Sample records for temperature solution growth

  1. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    NASA Astrophysics Data System (ADS)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  2. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  3. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  4. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops of growth striations, and from dislocations that preferentially formed in growth sector boundaries.

  5. Temperature lowering program for homogeneous doping in flux growth

    NASA Astrophysics Data System (ADS)

    Qiwei, Wang; Shouquan, Jia

    1989-10-01

    Based on the mass conservation law and the Burton-Prim-Slichter equation, the temperature program for homogeneous doping in flux growth by slow cooling was derived. The effect of various factors, such as initial supersaturation, solution volume, growth kinetic coefficient and degree of mixing in the solution on growth rate, crystal size and temperature program is discussed in detail. Theoretical analysis shows that there is a critical crystal size above which homogeneous doping is impossible.

  6. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  7. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  8. Plant growth in controlled environments in response to characteristics of nutrient solutions

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.

    1982-01-01

    Plant growth in controlled environments in response to characteristics of nutrient solutions is discussed. Descriptions of experimental results concerning root acclimation to temperature, root and shoot acclimation to nitrogen stress, and growth response to NH4(+) and NO3(-) nutrition are included. A preliminary model validation to changing temperatures is presented.

  9. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  10. Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate

    PubMed Central

    Williams, Rebecca M.; Farnum, Cornelia E.

    2010-01-01

    Ambient temperature and physical activity modulate bone elongation in mammals, but mechanisms underlying this plasticity are a century-old enigma. Longitudinal bone growth occurs in cartilaginous plates, which receive nutritional support via delivery of solutes from the vasculature. We tested the hypothesis that chronic exercise and warm temperature promote bone lengthening by increasing solute delivery to the growth plate, measured in real time using in vivo multiphoton microscopy. We housed 68 weanling female mice at cold (16°C) or warm (25°C) temperatures and allowed some groups voluntary access to a running wheel. We show that exercise mitigates the stunting effect of cold temperature on limb elongation after 11 days of wheel running. All runners had significantly lengthened limbs, regardless of temperature, while nonrunning mice had shorter limbs that correlated with housing temperature. Tail length was impacted only by temperature, indicating that the exercise effect was localized to limb bones and was not a systemic endocrine reaction. In vivo multiphoton imaging of fluoresceinated tracers revealed enhanced solute delivery to tibial growth plates in wheel-running mice, measured under anesthesia at rest. There was a minimal effect of rearing temperature on solute delivery when measured at an intermediate room temperature (20°C), suggesting that a lasting increase in solute delivery is an important factor in exercise-mediated limb lengthening but may not play a role in temperature-mediated limb lengthening. These results are relevant to the study of skeletal evolution in mammals from varying environments and have the potential to fundamentally advance our understanding of bone elongation processes. PMID:20930127

  11. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  12. Research study on materials processing in space, experiment M512

    NASA Technical Reports Server (NTRS)

    Rubenstein, M.; Hopkins, R. H.; Kim, H. B.

    1973-01-01

    Gallium arsenide, a commercially valuable semiconductor, has been prepared from the melt (M.P. 1237C), by vapor growth, and by growth from metallic solutions. It has been established that growth from metallic solution can produce material with high, and perhaps with the highest possible, chemical homogeneity and crystalline perfection. Growth of GaAs from metallic solution can be performed at relatively low temperatures (about 600C) and is relatively insensitive to temperature fluctuations. However, this type of crystal growth is subject to the decided disadvantage that density induced convection currents may produce variations in rates of growth at a growing surface. This problem would be minimized under reduced gravity conditions.

  13. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    NASA Astrophysics Data System (ADS)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  14. DKDP crystal growth controlled by cooling rate

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  15. A low temperature furnace for solution crystal growth on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baç, Nurcan; Harpster, Joseph; Maston, Robert A.; Sacco, Albert

    2000-01-01

    The Zeolite Crystal Growth Furnace Unit (ZCG-FU) is the first module in an integrated payload designed for low temperature crystal growth in solutions on the International Space Station (ISS). This payload is scheduled to fly on the ISS flight 7A.1 in an EXPRESS rack. Its name originated from early shuttle flight experiments limited to the growth of zeolite crystals but has since grown to include other materials of significant commercial interest using the solution method of crystal growth. Zeolites, ferroelectrics, piezeoelectrics and silver halides are some of the materials considered. The ZCG-FU experiment consists of a furnace unit and its electronic control system, and mechanically complex, crystal growth autoclaves suitable for use with a particular furnace and solution. The ZCG facility is being designed to grow into four independent furnaces controlled by IZECS (Improved Zeolite Electronic Control System). IZECS provides monitoring of critical parameters, data logging, safety monitoring, air-to-ground control and operator interfacing. It is suitable for controlling the four furnaces either individually or all at one time. It also contains the power management solid-state drivers and switches for the ZCG-FU furnace. The furnace contains 19 tubes operating at three different temperature zones. .

  16. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating.

    PubMed

    Nishi, Naoto; Miyamoto, Takuya; Waku, Tomonori; Tanaka, Naoki; Hagiwara, Yoshimichi

    2016-01-01

    The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1-5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure.

  17. Colloidal nanocrystals and method of making

    DOEpatents

    Kahen, Keith

    2015-10-06

    A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.

  18. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    DOE PAGES

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; ...

