus affect enzyme production and amino acid immobilization rates. Moreover, soil pH is a major control on microbial community structure and may thereby affect the production of extracellular enzymes involved in protein and peptide decomposition. Due to the differences in temperature sensitivity of diffusion and enzymatic processes we expect higher temperature sensitivities given that protein decomposition is enzyme- rather than substrate-limited. This study will therefore greatly advance our understanding of major controls of the soil N cycle and provide highly important data for refining soil N cycle models.

  9. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: Implications for climate change

    USGS Publications Warehouse

    Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.

    2008-01-01

    Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses between 7 and 25 mm). Thus, the heterogeneity of the desert landscape and the timing or the number of medium-sized pulses is expected to significantly impact desert soil C loss with climate change. ?? 2008 Springer Science+Business Media, LLC.

  10. Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.

  11. Parameterization and Modeling of Coupled Heat and Mass Transport in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Yang, Z.

    2016-12-01

    The coupled heat and mass transport in the vadose zone is essentially a multiphysics issue. Addressing this issue appropriately has remarkable impacts on soil physical, chemical and biological processes. To data, most coupled heat and water transport modeling has focused on the interactions between liquid water, water vapor and heat transport in homogeneous and layered soils. Comparatively little work has been done on structured soils where preferential infiltration and evaporation flow occurs. Moreover, the traditional coupled heat and water model usually neglects the nonwetting phase air flow, which was found to be significant in the state-of-the-art modeling framework for coupled heat and water transport investigation. However, the parameterizations for the nonwetting phase air permeability largely remain elusive so far. In order to address the above mentioned limitations, this study aims to develop and validate a predictive multiphysics modeling framework for coupled soil heat and water transport in the heterogeneous shallow subsurface. To this end, the following research work is specifically conducted: (a) propose an improved parameterization to better predict the nonwetting phase relative permeability; (b) determine the dynamics, characteristics and processes of simultaneous soil moisture and heat movement in homogeneous and layered soils; and (c) develop a nonisothermal dual permeability model for heterogeneous structured soils. The results of our studies showed that: (a) the proposed modified nonwetting phase relative permeability models are much more accurate, which can be adopted for better parameterization in the subsequent nonisothermal two phase flow models; (b) the isothermal liquid film flow, nonwetting phase gas flow and liquid-vapor phase change non-equilibrium effects are significant in the arid and semiarid environments (Riverside, California and Audubon, Arizona); and (c) the developed nonisothermal dual permeability model is capable of characterizing the preferential evaporation path in the heterogeneous structured soils due to the fact that the capillary forces divert the pore water from coarse-textured soils (high temperature region) toward the fine-textured soils (low temperature region).

  12. Coastal plain soils and geomorphology: a key to understanding forest hydrology

    Treesearch

    Thomas M. Williams; Devendra M. Amatya

    2016-01-01

    In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...

  13. Relationships between Soil compaction and harvest season, soil texture, and landscape position for aspen forests

    Treesearch

    Randy Kolka; Aaron Steber; Ken Brooks; Charles H. Perry; Matt Powers

    2012-01-01

    Although a number of harvesting studies have assessed compaction, no study has considered the interacting relationships of harvest season, soil texture, and landscape position on soil bulk density and surface soil strength for harvests in the western Lake States. In 2005, we measured bulk density and surface soil strength in recent clearcuts of predominantly aspen...

  14. Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981

    NASA Technical Reports Server (NTRS)

    Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III

    1984-01-01

    Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.

  15. Comparison of model microbial allocation parameters in soils of varying texture

    NASA Astrophysics Data System (ADS)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation and carbon stabilization could improve model representations of C cycling across a range of soil types.

  16. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    NASA Astrophysics Data System (ADS)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  17. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  18. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  19. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    NASA Astrophysics Data System (ADS)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  20. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  1. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    PubMed

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study.

  2. Numerical analysis of groundwater recharge through stony soils using limited data

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.

    1991-10-01

    This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.

  3. Development of an Engineering Soil Database

    DTIC Science & Technology

    2017-12-27

    systems such as agricultural and geological soil classifications and soil parameters. Tier 3 Data were converted into equivalent USCS classification...14 2.7 U.S. Department of Agriculture (USDA) textural soil classification ............................ 16 2.7.1 Properties of USDA textural...Defense ERDC U.S. Army Engineer Research and Development Center ESDB European Soil Database FAO Food and Agriculture Organization (of the United

  4. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyun; Yi, Shuhua; Wu, Qingbai; Yang, Kun; Ding, Yongjian

    2016-12-01

    Soil temperature and soil water are two important factors controlling vegetation growth. Climate warming and associated permafrost degradation might change these soil conditions and affect alpine grassland on the Qinghai-Tibetan Plateau. However, our current understanding of the role of soil temperature and water at the plateau scale is inadequate. In this study, we used plateau scale soil water content, frozen soil type, vegetation index and land surface temperature datasets to investigate the spatial distribution, limiting factors of vegetation growth and normalized difference vegetation index (NDVI) changing trends in two major alpine grasslands, alpine meadow and alpine steppe, in relation to soil temperature and soil water conditions. Our results showed that: 1) alpine meadow is mainly distributed in seasonal frozen soil areas (55.90% of alpine meadow) with a soil water content between 0.15 and 0.25 m3/m3 and alpine steppe is mainly found in seasonal frozen and sub-stable permafrost areas (69.38% of alpine steppe) with a soil water content between 0.05 and 0.20 m3/m3; 2) at the plateau scale, there were 35.6% (more in colder regions) of alpine meadow pixels and 33.6% (more in wetter regions) of alpine steppe pixels having increase NDVI changing trends during 1982-2012, respectively; and the values having decrease NDVI changing trends are 7.3% and 9.7%, respectively; and 3) the vegetation growth of alpine meadow is mainly limited by soil temperature, while that of alpine steppe is limited by both soil temperature and soil water. We also find the limiting factors of temperature or water can only explain < 50% variation of vegetation growth trends in alpine grasslands. Our findings warrant the use of process-based ecosystem models to consider other factors, such as grazing, erosion and soil texture, among others, in addition to soil temperature and water to make proper projections when simulating the responses of vegetation growth to climate warming in alpine grasslands with different hydro-thermal conditions.

  5. Mapping soil texture targeting predefined depth range or synthetizing from standard layers?

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László

    2017-04-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data were applied as auxiliary variables. We compared the directly compiled and the synthetized clay-, sand content, and texture class maps by different tools. In addition to pairwise comparison of basic statistical features (histograms, scatter plots), we examined the spatial distribution of the differences. We quantified the taxonomical distances of the textural classes, in order to investigate the differences of the map-pairs. We concluded that the directly computed and the synthetized maps show various differences. In the case of clay-, and sand content maps, the map-pairs have to be considered statistically different. On the other hand, the differences of the texture class maps are not significant. However, in all cases, the differences rather concern the extreme ranges and categories. Using of synthetized maps can intensify extremities by error propagation in models and scenarios. Based on our results, we suggest the usage of the directly composed maps.

  6. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application

    USDA-ARS?s Scientific Manuscript database

    Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing...

  7. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts.

    USDA-ARS?s Scientific Manuscript database

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltrati...

  8. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    PubMed

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation (>3500 mm) levels. By combining data on the ratios of precipitation to the amount of biomass produced in a year with how much less precipitation input occurs during a drought year, it is possible to estimate whether productivity levels are sufficient to support forest growth and forest dependent communities following a drought. In this study, the ratios of annual precipitation inputs required to produce 1 Mg ha(-1) yr(-1) biomass by soil texture class varied across the three soil textural classes. By using a conservative estimate of 20% of productivity collected or harvested by people and 30% precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of annual productivity due to a drought. In this study, the total NPP unavailable due to drought and harvest by forest dependent communities per year was 10.2 Mg ha(-1) yr(-1) for the sandy textured soils (64% of NPP still available), 8.4 Mg ha(-1) yr(-1) for the sandy loam textured soils (60% available) and 12.7 Mg ha(-1) yr(-1) for the clay textured soils (29% available). Forests growing on clay textured soils would be most vulnerable to drought triggered reductions in productivity so NPP levels would be inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift. Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of forest dependent communities. By predicting the productivity responses of different tropical forest ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to spatially identify where tropical forests are most vulnerable to climate change impacts and where mitigation efforts should be concentrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.

    PubMed

    Cater, Matjaz; Ogrinc, Nives

    2011-06-01

    Soil respiration rates were studied as a function of soil type, texture and light intensity at five selected natural beech forest stands with contrasting geology: stands on silicate bedrock at Kladje and Bricka in Pohorje, a stand on quartz sandstone at Vrhovo and two stands on a carbonate bedrock in the Karstic-Dinaric area in Kocevski Rog, Snezna jama and Rajhenav, Slovenia, during the growing season in 2005-2006. Soil respiration exhibited pronounced seasonal and spatial variations in the studied forest ecosystem plots. The CO(2) flux rates ranged from minimum averages of 2.3 μmol CO(2) m(-2) s(-1) (winter) to maximum averages of about 7 μmol CO(2) m(-2) s(-1) (summer) at all the investigated locations. An empirical model describing the relationship between soil respiration and soil temperature predicted seasonal variations in soil respiration reasonably well during 2006. Nevertheless, there were also some indications that soil moisture in relation to soil texture could influence the soil CO(2) efflux rates in both sampling seasons. It was shown that spatial variability of mean soil respiration at the investigated sites was high and strongly related to root biomass. Based on the [image omitted]  data, it was shown that new photoassimilates could account for a major part of the total soil respiration under canopy conditions in forest ecosystems where no carbonate rocks are present, indicating that microbial respiration could not always dominate bulk soil CO(2) fluxes. At Snezna jama and Rajhenav, the abiotic CO(2) derived from carbonate dissolution had a pronounced influence on CO(2) efflux accounting, on average, to ∼17%. Further spatial heterogeneity of soil respiration was clearly affected by management practice. Higher respiration rates as well as higher variability in respiration rates were observed in the virgin forest (Rajhenav) than in the management forest (Snezna jama) and could be related to a higher amount of detritus and consequently to less pronounced influence of inorganic pool to CO(2) efflux, lower mixing with atmospheric CO(2) and higher sensitivity to environmental changes. Major differences in soil carbon dynamics among these five forest ecosystems can be explained by the influence of bedrock geology (particularly, the presence or absence of carbonate minerals) and soil texture (affecting gas exchange with overlying air and soil moisture).

  10. Design and evaluation of a bioreactor with application to forensic burial environments.

    PubMed

    Dunphy, Melissa A; Weisensee, Katherine E; Mikhailova, Elena A; Harman, Melinda K

    2015-12-01

    Existing forensic taphonomic methods lack specificity in estimating the postmortem interval (PMI) in the period following active decomposition. New methods, such as the use of citrate concentration in bone, are currently being considered; however, determining the applicability of these methods in differing environmental contexts is challenging. This research aims to design a forensic bioreactor that can account for environmental factors known to impact decomposition, specifically temperature, moisture, physical damage from animals, burial depth, soil pH, and organic matter content. These forensically relevant environmental variables were characterized in a soil science context. The resulting metrics were soil temperature regime, soil moisture regime, slope, texture, soil horizon, cation exchange capacity, soil pH, and organic matter content. Bioreactor chambers were constructed using sterilized thin-walled polystyrene boxes housed in calibrated temperature units. Gravesoil was represented using mineral soil (Ultisols), and organic soil proxy for Histosols, horticulture mix. Gravesoil depth was determined using mineral soil horizons A and Bt2 to simulate surface scatter and shallow grave burial respectively. A total of fourteen different environmental conditions were created and controlled successfully over a 90-day experiment. These results demonstrate successful implementation and control of forensic bioreactor simulating precise environments in a single research location, rather than site-specific testing occurring in different geographic regions. Bone sections were grossly assessed for weathering characteristics, which revealed notable differences related to exposure to different temperature regimes and soil types. Over the short 90-day duration of this experiment, changes in weathering characteristics were more evident across the different temperature regimes rather than the soil types. Using this methodology, bioreactor systems can be created to replicate many different clandestine burial contexts, which will allow for the more rapid understanding of environmental effects on skeletal remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were obtained by closing the water balance over major river basins in Germany. Simulated soil moisture and latent heat flux were also evaluated at several eddy covariance sites in Germany. Comparison of monthly soil moisture and latent heat fields obtained with both models over Germany exhibited significant differences, which are mainly attributed to the subgrid variability of key model parameters such as porosity and aerodynamic resistance. Comparison of soil moisture fields obtained with WRF/Noah-MP and mHM forced with grided metereological observations (German Meteorological Service) showed that the differences between both models are mainly due to a combination of precipitation bias and different soil texture resolution. However, EOF analyses indicate that CORDEX results start recovering structures due to soil and vegetation properties. This experiment clearly highlighted the importance of hyper resolution input data to address these challenge. High resolution mHM simulations also indicate that the parametric uncertainty of land surface models is significant, and should not be neglected if a model is to be employed for application at regional scales, e.g. for drought monitoring.

  12. Dissipation of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater.

    PubMed

    Yen, Jui-Hung; Sheu, Wey-Shin; Wang, Yei-Shung

    2003-02-01

    The dissipation and mobility of the herbicide oxyfluorfen (2-chloro-alpha,alpha,alpha-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether) in field soil of Taiwan were investigated in the laboratory with six tea garden soils. The dissipation coefficients of oxyfluorfen in soils of different moisture content (30%, 60%, and 90% of soil field capacity) and soil temperature (10 degrees C, 25 degrees C, and 40 degrees C) were studied. Results indicate that the half-life of oxyfluorfen ranged from 72 to 160 days for six tea garden soils. It was found that if the temperature is high, the dissipation rate is rapid, and there is almost no dissipation at 10 degrees C. Possible contamination of groundwater by the herbicide oxyfluorfen was assessed using the behavior assessment model and the groundwater pollution-potential (GWP) model. The results obtained after evaluating the residue and travel time using the GWP model illustrated that oxyfluorfen is not very mobile in soil and may not contaminate groundwater under normal conditions. But in the case of soil of extremely low organic carbon content and coarse texture, oxyfluorfen has the potential to contaminate groundwater less than 3m deep.

  13. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    PubMed Central

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  14. Soil Conditions Affect Growth of Hardwoods in Shelterbelts

    Treesearch

    Willard H. Carmean

    1976-01-01

    Large growth differences were found for hardwoods in shelterbelts on three contrasting soils of western Minnesota. Fiver years after planting, height growth was outstanding for green ash and Russian olive planted on a moderately fine-textured, somewhat poorly drained soil. Growth was much poorer on coarse-textured or shallow soils. Size of planting stock was not...

  15. Impact of Soil Texture on Soil Ciliate Communities

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  16. Modeling soil CO2 production and transport with dynamic source and diffusion terms: testing the steady-state assumption using DETECT v1.0

    NASA Astrophysics Data System (ADS)

    Ryan, Edmund M.; Ogle, Kiona; Kropp, Heather; Samuels-Crow, Kimberly E.; Carrillo, Yolima; Pendall, Elise

    2018-05-01

    The flux of CO2 from the soil to the atmosphere (soil respiration, Rsoil) is a major component of the global carbon (C) cycle. Methods to measure and model Rsoil, or partition it into different components, often rely on the assumption that soil CO2 concentrations and fluxes are in steady state, implying that Rsoil is equal to the rate at which CO2 is produced by soil microbial and root respiration. Recent research, however, questions the validity of this assumption. Thus, the aim of this work was two-fold: (1) to describe a non-steady state (NSS) soil CO2 transport and production model, DETECT, and (2) to use this model to evaluate the environmental conditions under which Rsoil and CO2 production are likely in NSS. The backbone of DETECT is a non-homogeneous, partial differential equation (PDE) that describes production and transport of soil CO2, which we solve numerically at fine spatial and temporal resolution (e.g., 0.01 m increments down to 1 m, every 6 h). Production of soil CO2 is simulated for every depth and time increment as the sum of root respiration and microbial decomposition of soil organic matter. Both of these factors can be driven by current and antecedent soil water content and temperature, which can also vary by time and depth. We also analytically solved the ordinary differential equation (ODE) corresponding to the steady-state (SS) solution to the PDE model. We applied the DETECT NSS and SS models to the six-month growing season period representative of a native grassland in Wyoming. Simulation experiments were conducted with both model versions to evaluate factors that could affect departure from SS, such as (1) varying soil texture; (2) shifting the timing or frequency of precipitation; and (3) with and without the environmental antecedent drivers. For a coarse-textured soil, Rsoil from the SS model closely matched that of the NSS model. However, in a fine-textured (clay) soil, growing season Rsoil was ˜ 3 % higher under the assumption of NSS (versus SS). These differences were exaggerated in clay soil at daily time scales whereby Rsoil under the SS assumption deviated from NSS by up to 35 % on average in the 10 days following a major precipitation event. Incorporation of antecedent drivers increased the magnitude of Rsoil by 15 to 37 % for coarse- and fine-textured soils, respectively. However, the responses of Rsoil to the timing of precipitation and antecedent drivers did not differ between SS and NSS assumptions. In summary, the assumption of SS conditions can be violated depending on soil type and soil moisture status, as affected by precipitation inputs. The DETECT model provides a framework for accommodating NSS conditions to better predict Rsoil and associated soil carbon cycling processes.

  17. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe.

    PubMed

    Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T

    2018-05-01

    The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.

  18. Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.

  19. Soil texture analysis revisited: Removal of organic matter matters more than ever

    PubMed Central

    Schjønning, Per; Watts, Christopher W.; Christensen, Bent T.; Munkholm, Lars J.

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2–20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion. PMID:28542416

  20. Soil texture analysis revisited: Removal of organic matter matters more than ever.

    PubMed

    Jensen, Johannes Lund; Schjønning, Per; Watts, Christopher W; Christensen, Bent T; Munkholm, Lars J

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2-20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion.

  1. Root system morphology of Oregon white oak on a glacial outwash soil.

    Treesearch

    Warren D. Devine; Constance A. Harrington

    2005-01-01

    Oregon white oak is reportedly a deeply rooted species, but its rooting habit on coarse-textured soils is undocumented. In the Puget Trough of western Washington, Oregon white oak grows in coarse-textured glacial outwash soils on lowland sites. Our objective was to quantify the gross root system morphology of Oregon white oak in these soils, thereby improving our...

  2. Do soil tests help forecast nitrogen response in first-year corn following alfalfa on fine-textured soils?

    USDA-ARS?s Scientific Manuscript database

    Improved methods of predicting grain yield response to fertilizer N for first-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) on fine-textured soils are needed. Data from 21 site-years in the North Central Region were used to (i) determine how Illinois soil nitrogen test (ISNT) and pr...

  3. Infiltration Processes and Flow Velocities Across the Landscape: When and Where is Macropore Flow Relevant?

    NASA Astrophysics Data System (ADS)

    Demand, D.; Blume, T.; Weiler, M.

    2017-12-01

    Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.

  4. Establishment of Striacosta albicosta (Lepidoptera: Noctuidae) as a Primary Pest of Corn in the Great Lakes Region.

    PubMed

    Smith, J L; Baute, T S; Sebright, M M; Schaafsma, A W; DiFonzo, C D

    2018-05-30

    Western bean cutworm, Striacosta albicosta Smith (Lepidoptera: Noctuidae), is a pest of corn, Zea maize L., and dry edible beans, Phaseolus sp. L., native to the western United States. Following the range expansion into the U.S. Corn Belt, pheromone trap monitoring began in the Great Lakes region in 2006. The first S. albicosta was captured in Michigan in 2006 and in Ontario, Canada in 2008. Pheromone traps were used to document spread and increasing captures of S. albicosta across Michigan and Ontario until 2012. Trapping confirmed the univoltine life cycle of S. albicosta in this region and identified peak flight, typically occurring in late July. Overwintering of S. albicosta in this region was confirmed by emergence from infested fields and overwintering experiments. Multiple soil textures were infested with prepupae, and recovery was assessed throughout the winter. Overwintering success was not affected by soil texture; however, prepupae were found at greater depths in coarse-textured soils. Soil temperatures at overwintering depths did not reach the supercooling point. Injury to corn by S. albicosta increased in incidence, severity and geographic range from 2010 to 2014 in field plots. Decreasing control of injury by Cry1F corn hybrids was observed over time. These findings show that S. albicosta has established as a perennial corn pest in the Great Lakes region due to observations of overwintering success and unmanaged injury. We recommend S. albicosta obtain primary pest status in this region within regulatory framework and a resistance management plan be required for traits targeting this pest.

  5. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  6. Influence of Soil Heterogeneity on Mesoscale Land Surface Fluxes During Washita '92

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Jin, Hao

    1998-01-01

    The influence of soil heterogeneity on the partitioning of mesoscale land surface energy fluxes at diurnal time scales is investigated over a 10(exp 6) sq km domain centered on the Little Washita Basin, Oklahoma, for the period June 10 - 18, 1992. The sensitivity study is carried out using MM5/PLACE, the Penn State/NCAR MM5 model enhanced with the Parameterization for Land-Atmosphere-Cloud Exchange or PLACE. PLACE is a one-dimensional land surface model possessing detailed plant and soil water physics algorithms, multiple soil layers, and the capacity to model subgrid heterogeneity. A series of 12-hour simulations were conducted with identical atmospheric initialization and land surface characterization but with different initial soil moisture and texture. A comparison then was made of the simulated land surface energy flux fields, the partitioning of net radiation into latent and sensible heat, and the soil moisture fields. Results indicate that heterogeneity in both soil moisture and texture affects the spatial distribution and partitioning of mesoscale energy balance. Spatial averaging results in an overprediction of latent heat flux, and an underestimation of sensible heat flux. In addition to the primary focus on the partitioning of the land surface energy, the modeling effort provided an opportunity to examine the issue of initializing the soil moisture fields for coupled three-dimensional models. For the present case, the initial soil moisture and temperature were determined from off-line modeling using PLACE at each grid box, driven with a combination of observed and assimilated data fields.

  7. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  8. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    PubMed

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  9. Analysis of SURRGO Data and Obtaining Soil Texture Classifications for Simulating Hydrologic Processes

    DTIC Science & Technology

    2016-07-01

    Note (CHETN) describes a method using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Soil Survey Geographic...the general texture classifications. 2. Another source for soil information, such as the Food and Agriculture Organization of the United Nations (FAO...science studies such as agriculture , geology, geomorphology, engineering, biology, history, etc. (Soil Survey Division Staff 1993). The procedure pulls

  10. Revamping of entisol soil physical characteristics with compost treatment

    NASA Astrophysics Data System (ADS)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  11. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes

    NASA Astrophysics Data System (ADS)

    Meyer, N.; Welp, G.; Amelung, W.

    2018-02-01

    The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland

  12. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.

  13. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey. PMID:27741269

  14. Distinguishing the Biomass Allocation Variance Resulting from Ontogenetic Drift or Acclimation to Soil Texture

    PubMed Central

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802

  15. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    NASA Astrophysics Data System (ADS)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is emphasized. Key words: soil use change, satellite images, erosion.

  16. Mapping soil texture classes and optimization of the result by accuracy assessment

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Pásztor, László

    2014-05-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. The GlobalSoilMap.net (GSM) project aims to make a new digital soil map of the world using state-of-the-art and emerging technologies for soil mapping and predicting soil properties at fine resolution. Sand, silt and clay are among the mandatory GSM soil properties. Furthermore, soil texture class information is input data of significant agro-meteorological and hydrological models. Our present work aims to compare and evaluate different digital soil mapping methods and variables for producing the most accurate spatial prediction of texture classes in Hungary. In addition to the Hungarian Soil Information and Monitoring System as our basic data, digital elevation model and its derived components, geological database, and physical property maps of the Digital Kreybig Soil Information System have been applied as auxiliary elements. Two approaches have been applied for the mapping process. At first the sand, silt and clay rasters have been computed independently using regression kriging (RK). From these rasters, according to the USDA categories, we have compiled the texture class map. Different combinations of reference and training soil data and auxiliary covariables have resulted several different maps. However, these results consequentially include the uncertainty factor of the three kriged rasters. Therefore we have suited data mining methods as the other approach of digital soil mapping. By working out of classification trees and random forests we have got directly the texture class maps. In this way the various results can be compared to the RK maps. The performance of the different methods and data has been examined by testing the accuracy of the geostatistically computed and the directly classified results. We have used the GSM methodology to assess the most predictive and accurate way for getting the best among the several result maps. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  17. Dissipation of terbuthylazine, metolachlor and mesotrione in soils with contrasting texture

    NASA Astrophysics Data System (ADS)

    Carretta, Laura; Cardinali, Alessandra; Zanin, Giuseppe; Masin, Roberta

    2017-04-01

    Herbicides play an important role in the crops production, but their use may result in residues with undesirable effects on the environment. The determination of the herbicide dissipation rate in agricultural soil is an important issue for monitoring their environmental fate. As soil composition is one of the factors affecting herbicide persistence, this study aimed to evaluate the dissipation of three herbicides, terbuthylazine (TERB), metolachlor (METO) and mesotrione (MESO) in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm (45.3° N, 12.0° E) in the Po Valley, north-east Italy in 2012. The persistence of three herbicides has been studied in three diverse soil textures (clay, sand and loam soil) at two different depths (0-5 and 5-15 cm). A randomized complete block design was used for this experiment with six plots (2 m × 2 m) for each of 3 treatments. TERB, METO and MESO were applied in May on maize as a formulated product (Lumax®) with hand-held field plot sprayer at a dose of 3.5 L/ha. Soil organic carbon content was the highest in clay texture (1.10%) followed by loam soil (0.67%) and sandy soil (0.24%). The soil was sampled with a soil auger before herbicides treatment, and soon after treatment soil samples were taken to assess initial concentration, then at increasing times from spraying to evaluate field dissipation kinetics (t50). The dissipation of the herbicides in the treated plots was followed for nearly 2 months after their application. The herbicides were analysed by liquid chromatography-mass spectrometry. The dissipation of TERB, METO and MESO could be described by a pseudo first order kinetics. Within the herbicides, TERB showed the highest t50, followed by METO and MESO. Considering the tested soil, the highest t50 value was found for clay soil texture for TERB and METO, whereas for MESO there was no difference among different soils. Significant differences were found within the 2 soil depths for TERB and MESO only in sandy soil, for METO only in loam soil. In detail, considering the average of both depths, TERB and METO degraded slowly in clay soil (22 days and 16 days respectively) followed by loam soil (14 days and 7 days) and sandy soil (12 days and 5 days). On the other hand, MESO did not show significant differences (ranging from about 4 days in clay soil to 5 days in loam soil). These results suggest that soil texture have a large influence on the dissipation of TERB and METO, whereas no influence was observed on MESO.

  18. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Treesearch

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  19. The Impact of Thermal Remediation on Soil Rehabilitation

    NASA Astrophysics Data System (ADS)

    Pape, Andrew; Switzer, Christine; Knapp, Charles

    2013-04-01

    In an effort to restore the social and economic value of brownfield sites contaminated by hazardous organic liquids, many new remediation techniques involving the use of elevated temperatures to desorb and extract or destroy these contaminants have been developed. These approaches are typically applied to heavily contaminated soils to effect substantial source removal from the subsurface. These processes operate over a range of temperatures from just above ambient to in excess of 1000˚C depending on technology choice and contaminant type. To facilitate the successful rehabilitation of treated soils for agriculture, biomass production, or habitat enrichment the effects of high temperatures on the ability of soil to support biological activity needs to be understood. Four soils were treated with high temperatures or artificially contaminated and subjected to a smouldering treatment (600-1100°C) in this investigation. Subsequent chemical analysis, plant growth trials and microbial analysis were used to characterise the impacts of these processes on soil geochemistry, plant health, and potential for recovery. Decreases were found in levels of carbon (>250˚C), nitrogen (>500˚C) and phosphorus (1000˚C) with intermediate temperatures having variable affects on bio-available levels. Macro and micro nutrients such as potassium, calcium, zinc and copper also showed changes with general trends towards reduced bioavailability at higher temperatures. Above 500°C, cation exchange capacity and phosphate adsorption were lowered indicating that nutrient retention will be a problem in some treated soils. In addition, these temperatures reduced the content of clay sized particles changing the texture of the soils. These changes had a statistically significant impact on plant growth with moderate growth reductions occurring at 250°C and 500°C. Above 750°C, growth was extremely limited and soils treated at these temperatures would need major restorative efforts. Microbial re-colonisation and activity were inhibited in soils treated above 500°C due to the lack of available carbon sources. Early experiments with organic amendments and green manures show promise in facilitating more rapid recolonisation. These results underscore the importance of considering long-term soil recovery as part of the remediation strategy.