    2016-01-05

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the cleanmore » separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this article, we provide examples of the growth of isotopically substituted TbCd 6 and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related Bi 2Rh 3S 2 and Bi 2Rh 3.5S 2 phases and (ii) and PrZn 11 and PrZn 17.« less

  19. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum)

    NASA Astrophysics Data System (ADS)

    Yildiz, Mustafa; Er, Celâl

    2002-04-01

    The aim of this study was to determine the effect of concentration (40, 60, and 80%) and temperature (0, 10, 20, and 30°C) of sodium hypochlorite (NaOCl) solutions on seed germination, in vitro viability and growth of flax seedlings and regeneration capacity of hypocotyl explants. Results showed that seed germination, seedling growth and shoot regeneration were negatively affected by increasing concentration and temperature of disinfectant. The best results in seedling growth and shoot regeneration were obtained when 40% disinfectant concentration at 10°C was used.

  20. Corrosion Fatigue Characteristics of 12Cr Alloy Steel in Na2SO4 Solution

    NASA Astrophysics Data System (ADS)

    Bae, D. H.; Cho, S. Y.

    In order to estimate reliability of 12Cr alloy steel using as the turbine blade material of the steam power plant, its corrosion fatigue characteristics in Na2SO4 solution considering its percentage and temperature that were determined from the polarization test results were investigated, and compared with the results in air. The corrosion characteristic of 12Cr alloy steel was remarkably susceptible in 12.7wt.% (IM) Na2SO4 solution, and its susceptibility increased with the solution temperature increase. The corrosion fatigue characteristics in 12.7wt.% Na2SO4 solution were similar to that of in air at 25°C. The crack growth rate was however increased with the temperature of solution increase. The reasons showing such results are due to the difference of the crack growth mechanism according to the electro-chemical activity of the corrosion factors.

  1. Effects of short-time preheating on ice growth in antifreeze polypeptides solutions in a narrow space

    NASA Astrophysics Data System (ADS)

    Miyamoto, T.; Nishi, N.; Waku, T.; Tanaka, N.; Hagiwara, Y.

    2018-03-01

    We conducted experiments on the unidirectional freezing of solutions of winter flounder antifreeze protein or of a polypeptide which was based on twelve amino-acid residues of this protein. The temperature in the solutions and ice was measured with a small thermocouple. The interface temperature was defined as the temperature at the tip of the serrated or pectinate interface. The interface temperature of these solutions was lower than that of pure water. To vary this supercooling activity of these solutes, we preheated the solutions and cooled them before conducting identical experiments. It was found that short-time preheating caused further decreases in the interface temperature and interface velocities. Furthermore, the inclined interfaces and the narrow liquid regions inside the ice area became wider. To investigate the reasons for these changes, we measured aggregates of the solutes in the solutions. These aggregates were found to become larger as a result of preheating. Thus, it can be concluded that these large aggregates attenuated the ice growth by their interaction with ice. Finally, we carried out similar measurements by using pH-adjusted solutions of the protein to produce aggregates without preheating, and obtained similar supercooling enhancement by the aggregates. Thus, the effects of thermal denaturation on the supercooling were not significant in the preheating.

  2. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  3. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  4. Thermal analysis of a growing crystal in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya

    1980-10-01

    The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.

  5. High Temperature Fatigue Crack Growth Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.

  6. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  7. Low temperature growth of Ga 1- xIn xP bulk crystals from InSb-rich melt

    NASA Astrophysics Data System (ADS)

    Gennett, A.; Lewis, D.; Dutta, P. S.

    2010-04-01

    Bulk growth of phosphorus and arsenic based ternary III-V semiconductor crystals using pseudo-binary melts such as GaP-InP, GaP-GaAs, AlAs-GaAs, etc. is significantly challenging due to the high vapor pressures of group V species in conjunction with slow growth rates and the need for melt replenishment and mixing during growth. Lowering the growth temperature is desirable such that the vapor pressures of P and As can be easily handled. Low growth temperatures could be achieved by using Ga or In rich solutions. However, this approach is less attractive for growing bulk crystals due to several experimental difficulties including sticking of the growth solution to the crucible wall and to the grown crystal, making it challenging for crystal extraction. Growth of ternary crystals from low temperature quaternary melts has been found to be attractive. In this paper, we will present a new method for the growth of Ga 1- xIn xP from InSb rich Ga 1- xIn xP ySb 1- y melts at low growth temperatures in the range of 800-1050 °C. Thermodynamic phase diagrams calculated at various temperatures using a Gibbs free energy minimization software and materials databases commercially available from Thermo-Calc software will be presented along with experimental validation for Ga 1- xIn xP crystals grown at 1000 °C.

  8. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  9. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  10. Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution

    NASA Astrophysics Data System (ADS)

    Zhang, Haimin; Quan, Xie; Chen, Shuo; Zhao, Huimin

    2007-11-01

    Uniform, large-scale, and well-aligned needle-like ZnO nanorods with good photoluminescence and photocatalysis properties on Zn substrates, have been successfully fabricated using a simple low-temperature seed-layer growth approach in solution (50 °C). The formation of ZnO seed-layer by the anodic oxidation technique (AOT) plays an important role in the subsequent growth of highly oriented ZnO nanorods arrays. Temperature also proved to be a significant factor in the growth of ZnO nanorods and had a great effect on their optical properties. X-ray diffraction (XRD) analysis, selected-area electron diffraction (SAED) pattern and high-resolution TEM (HRTEM) indicated that the needle-like ZnO nanorods were single crystal in nature and that they had grown up preferentially along the [0001] direction. The well-aligned ZnO nanorods arrays on Zn substrates exhibited strong UV emission at around 380 nm at room temperature. To investigate their potential as photocatalysts, degradation of pentachlorophenol (PCP) in aqueous solution was carried out using photocatalytic processes, with comparison to direct photolysis. After 1 h, the degradation efficiencies of PCP by direct photolysis and photocatalytic processes achieved 57% and 76% under given experimental conditions, respectively. This improved degradation efficiency of PCP illustrates that ZnO nanorods arrays on Zn substrates have good photocatalytic activity. This simple low-temperature seed-layer growth approach in solution resulted in the development of an effective and low-cost fabrication process for high-quality ZnO nanorods arrays with good optical and photocatalytic properties that can be applicable in many fields such as photocatalysis, photovoltaic cells, luminescent sensors, and photoconductive sensors.