  20. Mapping soil textural fractions across a large watershed in north-east Florida.

    PubMed

    Lamsal, S; Mishra, U

    2010-08-01

    Assessment of regional scale soil spatial variation and mapping their distribution is constrained by sparse data which are collected using field surveys that are labor intensive and cost prohibitive. We explored geostatistical (ordinary kriging-OK), regression (Regression Tree-RT), and hybrid methods (RT plus residual Sequential Gaussian Simulation-SGS) to map soil textural fractions across the Santa Fe River Watershed (3585 km(2)) in north-east Florida. Soil samples collected from four depths (L1: 0-30 cm, L2: 30-60 cm, L3: 60-120 cm, and L4: 120-180 cm) at 141 locations were analyzed for soil textural fractions (sand, silt and clay contents), and combined with textural data (15 profiles) assembled under the Florida Soil Characterization program. Textural fractions in L1 and L2 were autocorrelated, and spatially mapped across the watershed. OK performance was poor, which may be attributed to the sparse sampling. RT model structure varied among textural fractions, and the model explained variations ranged from 25% for L1 silt to 61% for L2 clay content. Regression residuals were simulated using SGS, and the average of simulated residuals were used to approximate regression residual distribution map, which were added to regression trend maps. Independent validation of the prediction maps showed that regression models performed slightly better than OK, and regression combined with average of simulated regression residuals improved predictions beyond the regression model. Sand content >90% in both 0-30 and 30-60 cm covered 80.6% of the watershed area. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. The Science of Soil Textures

    ERIC Educational Resources Information Center

    Bigham, Gary

    2010-01-01

    Off-road motorcycle racing and ATV riding. Gardening and fishing. What do these high-adrenaline and slower-paced pastimes have in common? Each requires soil, and the texture of that soil has an effect on all of them. In the inquiry-based lessons described here, students work both in the field or laboratory and in the classroom to collect soil…

  2. Utilizing management zones for Rotylenchulus reniformis in Cotton: Effects on nematode levels, crop damage, and Pasteuria sp.

    USDA-ARS?s Scientific Manuscript database

    The effect of soil texture on nematode levels is the primary basis for site-specific nematode management. Management zones (MZs) are sampled independently and decisions are based on those sample results. MZs based on soil electrical conductivity (EC, a proxy for soil texture) have not been tested ...

  3. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    PubMed

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  4. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  5. Root uptake of 137Cs by natural and semi-natural grasses as a function of texture and moisture of soils.

    PubMed

    Grytsyuk, N; Arapis, G; Davydchuk, V

    2006-01-01

    This work studies the dependence of 137Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137Cs contamination (from 20 up to 5000 kBqm(-2)), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils.

  6. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  7. Thermal remediation alters soil properties - a review.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soil and agronomic factors associated with cadmium accumulations in kidneys of grazing sheep.

    PubMed

    Morcombe, P W; Petterson, D S; Ross, P J; Edwards, J R

    1994-12-01

    Mean concentration of cadmium (Cd) in kidneys of hogget sheep from 67 flocks grazing in the Agricultural Region of Western Australia was tested for association with soil, pastoral, climatic and nutritional factors. Hoggets grazing pastures on acidic soils and soils with a sandy-textured surface had higher Cd concentrations in kidneys than hoggets grazing pastures on more alkaline soils or soils with a clay-textured surface. Application of more than 100 kg of phosphatic fertiliser during the past 3 years to loamy soils was also associated with greater Cd concentration in kidneys of the grazing animals.

  9. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models using the LWIR-window (sand content: R2 = 0.84 and RMSECV = 1.09 %, and for clay content: R2 = 0.77 and RMSECV = 1.0 %, both with 3 factor models). In comparison, the quantification from the solar-reflective window showed its limitations in its relative complex PLSR models and a lower prediction accuracy (sand content: R2 = 0.69 and RMSECV = 1.5 % with 7 factors, and for clay content: R2 = 0.64 and RMSECV = 1.26 % with 9 factors). The prediction of the SOC content, on the other hand, showed minor disparity between the two atmospheric windows (LWIR: R2 = 0.73 and RMSECV = 0.1 % with 6 factors, VNIR-SWIR: R2 = 0.69 and RMSECV = 0.11 %, with 9 factors). The prospect of the LWIR for determining soil texture was demonstrated to be even more impressive when reduced to the spectral band specifications of airborne (TASI-600) and spaceborne (ASTER) sensors. The results demonstrate the high potential of the LWIR to detect and quantify soil surface properties in the future for a monitoring via LWIR hyperspectral remote sensing.

  10. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    NASA Astrophysics Data System (ADS)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.

  11. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    PubMed

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Alternative Default Soil Organic Carbon Method for National GHG Inventory Reporting to the UNFCCC

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; Gurung, R.; Klepfer, A.; Spencer, S.; Breidt, J.

    2016-12-01

    Estimating soil organic C stocks is challenging because of the large amount of data needed to evaluate the impact of land use and management on this terrestrial C pool. Moreover, some of the required data are rarely collected by governments through surveys programs, and are not typically available in remote sensing products. Examples include data on organic amendments, cover crops, crop rotation sequences, vegetated fallows, and fertilization practices. Due to these difficulties, only about 20% of the countries report soil organic C stock changes in their national communications to the UNFCCC. Yet, C sequestration in soils represents one of the least expensive options for reducing greenhouse gas emissions, and has the largest potential for mitigation in the agricultural sector. In order to facilitate reporting, we developed an alternative approach to the current default method provided by the Intergovernmental Panel on Climate Change (IPCC) for estimating soil organic C stock changes in mineral soils. The alternative method estimates the steady-state C stocks for a three pool model given annual crop yields or net primary production as the main input, along with monthly average temperature, total precipitation and soil texture data. Yield data are commonly available in a national agricultural census, and global datasets exists with adequate data for weather and soil texture if national datasets are not available. Tillage and irrigation data are also needed to address the impact of these practices on decomposition rates. The change in steady-state stocks is assumed to occur over a few decades. A Bayesian analysis framework has been developed to derive probability distribution functions for the parameters, and the method is being applied in a global analysis of soil organic carbon stock changes.

  13. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  15. Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Samaritani, E.; Shrestha, J.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P. A.; Pasquale, N.; Tockner, K.; Mitchell, E. A. D.; Luster, J.

    2011-06-01

    Due to their spatial complexity and dynamic nature, floodplains provide a wide range of ecosystem functions. However, because of flow regulation, many riverine floodplains have lost their characteristic heterogeneity. Restoration of floodplain habitats and the rehabilitation of key ecosystem functions, many of them linked to organic carbon (C) dynamics in riparian soils, has therefore become a major goal of environmental policy. The fundamental understanding of the factors that drive the processes involved in C cycling in heterogeneous and dynamic systems such as floodplains is however only fragmentary. We quantified soil organic C pools (microbial C and water extractable organic C) and fluxes (soil respiration and net methane production) in functional process zones of adjacent channelized and widened sections of the Thur River, NE Switzerland, on a seasonal basis. The objective was to assess how spatial heterogeneity and temporal variability of these pools and fluxes relate to physicochemical soil properties on one hand, and to soil environmental conditions and flood disturbance on the other hand. Overall, factors related to seasonality and flooding (temperature, water content, organic matter input) affected soil C dynamics more than soil properties did. Coarse-textured soils on gravel bars in the restored section were characterized by low base-levels of organic C pools due to low TOC contents. However, frequent disturbance by flood pulses led to high heterogeneity with temporarily and locally increased C pools and soil respiration. By contrast, in stable riparian forests, the finer texture of the soils and corresponding higher TOC contents and water retention capacity led to high base-levels of C pools. Spatial heterogeneity was low, but major floods and seasonal differences in temperature had additional impacts on both pools and fluxes. Soil properties and base levels of C pools in the dam foreland of the channelized section were similar to the gravel bars of the restored section. By contrast, spatial heterogeneity, seasonal effects and flood disturbance were similar to the forests, except for indications of high CH4 production that are explained by long travel times of infiltrating water favoring reducing conditions. Overall, the restored section exhibited both a larger range and a higher heterogeneity of organic C pools and fluxes as well as a higher plant biodiversity than the channelized section. This suggests that restoration has indeed led to an increase in functional diversity.

  16. Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Samaritani, E.; Shrestha, J.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P. A.; Tockner, K.; Mitchell, E. A. D.; Luster, J.

    2011-01-01

    Due to their spatial complexity and dynamic nature, floodplains provide a wide range of ecosystem functions. However, because of flow regulation, many riverine floodplains have lost their characteristic heterogeneity. Restoration of floodplain habitats and the rehabilitation of key ecosystem functions has therefore become a major goal of environmental policy. Many important ecosystem functions are linked to organic carbon (C) dynamics in riparian soils. The fundamental understanding of the factors that drive the processes involved in C cycling in heterogeneous and dynamic systems such as floodplains is however only fragmentary. We quantified soil organic C pools (microbial C and water extractable organic C) and fluxes (soil respiration and net methane production) in functional process zones of adjacent channelized and widened sections of the Thur River, NE Switzerland, on a seasonal basis. The objective was to assess how spatial heterogeneity and temporal variability of these pools and fluxes relate to physicochemical soil properties on one hand, and to soil environmental conditions and flood disturbance on the other hand. Overall, factors related to seasonality and flooding (temperature, water content, organic matter input) affected soil C dynamics more than soil properties did. Coarse-textured soils on gravel bars in the restored section were characterized by low base-levels of organic C pools due to low TOC contents. However, frequent disturbance by flood pulses led to high heterogeneity with temporarily and locally increased pools and soil respiration. By contrast, in stable riparian forests, the finer texture of the soils and corresponding higher TOC contents and water retention capacity led to high base-levels of C pools. Spatial heterogeneity was low, but major floods and seasonal differences in temperature had additional impacts on both pools and fluxes. Soil properties and base levels of C pools in the dam foreland of the channelized section were similar to the gravel bars of the restored section. By contrast, spatial heterogeneity, seasonal effects and flood disturbance were similar to the forests, except for indications of high CH4 production that are explained by long travel times of infiltrating water favouring reducing conditions. Overall, the restored section exhibited both a larger range and a higher heterogeneity of organic C pools and fluxes as well as a higher plant biodiversity than the channelized section. This suggests that restoration has indeed led to an increase in functional diversity.

  17. Soybean Photosynthesis and Yield as Influenced by Heterodera glycines, Soil Type and Irrigation.

    PubMed

    Koenning, S R; Barker, K R

    1995-03-01

    The effects of soil types and soil water matric pressure on the Heterodera glycines-Glycine max interaction were examined in microplots in 1988 and 1989. Reproduction of H. glycines was restricted in fine-textured soils as compared with coarse-textured ones. Final population densities of this pathogen in both years of the study were greater in nonirrigated soils than in irrigated soils. The net photosynthetic rate of soybean (per unit area of leaf) was suppressed only slightly or not at all in response to infection by H. glycines and other stresses. Relative soybean-yield suppression in response to H. glycines was not affected by water content in fine-textured soils, but slopes of the damage functions were steepest in sand, sandy loam, and muck soils at high water content (irrigated plots). Yield restriction of soybean in response to this pathogen under irrigation was equal to or greater than the yield suppression under dry conditions. Although yield potential may be elevated by irrigation when soil-water content is inadequate, supplemental irrigation cannot be used to circumvent nematode damage to soybean.

  18. Intelligent estimation of spatially distributed soil physical properties

    USGS Publications Warehouse

    Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.

    2012-01-01

    Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.

  19. Development of type transfer functions for regional-scale nonpoint source groundwater vulnerability assessments

    NASA Astrophysics Data System (ADS)

    Stewart, Iris T.; Loague, Keith

    2003-12-01

    Groundwater vulnerability assessments of nonpoint source agrochemical contamination at regional scales are either qualitative in nature or require prohibitively costly computational efforts. By contrast, the type transfer function (TTF) modeling approach for vadose zone pesticide leaching presented here estimates solute concentrations at a depth of interest, only uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application. TTFs are soil texture based travel time probability density functions that describe a characteristic leaching behavior for soil profiles with similar soil hydraulic properties. Seven sets of TTFs, representing different levels of upscaling, were developed for six loam soil textural classes with the aid of simulated breakthrough curves from synthetic data sets. For each TTF set, TTFs were determined from a group or subgroup of breakthrough curves for each soil texture by identifying the effective parameters of the function that described the average leaching behavior of the group. The grouping of the breakthrough curves was based on the TTF index, a measure of the magnitude of the peak concentration, the peak arrival time, and the concentration spread. Comparison to process-based simulations show that the TTFs perform well with respect to mass balance, concentration magnitude, and the timing of concentration peaks. Sets of TTFs based on individual soil textures perform better for all the evaluation criteria than sets that span all textures. As prediction accuracy and computational cost increase with the number of TTFs in a set, the selection of a TTF set is determined by a given application.

  20. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different digital soil mapping methods and sets of ancillary variables for producing the most accurate spatial prediction of texture classes in a given area of interest. Both legacy and recently collected data on PSD were used as reference information. The predictor variable data set consisted of digital elevation model and its derivatives, lithology, land use maps as well as various bands and indices of satellite images. Two conceptionally different approaches can be applied in the mapping process. Textural classification can be realized after particle size data were spatially extended by proper geostatistical method. Alternatively, the textural classification is carried out first, followed by the spatial extension through suitable data mining method. According to the first approach, maps of sand, silt and clay percentage have been computed through regression kriging (RK). Since the three maps are compositional (their sum must be 100%), we applied Additive Log-Ratio (alr) transformation, instead of kriging them independently. Finally, the texture class map has been compiled according to the USDA categories from the three maps. Different combinations of reference and training soil data and auxiliary covariables resulted several different maps. On the basis of the other way, the PSD were classified firstly into the USDA categories, then the texture class maps were compiled directly by data mining methods (classification trees and random forests). The various results were compared to each other as well as to the RK maps. The performance of the different methods and data sets has been examined by testing the accuracy of the geostatistically computed and the directly classified results to assess the most predictive and accurate method. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  1. Soil thermal properties at two different sites on James Ross Island in the period 2012/13

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Láska, Kamil

    2015-04-01

    James Ross Island (JRI) is the largest island in the eastern part of the Antarctic Peninsula. Ulu Peninsula in the northern part of JRI is considered the largest ice free area in the Maritime Antarctica region. However, information about permafrost on JRI, active layer and its soil properties in general are poorly known. In this study, results of soil thermal measurements at two different sites on Ulu Peninsula are presented between 1 April 2012 and 30 April 2013. The study sites are located (1) on an old Holocene marine terrace (10 m a. s. l.) in the closest vicinity of Johann Gregor Mendel (JGM) Station and (2) on top of a volcanic plateau named Johnson Mesa (340 m a. s. l.) about 4 km south of the JGM Station. The soil temperatures were measured at 30 min interval using platinum resistance thermometers Pt100/8 in two profiles up to 200 cm at JGM Station and 75 cm at Johnson Mesa respectively. Decagon 10HS volumetric water content sensors were installed up 30 cm at Johnson Mesa to 50 cm at JGM Station, while Hukseflux HFP01 soil heat flux sensors were used for direct monitoring of soil physical properties at 2.5 cm depth at both sites. The mean soil temperature varied between -5.7°C at 50 cm and -6.3°C at 5 cm at JGM Station, while that for Johnson Mesa varied between -6.9°C at 50 cm and -7.1°C at 10 cm. Maximum active layer thickness estimated from 0 °C isotherm reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively which corresponded with maximum observed annual temperature at 50 cm at both sites. The warmest part of both profiles detected at 50 cm depth corresponded with maximum thickness of active layer, estimated from 0°C isotherm, reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively. Volumetric water content at 5 cm varied around 0.25 m3m-3 at both sites. The slight increase to 0.32 m3m-3 was observed at JGM Station at 50 cm and at Johnson Mesa at 30 cm depth. Soil texture analysis showed distinctly higher share of coarser fraction >2 mm at Johnson Mesa than at JGM Station. Comparison of both sites indicated that mean ground temperature at 50 cm depth was higher by 1.2 °C at JGM station, although the active layer was thicker by 2 cm only. It can therefore be concluded that soil physical properties like texture and moisture may significantly affect thermal regime at boundary between AL and permafrost table during individual thawing seasons.

  2. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our results suggest that texture and particulate organic matter content are useful predictors for the impact of O2 limitations on SOM mineralization rates.

  3. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models

    NASA Astrophysics Data System (ADS)

    Holland, Elisabeth A.; Neff, Jason C.; Townsend, Alan R.; McKeown, Becky

    2000-12-01

    Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Niño/La Niña argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr-1 less carbon compared to the systems with the highest sensitivity.

  4. The identification of sustainable yield for hot spring regarding water level and temperature

    NASA Astrophysics Data System (ADS)

    Ke, Kai-Yuan; Tan, Yih-Chi

    2017-04-01

    In order to sustainably manage and utilize the limited hot spring resource, the cool-hot water exchange model is established by combination of Soil and Water Assessment Tool(SWAT) and SHEMAT. Hot spring in Ziaoxi, Taiwan, is chosen as study area. With data of geography, weather, land use and soil texture, SWAT can simulate precipitation induced infiltration and recharge for SHEMAT. Then SHEMAT is calibrated and verified with in-situ observation data of hot spring temperature and water level. The relation among precipitation, pumping, change of water temperature and water level is thus investigated. The effect of point well pumping, which dramatically lower the water level and temperature, due to prosperous development of hot spring building and industry is also considered for better model calibration. In addition, by employing a modified Hill's method, the sustainable yield is identified. Unlike traditional Hill's method, the modified Hill's method could account for not only the change of water level but also the temperature. As a result, the estimated sustainable yield provide a reasonable availability of hot spring resources without further decline of the water level and temperature.

  5. Critical soil bulk density for soybean growth in Oxisols

    NASA Astrophysics Data System (ADS)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  6. Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect.

    PubMed

    Zhao, Yanyun; Ding, Yong; Hou, Xiangyang; Li, Frank Yonghong; Han, Wenjun; Yun, Xiangjun

    2017-01-01

    Soil represents the largest terrestrial organic carbon pool. To address global climate change, it is essential to explore the soil organic carbon storage patterns and their controlling factors. We investigated the soil organic carbon density (SOCD) in 48 grassland sites along the Eurasian steppe eastern transect (ESET) region, which covers the Inner Mongolia grassland subregion and Mongolia grasslands subregion. Specifically, we analyzed the SOCD in the top 30 cm soil layer and its relationships with climatic variables, soil texture, grazing intensity and community biomass productivity. The results showed that the average SOCD of the ESET was 4.74 kg/m2, and the SOCD of the Inner Mongolia grassland subregion (4.11 kg/m2) was significantly lower than that of the Mongolia grassland subregion (5.79 kg/m2). Significant negative relationships were found between the SOCD and the mean annual temperature (MAT), mean annual precipitation (MAP) and grazing intensity in the ESET region. The MAT and grazing intensity were identified as the major factors influencing the SOCD in the ESET region; the MAP and MAT were the major factors influencing the SOCD in the Inner Mongolia grassland subregion; and the MAT and soil pH were the major factors influencing the SOCD in the Mongolia grassland subregion.

  7. Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect

    PubMed Central

    Hou, Xiangyang; Li, Frank Yonghong; Han, Wenjun; Yun, Xiangjun

    2017-01-01

    Soil represents the largest terrestrial organic carbon pool. To address global climate change, it is essential to explore the soil organic carbon storage patterns and their controlling factors. We investigated the soil organic carbon density (SOCD) in 48 grassland sites along the Eurasian steppe eastern transect (ESET) region, which covers the Inner Mongolia grassland subregion and Mongolia grasslands subregion. Specifically, we analyzed the SOCD in the top 30 cm soil layer and its relationships with climatic variables, soil texture, grazing intensity and community biomass productivity. The results showed that the average SOCD of the ESET was 4.74 kg/m2, and the SOCD of the Inner Mongolia grassland subregion (4.11 kg/m2) was significantly lower than that of the Mongolia grassland subregion (5.79 kg/m2). Significant negative relationships were found between the SOCD and the mean annual temperature (MAT), mean annual precipitation (MAP) and grazing intensity in the ESET region. The MAT and grazing intensity were identified as the major factors influencing the SOCD in the ESET region; the MAP and MAT were the major factors influencing the SOCD in the Inner Mongolia grassland subregion; and the MAT and soil pH were the major factors influencing the SOCD in the Mongolia grassland subregion. PMID:29084243

  8. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    PubMed

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p < 0.05) higher values for the heavy metals cadmium, chromium, copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p < 0.05) lower than the control soil. Similar significant (p < 0.05) elevations were observed in the lake water temperature, salinity, pH, calcium, magnesium, sodium, potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  9. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils

    NASA Astrophysics Data System (ADS)

    Schindlbacher, Andreas; Zechmeister-Boltenstern, Sophie; Butterbach-Bahl, Klaus

    2004-09-01

    Emissions of NO, NO2, and N2O to the atmosphere were measured with a fully automated laboratory system from undisturbed soil columns obtained from five different temperate and one boreal forest sites. The soils were chosen to cover a transect through Europe, sandy and loamy textures, and different atmospheric nitrogen deposition rates. In a two-factorial experimental design, soil cores were kept under varying conditions with respect to temperature (range 5-20°C) and soil moisture (range 0-300 kPa). The combination of soil temperature and soil moisture could explain a better part of variations in NO (up to 74%) and N2O (up to 86%) emissions for individual soils, but average emissions differed significantly between various forest soils. Generally, NO and N2O were emitted from all soils except from the boreal pine forest soil, where NO was consumed. NO emissions from the German spruce forest receiving highest yearly nitrogen inputs of >35 kg ha-1 yr-1 ranged from 1.3 to 608.9 μg NO-N m-2 h-1 and largely exceeded emissions from other soils. Average N2O emissions from this soil tended also to be highest (171.7 ± 42.2 μg N2O-N m-2 h-1), but did not differ significantly from other soils. NO2 deposition occurred in all soils and strongly correlated to NO emissions. NO and N2O emissions showed a positive exponential relationship to soil temperature. With activation energies between 57 and 133 kJ mol-1, N2O emissions from the various soils responded more uniformely to temperature than NO emissions with 41 and 199 kJ mol-1. The two Austrian beech forest soils showed exceptionally high activation energies for NO emissions, which might be attributed to chemodenitrification. N2O emissions increased with increasing water filled pore space (WFPS) or decreasing water tension, respectively. Maximal N2O emissions were measured between 80 and 95% WFPS or 0 kPa water tension. Optimal moisture for NO emission differed significantly between the soils, and ranged between 15% WFPS in sandy Italian floodplain soil and 65% in loamy Austrian beech forest soils. These differences may be related to the specific adaptation of the microbial communities to draught conditions.

  10. Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.

  11. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  12. USCS and the USDA Soil Classification System: Development of a Mapping Scheme

    DTIC Science & Technology

    2015-03-01

    important to human daily living. A variety of disciplines (geology, agriculture, engineering, etc.) require a sys- tematic categorization of soil, detailing...it is often important to also con- sider parameters that indicate soil strength. Two important properties used for engineering-related problems are...that many textural clas- sification systems were developed to meet specifics needs. In agriculture, textural classification is used to determine crop

  13. Soil moisture data as a constraint for groundwater recharge estimation

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Sorensen, James P. R.; Butler, Adrian P.

    2017-09-01

    Estimating groundwater recharge rates is important for water resource management studies. Modeling approaches to forecast groundwater recharge typically require observed historic data to assist calibration. It is generally not possible to observe groundwater recharge rates directly. Therefore, in the past, much effort has been invested to record soil moisture content (SMC) data, which can be used in a water balance calculation to estimate groundwater recharge. In this context, SMC data is measured at different depths and then typically integrated with respect to depth to obtain a single set of aggregated SMC values, which are used as an estimate of the total water stored within a given soil profile. This article seeks to investigate the value of such aggregated SMC data for conditioning groundwater recharge models in this respect. A simple modeling approach is adopted, which utilizes an emulation of Richards' equation in conjunction with a soil texture pedotransfer function. The only unknown parameters are soil texture. Monte Carlo simulation is performed for four different SMC monitoring sites. The model is used to estimate both aggregated SMC and groundwater recharge. The impact of conditioning the model to the aggregated SMC data is then explored in terms of its ability to reduce the uncertainty associated with recharge estimation. Whilst uncertainty in soil texture can lead to significant uncertainty in groundwater recharge estimation, it is found that aggregated SMC is virtually insensitive to soil texture.

  14. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia

    NASA Astrophysics Data System (ADS)

    Rabbi, S. M. F.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Cowie, Annette; Robertson, Fiona; Dalal, Ram; Page, Kathryn; Crawford, Doug; Wilson, Brian R.; Schwenke, Graeme; McLeod, Malem; Badgery, Warwick; Dang, Yash P.; Bell, Mike; O'Leary, Garry; Liu, De Li; Baldock, Jeff

    2015-12-01

    Australia’s “Direct Action” climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions.

  15. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia

    PubMed Central

    Rabbi, S.M.F.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Cowie, Annette; Robertson, Fiona; Dalal, Ram; Page, Kathryn; Crawford, Doug; Wilson, Brian R.; Schwenke, Graeme; Mcleod, Malem; Badgery, Warwick; Dang, Yash P.; Bell, Mike; O’Leary, Garry; Liu, De Li; Baldock, Jeff

    2015-01-01

    Australia’s “Direct Action” climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions. PMID:26639009

  16. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resh, Sigrid C.

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody materialmore » into soil CO 2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO 2, elevated CO 2 + O 3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial δ 13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early pathways of decomposition, we measured soil surface CO 2 efflux, dissolved organic C (DOC), and DO 13C approximately monthly over two growing seasons from a subsample of the research plots. To determine the portion of soil surface CO 2 efflux attributable to wood-derived C, we used Keeling plot techniques to estimate the associated δ 13C values of the soil CO 2 efflux. We measured the δ 13CO 2 once during the peak of each growing season. Initial values for soil δ 13C values and CN concentrations averaged across the six sites were -26.8‰ (standard error = 0.04), 2.46% (se = 0.11), and 0.15% (se = 0.01), respectively. The labeled wood chips from the Aspen FACE treatments had an average δ13C value of -39.5‰ (se 0.10). The >12 ‰ isotopic difference between the soil and wood chip δ 13C values provides the basis for tracking the wood-derived C through the early stages of decomposition and subsequent storage in the soil. Across our six research sites, average soil surface CO 2 efflux ranged from 1.04 to 2.00 g CO 2 m -2 h -1 for the first two growing seasons. No wood chip controls had an average soil surface CO 2 efflux of 0.67 g CO 2 m -2 h -1 or about half of that of the wood chip treatment plots. Wood-derived CO 2 efflux was higher for loam textured soils relative to sands (0.70 and 0.54 g CO 2 m -2 h -1, respectively; p = 0.045)), for surface relative to buried wood chip treatments (0.92 and 0.39 g CO 2 m -2 h -1, respectively; p < 0.001), for warmed relative to ambient temperature treatments (0.99 and 0.78 g CO 2 m -2 h -1, respectively; 0.004), and for natural rot relative to brown and white rots (0.93, 0.82, and 0.78 g CO 2 m -2 h -1, respectively; p = 0.068). Our first two growing seasons of soil surface CO 2 efflux data show that wood chip location (i.e., surface vs. buried chip application) is very important, with surface chips loosing twice the wood-derived CO 2. The DOC data support this trend for greater loss of ecosystem C from surface chips. This has strong implications for the importance of root and buried wood for ecosystem C retention. This strong chip location effect on wood-derived C loss was significantly modified by soil texture, soil temperature, decomposer communities, and wood quality as effected by potential future CO 2 and O 3 levels.« less

  17. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of soil texture on the degradation of textiles associated with buried bodies.

    PubMed

    Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L

    2013-09-10

    There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be important for estimating time since deposition in instances where only grave goods and associated materials are recovered from a burial site. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Dielectric constants of soils at microwave frequencies-2

    NASA Technical Reports Server (NTRS)

    Wang, J.; Schmugge, T.; Williams, D.

    1978-01-01

    The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.

  20. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the environmental gradients of the country. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    NASA Astrophysics Data System (ADS)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable alteration on soil texture and Ks. Also, relationship between T, RH, LAI and ASM developed can be used for soil moisture modelling for watersheds with eucalyptus plantations.

  3. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)

    PubMed Central

    Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François

    2007-01-01

    Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238

  4. Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size.

    PubMed

    Fravolini, Alessandra; Hultine, Kevin R; Brugnoli, Enrico; Gazal, Rico; English, Nathan B; Williams, David G

    2005-08-01

    Plant metabolic activity in arid and semi-arid environments is largely tied to episodic precipitation events or "pulses". The ability of plants to take up and utilize rain pulses during the growing season in these water-limited ecosystems is determined in part by pulse timing, intensity and amount, and by hydrological properties of the soil that translate precipitation into plant-available soil moisture. We assessed the sensitivity of an invasive woody plant, velvet mesquite (Prosopis velutina Woot.), to large (35 mm) and small (10 mm) isotopically labeled irrigation pulses on two contrasting soil textures (sandy-loam vs. loamy-clay) in semi-desert grassland in southeastern Arizona, USA. Predawn leaf water potential (psi(pd)), the isotopic abundance of deuterium in stem water (deltaD), the abundance of 13C in soluble leaf sugar (delta13C), and percent volumetric soil water content (theta(v)) were measured prior to irrigation and repeatedly for 2 weeks following irrigation. Plant water potential and the percent of pulse water present in the stem xylem indicated that although mesquite trees on both coarse- and fine-textured soils quickly responded to the large irrigation pulse, the magnitude and duration of this response substantially differed between soil textures. After reaching a maximum 4 days after the irrigation, the fraction of pulse water in stem xylem decreased more rapidly on the loamy-clay soil than the sandy-loam soil. Similarly, on both soil textures mesquite significantly responded to the 10-mm pulse. However, the magnitude of this response was substantially greater for mesquite on the sandy-loam soil compared to loamy-clay soil. The relationship between psi(pd) and delta13C of leaf-soluble carbohydrates over the pulse period did not differ between plants at the two sites, indicating that differences in photosynthetic response of mesquite trees to the moisture pulses was a function of soil water availability within the rooting zone rather than differences in plant biochemical or physiological constraints. Patterns of resource acquisition by mesquite during the dynamic wetting-drying cycle following rainfall pulses is controlled by a complex interaction between pulse size and soil hydraulic properties. A better understanding of how this interaction affects plant water availability and photosynthetic response is needed to predict how grassland structure and function will respond to climate change.

  5. Relationships between physical-geographical factors and soil degradation on agricultural land.

    PubMed

    Bednář, Marek; Šarapatka, Bořivoj

    2018-07-01

    It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature <5.9 °C, elevation differences >10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Questions: How does long-term grazing exclusion influence plant community composition in a semiarid grassland? Can spatial variation in the effects of grazing exclusion be explained by variation in soil texture? Location: The shortgrass steppe of northeastern Colorado, USA, located in the North Amer...

  7. Height growth of red pine on fine-textured soils.

    Treesearch

    David H. Alban; Donald H. Prettyman

    1984-01-01

    Height growth was determined by stem analysis for red pine in 12 natural and 10 planted stands on well-drained, fine textured soils. Growth closely followed the Gervorkiantz site index curves. When calculating site index, an age adjustment is desirable if the trees take longer than 8 years to attain breast height.

  8. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    PubMed

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  9. Documentation of a deep percolation model for estimating ground-water recharge

    USGS Publications Warehouse

    Bauer, H.H.; Vaccaro, J.J.

    1987-01-01

    A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)

  10. Using Remotely-Sensed Estimates of Soil Moisture to Infer Soil Texture and Hydraulic Properties across a Semi-arid Watershed

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.

    2007-01-01

    Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soils information using simple parameter estimation with few but appropriately timed remote sensing retrievals.

  11. Reduction of root-knot nematode, Meloidogyne javanica, and ozone mass transfer in soil treated with ozone.

    PubMed

    Qiu, Jinya Jack; Westerdahl, Becky B; Pryor, Alan

    2009-09-01

    Ozone gas (O₃) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O₃ generator. Two O₃ dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O₃/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O₃ mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O₃ dosage needed for effective nematode control.

  12. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  13. Tracking Water, C, N, and P by Linking Local Scale Soil Hydrologic and Biogeochemical Features to Watershed Scale

    NASA Astrophysics Data System (ADS)

    Sedaghatdoost, A.; Mohanty, B.; Huang, Y.

    2017-12-01

    The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.

  14. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  15. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  16. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  17. Methods for Tier 1 Modeling within the Training Range Environmental Evaluation and Characterization System

    DTIC Science & Technology

    2009-08-01

    properties, part b. USLE K-Factor by Organic Matter Content Soil -Texture Classification Dry Bulk Density, g/cm3 Field Capacity, % Available...Universal Soil Loss Equation ( USLE ) can be used to estimate annual average sheet and rill erosion, A (tons/acre-yr), from the equation A R K L S...erodibility factors, K, for various soil classifications and percent organic matter content ( USLE Fact Sheet 2008). Textural Class Average Less than 2

  18. Understanding the effect of watershed characteristic on the runoff using SCS curve number

    NASA Astrophysics Data System (ADS)

    Damayanti, Frieta; Schneider, Karl

    2015-04-01

    Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the estimated runoff. CN values were estimated using the field measurements of soil textures for different combinations of land use and topography. To transfer the local soil texture measurements to the watershed domain a statistical analysis using the frequency distribution of the measured soil textures is applied and used to derive the effective CN value for a given land use, topography and soil texture combination. Since the curve numbers change as a function of parameter combinations, the effect of different methods to estimate the curve number upon the runoff is analyzed and compared to the straight forward method of using the data from the FAO soil map.

  19. Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter

    NASA Astrophysics Data System (ADS)

    Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa

    2016-04-01

    Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the field spectra collected with the VIS-NIR platform. Maps of soil properties were generated using natural neighbour (NN) interpolation. Calibration results were satisfactory for all soil properties and allowed for the generation of detailed maps. The spatial variability of RDC was in accordance with the field orthophotography. Areas of high RDC content were corresponding to area of bad plant development. Soil texture has been correctly predicted by VIS-NIR spectroscopy (laboratory or on-the-go) before. However, readily dispersible clay (an important parameter for soil stability) has never been investigated before. This study introduces the possibility of using VIS-NIR for predicting readily dispersible clay at field level. The results obtained could be used in preventing soil erosion. Acknowledgement: This research was financed by a National Science Centre grant (NCN - Poland) with decision number UMO-2012/07/B/ST10/04387

  20. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  1. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    NASA Astrophysics Data System (ADS)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  2. Compositon of sediments transported by the wind at different heights

    NASA Astrophysics Data System (ADS)

    Iturri, Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel

    2017-04-01

    Wind erosion (WE) is one of the most important degradation process of soils in arid- and semiarid environments in the world, affecting soil properties and adjacent ecosystems, including human health. Estimations about the amount of eroded soil are available in Argentina and in the world, but the quality of the eroded sediments, particularly the sorting effects in agricultural soils, has been scarcely studied. The trend of the different mineral and organic soil compounds, which enrich in different size classes, can define height distribution profiles. Therefore, the uppermost 2.5 cm of four agricultural loess soils that differ in granulometric composition were used for WE simulations in a wind tunnel. Particles with a diameter smaller than 10 µm (PM10) were collected with a laboratory dust generator. The bulk soil and all the sediment samples were characterized by the granulometric composition, the soil organic carbon (SOC) content and the mineral and organic functional groups. Despite different texture, the soils were subjected to similar sorting processes in height, but differed depending on their granulometry. There was a separation between coarser and finer soil particles in coarser textured soils, while finer textured soils were more homogeneous in all heights. This correlated with the preferential transport of Si-O from quartz and C-H, C=O and C-C from soil organic matter (SOM), which were transported in larger and/or denser particles at lower heights. O-H from clay minerals and C-O-C and C-O from polysaccharides, carbohydrates and derivatives from SOM were transported in higher heights. Despite similar SOC content in the bulk soils, both the amount and composition in the PM10 fractions was different. The SOC transported at higher heights was mostly composed of polysaccharides, carbohydrates and derivatives associated with clay minerals. The SOC in PM10 fractions of coarser-textured soils was dominated by labile C-H groups. According to the determined height distribution profiles, it can be deduced that WE may affect both soil quality and the soil C balance due to the sorting effects during transport.

  3. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  4. Variability in soil CO2 efflux across distinct urban land cover types

    NASA Astrophysics Data System (ADS)

    Weissert, Lena F.; Salmond, Jennifer A.; Schwendenmann, Luitgard

    2015-04-01

    As a main source of greenhouse gases urban areas play an important role in the global carbon cycle. To assess the potential role of urban vegetation in mitigating carbon emissions we need information on the magnitude of biogenic CO2 emissions and its driving factors. We examined how urban land use types (urban forest, parklands, sportsfields) vary in their soil CO2 efflux. We measured soil CO2 efflux and its isotopic signature, soil temperature and soil moisture over a complete growing season in Auckland, New Zealand. Soil physical and chemical properties and vegetation characteristics were also measured. Mean soil CO2 efflux ranged from 4.15 to 12 μmol m-2 s-1. We did not find significant differences in soil CO2 efflux among land cover types due to high spatial variability in soil CO2 efflux among plots. Soil (soil carbon and nitrogen density, texture, soil carbon:nitrogen ratio) and vegetation characteristics (basal area, litter carbon density, grass biomass) were not significantly correlated with soil CO2 efflux. We found a distinct seasonal pattern with significantly higher soil CO2 efflux in autumn (Apr/May) and spring (Oct). In urban forests and sportsfields over 80% of the temporal variation was explained by soil temperature and soil water content. The δ13C signature of CO2 respired from parklands and sportsfields (-20 permil - -25 permil) were more positive compared to forest plots (-29 permil) indicating that parkland and sportsfields had a considerable proportion of C4 grasses. Despite the large intra-urban variability, our results compare to values reported from other, often climatically different cities, supporting the hypothesis of homogenization across urban areas as a result of human management practices.

  5. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  6. Relation between L-band soil emittance and soil water content

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Van Bavel, C. H. M.; Newton, R. W.

    1986-01-01

    An experimental relation between soil emittance (E) at L-band and soil surface moisture content (M) is compared with a theoretical one. The latter depends on the soil dielectric constant, which is a function of both soil moisture content and of soil texture. It appears that a difference of 10 percent in the surface clay content causes a change in the estimate of M on the order of 0.02 cu m/cu m. This is based on calculations with a model that simulates the flow of water and energy, in combination with a radiative transfer model. It is concluded that an experimental determination of the E-M relation for each soil type is not required, and that a rough estimate of the soil texture will lead to a sufficiently accurate estimate of soil moisture from a general, theoretical relationship obtained by numerical simulation.

  7. Dielectric properties of soils as a function of moisture content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1974-01-01

    Soil dielectric constant measurements are reviewed and the dependence of the dielectric constant on various soil parameters is determined. Moisture content is given special attention because of its practical significance in remote sensing and because it represents the single most influential parameter as far as soil dielectric properties are concerned. Relative complex dielectric constant curves are derived as a function of volumetric soil water content at three frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures (sand, loam, and clay). These curves, presented in both tabular and graphical form, were chosen as representative of the reported experimental data. Calculations based on these curves showed that the power reflection coefficient and emissivity, unlike skin depth, vary only slightly as a function of frequency and soil texture.

  8. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  9. Role of soil texture on mesquite water relations and response to summer precipitation

    Treesearch

    Alessandra Fravolini; Kevin R. Hultine; Dan F. Koepke; David G. Williams

    2003-01-01

    In the arid Southwest United States, monsoon precipitation plays a key role in ecosystem water balance and productivity. The sensitivity of deeply rooted plants to pulses of summer precipitation is, in part, controlled by the interaction between soil texture, precipitation intensity, and plant rooting depth and activity. In this study we evaluated the water relations...

  10. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    PubMed

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  11. Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape.

    PubMed

    Neill, Christopher; Piccolo, Marisa C; Cerri, Carlos C; Steudler, Paul A; Melillo, Jerry M; Brito, Marciano

    1997-04-01

    Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO 3 - -N and total inorganic N concentrations than pasture soils, but substantial NO 3 - -N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.

  12. Dynamics of Active Layer Depth across Alaskan Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    Ma, C.; Zhang, X.; Song, X.; Xu, X.

    2016-12-01

    The thickness of the active layer, near-surface layer of Earth material above permafrost undergoing seasonal freezing and thawing, is of considerable importance in high-latitude environments because most physical, chemical, and biological processes in the permafrost region take place within it. The dynamics of active layer thickness (ALT) result from a combination of various factors including heat transfer, soil water content, soil texture, root density, stem density, moss layer thickness, organic layer thickness, etc. However, the magnitude and controls of ALT in the permafrost region remain uncertain. The purpose of this study is to improve our understanding of the dynamics of ALT across Alaskan tundra ecosystems and their controls at multiple scales, ranging from plots to entire Alaska. This study compiled a comprehensive dataset of ALT at site and regional scales across the Alaskan tundra ecosystems, and further analyzed ALT dynamics and their hierarchical controls. We found that air temperature played a predominant role on the seasonality of ALT, regulated by other physical and chemical factors including soil texture, moisture, and root density. The structural equation modeling (SEM) analysis confirmed the predominant role of physical controls (dominated by heat and soil properties), followed by chemical and biological factors. Then a simple empirical model was developed to reconstruct the ALT across the Alaska. The comparisons against field observational data show that the method used in this study is robust; the reconstructed time-series ALT across Alaska provides a valuable dataset source for understanding ALT and validating large-scale ecosystem models.

  13. Reduction of Root-Knot Nematode, Meloidogyne javanica, and Ozone Mass Transfer in Soil Treated with Ozone

    PubMed Central

    Qiu, Jinya Jack; Pryor, Alan

    2009-01-01

    Ozone gas (O3) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O3 generator. Two O3 dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O3/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O3 mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O3 dosage needed for effective nematode control. PMID:22736821

  14. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    PubMed

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures

    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less

  16. Relationship between the erosion properties of soils and other parameters

    USDA-ARS?s Scientific Manuscript database

    Soil parameters are essential for erosion process prediction and ultimately improved model development, especially as they relate to dam and levee failure. Soil parameters including soil texture and structure, soil classification, soil compaction, moisture content, and degree of saturation can play...

  17. The relative importance of physical erosion and soil water dynamics on chemical weathering and soil formation: learning from field and model results

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2015-12-01

    A new model is presented that integrates the effect of landscape evolution and soil formation. This model is based on a daily spatially-explicit soil water balance. Average soil water content, temperature and deep percolation fluxes are linked to weathering and soil formation processes. Model input (temperature and precipitation) for the last 25 000 years was generated on a daily time by combining palaeoclimate data and the WXGEN weather generator. The soil-landscape model was applied to a 48 km2 semi-natural catchment in Southern Spain, with soils developed on granite. Model-generated runoff was used for a first validation against discharge observations. Next, soil formation output was contrasted against experimental data from 10 soil profiles along two catenas. Field data showed an important variation in mobile regolith thickness, between 0,44 and 1,10m, and in chemical weathering along the catena. Southern slopes were characterized by shallower, stonier and carbon-poor soils, while soils on north-facing slopes were deeper, more fine-textured and had a higher carbon content. Chemical depletion fraction was found to vary between 0,41 and 0,72. The lowest overall weathering intensity was found on plateau positions. South facing slopes revealed slightly lower weathering compared to north facing slopes. We attribute this to higher runoff generation and physical erosion rates on north facing slopes, transporting weathered material downslope. Model results corroborate these findings and show continuously wet soils on north-facing slopes with more runoff generation and a steady deep percolation flux during the wet winter season. On south-facing slopes, infiltration is higher and percolation is more erratic over time. Soils on the footslopes then were shown to be significantly impacted by deposition of sediment through lateral erosion fluxes.

  18. Priming of Native Soil Organic Matter by Pyrogenic Organic Matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, S.; Lehmann, J.; Woolf, D.; Whitman, T.

    2016-12-01

    Within the global carbon (C) cycle, soil C makes up a critical and active pool. Pyrogenic C, (PyC) or black C, contributes to this pool, and has been shown to change the turnover rate of the non-pyrogenic soil organic carbon (nSOC) associated with it. This change in rate of mineralization is referred to as priming, which can be negative or positive. There are many possible mechanisms that may be causing this priming effect, both biological and chemical. This study employs incubation experiments to identify and parse these potential mechanisms, focusing on negative priming mechanisms which may have importance in global carbon storage and carbon cycling models. Continuous respiration measurements of soil/char and soil/biomass incubations using isotopically labeled biomass (13C and 15N) indicate that priming interactions are more significant in soils with higher carbon contents, and that higher temperature chars induce more negative priming over time. Current incubations are exploring the effects of chars pyrolyzed at different temperatures, chars extracted of DOC versus non-extracted, soils with differing carbon contents, and the effects of pH and nutrient adjusting incubations. We will continue to examine the contribution of the different mechanisms by isolating variables such as nutrient addition, soil texture, char application rate, and mineral availability. We anticipate that sorption on PyOM surfaces are important in nSOM stabilization and will continue to study these effects using highly labeled substrates and nano secondary ion mass spectrometry (nano-SIMS).

  19. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  20. An improved thermo-time domain reflectometry method for determination of ice contents in partially frozen soils

    NASA Astrophysics Data System (ADS)

    Tian, Zhengchao; Ren, Tusheng; Kojima, Yuki; Lu, Yili; Horton, Robert; Heitman, Joshua L.

    2017-12-01

    Measuring ice contents (θi) in partially frozen soils is important for both engineering and environmental applications. Thermo-time domain reflectometry (thermo-TDR) probes can be used to determine θi based on the relationship between θi and soil heat capacity (C). This approach, however, is accurate in partially frozen soils only at temperatures below -5 °C, and it performs poorly on clayey soils. In this study, we present and evaluate a soil thermal conductivity (λ)-based approach to determine θi with thermo-TDR probes. Bulk soil λ is described with a simplified de Vries model that relates λ to θi. From this model, θi is estimated using inverse modeling of thermo-TDR measured λ. Soil bulk density (ρb) and thermo-TDR measured liquid water content (θl) are also needed for both C-based and λ-based approaches. A theoretical analysis is performed to quantify the sensitivity of C-based and λ-based θi estimates to errors in these input parameters. The analysis indicates that the λ-based approach is less sensitive to errors in the inputs (C, λ, θl, and ρb) than is the C-based approach when the same or the same percentage errors occur. Further evaluations of the C-based and λ-based approaches are made using experimentally determined θi at different temperatures on eight soils with various textures, total water contents, and ρb. The results show that the λ-based thermo-TDR approach significantly improves the accuracy of θi measurements at temperatures ≤-5 °C. The root mean square errors of λ-based θi estimates are only half those of C-based θi. At temperatures of -1 and -2 °C, the λ-based thermo-TDR approach also provides reasonable θi, while the C-based approach fails. We conclude that the λ-based thermo-TDR method can reliably determine θi even at temperatures near the freezing point of water (0 °C).

  1. Effect of buffer strips and soil texture on runoff losses of flufenacet and isoxaflutole from maize fields.

    PubMed

    Milan, Marco; Ferrero, Aldo; Letey, Marilisa; De Palo, Fernando; Vidotto, Francesco

    2013-01-01

    The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.

  2. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    PubMed

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  3. Factors affecting HCH and DDT in soils around watersheds of Beijing reservoirs, China.

    PubMed

    Hu, Wenyou; Lu, Yonglong; Wang, Tieyu; Luo, Wei; Zhang, Xiang; Geng, Jing; Wang, Guang; Shi, Yajuan; Jiao, Wentao; Chen, Chunli

    2010-04-01

    The factors that influence the dynamics of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in soils around the watersheds of Beijing reservoirs were examined. Compared with other studies on HCH and DDT in soils and established reference values, the concentrations of HCH and DDT in soils around our study area were relatively low. The relationships between HCH and DDT concentrations and land use, soil texture, and soil properties were discussed. HCH and DDT concentrations were higher in arable soils than those in uncultivated fallow soils. Although land use was the most important factor affecting HCH and DDT residues, additional factors such as soil texture and soil total organic carbon were also involved in pesticide retention in soils. The results indicated that the historical agricultural applications of HCH and DDT were the major source of their residues. Atmospheric deposition, as well as long-distance transportation and inputs from surrounding weathered agricultural soils may also serve as important sources of HCH and DDT residues in the watersheds.

  4. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  5. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  6. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    NASA Astrophysics Data System (ADS)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without calcium nitrate amendment. Results show all factors and interactions were significant. Leachate electrical conductivity was measured for five soils from two depth intervals with or without calcium nitrate amendment for eight sequential pore volumes. Results show highest electrical conductivity for the initial pore volume and decreasing electrical conductivities for subsequent pore volumes. Laboratory microcosm experiments are being used to assess anaerobic biodegradation as a potential treatment for chloroform contamination in fine textured soils and ground water. The first experiment investigates the bioremediation potential for indigenous microorganisms using acetate, lactate, canola oil, nitrate, and sulfate as carbon source or terminal electron acceptor amendments. The second experiment investigates the bioremediation potential for microorganisms from a secondary contaminated site which could be used as a microbial inoculation source. The same amendments except lactate were used. Headspace chloroform analysis results do not indicate the occurrence of biodegradation in any treatment meaning that bioremediation may not be a viable option. Results from this research will be used to conduct a risk assessment for the site incorporating site and contaminant characteristics. A management and remediation plan will be developed so the land can be safely used and the university's lease can be terminated. The research will contribute to our knowledge on remediation with contaminant mixtures and fine textured soils.

  7. Subsoil denitrification experiments at KBS MSU

    NASA Astrophysics Data System (ADS)

    Shcherbak, I.; Robertson, G. P.

    2011-12-01

    Denitrification is a major soil process that produces nitrous oxide (N2O), a potent greenhouse gas. Most research on denitrification has, for various reasons, concentrated on the top soil layer, ignoring depths below 10-20 cm. Although denitrification is considered to be the most active in top soil, this layer usually accounts for only 10% of the total volume of the soil profile. Our research addresses the questions: How significant is denitrification at depth in the soil profile and how does it vary with land-use? We have two field experiments at the W. K. Kellogg Biological Station (KBS) in southwest Michigan: 1) tilled versus no-tillage rainfed fertilized corn and 2) rainfed versus irrigated corn at six fertilizer levels, with N2O concentrations measured at 10 depths (3, 7, 15, 20, 25, 50, 55, 70, 75, 125 cm) and 5 depths (10, 20, 30, 50, 75 cm), respectively , along with N2O fluxes to the atmosphere in both. Soil environment data (texture, water content, temperature and nitrate content) represent a combination of measured values and simulated values using the SALUS (System Approach to Land Use Sustainability) model. We used diffusion and water balance equations that incorporated carbon dioxide concentrations and flux data collected simultaneously with N2O to determine diffusivity as a function of water content and soil temperature. We used the same diffusivity to obtain N2O production as function of moisture, temperature, and nitrate availability. Further validation of the production function was performed with data collected from the KBS Long-Term Ecological Research (LTER) site , where we also measured belowground concentrations during the 2011 growing season.

  8. Topographic Controls on Spatial Patterns of Soil Texture and Moisture in a Semi-arid Montane Catchment with Aspect-Dependent Vegetation

    NASA Astrophysics Data System (ADS)

    Lehman, B. M.; Niemann, J. D.

    2008-12-01

    Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.

  9. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  10. Can Infrared Spectroscopy Be Used to Measure Change in Potassium Nitrate Concentration as a Proxy for Soil Particle Movement?

    PubMed Central

    Luleva, Mila Ivanova; van der Werff, Harald; Jetten, Victor; van der Meer, Freek

    2011-01-01

    Displacement of soil particles caused by erosion influences soil condition and fertility. To date, the cesium 137 isotope (137Cs) technique is most commonly used for soil particle tracing. However when large areas are considered, the expensive soil sampling and analysis present an obstacle. Infrared spectral measurements would provide a solution, however the small concentrations of the isotope do not influence the spectral signal sufficiently. Potassium (K) has similar electrical, chemical and physical properties as Cs. Our hypothesis is that it can be used as possible replacement in soil particle tracing. Soils differing in texture were sampled for the study. Laboratory soil chemical analyses and spectral sensitivity analyses were carried out to identify the wavelength range related to K concentration. Different concentrations of K fertilizer were added to soils with varying texture properties in order to establish spectral characteristics of the absorption feature associated with the element. Changes in position of absorption feature center were observed at wavelengths between 2,450 and 2,470 nm, depending on the amount of fertilizer applied. Other absorption feature parameters (absorption band depth, width and area) were also found to change with K concentration with coefficient of determination between 0.85 and 0.99. Tracing soil particles using K fertilizer and infrared spectral response is considered suitable for soils with sandy and sandy silt texture. It is a new approach that can potentially grow to a technique for rapid monitoring of soil particle movement over large areas. PMID:22163843

  11. Temperature effect on the transport of bromide and E. coli NAR in saturated soils

    NASA Astrophysics Data System (ADS)

    Gharabaghi, B.; Safadoust, A.; Mahboubi, A. A.; Mosaddeghi, M. R.; Unc, A.; Ahrens, B.; Sayyad, Gh.

    2015-03-01

    In this study we investigated the transport of nalidixic acid-resistant Escherichia coli (E. coli NAR) and bromide (Br-) through two soils, a sandy loam (SL) and clay loam (CL). Soils were repacked in columns (45 cm length × 22 cm diameter) and subjected to physical (freeze/thaw, and wet/dry cycles) and biological (by earthworms, Eisenia fetida) weathering for 12 months. Saturated flow conditions were maintained using a tension infiltrometer. Tests were carried out at either 5 or 20 °C. After steady-state flow conditions were established, a suspension containing E. coli NAR and Br- was sprayed onto the surface of soil columns. Leachate was sampled at three depths, 15, 30 and 45 cm. Time to maximum concentration (Cmax) of E. coli NAR was greater for SL at all depths. Both tracers had rapid breakthrough curves (BTCs) shortly after the suspension injection followed by prolonged tailing indicating the presence of preferential pathways and thus soil heterogeneity regenerated after the induced physical and biological weathering. About 40% of the E. coli NAR and 79% of the Br- leached through the entire 45 cm soil columns during the experiments. Leaching with cold water (5 °C) led to lower hydraulic conductivity and flow rate and consequently enhanced bacterial filtration for both soils. Very low values for the detachment coefficient for E. coli NAR at 5 °C suggest an irreversible process of bacterial attachment in heterogeneous soils. BTCs were well described by the mobile-immobile model (MIM) in HYDRUS-1D. Soil texture/structure and temperature had a significant effect on the model's fitted parameters.

  12. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow

    NASA Astrophysics Data System (ADS)

    Ji, Xinye; Shen, Chaopeng; Riley, William J.

    2015-12-01

    Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.