  11. Bulk Group-III Nitride Crystal Growth in Supercritical Ammonia-Sodium Solutions

    NASA Astrophysics Data System (ADS)

    Griffiths, Steven Herbert

    Gallium nitride (GaN) and its alloys with indium nitride (InGaN) and aluminum nitride (AlGaN), collectively referred to as Group-III Nitride semiconductors, have enabled white solid-state lighting (SSL) sources and power electronic devices. While these technologies have already made a lasting, positive impact on society, improvements in design and efficiency are anticipated by shifting from heteroepitaxial growth on foreign substrates (such as sapphire, Si, SiC, etc.) to homoepitaxial growth on native, bulk GaN substrates. Bulk GaN has not supplanted foreign substrate materials due to the extreme conditions required to achieve a stoichiometric GaN melt (temperatures and pressures in excess of 2200°C and 6 GPa, respectively). The only method used to produce bulk GaN on an industrial scale is hydride vapor phase epitaxy (HVPE), but the high cost of gaseous precursors and relatively poor crystal quality have limited the adoption of this technology. A solution growth technique known as the ammonothermal method has attracted interest from academia and industry alike for its ability to produce bulk GaN boules of exceedingly high crystal quality. The ammonothermal method employs supercritical ammonia (NH3) solutions to dissolve, transport, and crystallize GaN. However, ammonothermal growth pressures are still relatively high (˜200 MPa), which has thus far prevented the acquisition of fundamental crystal growth knowledge needed to efficiently (i.e. through data-driven approaches) advance the field. This dissertation focused on addressing the gaps in the literature through two studies employing in situ fluid temperature analysis. The first study focused on identifying the solubility of GaN in supercritical NH3-Na solutions. The design and utilization of in situ and ex situ monitoring equipment enabled the first reports of the two-phase nature of supercritical NH3-Na solutions, and of Ga-alloying of Ni-containing autoclave components. The effects of these error sources on the gravimetric determination of GaN solubility were explored in detail. The second study was aimed at correlating autoclave dissolution and growth zone fluid temperatures with bulk GaN crystal growth kinetics, crystal quality, and impurity incorporation. The insights resulting from this analysis include the identification of the barrier between mass transport and surface integration-limited GaN growth regimes, GaN crystal shape evolution with fluid temperature, the sensitivity of (0001)-orientation crystal quality with fluid temperature, and impurity-specific incorporation activated from the dissolution and growth zones of the autoclave. The results of the aforementioned studies motivated a paradigm-shift in ammonothermal growth. To address this need, a fundamentally different crystal growth approach involving isothermal solutions and tailor-made Group-III alloy source materials was developed/demonstrated. This growth method enabled impurity incorporation reduction compared to traditional ammonothermal GaN growth, and the realization of bulk, ternary Group-III Nitride crystals.

  12. Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

    NASA Astrophysics Data System (ADS)

    Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.

    2016-09-01

    The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).

  13. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  14. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  15. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy

    PubMed Central

    2016-01-01

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems. PMID:27917410

  16. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    PubMed

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  17. Development of viable solutions for the synthesis of sulfur bearing single crystals

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Bud'ko, Sergey L.; Canfield, Paul C.

    2012-07-01

    The discovery of high temperature superconductivity in FeAs and FeSe based compounds has once again focused the condensed matter community on the need to systematically explore compounds containing chalcogens and pnictogens. Whereas some solution growth techniques have been developed to handle P and As, and Sb and Bi are versatile solvents in their own right, S has remained a problematic element to incorporate into conventional solution growth. To a large extent its low boiling point, combined with its polymeric nature in a molten state have made S an uninviting solvent. In this paper we present our development of a range of binary sulfur bearing solutions (some even sulfur rich) and demonstrate how we have been able to use these as useful starting points for the growth of a wide range of transition metal-sulfur-X ternary compounds. We present growth details and basic characterization data for Ni3Bi2S2, Co3Sn2S2, Fe2GeS4, CoSSb, and CePd3S4. In addition we present a remarkably simple method for the growth of single crystalline Co with crystallization taking place below the Curie temperature.

  18. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  19. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  20. Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    2011-01-01

    The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.

  1. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO 3

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Tiller, William A.

    1992-06-01

    The effective solute partitioning of chromium was investigated on single crystals of LiNbO 3 grown by the laser-heated pedestal growth (LHPG) technique. Electric field effects at the interface influence this solute partitioning, leading to an electric field-dependent effective solute distribution coefficient, kE. The LHPG technique made it possible to explore these field effects by controllably changing the growth velocity ( V) and the temperature gradient ( GS, GL) near the interface over a wide range. The electric field generated via the temperature gradient is associated with the thermoelectric power while an additional electric field is growth rate associated via a charge separation effect. By applying the Burton-Prim-Slichter (BPS) theory to our experimental data, we found the phase diagram solute partition coefficient to be k0 ≈ 3.65, while the field-influenced solute partition coefficient ( V = 0) was k' EO ≈ 8.17 at GL ≈ 11500°C/cm. It is theoretically shown that the same considerations can be applied to all ionic partitioning at a solid-liquid interface.

  2. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  3. Simulation of radial solute segregation in vertical Bridgman growth of pyridine-doped benzene, a surrogate for binary organic nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    2000-09-01

    We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.

  4. Culturing Protozoa.

    ERIC Educational Resources Information Center

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  5. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  6. Hygroscopic salts and the potential for life on Mars.

    PubMed

    Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek

    2010-01-01

    Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.

  7. Weibel instability for a streaming electron, counterstreaming e-e, and e-p plasmas with intrinsic temperature anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.

    2014-05-15

    The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less

  8. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1992-01-01

    The development is examined of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). The tasks include development of a spectral code for moving boundary problems, kinematic viscosity measurements on liquid MCT at temperatures close to the melting point, and diffusivity measurements on concentrated and supersaturated TGS solutions. A detailed description is given of the work performed for these tasks, together with a summary of the resulting publications and presentations.

  9. High-temperature solution growth and characterization of (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 piezo-/ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2018-03-01

    Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.

  10. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  11. Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles.

    PubMed

    Lamosa, Pedro; Gonçalves, Luís G; Rodrigues, Marta V; Martins, Lígia O; Raven, Neil D H; Santos, Helena

    2006-09-01

    The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of alpha- and beta-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while alpha- and beta-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.

  12. Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yang; Fang, Te-Hua; Tsai, Ju-Hsuan

    2015-02-01

    A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 A, 1.35 mV, and 1.026 nW/mm, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

  13. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  14. Transient Effects in Planar Solidification of Dilute Binary Alloys

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2008-01-01

    The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.

  15. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  16. Growth, gas exchange, and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese

    2007-01-01

    Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...

  17. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  18. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  19. Single crystals of metal solid solutions: A study

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Gelles, S. H.

    1975-01-01

    Report describes growth of silver-alloy crystals under widely varying conditions of growth rate, temperature gradient, and magnetic field. Role of gravitation and convection on crystal substructure is analyzed, as well as influence of magnetic fields applied during crystallization.

  20. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.

    PubMed

    Lv, Fukou; Liu, Baolin; Li, Weijie; Jaganathan, Ganesh K

    2014-02-01

    Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60%w/w) and PEG-600 (50%w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5%(w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Oscillating-Crucible Technique for Silicon Growth

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.

    1984-01-01

    Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.

  2. The influence of growth environment on the crystallization of nortriptyline hydrochloride, a tricyclic antidepressant

    NASA Astrophysics Data System (ADS)

    MacCalman, M. L.; Roberts, K. J.; Hendriksen, B. A.

    1993-03-01

    The preparation of the nortriptyline hydrochloride, an important pharmaceutical product, by crystallization from both alcohol and aqueous solutions is presented. At low temperatures this material shows a higher solubility in absolute alcohol compared to aqueous solutions in a trend which reverses at higher temperatures. Examination of crystals prepared from alcohol solutions reveal essentially a needle-like crystal habit which is in excellent agreement with morphological predictions based on the bulk crystallographic structure. In contrast crystals prepared from aqueous solution at high temperatures reveal a particulate structure dominated by heavily agglomerated crystallites with plate-like morphology. When this material is crystallized at the lower temperatures, where the solubility curve is steep, X-ray and thermal analysis appear to show that crystallization results in a new polymorphic structure associated with a less agglomerated product.

  3. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon

    NASA Astrophysics Data System (ADS)

    Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J. R.

    2003-01-01

    Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH 3COO) 2 2H 2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min -1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.

  4. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  5. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    NASA Astrophysics Data System (ADS)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  6. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes . I. Solvent effects and growth morphology

    NASA Astrophysics Data System (ADS)

    Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1999-03-01

    Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.

  7. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  8. Fluorapatite crystal growth from modified seawater solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cappellen, P.; Berner, R.A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite (FAP) in carbonate-free NaCl-CaCl{sub 2}-NaF-Na{sub 2}HPO{sub 4} solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/M{sup 2}. The Arrhenius activation energy of the growth reaction in themore » temperature range 12 to 35C is 47 kJ/mol. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to (a{sub H{sup +}}){sup m} where m, the rate order with respect to H{sup +}, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg{sup 2+}, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10{mu}m. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.« less

  9. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  10. Numerical simulation and growth of Li2Zn2(MoO4)3 single crystals by the top seeded solution growth technique

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Sukhanova, E.; Mozhevitina, E.; Sadovsky, A.; Avetissov, I.

    2017-06-01

    Li2O - ZnO - MoO3 pseudo ternary system was used for the growth of Li2Zn2(MoO4)3 crystals by the top seeded solution growth technique in which MoO3 was used as a solvent. Properties of the melts (density, viscosity) have been experimentally measured at different temperatures and compositions of Li2O - ZnO - MoO3 pseudo ternary system. Heat mass transfer in the crystal growth setup was numerically simulated. Using the simulation results a real growth setup was made, Li2Zn2(MoO4)3 crystals were grown and their properties were studied.

  11. Estimation of the growth kinetics for the cooling crystallisation of paracetamol and ethanol solutions

    NASA Astrophysics Data System (ADS)

    Mitchell, Niall A.; Ó'Ciardhá, Clifford T.; Frawley, Patrick J.