  13. Impact of Surface Roughness and Soil Texture on Mineral Dust Emission Fluxes Modeling

    NASA Technical Reports Server (NTRS)

    Menut, Laurent; Perez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, Stephane

    2013-01-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  14. Loamy, two-storied soils on the outwash plains of southwestern lower Michigan: Pedoturbation of loess with the underlying sand

    USGS Publications Warehouse

    Luehmann, Michael D.; Peter, Brad G.; Connallon, Christopher B.; Schaetzl, Randall J.; Smidt, Samuel J.; Liu, Wei; Kincare, Kevin A.; Walkowiak, Toni A.; Thorlund, Elin; Holler, Marie S.

    2016-01-01

    Soils on many of the outwash plains in southwestern Michigan have loamy upper profiles, despite being underlain by sand-textured outwash. The origin of this upper, loamy material has long been unknown. The purpose of this study is to analyze the spatio-textural characteristics of these loamy-textured sediments to ascertain their origin(s). The textural curves of this material have distinct bimodality, with clear silt and sand peaks. Because the sand peaks align with those in the outwash below, we conclude that the upper material is a mixture of an initially silty material with the sand from below, forming loamy textures. By applying a textural filtering operation to the data, we determined its original characteristics; nearly all of the soils originally had silt loam upper profiles, typical for loess. Field data showed that the loamy material is thickest east of a broad, north–south trending valley (the Niles-Thornapple Spillway) that once carried glacial meltwater. The material becomes thinner, generally better sorted, and finer in texture eastward, away from this channel. We conclude that the loamy mantle on many of the adjacent outwash plains is silt-rich loess, derived from the Niles-Thornapple Spillway and its tributary channels and transported on mainly westerly winds. The spillway was active between ca. 17.3 and 16.8 k cal. years ago. At this time, a large network of tunnel channels existed beneath the stagnant Saginaw lobe ice. Meltwater from the lobe funneled silt-rich sediment into the spillway, rendering it a prodigious silt source.

  15. Response of three soil water sensors to variable solution electrical conductivity in different soils

    USDA-ARS?s Scientific Manuscript database

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  16. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic Haploxerept (C), Typic Xerorthent (D), and Typic Xerofluvent (E)] and six particle size families [Fine (1), Fine-silty (2), Fine-loamy (3), Coarse-loamy (4), Loamy Superficial (5) and Loamy-skeletal (6)]. Two great soil zones were defined: the more calcic glacis (A and B subgroups) dominated by coarse textures (4-6); and the more gypsic, fine textured valley floors (C, D and E) (1-2-3) with the exception of the superficial gypsic high lands (D5). In all the soils in VID Calcium Carbonate Equivalent (CCE) was high (though lower in the valleys) and silt was the main textural fraction. The coarser textured glacis had low Gypsum Content (GC), lower WHC and higher Ks while the valley bottoms had high GC, fine textures and lower Ks. The soil water retention properties (FC and WP) could be calculated from textural properties (clay, and fine silt fractions) and the Ks could be related to sand and GC by means of meaningful PTF's. The use of disaggregated soil information (combined with distributed irrigation data) may lead to improved water balance calculations and suggest management options for a better water use in VID.

  17. Toxocara (Nematoda: Ascaridida) and Other Soil-Transmitted Helminth Eggs Contaminating Soils in Selected Urban and Rural Areas in the Philippines

    PubMed Central

    Paller, Vachel Gay V.; de Chavez, Emmanuel Ryan C.

    2014-01-01

    The extent of contamination of soils with soil transmitted helminthes (STH) eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31%) were positive for STH eggs. Toxocara sp. was the most prevalent (77%), followed by Ascaris sp. (11%), hookworms/strongyles/free-living nematodes (7%), and Trichuris sp. (5%). Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm) and depth 2 (6–10 cm). This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis. PMID:25383372

  18. Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.

    2005-01-01

    Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.

  19. Statistical process control applied to mechanized peanut sowing as a function of soil texture.

    PubMed

    Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.

  20. Factors influencing the contents of metals and as in soils around the watershed of Guanting Reservoir, China.

    PubMed

    Xu, Li; Wang, Tieyu; Luo, Wei; Ni, Kun; Liu, Shijie; Wang, Lin; Li, Qiushuang; Lu, Yonglong

    2013-03-01

    Topsoil samples from 61 sites around the Guanting Reservoir, China, were measured for Cu, Zn, Cr, Ni, Cd, Pb and As concentrations. The mean concentrations of Cu, Zn, Cr, Ni, Cd, Pb and As were 16.8, 59.4, 37.8, 18.3, 0.32, 20.1 and 8.67 mg/kg dry weight, respectively. Factors that influence the dynamics of these metals in soils around the watersheds of Beijing reservoirs were examined. The influence of atmospheric deposition, land use, soil texture, soil type and soil chemical parameters on metal contents in soils was investigated. Atmospheric deposition, land use and soil texture were the important factors affecting heavy metal residues. Soil type and soil chemical parameters were also involved in heavy metal retention in soils. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.

  1. Statistical process control applied to mechanized peanut sowing as a function of soil texture

    PubMed Central

    Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095

  2. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  3. Biomass Allocation Patterns across China’s Terrestrial Biomes

    PubMed Central

    Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping

    2014-01-01

    Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China’s terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship. PMID:24710503

  4. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    NASA Astrophysics Data System (ADS)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the pattern in the temporal stability of tree growth was clearly related to that one in SWC. Nevertheless, the treatments that represent the mean conditions in growth were not exactly the same than those in SWC, which could be attributable to other characteristics than soil.

  5. The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.

    2016-12-01

    Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.

  6. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  7. Demonstrations in Solute Transport Using Dyes: Part I. Procedures and Results.

    ERIC Educational Resources Information Center

    Butters, Greg; Bandaranayake, Wije

    1993-01-01

    Presents the general theory to explain chemical movement in soil. Describes classroom demonstrations with visually stimulating results that show the effects of soil structure, soil texture, soil pH, and soluble organic matter on that movement. (MDH)

  8. Profile soil property estimation using a VIS-NIR-EC-force probe

    USDA-ARS?s Scientific Manuscript database

    Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. ...

  9. Thermal and hydrological observations near Twelvemile Lake in discontinuous permafrost, Yukon Flats, interior Alaska, September 2010-August 2011

    USGS Publications Warehouse

    Jepsen, Steven M.; Koch, Joshua C.; Rose, Joshua R.; Voss, Clifford I.; Walvoord, Michelle Ann

    2012-01-01

    A series of ground-based observations were made between September 2010 and August 2011 near Twelvemile Lake, 19 kilometers southwest of Fort Yukon, Alaska, for use in ongoing hydrological analyses of watersheds in this region of discontinuous permafrost. Measurements include depth to ground ice, depth to water table, soil texture, soil moisture, soil temperature, and water pressure above the permafrost table. In the drained basin of subsiding Twelvemile Lake, we generally find an absence of newly formed permafrost and an undetectable slope of the water table; however, a sloping water table was observed in the low-lying channels extending into and away from the lake watershed. Datasets for these observations are summarized in this report and can be accessed by clicking on the links in each section or from the Downloads folder of the report Web page.

  10. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  11. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  12. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  13. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of variably saturated soil. Unfrozen water content is independent of total water content and affected only by temperature when the freezing point is reached.

  14. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar conditions for precipitation, temperature and relief) to identify ranges and hence turnover conditions for each ENZ. We will discuss the analyzed results of both concepts to assess SOM turnover conditions across Europe for historical weather data and for Spain focusing on climate scenarios. Both concepts help to separate different turnover activities and to indicate organic matter input in order to maintain the given SOM. The assessment could provide recommendations for adaptations of soil management practices. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food (Grant Agreement N° 289782).

  15. News from Online: Digging up Earth Day Resources

    ERIC Educational Resources Information Center

    Coldwell, Bernadette A.

    2006-01-01

    The soil science and soil chemistry is incorporated into teaching materials for earth day and beyond. It revealed some of the chemical properties of the soil through color and texture and the chemical processes relevant to soils abound, including the carbon and nitrogen cycles in the soil, acidification of soils through acid deposition, leaching…

  16. In-situ field capacity and soil water retention measurements in two contrasting soil textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  17. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  18. A Field-Scale Sensor Network Data Set for Monitoring and Modeling the Spatial and Temporal Variation of Soil Water Content in a Dryland Agricultural Field

    NASA Astrophysics Data System (ADS)

    Gasch, C. K.; Brown, D. J.; Campbell, C. S.; Cobos, D. R.; Brooks, E. S.; Chahal, M.; Poggio, M.

    2017-12-01

    We describe a soil water content monitoring data set and auxiliary data collected at a 37 ha experimental no-till farm in the Northwestern United States. Water content measurements have been compiled hourly since 2007 by ECH2O-TE and 5TE sensors installed at 42 locations and five depths (0.3, 0.6, 0.9, 1.2, and 1.5 m, 210 sensors total) across the R.J. Cook Agronomy Farm, a Long-Term Agro-Ecosystem Research Site stationed on complex terrain in a Mediterranean climate. In addition to soil water content readings, the data set includes hourly and daily soil temperature readings, annual crop histories, a digital elevation model, Bt horizon maps, seasonal apparent electrical conductivity, soil texture, and soil bulk density. Meteorological records are also available for this location. We discuss the unique challenges of maintaining the network on an operating farm and demonstrate the nature and complexity of the soil water content data. This data set is accessible online through the National Agriculture Library, has been assigned a DOI, and will be maintained for the long term.

  19. Ecological risk assessment: influence of texture on background concentration of microelements in soils of Russia.

    NASA Astrophysics Data System (ADS)

    Beketskaya, Olga

    2010-05-01

    In Russia quality standards of contaminated substances values in environment consist of ecological and sanitary rate-setting. The sanitary risk assessment base on potential risk that contaminants pose to protect human beings. The main purpose of the ecological risk assessment is to protect ecosystem. To determine negative influence on living organisms in the sanitary risk assessment in Russia we use MPC. This value of contaminants show how substances affected on different part of environment, biological activity and soil processes. The ecological risk assessment based on comparison compounds concentration with background concentration for definite territories. Taking into account high interval of microelements value in soils, we suggest using statistic method for determination of concentration levels of chemical elements concentration in soils of Russia. This method is based on determination middle levels of elements content in natural condition. The top limit of middle chemical elements concentration in soils is value, which exceed middle regional background level in three times standard deviation. The top limit of natural concentration excess we can explain as anthropogenic impact. At first we study changing in the middle content value of microelements in soils of geographic regions in European part of Russia on the basis of cartographical analysis. Cartographical analysis showed that the soil of mountainous and mountain surrounding regions is enriched with microelements. On the plain territory of European part of Russia for most of microelements was noticed general direction of increasing their concentration in soils from north to south, also in the same direction soil clay content rise for majority of soils. For all other territories a clear connection has been noticed between the distribution of sand sediment. By our own investigation and data from scientific literature data base was created. This data base consist of following soil properties: texture, organic matter content, concentration of microelements and pH value. On the basis of this data base massive of data for Forest-steppe and Steppe regions was create, which was divided by texture. For all data statistics method was done and was calculated maximum level natural microelements content for soils with different texture (?+3*δ). As a result of our statistic calculation we got middle and the top limit of background concentration of microelements in sandy and clay soils (conditional border - sandy loam) of two regions. We showed, that for all territory of European part of Russia and for Forest-steppe and Steppe regions separately middle content and maximum level natural microelements concentrations (?+3*σ) are higher in clay soils, rather then in sandy soils. Data characterizing soils, in different regions, of similar texture differs less than the data collected for sandy and clay soils of the same region. After all this calculation we can notice, that data of middle and top limit of background microelements concentration in soils, based on statistic method, can be used in the aim of ecological risk assessment. Using offered method allow to calculate top limit of background concentration for sandy and clay soils for large-scale geographic regions, exceeding which will be evidence of anthropogenic contamination of soil.

  20. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty the Queen in Right of Canada. Global Change Biology. Published by 2016 John Wiley & Sons Ltd.

  1. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth ®, a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002).

  2. Comparison of field and laboratory VNIR spectroscopy for profile soil property estimation

    USDA-ARS?s Scientific Manuscript database

    In-field, in-situ data collection with soil sensors has potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate important soil properties, such as soil carbon, nitrogen, water content, and texture. Most pre...

  3. Estimation of soil profile physical and chemical properties using a VIS-NIR-EC-force probe

    USDA-ARS?s Scientific Manuscript database

    Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. ...

  4. Evaluation of soil processing conditions on mineralizable C and N across a textural gradient

    USDA-ARS?s Scientific Manuscript database

    Soil biological activity is an important component of a well-functioning soil. Methodologies for estimating this process in soil vary due to a variety of theoretical, functional, and expediency considerations. We tested the effects of soil processing (sieve size), water delivery method (from top a...

  5. The relative contribution of ferroelastic and ferroelectric texture to the character of a hard PZT ceramic

    NASA Astrophysics Data System (ADS)

    Key, Thomas Stallings

    The development of ferroelastic (90°) texture in addition to ferroelectric (180°) texture is essential to maximizing the piezoelectric properties of many hard tetragonal PZTs, including Piezoetechnologies K270. Ferroelastic texture results from motion of domain walls that is dependent on an individual crystals orientation. Increases in ferroelastic texture raises the maximum net polarization that can be achieved by changes in ferroelectric texture. By studying a hard PZT poled under various temperature conditions, insight was gained into factors affecting the development of ferroelastic texture and how ferroelastic texture contributes to piezoelectric properties. Depinning proved to be the major barrier to preventing ferroelastic domain wall motion where strain based domain interactions and polar defect complexes on the domain level appear to be the dominant factors. Insight into the affect of increased domain texture on the relationship between the increasing magnitude of the remnant polarization (|Pr|) and the magnitude of the coercive field (|EC|) was gained by plotting |EC| vs. |Pr| as a function of poling time for a variety of poling temperatures. At low |Pr| values, |EC| increased rapidly as a function of increases in |Pr| regardless of the poling temperature. This relationship was characteristic of samples poled at 25 °C where increases in ferroelastic texture were largely suppressed. Because increases in polarization were still observable changes in ferroelectric texture most responsible for the polarization increase and like play a strong role in the initial |EC| vs. |Pr| relationship. As |Pr| increased beyond 5 to 8 iC/cm2, the slope of |EC| vs. |Pr| decreased where the reduction in slope increased with poling temperature. This only occurred in samples poled at elevated temperatures where ferroelastic texture was know to ultimately develop during the poling process, leading to the suggestion that the change in slope was due to increases in combined ferroelectric and ferroelastic texture. Lastly, it was found that electric field induced increases in ferroelectric texture by poling at 25 °C occurs while ferroelastic domain wall motion is largely suppressed. This change in ferroelectric texture severely hinders the rate at which subsequent ferroelastic domain wall motion can be induced during poling at elevated temperatures below TC, suggesting that hard PZT samples should be preheated to the poling temperature before poling begins.

  6. Effects of spoil texture on growth of K-31 tall fescue

    Treesearch

    David H. Van Lear

    1971-01-01

    Growth of K-31 tall fescue (Festuca arundinacea) was significantly affected by the particle-size distribution, or texture, of four spoils from eastern Kentucky. Growth on spoils having no toxic chemical properties generally was greatest where texture consisted of about equal quantities of soil-size material and a coarser fraction (2 mm. to 6.4 mm.),...

  7. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    USGS Publications Warehouse

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  8. Expected changes in future agro-climatological conditions in Northeast Thailand and their differences between general circulation models

    NASA Astrophysics Data System (ADS)

    Masaki, Yoshimitsu; Ishigooka, Yasushi; Kuwagata, Tsuneo; Goto, Shinkichi; Sawano, Shinji; Hasegawa, Toshihiro

    2011-12-01

    We have studied future changes in the atmospheric and hydrological environments in Northeast Thailand from the viewpoint of risk assessment of future cultural environments in crop fields. To obtain robust and reliable estimation for future climate, ten general circulation models under three warming scenarios, B1, A1B, and A2, were used in this study. The obtained change trends show that daily maximum air temperature and precipitation will increase by 2.6°C and 4.0%, respectively, whereas soil moisture will decrease by c.a. 1% point in volumetric water content at the end of this century under the A1B scenario. Seasonal contrasts in precipitation will intensify: precipitation increases in the rainy season and precipitation decreases in the dry season. Soil moisture will slightly decrease almost throughout the year. Despite a homogeneous increase in the air temperature over Northeast Thailand, a future decrease in soil water content will show a geographically inhomogeneous distribution: Soil will experience a relative larger decrease in wetness at a shallow depth on the Khorat plateau than in the surrounding mountainous area, reflecting vegetation cover and soil texture. The predicted increase in air temperature is relatively consistent between general circulation models. In contrast, relatively large intermodel differences in precipitation, especially in long-term trends, produce unwanted bias errors in the estimation of other hydrological elements, such as soil moisture and evaporation, and cause uncertainties in projection of the agro-climatological environment. Offline hydrological simulation with a wide precipitation range is one strategy to compensate for such uncertainties and to obtain reliable risk assessment of future cultural conditions in rainfed paddy fields in Northeast Thailand.

  9. Drivers of small scale variability in soil-atmosphere fluxes of CH4, N2O and CO2 in a forest soil

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Nicolai, Clara; Wheeler, Denis; Lang, Friedeike; Paulus, Sinikka

    2016-04-01

    Soil-atmosphere fluxes of CH4, N2O and CO2 can vary on different spatial scales, on large scales between ecosystems but also within apparently homogenous sites. While CO2 and CH4 consumption is rather evenly distibuted in well aerated soils, the production of N2O and CH4 seems to occur at hot spots that can be associated with anoxic or suboxic conditions. Small-scale variability in soil properties is well-known from field soil assesment, affecting also soil aeration and thus theoretically, greenhouse gas fluxes. In many cases different plant species are associated with different soil conditions and vegetation mapping should therefor combined with soil mapping. Our research objective was explaining the small scale variability of greenhouse gas fluxes in an apparently homogeneous 50 years old Scots Pine stand in a former riparian flood plain.We combined greenhouse gas measurements and soil physical lab measurments with field soil assessment and vegetation mapping. Measurements were conducted with at 60 points at a plot of 30 X 30 m at the Hartheim monitoring site (SW Germany). For greenhouse gas measurements a non-steady state chamber system and laser analyser, and a photoacoustic analyser were used. Our study shows that the well aerated site was a substantial sink for atmospheric CH4 (-2.4 nmol/m² s) and also a for N2O (-0.4 nmol/m² s), but less pronounced, whereas CO2 production was a magnitude larger (2.6 μmol/m² s). The spatial variability of the CH4 consumption of the soils could be explained by the variability of the soil gas diffusivity (measured in situ + using soil cores). Deviations of this clear trend were only observed at points where decomposing woody debris was directly under the litter layer. Soil texture ranged from gravel, coarse sand, fine sand to pure silt, with coarser texture having higher soil gas diffusivity. Changes in texture were rather abrupt at some positions or gradual at other positions, and were well reflected in the vegetation structure. On patches of gravel and coarse sand there was hardly any ground vegatation, and a shrublayer was found only at silty patches Our results indicate that a stratification and regionalisation approach based on vegetation structure and soil texture represents a promising tool for the adjustment of sampling designs for soil gas flux measurement. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).

  10. Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation

    DOE PAGES

    Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; ...

    2015-10-21

    Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisturemore » content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.« less

  11. Subsurface Chloride Transport in Shallow Groundwater

    USDA-ARS?s Scientific Manuscript database

    High soil spatial heterogeneity was observed at the USDA-ARS Beltsville OPE3 field site using geophysical surveys (ground-penetrating radar) and soil textural analysis. This was confirmed with data on crop yields and pesticide concentrations in wells. To assess effects of soil heterogeneity on soil ...

  12. Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape

    NASA Technical Reports Server (NTRS)

    Staub, B.; Rosenzweig, C.; Rind, D.

    1987-01-01

    The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in.

  13. Preliminary results on the influence of mineralogy on the turnover rates of SOM from different Hungarian soils

    NASA Astrophysics Data System (ADS)

    Zacháry, Dóra; Szalai, Zoltán; Jakab, Gergely; Németh, Tibor; Sipos, Péter; Filep, Tibor

    2016-04-01

    Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. For example, the relative importance of different clay minerals for stabilizing SOM remains an open question. The aim of this study is to evaluate soil mineralological effect on the turnover of SOM by identifying and quantifying soil phyllosilicates. Our samples are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues are added to the soils in order to get natural 13C enrichment as tracer for the young carbon. Bulk samples of the soils from 0 to 20 cm depth were collected. The samples were dried at room temperature and preincubated in the dark for 4 months at 20 °C. The basic soil properties (pH, cation exchange capacity) were analysed after 2 mm sieving and homogenization. The amount of total C and N in the soils and maize residues were analysed using NDIR-chemiluminescent analyzer (Tekmar Dohrman Apollo 9000N). Particle size distribution was determined by laser diffraction (Fritsch Analysette MicroTec 22 plus) and particle imaging method (Malvern Morphologi G3-ID). The mineralological composition of the samples was determined by X-ray diffraction (Philips PW 1730 X-ray diffractometer). Moist soil equivalent to 400 g dry soil mixed with 2 g maize leaves is kept in air tight glass chambers for 183 days at 20°C. The leaves had previously been dried at 60 °C, were cut into pieces and sieved through a 2 mm mesh. The evolved CO2 is trapped by 10 mL 2 M NaOH, which is exchanged on day 1, 3, 5, 7, 10, 14, 21, 28 and subsequently every 31 days. The fractional abundance of 13C of the soils, the plant material and the evolved CO2 is measured with isotope ratio mass spectrometer (Thermo Scientific Delta V IRMS). Our work show the preliminary results on the link between phyllosilicate mineralogy and soil C dynamic by reporting a quantified phyllosilicate data in connection with SOM turnover and stabilization. Acknowledgement This research was supported by the Hungarian Scientific National Fund (OTKA K100180).

  14. A Functional Trait Approach for Evaluation of Agroforestry Species Adaptation Potentiel to Changing Climate

    NASA Astrophysics Data System (ADS)

    Munson, A. D.; Marone, D.; Olivier, A.

    2017-12-01

    Traditional agroforestry systems have been used for generations in the Sahel region of Africa to assure local food security. However, an understanding of the functional ecology of these systems is lacking, which would contribute to assessing both the provision of current ecological services, and the potential for adaptation to global change. We have studied five native tree and shrub species across a transect of different soil types in the semi-arid zone of the Niayes region of Senegal, to document changes in above and belowground traits in response to soil and land use change. Root traits in particular influence access to limiting resources such as water and nutrients. We studied fine root depth distribution and specific root length (SRL) with soil depth of Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Faidherbia albida, Neocarya macrophylla, on three different soil textures for three systems (fallow, parkland and rangeland), in order to understand potential exploitation of soil resources and potential contribution of roots to soil carbon stocks at different depths. The maximum root biomass of four of the species (Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Neocarya macrophylla) occurred in the 40-60 cm layer, where the two evergreen species (A. raddiana, N. macrophylla) developed the most biomass. Root biomass decreased for all species except F. albida, after 60 cm depth. The Mimosaceae species (A. raddiana, F. albida) developed the most root biomass within the 100 cm sampling depth. The maximum fine root biomass was found in fallow lands and clay soils. For all species, the highest SRL was observed during the hot dry season, in sandy or sandy loam soil. The SRL was lowest in the rainy season on clay soil. Evergreens had higher SRL than deciduous species, regardless of soil texture and growing season conditions. Parkland and rangelands exhibited higher SRL than fallow land, most likely due to higher soil fertility. Differences between evergreen and deciduous SRL relied on adaptive strategies that seem to be conditioned by season, soil and land use. We also examined intraspecific variability of above and belowground traits to assess plasticity in response to environment. Evergreen species showed more variability in response to soil and to seasonal changes in temperature and moisture.

  15. Soil maps as data input for soil erosion models: errors related to map scales

    NASA Astrophysics Data System (ADS)

    van Dijk, Paul; Sauter, Joëlle; Hofstetter, Elodie

    2010-05-01

    Soil erosion rates depend in many ways on soil and soil surface characteristics which vary in space and in time. To account for spatial variations of soil features, most distributed soil erosion models require data input derived from soil maps. Ideally, the level of spatial detail contained in the applied soil map should correspond to the objective of the modelling study. However, often the model user has only one soil map available which is then applied without questioning its suitability. The present study seeks to determine in how far soil map scale can be a source of error in erosion model output. The study was conducted on two different spatial scales, with for each of them a convenient soil erosion model: a) the catchment scale using the physically-based Limbourg Soil Erosion Model (LISEM), and b) the regional scale using the decision-tree expert model MESALES. The suitability of the applied soil map was evaluated with respect to an imaginary though realistic study objective for both models: the definition of erosion control measures at strategic locations at the catchment scale; the identification of target areas for the definition of control measures strategies at the regional scale. Two catchments were selected to test the sensitivity of LISEM to the spatial detail contained in soil maps: one catchment with relatively little contrast in soil texture, dominated by loess-derived soil (south of the Alsace), and one catchment with strongly contrasted soils at the limit between the Alsatian piedmont and the loess-covered hills of the Kochersberg. LISEM was run for both catchments using different soil maps ranging in scale from 1/25 000 to 1/100 000 to derive soil related input parameters. The comparison of the output differences was used to quantify the map scale impact on the quality of the model output. The sensitivity of MESALES was tested on the Haut-Rhin county for which two soil maps are available for comparison: 1/50 000 and 1/100 000. The order of resulting target areas (communes) was compared to evaluate the error induced by using the coarser soil data at 1/100 000. Results shows that both models are sensitive to the soil map scale used for model data input. A low sensitivity was found for the catchment with relatively homogeneous soil textures and the use of 1/100 000 soil maps seems allowed. The results for the catchment with strong soil texture variations showed significant differences depending on soil map scale on 75% of the catchment area. Here, the use of 1/100 000 soil map will indeed lead to wrong erosion diagnostics and will hamper the definition of a sound erosion control strategy. The regional scale model MESALES proved to be very sensitive to soil information. The two soil related model parameters (crusting sensitivity, and soil erodibility) reacted very often in the same direction therewith amplifying the change in the final erosion hazard class. The 1/100 000 soil map yielded different results on 40% of the sloping area compared to the 1/50 000 map. Significant differences in the order of target areas were found as well. The present study shows that the degree of sensitivity of the model output to soil map scale is rather variable and depends partly on the spatial variability of soil texture within the study area. Soil (textural) diversity needs to be accounted for to assure a fruitful use of soil erosion models. In some situations this might imply that additional soil data need to be collected in the field to refine the available soil map.

  16. Particle-size distribution models for the conversion of Chinese data to FAO/USDA system.

    PubMed

    Shangguan, Wei; Dai, YongJiu; García-Gutiérrez, Carlos; Yuan, Hua

    2014-01-01

    We investigated eleven particle-size distribution (PSD) models to determine the appropriate models for describing the PSDs of 16349 Chinese soil samples. These data are based on three soil texture classification schemes, including one ISSS (International Society of Soil Science) scheme with four data points and two Katschinski's schemes with five and six data points, respectively. The adjusted coefficient of determination r (2), Akaike's information criterion (AIC), and geometric mean error ratio (GMER) were used to evaluate the model performance. The soil data were converted to the USDA (United States Department of Agriculture) standard using PSD models and the fractal concept. The performance of PSD models was affected by soil texture and classification of fraction schemes. The performance of PSD models also varied with clay content of soils. The Anderson, Fredlund, modified logistic growth, Skaggs, and Weilbull models were the best.

  17. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    USDA-ARS?s Scientific Manuscript database

    Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of selected chemical [soil organic matter (SOM), pH and total N (TN)], physical (soil texture), and biochemical (six enzyme activities of C, N, P and S cycling) character...