    2011-08-01

    This work details the estimation of the growth kinetics of paracetamol in ethanol solutions for cooling crystallisation processes, by means of isothermal seeded batch experiments. The growth kinetics of paracetamol crystals were evaluated in isolation, with the growth rate assumed to be size independent. Prior knowledge of the Metastable Zone Width (MSZW) was required, so that supersaturation ratios of 1.7-1.1 could be induced in solution without the occurrence of nucleation. The technique involved the utilisation of two in-situ Process Analytical Techniques (PATs), with a Focused Beam Reflectance Measurement (FBRM ®) utilised to ensure that negligible nucleation occurred and an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) probe employed for online monitoring of solute concentration. Initial Particle Size Distributions (PSDs) were used in conjunction with desupersaturation profiles to determine the growth rate as a function of temperature and supersaturation. Furthermore, the effects of seed loading and size on the crystal growth rate were investigated. A numerical model, incorporating the population balance equation and the method of moments, was utilised to describe the crystal growth process. Experimental parameters were compared to the model simulation, with the accuracy of the model validated by means of the final product PSDs and solute concentration.

  12. Growth of tungsten oxide nanostructures by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.

    2018-05-01

    Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.

  13. Effect of Temperature, Light and Salinity on Seed Germination and Radicle Growth of the Geographically Widespread Halophyte Shrub Halocnemum strobilaceum

    PubMed Central

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.

    2008-01-01

    Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834

  14. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum.

    PubMed

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C

    2008-01-01

    The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions < 3.0 M resumed after seedlings were transferred to deionized water. The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean 'salt steppe' of Spain and the inland cold salt desert of north-west China.

  15. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals.

    PubMed

    Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei

    2018-05-09

    Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

  16. Melt Convection Effects in the Bridgman Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    1998-01-01

    The solidification of a dilute bismuth-tin alloy under Bridgman crystal growth conditions is investigated in support of NASA's MEPHISTO space shuttle flight experiment. Computations are performed in two-dimensions with a uniform grid. The simulation includes the species-concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed; no simplifying steady state approximations are used. Results are obtained under microgravity conditions for pure bismuth, and Bismuth-0.1 at.% Sn and Bi-1.0 at.% Sn alloys. The concentration dependence of the melting temperature is neglected; the solid/liquid interface temperature is assumed to be the melting temperature of pure bismuth for all cases studied. For the Bi-1.0 at.% Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time; this causes increasing solute segregation at the liquid/solid interface.

  17. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  18. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  19. Top-seeded solution growth of SrTiO3 single crystals virtually free of mosaicity

    NASA Astrophysics Data System (ADS)

    Guguschev, Christo; Kok, Dirk J.; Juda, Uta; Uecker, Reinhard; Sintonen, Sakari; Galazka, Zbigniew; Bickermann, Matthias

    2017-06-01

    Strontium titanate (SrTiO3), a well-established traditional perovskite substrate as well as a promising substrate crystal for the epitaxy of new advanced perovskite-type thin films, suffers from the unavailability in adequate quality for the latter. To improve the situation attempts have been made to grow SrTiO3 at moderate temperatures (<1535 °C) well below the melting temperature and under low temperature gradients by the top-seeded solution growth method. Based on very special modifications of the growth conditions, virtually mosaicity-free SrTiO3 single crystals in the 1-2 cm range were obtained. High crystalline quality was verified by defect selective etching, rocking curve measurements, energy dispersive Laue mappings and by synchrotron X-Ray diffraction topography. The production of virtually subgrain- and dislocation free substrate crystals is essential to considerably improve characteristics of SrTiO3 based SQUIDs, transistors or memory devices and to allow an in-depth analysis of intrinsic and extrinsic factors influencing the properties of epitaxially grown oxide heterostructures.

  20. Reprint of: Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-07-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  1. Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-02-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  2. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otero, T.F.; Achucarro, C.

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  3. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  4. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  5. Control of interface shape during high melting sesquioxide crystal growth by HEM technique

    NASA Astrophysics Data System (ADS)

    Hu, Kaiwei; Zheng, Lili; Zhang, Hui

    2018-02-01

    During crystal growth in heat exchanger method (HEM) system, the shape of the growth interface changes with the proceeding of the growth process, which limits the crystal size and reduces the quality of the crystal. In this paper, a modified HEM system is proposed to control the interface shape for growth of sesquioxide crystals. Numerical simulation is performed to predict heat transfer, melt flow and interface shape during growth of high melting sesquioxide crystals by the heat exchanger method. The results show that a flat or slightly convex interface shape is beneficial to reduce the solute pileup in front of the melt/crystal interface and decrease the radial temperature gradient inside the crystal during growth of sesquioxide crystals. The interface shape can be controlled by adjusting the gap size d and lower resistance heater power during growth. The growth rate and the melt/crystal interface position can be obtained by two measured temperatures.

  6. Experimental determination of growth rate effect on U 6+ and Mg 2+ partitioning between aragonite and fluid at elevated U 6+ concentration

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Gaetani, G. A.; Watson, E. B.; Cohen, A. L.; Ehrlich, H. L.