  18. Analysis of the inhibitory effects of chloropicrin fumigation on nitrification in various soil types.

    PubMed

    Yan, Dongdong; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2017-05-01

    Chloropicrin retards the conversion of ammonia to nitrite during the nitrification process in soil. In our study, the dynamic effect of chloropicrin fumigation on soil nitrification was evaluated in five different soil types to identify relationships between soil properties and the effect of fumigation on nitrification. Chloropicrin significantly inhibited nitrification in all soils; however, the recovery of nitrification varied greatly between the soils. Following chloropicrin fumigation, nitrification recovered to the control level in all soils, except in the acidic Guangxi soil. Nitrification recovered faster in fumigated sandy loam Beijing soil than in the other four fumigated soils. Soil texture and pH were two important factors that influenced chloropicrin's inhibitory effect on nitrification. An S-shaped function was fitted to soil NO 3 - -N content to assess the nitrification recovery tendency in different soils. The time taken to reach maximum nitrification (t max ) ranged from 2.4 to 3.0 weeks in all unfumigated soils. Results demonstrated that t max was greater in all fumigated soils than in untreated soils. Correlation calculations showed that t max was strongly correlated to soil texture. The correlation analysis results indicated that the recovery rate of nitrification after chloropicrin fumigation is much faster in sandy loam soil than silty loam soil. Copyright © 2017. Published by Elsevier Ltd.

  19. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology

    PubMed Central

    Heil, Kurt

    2017-01-01

    Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa) readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms. PMID:29113048

  20. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  1. SOIL QUALITY RECOVERY IN PREVIOUSLY FARMED FIELDS SEEDED TO PERENNIAL WARM SEASON NATIVE GRASS

    EPA Science Inventory

    A study of twelve Conservation Reserve Program sites in northeastern Kansas was conducted to determine native grass species and selected soil textures influence on soil quality recovery.
    Plant productivity, plant carbon and nitrogen concentrations, total soil nitrogen and car...

  2. Using geophysical images of a watershed subsurface to predict soil textural properties

    USDA-ARS?s Scientific Manuscript database

    Subsurface architecture, in particular changes in soil type across the landscape, is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantit...

  3. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  4. Water and chloride transport in a fine-textured soil in a feedlot pen.

    PubMed

    Veizaga, E A; Rodríguez, L; Ocampo, C J

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determining and representing width of soil boundaries using electrical conductivity and MultiGrid

    NASA Astrophysics Data System (ADS)

    Greve, Mogens Humlekrog; Greve, Mette Balslev

    2004-07-01

    In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.

  6. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  7. Cube-textured nickel substrates for high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, E.D.; Goyal, A.; Lee, D.F.

    1998-02-01

    The biaxial textures created in metals by rolling and annealing make them useful substrates for the growth of long lengths of biaxially textured material. The growth of overlayers such as high-temperature superconductors (HTS) require flat substrates with a single, sharp texture. A sharp cube texture is produced in high-purity Ni by rolling and annealing. The authors report the effect of rolling reduction and annealing conditions on the sharpness of the cube texture, the incidence of other orientations, the grain size, and the surface topography. A combination of high reduction, and high temperature annealing in a reducing atmosphere leads to >more » 99% cube texture, with mosaic of 9.0{degree} about the rolling direction (RD), 6.5{degree} about the transverse direction (TD), and 5.0{degree} about the normal direction (ND).« less

  8. Soil organic matter stabilization in grazing highland soils from the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Muñoz, M. A.; Faz, A.; Zornoza, R.

    2012-04-01

    Grasslands comprise approximately 40% of the earth's land area and play a critical role in the global carbon cycle. Apolobamba is a grazing highland located in the Andean Plateau where sustainable vicuna (Vicugna vicugna) management programme is carried out. Understanding the soil properties and the organic matter dynamics is fundamental to determine the grazing impacts in the carbon reservoirs. However, the labile and recalcitrant fractions of C have not been widely studied under field conditions, especially in high grasslands. The objectives of this survey were to: (i) achieve a soil characterization through general physico-chemical properties and (ii) study soil organic matter stabilization through recalcitrant and labile carbon budgets in Apolobamba. Regarding the lastly vicuna censuses carried out in the studied area, eight representative zones with different vicuna densities were selected and soil samples were collected. Other characteristics were also considered to select the study zones: (1) alpaca densities, (2) vegetation communities (3) plant cover and (4) landscape and geo-morphological description. Recalcitrant and water soluble organic carbon were determined as well as recalcitrant index. General soil characterization showed strongly acid and no saline soils with high cation exchange capacity and sandy-loam and loam textures. Total nitrogen contents indicated no limitation for the native vegetation growth. In general, no relationships were found among general soil properties, vicuna and alpaca densities; however, zones with highest alpaca density could be prone to soil erosion based on the available P distribution and the texture results. Additionally, a negative alpaca grazing influence in the soil organic carbon stocks was observed. On the other hand, high soil recalcitrant carbon contents (3.7 ± 0.3 kg m-2) and recalcitrance index (0.8 ± 0.1) were found. Likewise, labile C exhibited similar values to those obtained from researchers conducted in grasslands. These observations could be positive aspects in the preservation or stabilization of the soil mineral particles and the long term carbon sequestration. We suggest that the soil C stabilization mechanisms in mountain grassland may be affected by the lower temperatures and acid soil pH. In conclusion, Apolobamba could have a significant reservoir of stabilized soil organic matter. However, there is an urgent need to establish soil protection strategies against the alpaca overexploitation in order to protect the organic matter stocks and to continue with the vicuna sustainable management in the Andean Plateau. Keywords: carbon reservoirs, highland soils, recalcitrant carbon, vicuna

  9. Russia: Saratov

    Atmospheric Science Data Center

    2013-04-17

    ... to differences in brightness and texture between bare soil and vegetated land. The chestnut-colored soils in this region are brighter ... of vegetation relative to the nadir camera, which sees more soil. In spring, therefore, the scene is brightest in the vertical view and ...

  10. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    PubMed

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  11. Visual soil evaluation - future research requirements

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.

  12. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.

  13. Monitoring an Induced Permafrost Warming Experiment Using ERT, Temperature, and NMR in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.

    2016-12-01

    As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.

  14. Soil Moisture Retrieval Using Convolutional Neural Networks: Application to Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Xu, L.; Yu, B.

    2018-04-01

    A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.

  15. Corn response to nitrogen is influenced by soil texture and weather

    USDA-ARS?s Scientific Manuscript database

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a se...

  16. Detailed soil mapping and relationships between soil characteristics and tree growth in an alluvial plain (Lombardy, Italy)

    NASA Astrophysics Data System (ADS)

    Ferré, Chiara; Comolli, Roberto

    2015-04-01

    The study area is located in an abandoned meander of the Oglio river (southern Lombardy, Italy), with young soils of alluvial origin (Calcaric Fluvisols). During 2002, in an area covering 20 hectares, a tree plant for wood production was realized (oak, hornbeam, ash, alder, and walnut; poplar only in the first part of the growth cycle). Objective of the study was to verify the existence of correlations between tree growth and soil characteristics. In 2004, the soil was sampled at 126 points, according to a regular grid, taking the surface soil horizon (Ap). The collected soil samples were analyzed in laboratory, measuring pH in H2O and KCl, texture, total carbonates, soil organic C (SOC), available P (Olsen), and exchangeable K. The pH in H2O varies between 7.7 and 8.1; the pH in KCl varies between 7.2 and 7.7; the more frequent particle-size classes are loam and sandy loam; SOC varies between 0.4 and 1.1%; total carbonates from 23 to 45%; exchangeable K between 0.01 and 0.25 cmol(+) kg-1; available P between 1.2 and 16.8 mg kg-1. At a distance of 12 years, in 2014, diameters at breast height of all the trees (2513 in total) were measured and their height was estimated on the basis of empirical equations obtained for each species, in order to calculate the tree volume. Spatial variability of soil properties was evaluated and mapped using multivariate geostatistical techniques. The analyses revealed the presence of different scales of spatial variation: micro-scale, short range scale (about 80 m for texture) and long range scale (about 220 m for texture). The spatial pattern of most soil properties (mainly texture and total carbonates) was probably associated with fluvial depositional processes. To evaluate soil-plant relationships, soil characteristics were collocated into the plant data set by estimating specific soil properties at each individual tree location. Soil spatial variability was reflected by the differences in plant growth. Statistical analysis of the collected data highlighted a number of statistically significant correlations between tree growth and soil features: clay content and total carbonates were almost always negatively correlated with tree growth; sand content, pH in KCl, available P and exchangeable K were almost always positively correlated; SOC content was negatively correlated, but only for oak.

  17. The combined use of liming and Sarcocornia fruticosa development for phytomanagement of salt marsh soils polluted by mine wastes.

    PubMed

    González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Tercero, María del Carmen; Schulin, Rainer; Alvarez-Rogel, José; Egea, Consuelo

    2011-02-15

    The aim of this study was to evaluate the combined effects of liming and behaviour of Sarcocornia fruticosa as a strategy of phytomanagement of metal polluted salt marsh soils. Soils were taken from two polluted salt marshes (one with fine texture and pH∼6.4 and the other one with sandy texture and pH∼3.1). A lime amendment derived from the marble industry was added to each soil at a rate of 20 g kg(-1), giving four treatments: neutral soil with/without liming and acidic soil with/without liming. Cuttings of S. fruticosa were planted in pots filled with these substrates and grown for 10 months. The pots were irrigated with eutrophicated water. As expected, lime amendment decreased the soluble metal concentrations. In both soils, liming favoured the growth of S. fruticosa and enhanced the capacity of the plants to phytostabilise metals in roots. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    PubMed

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the quality of source water used for domestic supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Application of multispectral remote sensing to soil survey research in Indiana

    NASA Technical Reports Server (NTRS)

    Zachary, A. L.; Cipra, J. E.; Diderickson, R. I.; Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Computer-implemented mappings based on spectral properties of bare soil surfaces were compared with mapping units of interest to soil surveyors. Some soil types could be differentiated by their spectral properties. In other cases, soils with similar surface colors and textures could not be distinguished spectrally. The spectral maps seemed useful for delineating boundaries between soils in many cases.

  20. Investigating the Impacts of Particle Size and Wind Speed on Brownout

    DTIC Science & Technology

    2015-03-26

    mixture of sand, silt, clay , and organic material, classified based on its size and texture. Sand is the largest of the particle materials, with...smallest soil component is clay , with particle sizes less than 0.002 mm. Ultra-fine in texture, clay feels sticky when wet, is extremely cohesive, and does...not allow air to move through it easily. Clay makes a soil dense and is hard as concrete when dry. Loam is a nearly even mixture of sand and silt

  1. Soil-Site Factors Affecting Southern Upland Oak Managment and Growth

    Treesearch

    John K. Francis

    1980-01-01

    Soil supplies trees with physical support, moisture, oxygen, and nutrients. Amount of moisture most limits tree growth; and soil and topographic factors such as texture and aspect, which influence available soil moisture. are most useful in predicting growth. Equations that include soil and topographic variables can be used to predict site index. Foresters can also...

  2. Potential Biosignatures Visualization with the Close-Up Imager CLUPI for EXOMARS

    NASA Astrophysics Data System (ADS)

    Josset, J. L.; Westall, F.; Hofmann, B. A.; Beauvivre, S.

    The CLose-UP Imager CLUPI imaging experiment will be designed to obtain high-resolution colour and stereo images of rocks from the ExoMars rover Pasteur payload The close-up imager is a robotic equivalent of one of the most useful instruments of the field geologist the hand lens Imaging of surfaces of rocks soils and wind drift deposits is crucial for the understanding of the geological context of any site where the Pasteur rover will be active on Mars The purpose of the Close-up imager is to look an area of about 4 cm x 4 cm of the rocks at a focus distance of 10 cm With a resolution of approx 35 micrometer pixel many kinds of rock surface and internal structures can be visualized crystals in igneous rocks fracture mineralization secondary minerals details of the surface morphology sediment components sedimentary structures soil particles It is conceivable that even textures resulting from ancient biological activity can be seen such as fine lamination due to microbial mats stromatolites and textures resulting from colonies of filamentous microbes CLUPI is a powerful highly integrated miniaturized low-power robust imaging system with no mobile part able to operate at very low temperature -120oC The opto-mechanical interfaces will be a smart assembly in titanium sustaining wide temperature range The concept benefits from well-proven heritage Proba Rosetta MarsExpress and Smart-1 missions The close-up imager CLUPI on the ExoMars Rover will be described together with its capabilities to provide important information significantly

  3. Effect of fire on soil physical and chemical properties in a Mediterranean area of Sardinia.

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Motroni, Andrea; Arca, Bachisio; Pellizzaro, Grazia; Ventura, Andrea; Secci, Romina; Robichaud, Peter

    2014-05-01

    Wildfires are one of the most widespread factors of ecosystem degradation around the world. The degree of change in both chemical and biological properties of soil inducted by forest fires is related to temperature and persistence of the fire as well as to moisture content of soil and of fuel. The present note reports the first experimental results of a wider-scale research project, whose aim is to develop methods for analysis and collection of field data by using a multidisciplinary approach in order to evaluate land erosion hazard. Specific objectives of this study are: i) to compare burned and unburned soil in order to evaluate the effect of fire on physical and chemical soil properties; ii) to measure soil erosion after fire in relation to different slopes. The experimental site is located in Mediterranean basin, on a steep slope in a hilly area of north-western Sardinia (Municipality of Ittiri, Italy), where a human caused fire occurred in august 2013. The area is mainly covered by the typical Mediterranean vegetation. Immediately after fire, several soil samples were collected from 0-10 cm depth, both in burned and in unburned plots. The soil organic matter, N, and P contents, pH, and soil texture were then determined in laboratory. Soil erosion rates from experimental plots were measured and estimated by silt fences technique taking into account different slopes and vegetation distribution.

  4. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  5. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Ahmed, Farzana; Gulliver, John S.; Nieber, J. L.

    2015-11-01

    Roadside drainage ditches (grassed swales) are an attractive stormwater control measure (SCM) since they can reduce runoff volume by infiltrating water into the soil, filter sediments and associated pollutants out of the water, and settle solids onto the soil surface. In this study a total of 722 infiltration measurements were collected in five swales located in Twin-Cities, MN and one swale located in Madison, WI to characterize the field-saturated hydraulic conductivity (Kfs) derived from the infiltration measurements of these swales. Measurements were taken with a falling head device, the Modified Philip Dunne (MPD) infiltrometer, which allows the collection of simultaneous infiltration measurements at multiple locations with several infiltrometers. Field-saturated hydraulic conductivity was higher than expected for different soil texture classes. We hypothesize that this is due to plant roots creating macropores that break up the soil for infiltration. Statistical analysis was performed on the Kfs values to analyze the effect of initial soil moisture content, season, soil texture class and distance in downstream direction on the geometric mean Kfs value of a swale. Because of the high spatial variation of Kfs in the same swale no effect of initial soil moisture content, season and soil texture class was observed on the geometric mean Kfs value. But the distance in downstream direction may have positive or negative effect on the Kfs value. An uncertainty analysis on the Kfs value indicated that approximately twenty infiltration measurements is the minimum number to obtain a representative geometric mean Kfs value of a swale that is less than 350 m long within an acceptable level of uncertainty.

  6. Variable rate application of nematicides on cotton fields: a promising site-specific management strategy.

    PubMed

    Ortiz, Brenda V; Perry, Calvin; Sullivan, Dana; Lu, Ping; Kemerait, Robert; Davis, Richard F; Smith, Amanda; Vellidis, George; Nichols, Robert

    2012-03-01

    Field tests were conducted to determine if differences in response to nematicide application (i.e., root-knot nematode (RKN) populations, cotton yield, and profitability) occurred among RKN management zones (MZ). The MZ were delineated using fuzzy clustering of five terrain (TR) and edaphic (ED) field features related to soil texture: apparent soil electrical conductivity shallow (ECa-shallow) and deep (ECa-deep), elevation (EL), slope (SL), and changes in bare soil reflectance. Zones with lowest mean values of ECa- shallow, ECa- deep, NDVI, and SL were designated as at greater risk for high RKN levels. Nematicide-treated plots (4 rows wide and 30 m long) were established in a randomized complete block design within each zone, but the number of replications in each zone varied from four to six depending on the size of the zone.The nematicides aldicarb (Temik 15 G) and 1,3-dichloropropene (1,3-D,Telone II) were applied at two rates (0.51 and 1.0 kg a.i./ha for aldicarb, and 33.1 and 66.2 kg a.i./ha for 1,3-D) to RKN MZ in commercial fields between 2007 and 2009. A consolidated analysis over the entire season showed that regardless of the zone, there were not differences between aldicarb rates and 1,3-D rates. The result across zones showed that 1,3-D provided better RKN control than did aldicarb in zones with low ECa values (high RKN risk zones exhibiting more coarse-textured sandy soils). In contrast, in low risk zones with relatively higher ECa values (heavier textured soil), the effects of 1,3-D and aldicarb were equal and application of any of the treatments provided sufficient control. In low RKN risk zones, a farmer would often have lost money if a high rate of 1,3-D was applied. This study showed that the effect of nematicide type and rate on RKN control and cotton yield varied across management zones (MZ) with the most expensive treatment likely to provide economic benefit only in zones with coarser soil texture. This study demonstrates the value of site specific application of nematicides based on management zones, although this approach might not be economically beneficial in fields with little variability in soil texture.

  7. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  8. Comparison of crop stress and soil maps to enhance variable rate irrigation prescriptions

    USDA-ARS?s Scientific Manuscript database

    Soil textural variability within many irrigated fields diminishes the effectiveness of conventional irrigation management, and scheduling methods that assume uniform soil conditions may produce less than satisfactory results. Furthermore, benefits of variable-rate application of agrochemicals, seeds...

  9. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial.

    PubMed

    Coulon, Frédéric; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T; Paton, Graeme I

    2010-10-01

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Quantitative Analysis of Relevant Soil, Land-use and Climate Characteristics on Landscape Degradation in Hungary

    NASA Astrophysics Data System (ADS)

    Kertesz, Adam; Mika, Janos; Jakab, Gergely; Palinkas, Melinda

    2017-04-01

    The objective of our research is to survey degradation processes acting in each micro-region of Hungary in connection with geographical and climatic characteristics. A survey of land degradation processes has been carried out at medium scale (1:50 000) to identify the affected areas of the region. Over 18,000 rectangles of Hungary have been digitally characterised for several types of land degradation. Water-flow type gully erosion and soil-loss (RUSLE, 2015: Esdac-data) are studied for dependent variables in this study. USDA textural classes, available water capacity, bulk density, clay content, coarse fragments, silt content, sand content, soil parent material, soil texture, land-use type (Corine, 2012) are used for non-climatic variables. Some of these characteristics are quantified in a non-scalable way, so the first step was to arrange these qualitative codes or pseudo-numbers into monotonous order for including them into the following multi-regression analyses. Data available from the CarpatClim Project (www.carpatclim-eu.org/pages/home) for 1961-2010 are also used in their 50 years averages is seasonal and annual resolution. The selected variables from this gridded data set are global radiation, daily mean temperature, maximum and minimum temperature, number of extreme cold days (< 20 C), precipitation, extreme wet days (>20 mm), days with utilizable precipitation (>1mm/d), potential evapotranspiration, Palmer Index (PDSI), Palfai Index (PAI), relative humidity and wind speed at 10 m height. The gully erosion processes strongly depend on the investigated non-climatic variables, mostly on parent material and slope. The group of further climatic factors is formed by winter relative humidity, wind speed and all-year round Palmer index. Besides leading role of the above non-climatic factors, additional effects of the significant climate variables are difficult to interpret. Nevertheless, the partial effects of these climate variables are combined with future climate scenarios available from GCM and RCM studies for Hungary. The real climate change effects may likely be stronger, than those obtained by this combination, due to inter-dependences between the non-climatic factors and climate variations. The study has been supported by the OTKA-K108755 project.

  11. Effect of texture on dielectric properties and thermal depoling of Bi4Ti3O12 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Haixue; Reece, Michael J.; Liu, Jing; Shen, Zhijian; Kan, Yanmei; Wang, Peiling

    2006-10-01

    Ordinary fired Bi4Ti3O12 ceramics show a gradual reduction in their room temperature d33 after annealing at temperatures from room temperature to 450°C. Textured ceramics show a greater resistance to thermal depoling. At about 450°C there is a rapid drop of d33 for the textured materials, which may be a consequence of a phase transition. Between 500 and 650°C the d33 is stable. The depolarization is assisted by internal mechanical stresses. These stresses are smaller in textured materials, which explains the increasing resistance to thermal depoling with increasing texture.

  12. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    PubMed

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  13. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    ERIC Educational Resources Information Center

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  14. Missouri Ozark forest soils: perspectives and realities

    Treesearch

    R. David. Hammer

    1997-01-01

    Ozark forest soils are dynamic in space and time, and most formed in multiple parent materials. Erosion and mass movement have been variable and extensive. Soil attributes including texture, cation exchange capacity, and mineralogy are related to geologic strata and to geomorphic conditions. Soil organic carbon content is influenced by surface shape, position in...

  15. A Meta-Analysis quantifying the relationships between response to nitrogen fertilization vs soil texture and weather

    USDA-ARS?s Scientific Manuscript database

    Weather and soil properties are known to affect soil nitrogen (N) availability and plant N uptake. Studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments...

  16. Determination of field-effective soil properties in the tidewater region of North Carolina

    Treesearch

    J. McFero Grace; R.W. Skaggs

    2013-01-01

    Soils vary spatially in texture, structure, depth of horizons, and macropores, which can lead to a large variation in soil physical properties. In particular, saturated hydraulic conductivity (Ksat) and drainable porosity are critical properties required to model field hydrology in poorly drained lands. These soil-property values can be measured...

  17. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska

    PubMed Central

    Pérez-Hernández, Oscar; Giesler, Loren J.

    2014-01-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160

  18. Temporal observations of bright soil exposures at Gusev crater, Mars

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.

    2011-01-01

    The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition.

  19. Temporal observations of bright soil exposures at Gusev crater, Mars

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.

    2011-01-01

    The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition. Copyright 2011 by the American Geophysical Union.

  20. Multi-spectral texture analysis for IED detection

    NASA Astrophysics Data System (ADS)

    Petersson, Henrik; Gustafsson, David

    2016-10-01

    The use of Improvised Explosive Devices (IEDs) has increased significantly over the world and is a globally widespread phenomenon. Although measures can be taken to anticipate and prevent the opponent's ability to deploy IEDs, detection of IEDs will always be a central activity. There is a wide range of different sensors that are useful but also simple means, such as a pair of binoculars, can be crucial to detect IEDs in time. Disturbed earth (disturbed soil), such as freshly dug areas, dumps of clay on top of smooth sand or depressions in the ground, could be an indication of a buried IED. This paper brie y describes how a field trial was set-up to provide a realistic data set on a road section containing areas with disturbed soil due to buried IEDs. The road section was imaged using a forward looking land-based sensor platform consisting of visual imaging sensors together with long-, mid-, and shortwave infrared imaging sensors. The paper investigates the presence of discriminatory information in surface texture comparing areas with disturbed against undisturbed soil. The investigation is conducted for the different wavelength bands available. To extract features that describe texture, image processing tools such as 'Histogram of Oriented Gradients', 'Local Binary Patterns', 'Lacunarity', 'Gabor Filtering' and 'Co-Occurence' is used. It is found that texture as characterized here may provide discriminatory information to detect disturbed soil, but the signatures we found are weak and can not be used alone in e.g. a detector system.

  1. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests.

    PubMed

    Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco

    2016-11-01

    Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    NASA Astrophysics Data System (ADS)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating microbial, soil, litter and forest metrics we describe how microbes, minerals and soil organic matter act as an ecosystem property driving forest dynamics via microbial and plant stoichiometric constraints.

  3. Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis

    PubMed Central

    Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia

    2017-01-01

    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392

  4. [Survival capacity of Corynebacterium pseudotuberculosis biovar ovis in different soil types from Chubut, Argentine Patagonia].

    PubMed

    Alvarez, Laura; William, Aillin; Castro, Isabel; Valenzuela, Fernanda; Estevao Belchior, Silvia

    Corynebacterium pseudotuberculosis is transmitted among sheep in Argentine Patagonia causing pseudotuberculosis. The bacterium penetrates the skin or mucous membrane wounds, infecting the superficial lymph nodes and viscera. When surface abscesses are cut during shearing, they drain their purulent contents and contaminate tools and the soil. The objective of this work was to evaluate the survival capacity of C. pseudotuberculosis over time, in soils from the extra-Andean Patagonia region. Five types of superficial soils were collected from different areas in Chubut province (extra-Andean Patagonia), having distinctive physicochemical properties including organic matter content (very high to nonexistent), pH (neutral to strongly alkaline), electrical conductivity (saline to non-saline) and texture (sandy, clayey, silty loam). Different aliquots of each type of soil were inoculated with C. pseudotuberculosis PAT10 strain isolated from a Patagonian sheep, and were stored at room temperature. The number of surviving bacteria was determined at various times. Sixty percent (60%) of the inoculated C. pseudotuberculosis population survived for 80 to 210 days in soils with moderate to high organic matter content respectively. Silty soils favored bacterial survival, whereas the variables pH and salinity had no effect on survival. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.

  6. Is Miscanthus a High Risk Biofuel Feedstock Prospect for the Upper Midwest US?

    NASA Astrophysics Data System (ADS)

    Kucharik, C. J.; VanLoocke, A. D.

    2011-12-01

    Miscanthus is a highly productive C4 perennial rhizomatous grass that is native to Southeast Asia, but its potential as a feedstock for cellulosic biofuel in the Midwest US is intriguing given extremely high productivity for low amounts of agrochemical inputs. However, Miscanthus x giganteus, a key variety currently studied is not planted from seed, but rather from rhizomes planted at a soil depth of 5 to 10 cm. Therefore, it is costly to establish on the basis of both time and money, making it a potentially risky investment in geographic regions that experience cold wintertime temperatures that can effectively kill the crop. The 50% kill threshold for M. giganteus rhizomes occurs when soil temperatures fall below -3.5C, which may contribute to a high risk of improper establishment during the first few seasons. Our first objective here was to study a historical, simulated reconstruction of daily wintertime soil temperatures at high spatial resolution (5 min) across the Midwest US from 1948-2007, and use this information to quantify the frequency that lethal soil temperature thresholds for Miscanthus were reached. A second objective was to investigate how the use of crop residues could impact wintertime soil temperatures. In this study, a dynamic agroecosystem model (Agro-IBIS) that has been modified to simulate Miscanthus growth and phenology was used in conjunction with high-resolution datasets of soil texture and daily gridded weather data. Model simulations suggest that across the states of North and South Dakota, Nebraska, Minnesota, Wisconsin, Michigan, and the northern half of Iowa, the kill threshold of -3.5C at a 10cm soil depth was reached in 70-95% of the simulation years. A boundary representing a 50% likelihood of reaching -3.5C at 10cm depth in any given year runs approximately from east central Colorado, thought northern Kansas and Missouri, through central Illinois, central Indiana, and central Ohio. An analysis of monthly mean 10cm soil temperatures illustrates that temperatures colder than the kill threshold generally exist in January and February north and west of a line running from central Nebraska to north central Illinois, through southeastern Wisconsin and northern lower Michigan. These results suggest that a bioclimatic limit to successful establishment might be positioned somewhere through the central portion of the Corn Belt, but this depends on how risk is defined in the future. Model simulations suggest that a significant warming trend of wintertime soil temperatures existed across the region; soil temperatures have increased 3 to 4C in the past 60 years at 10cm as well as to depths as great as 50 to 100cm across northern and western portions of the Midwest. This warming trend, in combination with the strategic use of straw and other crop residues may reduce the risk of failure of establishing Miscanthus x giganteus. However, any adaptive management will not completely eliminate the high risk of cold soil temperatures in regions that are currently being targeted to support cellulosic biofuel production in the next several decades.

  7. Effects of buried obstacles on penetration resistance in cohesionless soils

    NASA Technical Reports Server (NTRS)

    Deluca, E. W.; Carrasco, L. H.

    1972-01-01

    Recent experiments concerning penetration of cohesionless soils in special molds that include solid obstacles embedded within the soil matrix are reported. The relative effects of these obstacles with respect to the soil properties of relative density, texture, and gradation are also discussed. Because lunar soil is fairly cohesionless, special attention was given to the Apollo lunar simulant, AP-12.

  8. Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil.

    PubMed

    Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean

    2009-07-01

    Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.

  9. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    NASA Astrophysics Data System (ADS)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were largest and accumulated the most total As, while under field conditions, control and compost-treated ferns accumulated the most total As. Under greenhouse conditions, leaching appeared to account for most As removed from sandy loam soil. Results from a similar greenhouse study now underway in clayey soil will be discussed.

  10. Study of microarthopod communities to assess soil quality in different managed vineyards

    NASA Astrophysics Data System (ADS)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  11. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area, which landscape is characterized by till and limestone plains with thin Quaternary cover, the soil cover is more heterogeneous than in previous area. Kuusiku soil cover is more variegated by the soil texture and as well as by the genesis of soils. In addition to Cambisols, Leptosols, Gleysols and Luvisols may be found here as well. The dominating soils in Olustvere research area, which is situated on wavy upland plateau, are Albeluvisols.

  12. [Characteristics of soil water infiltration in sub-alpine dark coniferous ecosystem of upper reaches of Yangtze River].

    PubMed

    Yu, Xinxiao; Zhao, Yutao; Zhang, Zhiqiang; Cheng, Genwei

    2003-01-01

    Dark coniferous forest is the predominant type of vegetation in the upper reaches of Yangtze River. Difference among different types of soil exists. The sand content of soil is higher and the soil texture is coarser in the early stage of forest succession. The sand content of soil decreases with the advancement of the forest succession while that of soil in Abies fabri over-mature forest is the lowest. In slope wash soil, the sand content of soil decreases with the increasing soil depth. The soil porosity and soil water-holding capacity increases and soil bulk density decreases with the advancement of forest succession and decrease of soil depth. The deeper soil depth or the smaller soil water content are, the smaller the unsaturated hydraulic conductivity of soil measured by CGA method. Moreover, the correlation of soil water content with unsaturated hydraulic conductivity of soil can be simulated by an exponential function. The saturated hydraulic conductivity of soil decreases exponentially with the increasing soil depth. The time to attain the stable infiltration rate is different among different soil depth, while the deeper the soil depth is, the longer the time needs. The variation in soil texture, soil physical properties and the high infiltration rate of soil there implicated that there are scarce surface runoff, but abundant in subsurface flow, return flow and seepage, which is the result of regulation by dark coniferous forest on hydrological processes.

  13. Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth(R) facility.

    PubMed

    Silverstone, S; Nelson, M; Alling, A; Allen, J P

    2005-01-01

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth(R), a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002). c2005 Published by Elsevier Ltd on behalf of COSPAR.

  14. Mid-term effect of silvicultural treatments on carbon cycling in a Mediterranean Pinus halepensis forest

    NASA Astrophysics Data System (ADS)

    Lull, Cristina; Bautista, Inmaculada; Lado-Monserrat, Luis; Lidón, Antonio

    2014-05-01

    Twelve years after a silvicultural treatment in a Pinus halepensis forest, seasonal variation of carbon pools were compared between three treatments: a control reference with no treatment (T0); a moderate thinning with 40% of mean basal area removed (T40); a total clearcut (T100). The silvicultural treatments were performed following a randomized block design. The three blocks selected, namely called Tuéjar izquierda (TI), Tuéjar derecha (TD) and Chelv a(CH) are located in Valencia (East of Spain) and have the same canopy characteristics, but different soils. Soil environmental conditions in each plot were continuously recorded with a pluviometer and two soil moisture and temperature sensors installed at 5 and 10 cm depth connected to a data logger. During two years (2009 and 2010), superficial soil samples (0-15 cm) were collected thrice per year, in spring, summer and autumn. In each sample, water holding capacity, total organic carbon (TOC), soluble organic carbon (SOC), microbial biomass carbon (MBC) and soil respiration were determined. Our results showed that the textural composition (clay loam for TI and TD soils and sandy loam for CH soil), affected carbon pools. Total organic carbon differs significantly between blocks, and also between T40 and the other two treatments in Chelva. Seasonal analysis of the data could not be performed because summer in the year 2009 was very dry compared with 2010. The SOC and MBC pools are related with TOC which explain 51% of the temporal and spatial variation of the SOC and 38% of the MBC. TOC also explain 75% of soil respiration variance. Despite the differences in soil properties between blocks, the silvicultural treatment affect significantly to the BMC pool and the basal respiration flux. Moreover, the most labile pool of soil organic carbon is affected by environmental variables such as soil temperature and for this reason changes seasonally.

  15. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is observed at high friction velocity. The magnitude of the percentage reduction/increase in the sandblasting flux decreases with the increase of the friction velocity for both soil moisture and soil clay fraction. Furthermore, these variables are interdependent leading to a gradual decrease in the percentage increase in the sandblasting flux for higher soil moisture values.

  16. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  17. Effects of biotic and abiotic indices on long term soil moisture data in a grassland biodiversity experiment

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke

    2015-04-01

    Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.

  18. Effects of high temperature and film thicknesses on the texture evolution in Ag thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2017-04-01

    In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.

  19. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Treesearch

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  20. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  1. The Resource beneath Our Feet

    ERIC Educational Resources Information Center

    Clary, Renee

    2015-01-01

    This article describes activities in which students sample, investigate, classify, and compare characteristics (i.e., texture, color, density, porosity) of local soils, evaluating whether the soils are healthy or at risk. Students investigate correlations between geology and geography, predict which soil types may go extinct in their state, and…

  2. Sustainable landscaping practices for enhancing vegetation establishment.

    DOT National Transportation Integrated Search

    2016-02-01

    Soil compaction can severely limit the success of vegetation establishment. Current grading and landscaping : practices commonly produce compacted soils of varied textures and profiles within SHA medians and roadsides, : resulting in limited capacity...

  3. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    NASA Astrophysics Data System (ADS)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  4. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    NASA Astrophysics Data System (ADS)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  5. Analyzing the Sand-fixing Effect of Feldspathic Sandstone from the Texture Characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, lu; Ban, Jichang

    2018-01-01

    The purpose of this research was aimed to study the sand fixing effect of feldspathic sandstone in Mu Us Sandy Land, to provide a scienticic basis for desertification control, soil and water conservation and development of farming there. Methods of mixing feldspathic sandstone and aeolian sandy soil according to 1: 0, 1: 1, 1: 2, 1: 5, and 0: 1 mass ratioes, the graded composition and characteristics were studied with laser particle size analyzer. The result showed that these features of sand-based, loosely structured, easy to wind erosion of aeolian sandy soil were changed before feldspathic sandstone and aeolian sandy soil compounding. The <0.05 mm particle mass increased with feldspathic sandstone mass increasing. The texture presented this kind of change from sand to sandy loam to loam to silt loam. The small particle size distribution, good homogeneity and other features of aeolian sandy soil were improved to a certain degree, and the particle size distribution became broad before feldspathic sandstone and aeolian sandy soil compounding. The particle grading was continuous, and the grading characteristic was good when m(F): m(S) was 1: 5(Cu was 54.71 and Cc was 2.54) or when m(F): m(S) was 1: 2(Cu was 76.21, Cc was 1.12). The conclusion is that feldspathic sandstone has sand-fixing effect in texture characteristics, which heightens with feldspathic sandstone mass increasing, and when the mass ratio of feldspathic sandstone: aeolian sandy soil is 1: 2 or 1: 5 which compound better.

  6. Relationship of grapevine yield and growth to nematode densities.

    PubMed

    Ferris, H; McKenry, M V

    1975-07-01

    Yield, growth, and vigor of individual grape vines were correlated with nematode population densities in a series of California vineyards. In a Hanford sandy loam soil, Xiphinema americanum densities showed negative correlations with yield, growth, and vigor of vines. When vines were categorized according to vigor, X. americanurn densities had little relationship to yield of high-vigor vines, but were negatively correlated with yield of low-vigor vines. Densities of Paratylenchus harnatus were positively correlated with yield, growth, and vigor of vines. Correlations between Meloidogyne spp. densities and vine performance were variable, even when the vines were separated according to soil type and plant vigor. Densities of Meloidogyne spp. populations were generally higher on coarser-textured, sandy soils and the vines were less vigorous there. Densities of P. hamatus were greater in fine-textured soils.

  7. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  8. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials

    USDA-ARS?s Scientific Manuscript database

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  9. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  10. Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach

    Treesearch

    Peter Baas; Jacqueline E. Mohan; David Markewitz; Jennifer D. Knoepp

    2014-01-01

    The high level of spatial and temporal heterogeneity in soil N cycling processes hinders our ability to develop an ecosystem-wide understanding of this cycle. This study examined how incorporating an intensive assessment of spatial variability for soil moisture, C, nutrients, and soil texture can better explain ecosystem N cycling at the plot scale. Five sites...

  11. Tests on the centrifugal flotation technique and its use in estimating the prevalence of Toxocara in soil samples from urban and suburban areas of Malaysia.

    PubMed

    Loh, A G; Israf, D A

    1998-03-01

    The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.

  12. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    NASA Astrophysics Data System (ADS)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute differences in soil morphology, although this was not explored in this research.

  13. Integration of Satellite, Global Reanalysis Data and Macroscale Hydrological Model for Drought Assessment in Sub-Tropical Region of India

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Srivastava, P. K.

    2018-04-01

    Change in soil moisture regime is highly relevant for agricultural drought, which can be best analyzed in terms of Soil Moisture Deficit Index (SMDI). A macroscale hydrological model Variable Infiltration Capacity (VIC) was used to simulate the hydro-climatological fluxes including evapotranspiration, runoff, and soil moisture storage to reconstruct the severity and duration of agricultural drought over semi-arid region of India. The simulations in VIC were performed at 0.25° spatial resolution by using a set of meteorological forcing data, soil parameters and Land Use Land Cover (LULC) and vegetation parameters. For calibration and validation, soil parameters obtained from National Bureau of Soil Survey and Land Use Planning (NBSSLUP) and ESA's Climate Change Initiative soil moisture (CCI-SM) data respectively. The analysis of results demonstrates that most of the study regions (> 80 %) especially for central northern part are affected by drought condition. The year 2001, 2002, 2007, 2008 and 2009 was highly affected by agricultural drought. Due to high average and maximum temperature, we observed higher soil evaporation that reduces the surface soil moisture significantly as well as the high topographic variations; coarse soil texture and moderate to high wind speed enhanced the drying upper soil moisture layer that incorporate higher negative SMDI over the study area. These findings can also facilitate the archetype in terms of daily time step data, lengths of the simulation period, various hydro-climatological outputs and use of reasonable hydrological model.

  14. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498

  15. Biogenic nitric oxide emission from a spruce forest soil in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Bargsten, Anika; Behrendt, Thomas; Meixner, Franz X.

    2010-05-01

    The process-based spatial simulation model SVAT-CN was used to estimate biogenic nitric oxide (NO) emission by soils of a Norway spruce forest (Weidenbrunnen) in the Fichtelgebirge, Germany. SVAT-CN core is a combination of a multiple-layer soil water balance model and a multi-layered canopy gas exchange model. The soil modules comprise a flexible hybrid between a layered bucket model and classical basic liquid flow theory. Further soil processes include: heat transport, distribution of transpiration demand proportionally to soil resistance, reduction of leaf physiological parameters with limiting soil moisture. Spruce forest soils usually are characterized by a thick organic layer (raw humus), with the topmost centimetres being the location where most of the biogenic NO is produced. Within individual spruce forest stands the understory might be composed of patches characterized by different species (e.g. Vaccinium myrtillus, Picea abies, Deschampsia caespitosa), and NO production potentials. The effect of soil physical and chemical parameters and understory types on NO emission from the organic layer was investigated in laboratory incubation and fumigation experiments on soils sampled below the various understory covers found at the Weidenbrunnen site. Results from the laboratory experiments were used to parameterize multi-factorial regression models of soil NO emission with respect to its response to soil temperature and moisture. Parameterization of the spatial model SVAT-CN includes horizontal heterogeneity of over- and understory PAI, understory species distribution, soil texture, bulk density, thickness of organic layer. Simulations are run for intensive observations periods of 2007 and 2008 of the EGER (ExchanGE processes in mountainous Regions) project, a late summer/fall and an early summer period, providing estimates for different understory types (young spruce, blueberry, grass, and moss/litter patches). Validation of the model is being carried out at point scale, by comparison with measured soil moisture and temperature data at 12 locations at the Weidenbrunnen site. In addition model output is compared to soil NO emission data from dynamic chambers. Understory type was found to have a strong influence on the magnitude of soil NO emissions, with emissions from blueberry and young spruce one order of magnitude larger than those from grass or moss/litter patches.

  16. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0.7±1.1 % soil organic matter; far from the usual limit advisable for cultivated soils. Soil porosity was also affected in cultivated soils, being 39±5% (total porosity), significantly less than those found under Stipa (46%) and Quercus (51%). Hydraulic conductivity presented a similar pattern to porosity, being higher in soils under Quercus, however further research is needed to clarify this result, as it can also be related to changes detected in soil texture. Sand content, which was different between soil conditions, is highly correlated to hydraulic conductivity. Changes in soil texture can be due to erosive processes that have to be studied to establish the causative relationships between these findings. Acknowledgements: Project CGL 2008-04296. Environmental Impact evaluation through the assessment of soil organic matter resilient forms in soils.

  17. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yan, E-mail: yanfeng@nwpu.edu.cn

    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons growmore » after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.« less

  18. Nature and Properties of Some Forest Soils in the Mhite Mountains of New Hampshire

    Treesearch

    M.C. Hoyle; M.C. Hoyle

    1973-01-01

    Forested, podzol soils in the White Mountains of New Hampshire have developed in granitic, glacial material. They are coarse textured, acidic, and infertile. As a result of the latter condition, these soils can sustain a forest, but that forest is not healthy and vigorous.

  19. Numerical modeling of the impact of riparian soil water dyanmics on channel width adjustment

    USDA-ARS?s Scientific Manuscript database

    Occurrence of streambank failure is closely related to redistribution of soil water that affects soil shear strength and may lead to seepage-induced erosion. Pore-water pressure in a streambank is affected, among others, by infiltrating rainfall, streambank-material texture, riparian vegetation, an...

  20. Soil quality evaluation using Soil Management Assessment Framework (SMAF) in Brazilian oxisols with contrasting texture

    USDA-ARS?s Scientific Manuscript database

    To ensure current land use strategies and management practices are economically, environmentally, and socially sustainable, tools and techniques for assessing and quantifying changes in soil quality/health (SQ) need to be developed through rigorous research and potential use by consultants, and othe...

  1. Site-specific cotton management: Soil measurements

    USDA-ARS?s Scientific Manuscript database

    oil variability within fields has a large effect on crop growth and yield, often due to variations in soil texture and water holding capacity. This is particularly true in the alluvial soils of the Mississippi Delta, where profile sand contents can range from 20% to 90% within a field. Variable-rate...

  2. A soil moisture accounting-procedure with a Richards' equation-based soil texture-dependent parameterization

    USDA-ARS?s Scientific Manuscript database

    Given a time series of potential evapotranspiration and rainfall data, there are at least two approaches for estimating vertical percolation rates. One approach involves solving Richards' equation (RE) with a plant uptake model. An alternative approach involves applying a simple soil moisture accoun...

  3. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y. Anny; Sinsabaugh, Robert L.; Kuske, Cheryl Rae

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefitsmore » of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. In conclusion, the findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.« less

  4. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    DOE PAGES

    Chung, Y. Anny; Sinsabaugh, Robert L.; Kuske, Cheryl Rae; ...

    2017-03-22

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefitsmore » of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. In conclusion, the findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.« less

  5. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    USGS Publications Warehouse

    Chung, Y. Anny; Sinsabaugh, Robert L; Kuske, Cheryl R.; Reed, Sasha C.; Rudgers, Jennifer A.

    2017-01-01

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefits of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. The findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.

  6. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  7. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  8. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.

    PubMed

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Lanno, Roman

    2013-11-01

    The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific. © 2013 SETAC.

  9. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    PubMed

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  10. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans

    PubMed Central

    2018-01-01

    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its “twin element”, Mo; however, our knowledge of the behavior of W in the plant–soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean (Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5–5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg–1). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg–1), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg–1), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant–soil environment, something that has been completely neglected in the past. PMID:29701969

  11. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    PubMed

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil texture gradients provides insight into processes controlling plant water balance and larger scale hydrologic processes.

  12. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans.

    PubMed

    Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas

    2018-06-05

    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its "twin element", Mo; however, our knowledge of the behavior of W in the plant-soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean ( Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5-5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg -1 ). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N 2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg -1 ), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg -1 ), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant-soil environment, something that has been completely neglected in the past.

  13. Using soil test results to determine fertilizer applications

    Treesearch

    C. B. Davey

    2002-01-01

    Using soil test results is a very useful practice IF the sample(s) of soil are good representations of the nursery soil. The lab results can be no more accurate than the samples submitted, and IF you know the texture of the nursery soil, and IF you know which soil extractant was used by the lab, and IF you know what crop is to be grown, and IF, for trees, which species...

  14. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    NASA Astrophysics Data System (ADS)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.

  15. Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia

    PubMed Central

    Lee, Xinqing; Huang, Yimin; Huang, Daikuan; Hu, Lu; Feng, Zhaodong; Cheng, Jianzhong; Wang, Bing; Ni, Jian; Shurkhuu, Tserenpil

    2016-01-01

    Variation of soil organic carbon (SOC) and its major constraints in large spatial scale are critical for estimating global SOC inventory and projecting its future at environmental changes. By analyzing SOC and its environment at 210 sites in uncultivated land along a 3020km latitudinal transect in East Central Asia, we examined the effect of environmental factors on the dynamics of SOC. We found that SOC changes dramatically with the difference as high as 5 times in north China and 17 times in Mongolia. Regardless, C:N remains consistent about 12. Path analysis indicated that temperature is the dominant factor in the variation of SOC with a direct effect much higher than the indirect one, the former breaks SOC down the year round while the latter results in its growth mainly via precipitation in the winter half year. Precipitation helps accumulate SOC, a large part of the effect, however, is taken via temperature. NH4+-N and topography also affect SOC, their roles are played primarily via climatic factors. pH correlates significantly with SOC, the effect, however, is taken only in the winter months, contributing to the decay of SOC primarily via temperature. These factors explained as much as 79% of SOC variations, especially in the summer months, representing the major constraints on the SOC stock. Soil texture gets increasingly fine southward, it does not, however, constitute an apparent factor. Our results suggested that recent global warming should have been adversely affecting SOC stock in the mid-latitude as temperature dominates other factors as the constraint. PMID:26934707

  16. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  17. Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment

    Treesearch

    Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross

    2014-01-01

    Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...

  18. Five-Year-Old Cottonwood Plantation on a Clay Site: Growth, Yield, and Soil Properties

    Treesearch

    R. M. Krinard; H. E. Kennedy

    1980-01-01

    A random sample of Stoneville select cottonwood (Populus deltoides Bartr.) clones planted on recent old-field clay soils at 12- by 12- foot spacing averaged 75-percent survival after five years. The growth and yield was about half that expected from planted cottonwood on medium-textured soils. Soil moisture analysis showed more height growth in years...

  19. Soil compaction effects on growth of young ponderosa pine following litter removal in California's Sierra Nevada

    Treesearch

    A. Gomez; R. F. Powers; M. J. Singer; W. R. Horwath

    2002-01-01

    Increased use of heavy equipment and more frequent entry into forest stands has increased the potential for soil compaction and decreased productivity. We examined compaction and tree growth relationships on three California soils of contrasting textures (clayey, loamy, and sandy loam) on plots from which the organic soil horizon had been removed. Compacted and...

  20. Pre- and postfire distribution of soil water repellency in a steep chaparral watershed

    Treesearch

    K. R. Hubbert; P. M. Wohlgemuth; H. K. Preisler

    2008-01-01

    The development and nature of water repellent soils and their spatial distribution on the landscape are not well understood relative to evaluating hillslope response to fire. Soil water repellency is particularly common in chaparral communities, due in part to the coarse-textured soils, and the high resin content of the organic litter. Objectives of this study were 1)...

  1. Remote sensing data applied to the evaluation of soil erosion caused by land-use. Ribeirao Anhumas Basin Area: A case study. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Dosanjosferreirapinto, S.; Kux, H. J. H.

    1980-01-01

    Formerly covered by a tropical forest, the study area was deforested in the early 40's for coffee plantation and cattle raising, which caused intense gully erosion problems. To develop a method to analyze the relationship between land use and soil erosion, visual interpretations of aerial photographs (scale 1:25.000), MSS-LANDSAT imagery (scale 1:250,000), as well as automatic interpretation of computer compatible tapes by IMAGE-100 system were carried out. From visual interpretation the following data were obtained: land use and cover tapes, slope classes, ravine frequency, and a texture sketch map. During field work, soil samples were collected for texture and X-ray analysis. The texture sketch map indicate that the areas with higher slope angles have a higher susceptibilty to the development of gullies. Also, the over carriage of pastureland, together with very friable lithologies (mainly sandstone) occuring in that area, seem to be the main factors influencing the catastrophic extension of ravines in the study site.

  2. Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation

    NASA Astrophysics Data System (ADS)

    Sakiah; Sembiring, M.; Hasibuan, J.

    2018-02-01

    Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.

  3. Texturing by cooling a metallic melt in a magnetic field.

    PubMed

    Tournier, Robert F; Beaugnon, Eric

    2009-02-01

    Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.

  4. Hydrocarbon status of soils in the asphalt deposit area (Samara Bend)

    NASA Astrophysics Data System (ADS)

    Pikovskiy, Yu. I.; Gennadiev, A. N.; Kovach, R. G.; Zhidkin, A. P.; Khlynina, N. I.; Kiseleva, A. Yu.

    2017-04-01

    The composition and distribution features of the main components of soil hydrocarbon complex― organic (noncarbonate) carbon, hexane bitumoids, and individual polycyclic aromatic hydrocarbons (PAHs)―in the area of depleted Bakhilovo asphalt deposit (Samara oblast) have been studied. According to their proportions, three genetic types of soil hydrocarbon status are distinguished: (a) emanation-injection type prevailing within the limits of the former production field and characterized by anomalous contents of heavy resinous bitumoids (5000-7000 mg/kg on the average) throughout the soil profile and a high content of PAHs (4-9 mg/kg on the average, 29 mg/kg as the maximum, with the dominance of naphthalene homologues); (b) emanation-biogeochemical type confined to mechanogenically undisturbed soils within and beyond the deposit area, where the emanation component is manifested in soils with heavy texture and higher concentrations and very light composition of bitumoids in the lower parts of the soil profile; and (c) atmosedimentation-biogeochemical type characteristic of conventionally background soils with light texture; benzo[ a]pyrene traces are detected among PAHs in the upper soil horizon, which indicates the input of this hydrocarbon with aerosols from the atmosphere; the concentrations of bitumoids and PAHs in parent rocks are lower than in the soils.

  5. CLUPI: CLose-UP Imager on.board the ExoMars Mission Rover

    NASA Astrophysics Data System (ADS)

    Josset, Jean-Luc

    The CLose-UP Imager (CLUPI) imaging experiment is designed to obtain high-resolution colour and stereo images of rocks from the ExoMars rover (Pasteur payload). The close-up imager is a robotic equivalent of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits is crucial for the understanding of the geological context of any site where the rover will be active on Mars. The purpose of the Close-up imager is to look an area of about 4 cm x 2.6 cm of the rocks at a focus distance of 10 cm. With a resolution of approx. 15 micrometer/pixel, many kinds of rock surface and internal structures can be visualized: crystals in igneous rocks, fracture mineralization, secondary minerals, details of the surface morphology, sediment components, sedimentary structures, soil particles. It is conceivable that even textures resulting from ancient biological activity can be seen, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes. CLUPI is a powerful highly integrated miniaturized (¡208g) low-power robust imaging system with no mobile part, able to operate at very low temperature (-120° C). The opto-mechanical interfaces will be a smart assembly in titanium sustaining wide temperature range. The concept benefits from well-proven heritage: Proba, Rosetta, MarsExpress and Smart-1 missions. . . The close-up imager CLUPI on the ExoMars Rover will be described together with its capabilities to provide important information significantly contributing to the understanding of the geological environment and could identify outstanding potential biofabrics (stromatolites...) of past life on Mars.

  6. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 2: naturally occurring radionuclides.

    PubMed

    Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M

    2009-09-01

    Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.

  7. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN

    PubMed Central

    Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.

    2016-01-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  8. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.

  9. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.

  10. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    PubMed

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  11. Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils

    USDA-ARS?s Scientific Manuscript database

    Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop w...

  12. National Centers for Environmental Prediction

    Science.gov Websites

    albedos (testing) Vegetation types Soil texture Images of Snow files: NAM snow page The NESDIS/IMS snow /ice images On Hua-Lu Pan's home page (EMC/NCEP) On the NCAR/RAP Weather Data Page Related soil moisture web sites NCEP/NASA NDAS CPC Soil Moisture Monitoring and Prediction NOAA / National Weather

  13. OHD/HL - Distributed Model

    Science.gov Websites

    Sacramento Soil Moisture Accounting Model (SAC-SMA) in a lumped and semi-distributed manner. Before any were derived using a procedure developed by VictorKoren ( Useof Soil Property Data in the Derivation of focused on developing a procedure to derive the SAC-SMAmodel parameters based on soil texture data. It is

  14. Emission and distribution of fumigants as affected by soil moistures in three different textured soils

    USDA-ARS?s Scientific Manuscript database

    Stringent environmental regulations are being developed to control the emission of soil fumigants to reduce air pollution. Water application is a low-cost strategy for fumigant emission control and applicable for a wide range of commodity groups, especially those with low profit margins. Although it...

  15. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts

    USGS Publications Warehouse

    Herrick, J.E.; Van Zee, J. W.; Belnap, J.; Johansen, J.R.; Remmenga, M.

    2010-01-01

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltration rate and total infiltration and increased sediment generation from small (0.5m2) rainfall simulation plots (p<0.01). Trampling had no effect on time to runoff or time to peak runoff. Trampling had similar effects at sites with both low and very low levels of cyanobacterial biomass, as indicated by chlorophyll a concentrations. We concluded that trampling effects are relatively independent of differences in the relatively low levels of cyanobacterial biomass in this environment. Instead, trampling appears to reduce infiltration by significantly reducing the cover of gravel and coarse sand on the soil surface, facilitating the development of a physical crust during rainfall events. The results of this study underscore the importance of carefully characterizing both soil physical and biological properties to understand how disturbance affects ecosystem processes. ?? 2010.

  16. Mapping soil features from multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1974-01-01

    In being able to identify quickly gross variations in soil features, the computer-aided classification of multispectral scanner data can be an effective aid to soil surveying. Variations in soil tone are easily seen as well as variations in features related to soil tone, e.g., drainage patterns and organic matter content. Changes in surface texture also affect the reflectance properties of soils. Inasmuch as conventional soil classes are based on both surface and subsurface soil characteristics, the technique described here can be expected only to augment and not replace traditional soil mapping.

  17. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown

    PubMed Central

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek

    2017-01-01

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803

  18. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown.

    PubMed

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G; Lievens, Caroline; van der Meer, Freek

    2017-05-30

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing-thawing cycles are the cause of soil aggregate breakdown.

  19. Effect of Freezing Rate and Microwave Thawing on Texture and Microstructural Properties of Potato (Solanum tuberosum).