    2008-08-01

    Results are reported from an experimental study in which the partitioning of U and Mg between aragonite and an aqueous solution were determined as a function of crystal growth rate. Crystals, identified as aragonite by X-ray diffractometry and micro-Raman spectroscopy, were grown by diffusion of CO 2 from an ammonium carbonate source into a calcium-bearing solution at temperatures of 22 and 53 °C. Hemispherical bundles (spherulites) of aragonite crystals were produced, the growth rates of which decreased monotonically from the spherulite interiors to the edges and thus provide the opportunity to examine the influence of growth rate on crystal composition. Element concentration ratios were measured using electron microprobe (EMP) and fluid composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption (AA). Growth rates were determined directly by addition of a Dy spike to the fluid during the experiment that was subsequently located in an experimentally precipitated spherulite using secondary ion mass spectrometry (SIMS). At 22 °C both U/Ca and Mg/Ca partition coefficients exhibited a strong growth rate dependence when crystal growth rates were low, and became independent of growth rate when crystal growth rates were high. The U/Ca ratios in aragonite increase between 22 and 53 °C; in contrast Mg/Ca ratios show inverse dependence on temperature.

  7. Trehalose, a temperature- and salt-induced solute with implications in pathobiology of Acinetobacter baumannii.

    PubMed

    Zeidler, Sabine; Hubloher, Josephine; Schabacker, Kim; Lamosa, Pedro; Santos, Helena; Müller, Volker

    2017-12-01

    Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. A major factor contributing to success of this bacterium is its outstanding ability to survive on dry surfaces. The molecular basis for desiccation resistance is not completely understood. This study focused on growth under osmotic stress and aimed to identify the pool of compatible solutes synthesized in response to these low water activity conditions. A. baumannii produced mannitol as compatible solute, but in contrast to Acinetobacter baylyi, also trehalose was accumulated in response to increasing NaCl concentrations. The genome of A. baumannii encodes a trehalose-6-phosphate phosphatase (OtsB) and a trehalose-6-phosphate synthase (OtsA). Deletion of otsB abolished trehalose formation, demonstrating that otsB is essential for trehalose biosynthesis. Growth of the mutant was neither impaired at low salt nor at 500 mM NaCl, but it did not grow at high temperatures, indicating a dual function of trehalose in osmo- and thermoprotection. This led us to analyse temperature dependence of trehalose formation. Indeed, expression of otsB was not only induced by high osmolarity but also by high temperature. Concurrently, trehalose was accumulated in cells grown at high temperature. Taken together, these data point to an important role of trehalose in A. baumannii beyond osmoprotection. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  9. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  10. The effect of temperature and chitosan concentration during storage on the growth of chitosan nanoparticle produced by ionic gelation method

    NASA Astrophysics Data System (ADS)

    Handani, Wenny Rinda; Sediawan, Wahyudi Budi; Tawfiequrrahman, Ahmad; Wiratni, Kusumastuti, Yuni

    2017-05-01

    The objective of this research was to get the mechanism of nano size chitosan particle growth during storage by observing the effect of temperature and initial concentration of chitosan. The products were analyzed using PSA to have the average of particle radius. Nanochitosan solution was prepared by ionic gelation method. This method is described as an electrostatic interaction between positively charged amine with negatively charged polyanion, such as tripolyphosphate (TPP). Chitosan was dissolved in 1% acetic acid and was stirred for 30 minutes. Tween 80 was added to avoid agglomeration. TPP was prepared by dissolving 0.336 g into distilled water. The nano size chitosan was obtained by mixing TPP and chitosan solution dropwise while stirring for 30 minutes. This step was done at 15°C and ambient temperature (about 30°C) and chitosan concentration 0.2%, 0.4% and 0.6%. The results show that temperature during ionic gelation process (15°C and 30°C) does not affect the initial size of the nanoparticles produced as well as the growth of the nanoparticles during storage. On the other hand, initial chitosan concentration strongly affects initial size of the nanoparticles produced and the growth of the nanoparticles during storage. The concentration of chitosan at 0.2%, 0.4%, 0.6% gave initial size of nanoparticle chitosan of 175.3 nm, 337.9 nm, 643.3 nm respectively. On the other hand, the growth mechanism of chitosan nanoparticle depended on its radius(R). At R<500 nm, the growth rate of nanoparticles is controlled by adsorption at the surface of the particles, while at R>500 nm, it is controlled by diffusion in the liquid film around the particles.

  11. Nonconvex Model of Material Growth: Mathematical Theory

    NASA Astrophysics Data System (ADS)

    Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J.

    2018-06-01

    The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.

  12. Fundamental investigation of stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Beck, T. R.; Blackburn, M. J.; Smyrl, W. H.

    1972-01-01

    Two principle areas studied were stress corrosion crack growth rates of a titanium alloy in liquid environments containing halide ions and pitting corrosion of titanium in bromide solutions. Two initial assumptions were made, that the rate of propagation was controlled by a macroscopic solution parameter and that this parameter was viscosity. A series of solutions were prepared using lithium chloride as the solute and water, methanol, glycerin, formic acid, acetone, dimethyl sulphoxide, etc. As solvents, these solutions were prepared with a 5:1 solvent-solute ratio. Viscosity was varied by changing the temperature and it was found: (1) In all solvents the velocity of cracking was proportional to the reciprocal of the viscosity. (2) Each solvent gave a separate relationship, (3) The temperature dependence and numerical values for the apparent activation energy of cracking and viscosity were the same.

  13. The Scaled-Up Synthesis of Nanostructured Ultra-High-Temperature Ceramics and Resistance Sintering of Tantalum Carbide Nanopowders and Composites

    NASA Astrophysics Data System (ADS)

    Kelly, James P.

    Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.

  14. The thermal stability of the nanograin structure in a weak solute segregation system.

    PubMed

    Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren

    2017-02-08

    A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.

  15. Nucleation and evolution of spherical crystals with allowance for their unsteady-state growth rates

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.