    PubMed

    Phinney, David M; Frelka, John C; Wickramasinghe, Anita; Heldman, Dennis R

    2017-04-01

    Food freezing is a preservation process that works by lowering temperature while simultaneously decreasing water activity. It is accepted that although freezing preserves foods, it generally has a negative effect on textural quality. This research investigated the texture response of potatoes (Solanum tuberosum) as a function of time to freeze (defined as the time for the center temperature to reach -20 °C) and thawing process. Potatoes slices (6 mm) were blanched then frozen in an ethanol/carbon dioxide bath, a pilot scale high velocity air freezer (HVAF) and a still air freezer to achieve various times to freeze. Slices were stabilized at -20 °C and thawed by 2 methods; room temperature air and microwave. Afterwards, samples were allowed to come to room temperature prior to texture profile analysis (TPA). Results indicate a maximum texture loss of the potato was reached at a time to freeze of approximately 8 min (corresponding to the HVAF). The texture difference between room temperature and microwave thawing methods was not shown to be significant (P = 0.05). SEM images showed the cellular structure of the potato in a HVAF to be similar to that of the still air freezer, validating that the matrix was maximally damaged in both conditions. This work created a continuous quality loss model for the potato as a function of time to freeze and showed no textural benefit to high velocity over still air freezing. © 2017 Institute of Food Technologists®.

  20. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    PubMed

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.

  1. Estimation of the effect of soil texture on nitrate-nitrogen content in groundwater using optical remote sensing.

    PubMed

    Witheetrirong, Yongyoot; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Parkpian, Preeda

    2011-08-01

    The use of chemical fertilizers in Thailand increased exponentially by more than 100-fold from 1961 to 2004. Intensification of agricultural production causes several potential risks to water supplies, especially nitrate-nitrogen (NO(3) (-)-N) pollution. Nitrate is considered a potential pollutant because its excess application can move into streams by runoff and into groundwater by leaching. The nitrate concentration in groundwater increases more than 3-fold times after fertilization and it contaminates groundwater as a result of the application of excess fertilizers for a long time. Soil texture refers to the relative proportion of particles of various sizes in a given soil and it affects the water permeability or percolation rate of a soil. Coarser soils have less retention than finer soils, which in the case of NO(3) (-)-N allows it to leach into groundwater faster, so there is positive relationship between the percentage of sands and NO(3) (-)-N concentration in groundwater wells. This study aimed to estimate the effect of soil texture on NO(3) (-)-N content in groundwater. Optical reflectance data obtained by remote sensing was used in this study. Our hypothesis was that the quantity of nitrogen leached into groundwater through loam was higher than through clay. Nakhon Pathom province, Thailand, was selected as a study area where the terrain is mostly represented by a flat topography. It was found that classified LANDSAT images delineated paddy fields as covering 29.4% of the study area, while sugarcane covered 10.4%, and 60.2% was represented by "others". The reason for this classified landuse was to determine additional factors, such as vegetation, which might directly affect the quantity of NO(3) (-)-N in soil. Ideally, bare soil would be used as a test site, but in fact, no such places were available in Thailand. This led to an indirect method to estimate NO(3) (-)-N on various soil textures. Through experimentation, it was found that NO(3) (-)-N measured through the loam in sugarcane (I = 0.0054, p < 0.05) was lower than clay represented by paddies (I = 0.0305, p < 0.05). This had a significant negative impact on the assumption. According to the research and local statistical data, farmers have always applied an excess quantity of fertilizer on paddy fields. This is the main reason for the higher quantity of NO(3) (-)-N found in clay than loam in this study. This case might be an exceptional study in terms of quantity of fertilizers applied to agricultural fields.

  2. Textured substrate tape and devices thereof

    DOEpatents

    Goyal, Amit

    2006-08-08

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  3. Soil heating during burning of forest slash piles and wood piles

    Treesearch

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  4. Managing ponderosa pine forests in central Oregon: who will speak for the soil?

    Treesearch

    Matt D. Busse; Gregg M. Riegel

    2005-01-01

    The soils of the central Oregon pumice plateau are relatively young and infertile, yet support an array of plant diversity and growth in the region's pine forests. Whether these coarse-textured, pumice and ash soils are resilient to forest disturbance is not well understood. We present results from a long-term experiment that examined changes in soil quality in...

  5. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus A.; Cotching, William E.; Doyle, Richard B.; Holz, Greg; Lisson, Shaun; Mattern, Kathrin

    2011-02-01

    SummaryThe effect of soil moisture status on preferential flow in a texture-contrast soil was investigated by applying 25 mm Brilliant Blue dye tracer to soil profiles at high and low antecedent soil moisture. Differences in soil morphology and chemistry between soil profiles had little effect on the depth of dye infiltration and dye distribution down the profile. Antecedent soil moisture strongly influenced the type, depth and rate of dye tracer movement. In the wet treatment, the dye tracer infiltrated to depths between 0.24 and 0.40 m, at an average rate of 120 mm h -1. Whilst in the dry treatment, the same volume of dye tracer infiltrated to between 0.85 and 1.19 m depth at an average rate of 1160 mm h -1. In dry antecedent conditions, finger flow developed in the A1 horizon as a result of water repellency. In the wet treatment, the wetting front developed permutations but did not break into fingers. Despite similar particle size distributions, flow in the A2 e was slower than the A1 horizon, due to the absence of macropores. In the dry treatment, the dye tracer ponded on the upper surface of the B21 horizon, which then spilled down the sides of the large clay columns as rivulets, at rates of between 2000 and 3000 mm h -1. The dye tracer accumulated at the base of the columns resulting in backfilling of the inter column shrinkage cracks, at an estimated rate of 750 mm h -1. In the subsoil, water movement occurred via shrinkage cracks which resulted in flow by-passing 99% of the soil matrix in the B21 horizon and 94% of the soil matrix in the B22 horizon. Evidence of rapid and deep infiltration in 'dry' texture-contrast soils has implications for water and solute management. This knowledge could be used to: (i) improve irrigation and fertilizer efficiency (ii) explain variations in crop yield (iii) reduce salinity through improved leaching practices, (iv) reduce the risk of agrochemicals contaminating shallow groundwater.

  6. Microrelief and vegetation as the factors of spatial redistribution of nutrients in the soils of forest ecosystems

    NASA Astrophysics Data System (ADS)

    Chernitsova, Olga; Krechetov, Pavel

    2017-04-01

    The study is aimed at the identifying factors and mechanisms controlling the redistribution of nutrients in the profile of sod-podzolic soils (Umbric Albeluvisols Abruptic in WRB, 2006). The data of chemical analyzes of soil samples of soddy-pale-podzolic soils under mixed coniferous-deciduous forests, picked from the genetic horizons of 28 soil profiles up to the depth of 120-150 cm in the key area with a polygonal-block microrelief (58.39°N, 56.52°E) were used. Soil profiles were placed at the key area considering vegetation and microrelief. Samples were analyzed for humus content, available forms of N, P, K, Ca, Mg and soil texture. Published data on the capacity and the structure of biogeochemical cycling in forest phytocenoses of different ages in the southern taiga were summarized. Field sketches were used for the construction of the digital elevation model of the key area and for plotting the vegetation map showing the crowns' projections of trees and shrubs of different species. Using spatial interpolation in GIS, series of schematic maps were created that characterize the depth of the lower boundary of genetic horizons and their thickness, as well as the texture of the different soil horizons, humus content and distribution of nutrients at different depths. These schematic maps were analyzed for patterns of radial and lateral differentiation of all examined features. Pronounced textural differentiation of soils of micro-elevations and poor textural differentiation of soil of micro-depressions are revealed. It is shown that in the soils with the positions from micro-elevations through flat surfaces to micro-depressions the humus content in the upper layers (horizon A) increases 1.6-1.7 times, the content of nitrogen ‒ 1.4-1.5, phosphorus ‒ 2.6 8.4, calcium and magnesium cations ‒ 1.8-2.9 times. This differentiation in nutrients' content is coming along with the settlement of more demanding to soil fertility plants in micro-depressions. Also the bimodal distribution of the available forms of potassium, phosphorus, calcium, magnesium in the soil profile was revealed. The first maximum of nutrients content is detected in the humus-accumulative horizon A, the second - in the illuvial horizon Bt. The eluvial horizons EL are characterized by the minimum values. Considering the thickness of soil horizons, supplies of available forms of phosphorus, potassium, calcium and magnesium were estimated, which are 1.5-2.5 times higher in deeper soil horizons than in the upper ones. The complex ecological and geochemical structure of forest ecosystems is regulated by both the lateral additional supply of mobile chemical compounds by the surface and subsurface runoff, including melted snow water, as well as the peculiarities of biogeochemical cycling (the age of the forest, the penetration depth of suction roots of various species of trees, the chemical composition of the litter).

  7. A geophysical and biochemical investigation of buried remains in contrasting soil textures in southern Ontario

    NASA Astrophysics Data System (ADS)

    Lowe, Amanda C.

    Ground penetrating radar (GPR) is a non-invasive, geophysical tool used for the detection of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic (EM) waves from an antenna. A 500 Megahertz (MHz) frequency antenna is typically used for forensic investigations, as it provides a suitable compromise between depth of penetration and sub-surface resolution. Domestic pig (Sus scrofa) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post burial. Analysis of collected data revealed that GPR had applicability in the detection of clandestine graves containing remains in silty clay loam and fine sandy loam soils, but was not suitable for detection in fine sandy soil. Specifically, within a fine sandy loam soil, there is the potential to estimate the post burial interval (PBI), as hyperbolic grave response was well defined at the beginning of the 14 month burial duration, but became less distinctive near the completion of the study. Following the detection of a clandestine grave containing a carcass, collection of gravesoil, tissue and textile samples is important for the estimation of the stage of decomposition and the post burial interval (PBI) of the remains. Throughout the decomposition process of a carcass, adipose tissue is subjected to hydrolytic enzymes that convert triglycerides to their corresponding unsaturated, saturated and salts of fatty acids. The composition of fatty acids in the decomposed tissue will vary with the post mortem period, but it is unknown what affect the soil texture has on lipid degradation. As decomposition proceeds, fatty acids can leach from the tissues into the surrounding burial environment. Fatty acid analysis of gravesoil, tissue and textile samples, exhumed at two, eleven and fourteen month post burial intervals, was conducted using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Infrared (IR) spectroscopy analysis of the samples provided a qualitative profile of lipid degradation. Analysis of gravesoil samples did not reveal IR spectroscopy bands attributable to fatty acid degradation or adipocere formation. IR spectroscopy analysis of tissue samples is applicable for the estimation of carcass decomposition in all of the soil textures tested. Results of textile IR spectroscopy analysis revealed limited potential to estimate the stage of carcass decomposition in silty clay loam soil. GC-MS was used to quantify the peak area ratio (area/int std area) (PAR) of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and oleic (C18:1) acids. GC-MS results revealed that analysis of both tissue and textile samples can be useful in the estimation of the stage of decomposition and the PBI of carcasses in all three of the soil textures tested. The results of this research may have applicability within forensic investigations involving decomposing bodies by aiding in the location of clandestine graves in silty clay loam and fine sandy loam soil through the use of GPR. Infrared spectroscopy and GC-MS analysis of the fatty acid composition of tissue and textile samples may also be incorporated into investigational protocols to aid in the estimation of the stage of decomposition and the PBI of a body. Key Words: forensic science, ground penetrating radar, soil texture, buried remains, fatty acids, gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy

  8. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  9. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.

    PubMed

    Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès

    2015-01-01

    Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Using Remote Sensing Platforms to Estimate Near-Surface Soil Properties

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Rickman, D.; Mask, P. L.; Wersinger, J. M.; Luvall, J.

    2003-01-01

    Evaluation of near-surface soil properties via remote sensing (RS) could facilitate soil survey mapping, erosion prediction, fertilization regimes, and allocation of agrochemicals. The objective of this study was to evaluate the relationship between soil spectral signature and near surface soil properties in conventionally managed row crop systems. High resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor (ATLAS) multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil water content, soil organic carbon (SOC), particle size distribution (PSD), and citrate dithionite extractable iron (Fed) content. Surface roughness, soil water content, and crusting were also measured at sampling. Results showed RS data acquired from lands with less than 4 % surface soil water content best approximated near-surface soil properties at the Coastal Plain site where loamy sand textured surfaces were predominant. Utilizing a combination of band ratios in stepwise regression, Fed (r2 = 0.61), SOC (r2 = 0.36), sand (r2 = 0.52), and clay (r2 = 0.76) were related to RS data at the Coastal Plain site. In contrast, the more clayey Ridge and Valley soils had r-squares of 0.50, 0.36, 0.17, and 0.57. for Fed, SOC, sand and clay, respectively. Use of estimated eEmissivity did not generally improve estimates of near-surface soil attributes.

  11. Exploring the Role of Soil Moisture Conditions for Rainfall Triggered Landslides on Catchment Scale: the case of the Ialomita Sub Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru

    2014-05-01

    Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.

  12. Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven

    USGS Publications Warehouse

    Cabrol, N.A.; Herkenhoff, K. E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B. A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.

    2008-01-01

    A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.

  13. Soil moisture response to experimentally altered snowmelt timing is mediated by soil, vegetation, and regional climate patterns

    USGS Publications Warehouse

    Conner, Lafe G; Gill, Richard A.; Belnap, Jayne

    2016-01-01

    Soil moisture in seasonally snow-covered environments fluctuates seasonally between wet and dry states. Climate warming is advancing the onset of spring snowmelt and may lengthen the summer-dry state and ultimately cause drier soil conditions. The magnitude of either response may vary across elevation and vegetation types. We situated our study at the lower boundary of persistent snow cover and the upper boundary of subalpine forest with paired treatment blocks in aspen forest and open meadow. In treatments plots, we advanced snowmelt timing by an average of 14 days by adding dust to the snow surface during spring melt. We specifically wanted to know whether early snowmelt would increase the duration of the summer-dry period and cause soils to be drier in the early-snowmelt treatments compared with control plots. We found no difference in the onset of the summer-dry state and no significant differences in soil moisture between treatments. To better understand the reasons soil moisture did not respond to early snowmelt as expected, we examined the mediating influences of soil organic matter, texture, temperature, and the presence or absence of forest. In our study, late-spring precipitation may have moderated the effects of early snowmelt on soil moisture. We conclude that landscape characteristics, including soil, vegetation, and regional weather patterns, may supersede the effects of snowmelt timing in determining growing season soil moisture, and efforts to anticipate the impacts of climate change on seasonally snow-covered ecosystems should take into account these mediating factors. 

  14. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication

    PubMed Central

    Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao

    2016-01-01

    A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762

  15. Nitrous oxide emission inventory of German forest soils

    NASA Astrophysics Data System (ADS)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  16. Use of mobile gammaspectrometry for estimation of texture at regional scale

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-04-01

    In the last years gamma-ray measurements from air and ground were increasingly used for spatial mapping of physical soil parameters. Many applications of gamma-ray measurements for soil characterisation and in digital soil mapping (DSM) are known from Australia or single once from Northern America. During the last years there are attempts to use that method in Europe as well. The measured isotope concentration of the gamma emitter 40K, 238U and 232Th in soils depends on different soil parameters, which are the result of composition and properties of parent rock and processes during soil geneses under different climatic conditions. Grain size distribution, type of clay minerals and organic matter are soil parameters which influence directly the gamma-ray concentration. From former studies we know, that there are site specific relationships at the field scale between gamma-ray measurements and soil properties. One of the target soil properties in DSM is for e.g. the spatial distribution of texture at the landscape scale. Thus there is a need of more regional understanding of gamma-ray concentration and soil properties with regard to the complex geology of Europe. We did systematic measurements at different field sites across Europe to investigate the relationship between the concentrations of gamma radiant and grain size. The areas are characterised by different pedogenesis and varying clay content. For the measurement we used a mobile 4l Na(I) detector with GPS connection, which is mounted on a sledge and can be towed across the agricultural used plane. Additionally we selected points for soil sampling and analysis of soil texture. For the interpretation we used the single nuclide concentration as well as the ratios. The results show site specific relationships dependent from source material. At soils developed from alluvial sediments the K/Th ratio is an indicator for clay content at regional scale. At soils developed from loess sediments Th can be used do discriminate between fine (clay + silt) and coarse (sand) fraction. This knowledge will led to a more conceptual understanding of gamma-ray measurements at regional scale. These activities are done within the iSOIL project. iSOIL- Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment; iSOIL is one member of the SOIL TECHNOLOGY CLUSTER of Research Projects funded by the EC.

  17. The effects of soil moisture, texture, and nutrient levels on the growth of black walnut.

    Treesearch

    Richard E. Dickson

    1971-01-01

    Black walnut seedlings grown in a clay loam and sandy soil were subjected to two soil moisture regimes and three fertility levels. Fertilization increased growth only under most conditions. Under draught, fertilization retarded growth in the sand. Nitrogen was the element primarily responsible for the greater growth under moist conditions.

  18. Lower limits of crop water use in three soil textural classes

    USDA-ARS?s Scientific Manuscript database

    Accurate knowledge of the amount of soil water available for crop use allows better management of limited water supplies. Using neutron scattering, we determined the mean lower limit of field soil water use (LL*F, m**3 m**-3) to a depth of 2.2 m at harvest (three seasons each) of short-season maize...

  19. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields

    PubMed Central

    Gregory, P. J.; Simmonds, L. P.; Warren, G. P.

    1997-01-01

    Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
    Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
    Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.

  20. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    USGS Publications Warehouse

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  1. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    PubMed

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  2. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  3. Effects of climate and soil properties on U.S. home lawn soil organic carbon concentration and pool.

    PubMed

    Selhorst, Adam; Lal, Rattan

    2012-12-01

    Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60-70 cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1 % increase in N concentration led to a 0.99 % increase in SOC concentration. Additionally, soil bulk density (ρ(b)) had a curvilinear interaction with SOC concentration, with an increase in ρ(b) indicating a positive effect on SOC concentration until a ρ(b) of ~1.4-1.5 Mg m(-3) was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60-70 cm year(-1)), high soil N concentration, and moderate ρ(b) (1.4-1.5 Mg m(-3)). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.

  4. Dryland Flood-Irrigation and its Impact on CO2 Production and the Accumulation of Pedogenic Carbonate in West Texas

    NASA Astrophysics Data System (ADS)

    Ortiz, A. C.; Jin, L.

    2016-12-01

    Agricultural fields in drylands are intensively irrigated. Indeed, pecan orchards at the El Paso, TX region are flooded with over one meter of water per growing season. The waters are usually oversaturated in calcite (CaCO3) and continuous evapotranspiration drives CaCO3 precipitation, releasing CO2. As such, the loading of CaCO3 through flood irrigation in drylands impacts Ca and C cycles greatly. We characterized soil, soil gas and soil water samples to quantify rates of pedogenic carbonate accumulation and CO2 release, identify the sources of C and Ca in pedogenic carbonates, and investigate kinetic and environmental controls of CaCO3 formation. Simple calculations show that up to 112000kg/km2/yr of Ca is loaded onto the fields by irrigation, evidenced by high water-soluble and acid-leachable Ca in soils, especially in clayey soils. We used 87Sr/86Sr ratios to quantify the relative importance of different Ca end-members including flood irrigation. Data show that water-soluble soil leachates have similar 87Sr/86Sr ratios as irrigation waters at depth, but lighter signatures at surface, probably due dust and fertilizer inputs. We measured daily soil-atmosphere CO2 efflux, δ13CCO2 and concentrations of CO2 gas samples at different soil depths between two irrigation events and at two sites with sandy versus clayey soils. These data help determine if sources of soil CO2 change with depth, irrigation event and if CO2 transport is controlled by texture. Correlations of δ13CCO2 and soil CO2 concentrations indicate mixing of organically respired, atmospheric and CaCO3-derived CO2. We found co-variation of δ13CCO2 and soil CO2 with time, where soil CO2 became heavier in carbon isotopes and more abundant in concentrations, illustrating shifts from soil respired CO2, characterized by lighter C, to increased proportions of CaCO3-derived CO2 with heavier C. Efflux data show peak values as soils dried, indicating supersaturation of soil waters and precipitation of pedogenic calcite. This efflux is also controlled by soil texture, as sandy soils emitted more CO2 than clayey soils, even if fine-textured soils contained more CaCO3. These findings can significantly impact CO2 modeling and can aid in extrapolating to larger scales.

  5. Variations in water balance and recharge potential at three western desert sites

    USGS Publications Warehouse

    Gee, G.W.; Wierenga, P.J.; Andraski, Brian J.; Young, M.H.; Fayer, M.J.; Rockhold, M.L.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to >50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication for waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential.

  6. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    NASA Astrophysics Data System (ADS)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  7. Germination and survival of douglas-fir in northern California ... effects of time of seeding, soil type, and aspect

    Treesearch

    Rudolph O. Strothmann

    1971-01-01

    For best results, direct-seeding of Douglas-fir in northern California should be done in November or December. In trials on two National Forests, sowing in those months resulted in significantly more seedlings than sowing in February or March. Also, more seedlings became established on fine-textured red soils than on coarser gray-brown soils. On red soils, more...

  8. What is the effect of local controls on the temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.

  9. Trees and Weathering: Using Soil Petrographic and Chemical Analyses to Compare the Relative Weathering Effects of Gymnosperms and Angiosperms in the Cascade Mountains of Washington State, USA

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Ague, J. J.; Berner, R. A.

    2006-12-01

    Knowledge of the long-term carbon cycle and its control on atmospheric carbon dioxide levels over the Phanerozoic is crucial to understanding the impending dynamics of contemporary anthropogenic carbon contributions to the atmosphere. One aspect of the long-term carbon cycle that is poorly understood is the role of large vascular plants (trees) in contributing to the chemical weathering of silicate minerals. In particular, little is known about the differences in weathering rates between gymnosperms and angiosperms and how these dissimilarities may have impacted the carbon cycle subsequent to the evolution of angiosperm trees in the Mesozoic. One approach to evaluating these potential differences in weathering is to examine and quantitatively compare the chemistry and petrology of the soil mineral constituents from beneath modern groves of each broad tree type, where the groves have been subject to nearly identical environmental and geological conditions. This particular study focuses on field samples collected along transects through adjacent groves of angiosperms and gymnosperms in the Cascade Mountains of Washington State. Preliminary data demonstrate a significant difference in the soil texture and composition beneath the two types of trees. While soil at each field site has been generated from a homogeneous parent material, and subjected to similar inorganic environmental phenomena, soil density, particle size, and organic content vary across the transects. Soils beneath the angiosperms are denser and have a more clay-like texture, while soils beneath the gymnosperms are more organic-rich and have a sandy texture. Additional macroscopic and microscopic differences in the chemistry and petrology of these soils will illuminate the varied impacts these trees have on the silicate minerals in their immediate environment, and therefore lend insight into the potential impact these groups of organisms have had on the long-term carbon cycle over the past five hundred million years.

  10. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  11. Soil development as limiting factor for shrub expansion in southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D. Swingedouw, A. Landais, M. S. Seidenkrantz, E. Gauthier, V. Bichet, C. Massa, B. Perren, V. Jomelli, and G. Adalgeirsdottir. 2012. "Greenland Climate Change: From the Past to the Future." Wiley Interdisciplinary Reviews: Climate Change. http://onlinelibrary.wiley.com/doi/10.1002/wcc.186/full. Normand, Signe, Christophe Randin, Ralf Ohlemüller, Christian Bay, Toke T. Høye, Erik D. Kjær, Christian Körner, et al. 2013. "A Greener Greenland? Climatic Potential and Long-Term Constraints on Future Expansions of Trees and Shrubs." Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1624) (August 19): 20120479. doi:10.1098/rstb.2012.0479.

  12. Topographic, edaphic, and vegetative controls on plant-available water

    USGS Publications Warehouse

    Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p < 0.05). Using a mixed model of fixed and random effects, we found that cover type, soil texture, and time were related to plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.

  13. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is presented. Focus is on the relationship of radar backscatter cross sections at multiple wavelengths, apparent diurnal temperature excursions identified in multi-temporal TIMS images, surface geometries related to weathering style, and parent bedrock lithology.

  14. Examining chalky soil restoration methods to build irrigation canals

    NASA Astrophysics Data System (ADS)

    Pezeshki Gavareshk, Atena; Esmaili, Kazem; Fard, Mahsa Kamel

    2017-04-01

    Today, due to the fundamental needs in different affairs, the need to irrigate several areas is felt more than ever. Sometimes transmission paths are not in accordance with our expectations and we are forced to get irrigation canals through some improper lands. In Khuzestan, one of the problems of water transmission is channeling on the ground with chalk texture, so the need to restore this land is highly felt. One way to restore the chalky soil texture is lime and burned oil injection. In this study, we have tried to take a step towards this goal by providing restoration methods and injection of optimal amount of the cited material.

  15. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models

    DOE PAGES

    Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.; ...

    2017-11-09

    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less

  16. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.

    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less

  17. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    PubMed

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  18. Estimating sources of Valley Fever pathogen propagation in southern Arizona: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Pianalto, Frederick S.

    Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease caused by the inhalation of airborne spores from the fungi Coccidioides spp. The fungi reside in arid and semi-arid soils of the Americas. The disease has increased epidemically in Arizona and other areas within the last two decades. Despite this increase, the ecology of the fungi remains obscure, and environmental antecedents of the disease are largely unstudied. Two sources of soil disturbance, hypothesized to affect soil ecology and initiate spore dissemination, are investigated. Nocturnal desert rodents interact substantially with the soil substrate. Rodents are hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, and a disseminator of fungal spores. Rodent distributions are poorly mapped for the study area. We build automated multi-linear regression models and decision tree models for ten rodent species using rodent trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of surface temperature, a vegetation index and its texture, and a suite of topographic rasters. Surface temperature, derived from Landsat TM thermal images, is the most widely selected predictive variable in both automated methods. Construction-related soil disturbance (e.g. road construction, trenching, land stripping, and earthmoving) is a significant source of fugitive dust, which decreases air quality and may carry soil pathogens. Annual differencing of Landsat Thematic Mapper (TM) mid-infrared images is used to create change images, and thresholded change areas are associated with coordinates of local dust inspections. The output metric identifies source areas of soil disturbance, and it estimates the annual amount of dust-producing surface area for eastern Pima County spanning 1994 through 2009. Spatially explicit construction-related soil disturbance and rodent abundance data are compared with coccidioidomycosis incidence data using rank order correlation and regression methods. Construction-related soil disturbance correlates strongly with annual county-wide incidence. It also correlates with Tucson periphery incidence aggregated to zip codes. Abundance values for the desert pocket mouse (Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect (northing) and thermal radiance, correlate with total study period incidence aggregated to zip code.

  19. Two-dimensional microclimate distribution within and above a crop canopy in an arid environment: Modeling and observational studies

    NASA Astrophysics Data System (ADS)

    Naot, O.; Mahrer, Y.

    1991-08-01

    A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered. The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients. Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.

  20. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    PubMed

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    NASA Astrophysics Data System (ADS)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  2. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.

    PubMed

    Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N

    2016-07-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region

    NASA Astrophysics Data System (ADS)

    Gorrab, A.; Zribi, M.; Baghdadi, N.; Lili Chabaane, Z.

    2015-10-01

    The goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. Finally, by considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved.

  4. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T. K.; Wu, Z.; Stoica, A. D.

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  5. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE PAGES

    Liu, T. K.; Wu, Z.; Stoica, A. D.; ...

    2017-06-17

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  6. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains.

    PubMed

    Nolan, Bernard T; Dubus, Igor G; Surdyk, Nicolas; Fowler, Hayley J; Burton, Aidan; Hollis, John M; Reichenberger, Stefan; Jarvis, Nicholas J

    2008-09-01

    Key climatic factors influencing the transport of pesticides to drains and to depth were identified. Climatic characteristics such as the timing of rainfall in relation to pesticide application may be more critical than average annual temperature and rainfall. The fate of three pesticides was simulated in nine contrasting soil types for two seasons, five application dates and six synthetic weather data series using the MACRO model, and predicted cumulative pesticide loads were analysed using statistical methods. Classification trees and Pearson correlations indicated that simulated losses in excess of 75th percentile values (0.046 mg m(-2) for leaching, 0.042 mg m(-2) for drainage) generally occurred with large rainfall events following autumn application on clay soils, for both leaching and drainage scenarios. The amount and timing of winter rainfall were important factors, whatever the application period, and these interacted strongly with soil texture and pesticide mobility and persistence. Winter rainfall primarily influenced losses of less mobile and more persistent compounds, while short-term rainfall and temperature controlled leaching of the more mobile pesticides. Numerous climatic characteristics influenced pesticide loss, including the amount of precipitation as well as the timing of rainfall and extreme events in relation to application date. Information regarding the relative influence of the climatic characteristics evaluated here can support the development of a climatic zonation for European-scale risk assessment for pesticide fate.