    2018-02-01

    The growth dynamics of a spherical crystal in a metastable liquid is analyzed theoretically. The unsteady-state contributions to the crystal radius and its growth rate are found as explicit functions of metastability level Δ and time t. It is shown that the fundamental contribution to the growth rate represents the time independent solution of a similar temperature conductivity problem (Alexandrov and Malygin 2013 J. Phys. A: Math. Theor. 46 455101) whereas the next unsteady-state contribution is proportional to Δ2 t . On the basis of these explicit unsteady-state solutions, the process of transient nucleation and growth of spherical crystals in a metastable system is theoretically studied at the intermediate stage of phase transformation. A complete analytical solution for the particle-radius distribution function and metastability level is constructed with allowance for the Weber-Volmer-Frenkel-Zel’dovich and Meirs kinetic mechanisms. It is shown that the obtained unsteady-state contribution to the crystal growth rate plays an important role in the nucleation process and drastically changes the particle-radius distribution function.

  16. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods.

    PubMed

    Sun, Baoquan; Sirringhaus, Henning

    2005-12-01

    Colloidal zinc oxide (ZnO) nanocrystals are attractive candidates for a low-temperature and solution-processible semiconductor for high-performance thin-film field-effect transistors (TFTs). Here we show that by controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of the nanorods along the substrate. Postdeposition hydrothermal growth in an aqueous zinc ion solution has been found to further enhance grain size and connectivity and improve device performance. TFT devices made from 65-nm-long and 10-nm-wide nanorods deposited by spin coating have been fabricated at moderate temperatures of 230 degrees C with mobilities of 0.61 cm(2)V(-1)s(-1) and on/off ratios of 3 x 10(5) after postdeposition growth, which is comparable to the characteristics of TFTs fabricated by traditional sputtering methods.

  17. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  18. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  19. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  20. Absence of solute drag in solidification

    NASA Astrophysics Data System (ADS)

    Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.

    1994-05-01

    The interface response functions for alloy solidification were measured in the nondegenerate regime of partial solute trapping. We used a new technique to measure temperatures and velocities simultaneously during rapid solidification of Si-As alloys induced by pulsed laser melting. In addition, partition coefficients were determined using Rutherford backscattering. The results are in good agreement with predictions of the Continuous Growth Model without solute drag of M. J. Aziz and T. Kaplan [Acta Metall. 36, 1335 (1988)] and are inconsistent with all solute drag models.

  1. Apparatus for single ice crystal growth from the melt.

    PubMed

    Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2009-11-01

    A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8 ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10 mm working distance objective lens. Temperature could be established to within +/-10 mK in as little as 3.5 min and controlled to within +/-2 mK after 15 min for at least 10 h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.

  2. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    PubMed

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  3. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  4. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  5. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less

  6. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes.

    PubMed

    Gotor-Vila, Amparo; Teixidó, Neus; Sisquella, María; Torres, Rosario; Usall, Josep

    2017-09-01

    This work focuses on the biological understanding of the biocontrol agent Bacillus amyloliquefaciens CPA-8 in order to accomplish the characterization required in the registration process for the development of a microorganism-based product. The tolerance of CPA-8 to grow under different pH-temperature and water activity (a w )-temperature conditions was widely demonstrated. Regarding the pH results, optimum growth at the evaluated conditions was observed at 37 °C and pH between 7 and 5. On the contrary, the slowest growth was recorded at 20 °C and pH 4.5. Moreover, the type of solute used to reduce a w had a great influence on the minimum a w at which the bacterium was able to grow. The lowest a w values for CPA-8 growth in media modified with glycerol and glucose were 0.950 and 0.960, respectively. Besides, the lowest a w for CPA-8 growth increased when the temperature decreased to 20 °C, at which CPA-8 was not able to grow at less than 0.990 a w , regardless of the type of solute. Antibiotic susceptibility tests were carried out to determine which antibiotic could affect the behavior of the bacteria and revealed that CPA-8 was clearly resistant to hygromycin. Finally, a PCR amplification assay to detect the presence of enterotoxic genes from Bacillus cereus in CPA-8 was also performed. CPA-8 gave negative results for all the genes tested except for nheA gene, which is not enough for the toxicity expression, suggesting that fruit treated with this antagonist will not be a potential vehicle for foodborne illnesses.

  7. Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

    PubMed Central

    Koch, Kerstin; Barthlott, Wilhelm; Wandelt, Klaus

    2018-01-01

    The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules. PMID:29515959

  8. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  9. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  10. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, A. A.

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it wasmore » then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.« less

  11. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth and alpha → gamma phase transformation in Fe-Ni-Zr alloys. In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative. This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As an example, model predictions are compared to experimental results for Fe-Cr-Zr and Fe-Ni-Zr alloy systems. Consistency between the experimental results and the present model predictions provide a more rigorous criterion for investigating thermal stabilization. However, other possible contributions for grain growth stabilization should still be considered.

  12. Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Fu, Yibin; Hall, Philip

    1992-01-01

    The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).

  13. The effect of an external electric field on the growth of incongruent-melting material

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi

    2005-02-01

    The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.

  14. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs -CaFe2As2-KFe2As2 system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.

    2017-06-01

    Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe4As4 from a high temperature, quaternary liquid solution rich in iron and arsenic ("FeAs self-flux"). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe4As4 , CaFe2As2 , and KFe2As2 within what appear to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe4As4 . This optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs -CaFe2As2-KFe2As2 system.

  15. Development of Advanced Multizone Facilities for Microgravity Processing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.