  7. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins.

    PubMed

    Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge

    2013-03-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Characteristics of mineral licks used by white-tailed deer (Odocoileus virginianus)

    USGS Publications Warehouse

    Kennedy, John F.; Jenks, Jonathan A.; Jones, Robert L.; Jenkins, Kurt J.

    1995-01-01

    Characteristics of mineral licks used by white-tailed deer (Odocoileus virginianus) were examined in the northern Black Hills of South Dakota in May 1992. Concentrations of sodium, nitrogen, phosphorus, potassium, calcium, chloride and magnesium, and soil texture, organic matter and pH for licks and nonlick soils were compared. Black Hills lick and nonlick samples also were compared to 67 other North American licks characterized by Jones and Hanson (1985). Degree of use (high or low), and vegetative and topographic characteristics also were determined. Use of mineral licks by deer was highest in spring and early summer; mineral licks were not used by deer in winter. Mostly adult females, and on a few occasions fawns visited licks. Soil texture was finer and organic matter was lower (P < 0.05) in lick than nonlick soils. Soil pH, soluble salts, sodium and nitrate nitrogen were higher (P < 0.05) in lick than in nonlick soils. Chloride was the only mineral that differed (P = 0.03) between high-use and low-use licks but was not considered important in lick selection. Sodium was the primary mineral sought by white-tailed deer using mineral licks.

  9. Dark gray soils on two-layered deposits in the north of Tambov Plain: Agroecology, properties, and diagnostics

    NASA Astrophysics Data System (ADS)

    Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.

    2012-05-01

    Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.

  10. Iron sources effects on growth, physiological parameters and nutrition of cacao

    USDA-ARS?s Scientific Manuscript database

    Productivity and sustainability of cacao (Theobroma cacao L.) in tropical soils are affected by deficiency of micronutrients. Iron deficiency is one of the main yield limiting constraints, especially in highly weathered, coarse textured and leached soils. To correct iron deficiency, different form...

  11. Soil texture and organic carbon fractions predicted from near-infrared spectroscopy and geostatistics

    USDA-ARS?s Scientific Manuscript database

    Field-specific management could help achieve agricultural sustainability by increasing production and decreasing environmental impacts. Near-infrared spectroscopy (NIRS) and geostatistics are relatively unexplored tools that could reduce time, labor, and costs of soil analysis. Our objective was to ...

  12. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  13. Modeling diffusion and reaction in soils: 9. The Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldrup, P.; Olesen, T.; Yamaguchi, T.

    1999-08-01

    Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less

  14. Feasibility of Energy Crops Grown on Army Lands

    DTIC Science & Technology

    2012-03-01

    Figure 11). The soil texture is sandy with a 12-inch A horizon (the top level of soil), and the soil is well drained and acidic. The macronutrient ...strongly acidic. The macronutrient levels are depleted relative to optimum crop production standards, but the organic matter content is relatively good... macronutrient levels are depleted relative to optimum crop production standards, and the organic matter content is low. This site is prime for soil

  15. Examining Suitable Soil Regimes for Reestablishment of Camassia Quamash (Blue Camas), Flathead Indian Reservation

    NASA Astrophysics Data System (ADS)

    Bald, A. M.; Davis, J. M.

    2014-12-01

    Soils are the foundation of all biotic communities and play a substantial role in facilitating the uptake of water and nutrients in many terrestrial plants. Plants can grow to their potential only if the soil supports an environment conducive to growth. Soil chemical composition and texture directly influence the rate of water and nutrient ion uptake in vegetation. Prairie Wetlands have experienced the most dramatic land use changes within the United States throughout the last century. Soils deteriorate from erosion, compaction, use of pesticides, herbicides, and fertilizers associated with agriculture and urbanization. Transitioning soil regimes in the US have been the impetus for numerous restoration activities that attempt to protect or remediate loss to native or functional plant groups. Success of plant restoration efforts is dependent on knowledge about regional soil regimes. Camassia Quamash (Blue Camas), an ephemeral wetland bulbaceous herb is a culturally significant edible plant to the Pacific Northwest tribes and was only surpassed as a subsistence trade commodity by Salmon. The literature about camas and suitable soil types for it to grow is limited. The Confederated Salish and Kootenai Tribes interest in restoring the plant to the Flathead Indian Reservation (FIR) prompted a series of research initiatives to document baseline parameters of remaining camas stands. Baseline soil conditions examining chemical regimes and soil textures on four FIR observed camas sites were analyzed. Samples indicated that remaining camas stands occurred in loamy nutrient rich prairie wetland to lightly forested soil regimes.

  16. Estimation of the Effect of Soil Texture on Nitrate-Nitrogen Content in Groundwater Using Optical Remote Sensing

    PubMed Central

    Witheetrirong, Yongyoot; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Parkpian, Preeda

    2011-01-01

    The use of chemical fertilizers in Thailand increased exponentially by more than 100-fold from 1961 to 2004. Intensification of agricultural production causes several potential risks to water supplies, especially nitrate-nitrogen (NO3−-N) pollution. Nitrate is considered a potential pollutant because its excess application can move into streams by runoff and into groundwater by leaching. The nitrate concentration in groundwater increases more than 3-fold times after fertilization and it contaminates groundwater as a result of the application of excess fertilizers for a long time. Soil texture refers to the relative proportion of particles of various sizes in a given soil and it affects the water permeability or percolation rate of a soil. Coarser soils have less retention than finer soils, which in the case of NO3−-N allows it to leach into groundwater faster, so there is positive relationship between the percentage of sands and NO3−-N concentration in groundwater wells. This study aimed to estimate the effect of soil texture on NO3−-N content in groundwater. Optical reflectance data obtained by remote sensing was used in this study. Our hypothesis was that the quantity of nitrogen leached into groundwater through loam was higher than through clay. Nakhon Pathom province, Thailand, was selected as a study area where the terrain is mostly represented by a flat topography. It was found that classified LANDSAT images delineated paddy fields as covering 29.4% of the study area, while sugarcane covered 10.4%, and 60.2% was represented by “others”. The reason for this classified landuse was to determine additional factors, such as vegetation, which might directly affect the quantity of NO3−-N in soil. Ideally, bare soil would be used as a test site, but in fact, no such places were available in Thailand. This led to an indirect method to estimate NO3−-N on various soil textures. Through experimentation, it was found that NO3−-N measured through the loam in sugarcane (I = 0.0054, p < 0.05) was lower than clay represented by paddies (I = 0.0305, p < 0.05). This had a significant negative impact on the assumption. According to the research and local statistical data, farmers have always applied an excess quantity of fertilizer on paddy fields. This is the main reason for the higher quantity of NO3−-N found in clay than loam in this study. This case might be an exceptional study in terms of quantity of fertilizers applied to agricultural fields. PMID:21909315

  17. Determination of Nitrogen, Phosphorus, and Potassium Release Rates of Slow- and Controlled-Release Fertilizers: Single-Laboratory Validation, First Action 2015.15.

    PubMed

    Thiex, Nancy

    2016-01-01

    A previously validated method for the determination of nitrogen release patterns of slow- and controlled-release fertilizers (SRFs and CRFs, respectively) was submitted to the Expert Review Panel (ERP) for Fertilizers for consideration of First Action Official Method(SM) status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. The 180 day soil incubation-column leaching technique was demonstrated to be a robust and reliable method for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and the results were only slightly affected by variations in environmental factors such as microbial activity, soil moisture, temperature, and texture. The release of P and K were also studied, but at fewer replications than for N. Optimization experiments on the accelerated 74 h extraction method indicated that temperature was the only factor found to substantially influence nutrient-release rates from the materials studied, and an optimized extraction profile was established as follows: 2 h at 25°C, 2 h at 50°C, 20 h at 55°C, and 50 h at 60°C.

  18. Stream Flow Prediction by Remote Sensing and Genetic Programming

    NASA Technical Reports Server (NTRS)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  19. An improved Rosetta pedotransfer function and evaluation in earth system models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2017-12-01

    Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.

  20. Assessment of the postagrogenic transformation of soddy-podzolic soils: Cartographic and analytic support

    NASA Astrophysics Data System (ADS)

    Sorokina, N. P.; Kozlov, D. N.; Kuznetsova, I. V.

    2013-10-01

    The results of experimental studies of the postagrogenic transformation of loamy soddy-podzolic soils on the southern slope of the Klin-Dmitrov Moraine Ridge are discussed. A chronosequence of soils (arable soils (cropland)-soils under fallow with meadow vegetation-soils under secondary forests of different ages-soils under a conventionally initial native forest) was examined, and the stages of the postagrogenic transformation of the automorphic soddy-podzolic soils were identified. The differentiation of the former plow horizon into the A1 and A1A2 horizons (according to the differences in the humus content, texture, and acidity) served as the major criterion of the soil transformation. A stage of textural differentiation with clay depletion from the uppermost layer was identified in the soils of the 20- to 60-year-old fallows. The specificity of the postagrogenic transformation of the soils on the slopes was demonstrated. From the methodological point of view, it was important to differentiate between the chronosequences of automorphic and semihydromorphic soils of the leveled interfluves and the soils of the slopes. For this purpose, a series of maps reflecting the history of the land use and the soil cover pattern was analyzed. The cartographic model included the attribute data of the soil surveys, the cartographic sources (a series of historical maps of the land use, topographic maps, remote sensing data, and a digital elevation model), and two base maps: (a) the integral map of the land use and (b) the map of the soil combinations with the separation of the zonal automorphic, semihydromorphic, and erosional soil combinations. This scheme served as a matrix for the organization and analysis of the already available and new materials.

  1. Dust in the western U.S.: how biological, physical and human activities at the local scale interact to affect hydrologic function at the landscape scale (Invited)

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Reheis, M. C.; Munson, S. M.

    2009-12-01

    Dryland regions constitute over 35% of terrestrial lands around the globe. Limited rainfall in these regions restricts plant growth and the spaces between vascular plants are often large. Most interspace soils are protected from wind erosion by the cover of rocks, physical crusts, and biological crusts (cyanobacteria, lichens, and mosses). However, disturbance of the soil surface in dryland regions (e.g., recreation, livestock, mining and energy exploration, military exercises, fire) reduces or eliminates the protective cover of the soils. Rising temperatures will reduce soil moisture and thus plant cover. Wind tunnel data show that most desert surfaces produce little sediment under typical wind speeds. However, disturbing the soil surface with vehicles, humans, or animals resulted in much higher sediment production from all surfaces tested, regardless of parent material, texture, or age of the soil surface. Synergist effects, such as surface disturbance occurring during drought periods in annualized plant communities, can create very large dust events. As surface disturbance, invasion, and drought are expected to increase in the future, an increase in dust production can be expected as well. Increased particulates in the air threaten human well-being through disease, highway accidents, and economic losses. Where dust losses are greater than the inputs, the source areas lose carbon and nutrients. These compounds are transferred to high elevation regions, where such fertilization likely impacts ecosystem function. Deposition of dust on the snowpack darkens the surface, increasing snowmelt by 30 days or more and exposing soils to evaporation, all of which decrease the quantity and quality of water in major streams and rivers. As increases occur in temperature, pumping of shallow aquifers, human activities, and invasion of exotic annual plants in dryland regions, the frequency, severity, and negative impact of dust storms is expected to increase as well. The implications of these future changes will be discussed.

  2. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  3. Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux, R.M.; Ballinger, R.; Lucas, G.

    1979-01-01

    An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less

  4. Is the textural classification built on sand?

    USDA-ARS?s Scientific Manuscript database

    In 1967, the Committee of the Soil Science Society of America noted that the current system of particle size boundaries arose due to geographic accident. The committee noted that there is “no narrowly defineable natural particle size boundaries that would be equally significant in all soil materials...

  5. Geographic trends in alfalfa stand age and crops that follow alfalfa

    USDA-ARS?s Scientific Manuscript database

    USDA-National Agricultural Statistics Service cropland data layers and Soil Survey Geographic Database layers were combined for six states (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, and Wisconsin) and seven years (2006-2012) to determine how soil texture and geographic location affect t...

  6. Effect of Thermomechanical Processing on Texture and Superelasticity in Fe-Ni-Co-Al-Ti-B Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Doyup; Omori, Toshihiro; Han, Kwangsik; Hayakawa, Yasuyuki; Kainuma, Ryosuke

    2018-03-01

    The texture and superelasticity were investigated in austenitic Fe-Ni-Co-Al-Ti-B alloy with various reduction ratios of cold rolling and heating ratios in annealing. The rolled sheets show the {110} <112> deformation texture at a reduction ratio higher than 80%, while the texture hardly changes in the primary recrystallization at 1000 °C. The β (B2) precipitates inhibit the grain growth at this temperature, but they dissolve during heating, and secondary recrystallization occurs due to decreased pinning force at temperatures higher than 1100 °C, resulting in texture change to {210} <001> . The recrystallization texture is more strongly developed when the reduction ratio and heating rate are high and slow, respectively. The 90% cold-rolled and slowly heated sheet shows the recrystallization texture and high fraction of low-angle boundaries. As a result, ductility and superelasticity can be drastically improved in the 90% cold-rolled sheet, although superelasticity was previously obtained only in thin sheets with 98.5% reduction.

  7. Assessing soil biodiversity potentials in Europe.

    PubMed

    Aksoy, Ece; Louwagie, Geertrui; Gardi, Ciro; Gregor, Mirko; Schröder, Christoph; Löhnertz, Manuel

    2017-07-01

    Soil is important as a critical component for the functioning of terrestrial ecosystems. The largest part of the terrestrial biodiversity relies, directly or indirectly, on soil. Furthermore, soil itself is habitat to a great diversity of organisms. The suitability of soil to host such a diversity is strongly related to its physico-chemical features and environmental properties. However, due to the complexity of both soil and biodiversity, it is difficult to identify a clear and unambiguous relationship between environmental parameters and soil biota. Nevertheless, the increasing diffusion of a more integrated view of ecosystems, and in particular the development of the concept of ecosystem services, highlights the need for a better comprehension of the role played by soils in offering these services, including the habitat provision. An assessment of the capability of soils to host biodiversity would contribute to evaluate the quality of soils in order to help policy makers with the development of appropriate and sustainable management actions. However, so far, the heterogeneity of soils has been a barrier to the production of a large-scale framework that directly links soil features to organisms living within it. The current knowledge on the effects of soil physico-chemical properties on biota and the available data at continental scale open the way towards such an evaluation. In this study, the soil habitat potential for biodiversity was assessed and mapped for the first time throughout Europe by combining several soil features (pH, soil texture and soil organic matter) with environmental parameters (potential evapotranspiration, average temperature, soil biomass productivity and land use type). Considering the increasingly recognized importance of soils and their biodiversity in providing ecosystem services, the proposed approach appears to be a promising tool that may contribute to open a forum on the need to include soils in future environmental policy making decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of changes in SOC of Danish agricultural soils and for verification of the national inventories of SOC changes in agricultural soils. Future work will focus on further evaluating effects on subsoil C as well as improving the estimation of C inputs, particularly root C input at different soil depth. Key words: Soil organic carbon, modelling, C-TOOL, agriculture, management, grassland

  9. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.

  10. Manipulating topological states by imprinting non-collinear spin textures

    DOE PAGES

    Streubel, Robert; Han, Luyang; Im, Mi -Young; ...

    2015-03-05

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can bemore » imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence« less

  11. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  12. Soil Fertility Gradient in the Restinga Ecosystem

    NASA Astrophysics Data System (ADS)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due to intense washing these soils are exposed and associated with highly sandy texture what favors the leaching of salts throughout the profile. Comprida Island soils presented salinity in some ante dune that can be explained due to the geographical position that determines a system of frequent wetting of the soil by the sea water and thus facilitating the accumulation of salts in the profile.

  13. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    PubMed Central

    Antonijević, Milan M.; Marić, Miroslava

    2008-01-01

    Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust) were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe) in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds) was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil. PMID:27873845

  14. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  15. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    PubMed

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  16. Biogeochemistry of a temperate forest nitrogen gradient

    USGS Publications Warehouse

    Perakis, Steven S.; Sinkhorn, Emily R.

    2011-01-01

    Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant–soil–microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (USA). Surface mineral soil N (0–10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N·ha−1·yr−1. Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for −1·yr−1. Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.

  17. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  18. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    NASA Astrophysics Data System (ADS)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm. Regarding soil properties, the analysis shows that organic matter from soils under minimum tillage or no-till is strongly related with runoff, the amount of sediments in runoff and soil loss. In soils from olive groves, the amount of sediments in runoff was significantly related to soil pH. Moreover, for olive-cropped soils under conventional tillage, soil loss is strongly related with clayey texture, which is characteristic of these soils. Concerning this, the relationship between soil loss and coarse sand contents is highly significant, and shows that medium-sized soil particles are most prone to detachment and transport by runoff. Thus, the average content of these fractions in soils under conventional management is more than two times that from olive groves under minimal or no tillage, which are more coarsely textured. In fine-textured soils, hydraulic conductivity is reduced, thus increasing soil erosion risk. In addition, in sandy and silty soils with low clay content, infiltration rates are high even when soil sealing is observed. At the scale of this experiment, runoff generation and soil erosion risk decrease significantly in areas under natural vegetation, with lower clay contents

  19. Determination of the saturated film conductivity to improve the EMFX model in describing the soil hydraulic properties over the entire moisture range

    NASA Astrophysics Data System (ADS)

    Wang, Yunquan; Ma, Jinzhu; Guan, Huade; Zhu, Gaofeng

    2017-06-01

    Difficulty in measuring hydraulic conductivity, particularly under dry conditions, calls for methods of predicting the conductivity from easily obtained soil properties. As a complement to the recently published EMFX model, a method based on two specific suction conditions is proposed to estimate saturated film conductivity from the soil water retention curve. This method reduces one fitting parameter in the previous EMFX model, making it possible to predict the hydraulic conductivity from the soil water retention curve over the complete moisture range. Model performance is evaluated with published data of soils in a broad texture range from sand to clay. The testing results indicate that 1) the modified EMFX model (namely the EMFX-K model), incorporating both capillary and adsorption forces, provides good agreement with the conductivity data over the entire moisture range; 2) a value of 0.5 for the tortuosity factor in the EMFX-K model as that in the Mualem's model gives comparable estimation of the relative conductivity associated with the capillary force; and 3) a value of -1.0 × 10-20 J for the Hamaker constant, rather than the commonly used value of -6.0 × 10-20 J, appears to be more appropriate to represent solely the effect of the van der Waals forces and to predict the film conductivity. In comparison with the commonly used van Genuchten-Mualem model, the EMFX-K model significantly improves the prediction of hydraulic conductivity under dry conditions. The sensitivity analysis result suggests that the uncertainty in the film thickness estimation is important in explaining the model underestimation of hydraulic conductivity for the soils with fine texture, in addition to the uncertainties from the measurements and the model structure. High quality data that cover the complete moisture range for a variety of soil textures are required to further test the method.

  20. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  1. Experimental shock metamorphism of terrestrial basalts: Agglutinate-like particle formation, petrology, and magnetism

    NASA Astrophysics Data System (ADS)

    Badyukov, Dmitrii D.; Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Feinberg, Joshua M.; Kars, Myriam; Egli, Ramon; Raitala, Jouko; Kuzina, Dilyara M.

    2018-01-01

    Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with 6 km s-1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.

  2. Thermal effects on domain orientation of tetragonal piezoelectrics

    NASA Astrophysics Data System (ADS)

    Chang, Wonyoung

    Thermal effects on electrical poling or mechanical grinding induced texture in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated using ex situ and in situ X-ray diffraction (XRD) with an area detector. According to previous results using ex situ XRD, domain configurations of poled samples after heat-treatment at or higher than the Curie temperature (TC) are similar to that of unpoled samples showing random domain distributions. The texture parameter called multiples of a random distribution (MRD) gradually decreases with increasing depoling temperature. On the other hand, using in situ XRD measurements, it was found that the MRD maximum for soft PZT initially increases with temperature up to approximately 100°C and then falls to unity at temperatures approaching the TC, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. Mechanical strain energy has an apparent effect on domain wall mobility. In contrast with previous results on electrical poling, mechanically-ground PT and soft PZT materials retained strong ferroelastic textures during thermal cycling, even after excursions to temperatures slightly above the TC . For the ground PT, it was found that repeated cycling above T C results in changes in both peak intensity and peak position, whereas the ground soft PZT undergoes the decrease in intensity of the (002) reflection after the first cycle of heating. Residual stresses in the surface region from grinding resulted in domain wall motion and the retention of textures in annealed samples. The research in this thesis demonstrates that the magnitude of loading applied to the sample surface, the speed used for grinding, or the grit size, can greatly affect the grinding induced damage zone and the depoling behavior of piezoelectric ceramics. Among the possible effects of grinding conditions on surface textures, one of particular interest is the effect of mechanical stresses produced during grinding on the texture intensity in the ground surface region. Inhibited depoling of ground PT materials under different loading conditions investigated by in situ texture measurements between room temperature and approximately 100°C above the Curie temperature demonstrates the effects of residual stresses. For all the ground PT and soft PZT samples, there was little or no evidence of time dependence for domain reorientation at the whole annealing temperature range. In addition, both ground PT and soft PZT materials under lower loading conditions showed a gradual depoling behavior with increasing heat treatment temperature, whereas ground materials under higher loading conditions retained relatively strong ferroelastic texture up to temperatures around their respective TC, and then underwent a drastic change in MRD at temperatures above TC. Compared to the ground soft PZT materials, all the ground PT samples still maintained high MRD values after heat treatment above TC.

  3. Effects of application of mill-generated primary sludge and boiler ash on loblolly pine survival and growth

    Treesearch

    Emily J. Goodwin; Andrew M. Burrow

    2006-01-01

    Use of Kraft primary sludge and boiler ash in forest production systems holds promise as a cost-effective alternative to landfilling. From a soil quality perspective, particularly in coarse-textured sandy soils, increases in organic matter content from inputs of sludge/ash may improve soil chemical, biological, and physical properties. The objective of this study was...

  4. Changes in soil fertility following prescribed burning on Coastal Plain pine sites

    Treesearch

    William H. McKee

    1982-01-01

    Soil and forest floor samples were collected from four prescribed burning studies in the Atlantic and Gulf Coastal Plains. The surface textures of soils ranged from sands to silt loams and the drainage classes from well to poorly drained. Burning treatments had been in force from 8 to 65 years. Reduction of the forest floor and its chemical constituents was related to...

  5. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems

    Treesearch

    F. B. Pierson; P. R. Robichaud; C. A. Moffet; K. E. Spaeth; C. J. Williams; S. P. Hardegree; P. E. Clark

    2008-01-01

    Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate that severe wildfires can cause significant increases in soil water repellency resulting in increased runoff and erosion. Few data are available to...

  6. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  7. A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong

    2018-06-01

    The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.

  8. Low temperature texture development in Nd2Fe14B/α-Fe nanocomposite magnets via equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Garitaonandia, J. S.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2018-05-01

    While suitable texture has been developed in Nd2Fe14B/α-Fe nanocomposites via thermomechanical processing methods such as die upsetting by incorporating low melting point eutectic Nd-Cu additives, significant grain coarsening occurs during this process due to the high temperature and long timescales involved, resulting in a loss of exchange coupling. Equal channel angular pressing (ECAP) is a severe plastic deformation technique which has been successfully used to produce a suitable texture in single-phase Nd2Fe14B at temperatures on the order of 500°C while preserving grain sizes on the order of 20-30nm. We investigate the development of texture in a commercial Nd2Fe14B/α-Fe nanocomposite alloy with added Nd90Cu10 produced via ECAP and then characterise it using texture x-ray diffraction and magnetic measurements. It is found that initial texture can be developed in this nanocomposite system at T = 520°C via ECAP. The average grain size of Nd2Fe14B as measured via X-ray diffraction after ECAP remains below 50nm with a developed texture. The effect of varying the amount of Nd90Cu10 additive is also investigated. It is found that with decreasing Nd90Cu10, the degree of texture is reduced while the volume fraction of α-Fe increases. This work demonstrates the development of texture in nanocomposite Nd2Fe14B/α-Fe with Nd-Cu additives whilst maintaining a grain size of approximately 50nm.

  9. Origin of texture development in orthorhombic uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  10. Origin of texture development in orthorhombic uranium

    DOE PAGES

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...

    2016-04-09

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  11. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity

    USDA-ARS?s Scientific Manuscript database

    Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...

  12. Ammonia Volatilization Loss from Surface Applied Livestock Manure

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3 emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and...

  13. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  14. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  15. Improving fruit quality and phytochemical content through better nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  16. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    USDA-ARS?s Scientific Manuscript database

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  17. Fabrication and electrical properties of textured strontium(0.53)barium(0.47)niobium(2)oxygen(6) ceramics prepared by templated grain growth

    NASA Astrophysics Data System (ADS)

    Duran, Cihangir

    Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241 +/- 17 kJ/mol for the samples with 15.4 wt% seeds. The dielectric and piezoelectric properties were enhanced in samples with better orientation (i.e., high texture fraction (f) and narrow degree of orientation parameter (r) in the texture direction). The presence of nonferroelectric phases (V2O5 or Nb2O5-based) at the grain boundaries suppressed the observed dielectric properties, especially at the transition temperature. (Abstract shortened by UMI.)

  18. Super-formable pure magnesium at room temperature.

    PubMed

    Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick

    2017-10-17

    Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.

  19. Analysis of formability of Ca-added magnesium alloy sheets at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Lee, Young-Seon; Kim, Daeyong, E-mail: daeyong@kims.re.kr

    The formability of sheets of the Ca-added magnesium alloy AZX311 was analyzed. The parameters affecting the sheet formability, such as the strain-hardening rate and the strain-rate sensitivity, did not seem to be higher in the alloy AZX311 at temperatures of room temperature (RT) and 200 °C. In addition, the critical stress for fracture at RT was lower in AZX311 than in AZ31. However, AZX311 exhibited higher stretchability and formability at low temperatures than AZ31. Electron back-scattered diffraction microscopy revealed that AZX311 had a weaker basal texture as well as broadened basal poles along the transverse direction. Polycrystal plasticity simulations confirmedmore » that this weaker basal texture increases the activity of basal slip over thickness strain, resulting in the higher formability of AZX311. - Highlights: • A weak basal texture with broadening basal poles along the TD in AZX311 • Lower critical stress for fracture at RT in AZX311 than in AZ31 • Lower strain-hardening rates at low temperatures in the AZX311 than in the AZ31 • Higher formability at low temperatures in AZX311 because of the weak basal texture.« less

  20. Electron microscopic observations of hydrogen implantation in ilmenites

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.

    1983-01-01

    Hydrogen ion beams were found to form submicrometer, bumpy textures on the surface of ilmenite grains. From this effect, it is believed that similar bumpy textures seen on lunar ilmenite, pyroxene, and olivine grains are likely to be caused by solar wind irradiation. As a consequence, the concentration of bumpy textured grains may be a useful index of surface maturity for lunar soils. An attempt was made to search for grains with these bumpy textures in interplanetary dust and lunar and meteoritic regolith breccias in order to obtain information about the duration of their exposure to the solar wind. Solar wind irradiation was simulated on natural, terrestrial ilmenite. Hydrogen ion beams were directed at small grains and polished sections which were then examined by electron microscopy.

Top