  16. Evolution of long-period stacking order (LPSO) in Mg97Zn1Gd2 cast alloys viewed by HAADF-STEM multi-scale electron tomography

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Tashiro, Shunya; Matsunaga, Shuhei; Yamaguchi, Yohei; Kiguchi, Takanori; Konno, Toyohiko J.

    2018-07-01

    We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to 10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0 0 0 1)Mg plane is notable compared to the out-of-plane growth in the [0 0 0 1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time-Temperature-Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.

  17. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  18. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  19. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    NASA Astrophysics Data System (ADS)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  20. Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-06-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals

  1. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  2. Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl starch solutions.

    PubMed Central

    Hansen, T N; Carpenter, J F

    1993-01-01

    Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257

  3. Bridgman Crystal Growth of an Alloy with Thermosolutal Convection Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    2000-01-01

    The solidification of a dilute alloy (bismuth-tin) under Bridgman crystal growth conditions is investigated. Computations are performed in two dimensions with a uniform grid. The simulation includes the species concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed, with no simplifying steady state approximations. Results are obtained under microgravity conditions for pure bismuth, and for Bi-0.1 at.%Sn and Bi-1.0 at.%Sn alloys, and compared with experimental results obtained from crystals grown in the microgravity environment of space. For the Bi-1.0 at.%Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. The concentration-dependence of the melting temperature is incorporated in the model for the Bi-1.0 at.%Sn alloy. Satisfactory correspondence is obtained between the predicted and experimental results in terms of solute concentrations in the solidified crystal.

  4. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies.

    PubMed

    Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas

    2009-06-01

    Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.

  5. Feasibilty analyses of electroepitaxial research and development accommodations. Volume 2: Electroepitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technique of electromigration, i.e., electric field induced forced convection, can be used to grow semiconductor material and other compounds from solution by passing electric current through the growth interface while the temperature of the system is maintained constant. Current controlled electromigration, referred to as electroepitaxy, was successfully applied to grow epitaxial layers of various semiconductors and garnets.

  6. Fluorapatite crystal growth from modified seawater solutions

    NASA Astrophysics Data System (ADS)

    Van Cappellen, Philippe; Berner, Robert A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite ( FAP ) in carbonate-free NaCl-CaCl 2-NaF-Na 2HPO 4 solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/m 2. The Arrhenius activation energy of the growth reaction in the temperature range 12 to 35°C is 47 kJ/mol. The inhibition of FAP growth by Mg 2+ ions was investigated over a range of total dissolved Mg of 0 to 60 mM. At dissolved magnesium concentrations typical of marine pore waters (40-60 mM), the rate of FAP growth is 15 to 20 times slower than in the absence of Mg 2+, for the same degree of supersaturation, at 25 °C and pH = 8. The inhibitory effect can be explained by the blocking of growth sites at the surface of FAP crystals by adsorbed Mg 2+ ions. A simple Langmuir adsorption model for the retardation effect of Mg 2+ is supported by the results. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to ( aH+) m where m, the rate order with respect to H +, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg 2+, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10 μrn. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.

  7. Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1999-01-01

    Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.

  8. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  9. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  10. Dendritic growth of undercooled nickel-tin. I, II

    NASA Technical Reports Server (NTRS)

    Wu, Y.; Piccone, T. J.; Shiohara, Y.; Flemings, M. C.

    1987-01-01

    A comparison is made between high speed cinematography and optical temperature measurements of the solidification of an undercooled Ni-25 wt pct Sn alloy. The first part of this study notes that solidification during the recalescence period at all undercoolings studied occurred in the form of a dendritelike front moving across the sample surface, and that the growth velocities observed agree with calculation results for the dendrite growth model of Lipton et al. (1986); it is concluded that the coarse structure observed comprises an array of much finer, solute-controlled dendrites. In the second part, attention is given to the solidification of levitated metal samples within a transparent glass medium for the cases of two undercooled Ni-Sn alloys, one of which is eutectic and another hypoeutectic. The data obtained suggest a solidification model involving dendrites of very fine structure growing into the melt at temperatures near the bulk undercooling temperature.

  11. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  12. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  13. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  14. Temperature-dependent solubility transition of Na₂SO₄ in water and the effect of NaCl therein: solution structures and salt water dynamics.

    PubMed

    Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind

    2014-11-06

    Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.

  15. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH.

  16. The Effect of Temperature and Solution pH on Tetragonal Lysozyme Nucleation Kinetics

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1998-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions, Duplicate experiments indicate the reproducibility of the technique, Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable however, was pH, where crystal numbers changed by two orders of magnitude over the pH range 4.0 to 5.2. Crystal size varied also with solution conditions, with the largest crystals being obtained at pH 5.2. Having optimized the crystallization conditions, a batch of crystals were prepared under exactly the same conditions and fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  17. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  18. Study of Colloidal Gold Synthesis Using Turkevich Method

    NASA Astrophysics Data System (ADS)

    Rohiman, Asep; Anshori, Isa; Surawijaya, Akhmadi; Idris, Irman

    2011-12-01

    The synthesis of colloidal gold or Au-nanoparticles (Au-NPs) by reduction of chloroauric acid (HAuCl4) with sodium citrate was done using Turkevich method. We prepare HAuCl4 solution by dissolving gold wires (99.99%) into aqua regia solution. To initiate the Au-NPs synthesis 0.17 ml of 1 % chloroauric acid solution was heated to the boiling point and then 10 ml of 1 % sodium citrate was added to the boiling solution with a constant stirring in order to maintain a homogenous solution. A color of faint gray was observed in the solution approximately one minute and in a period of 2-3 minutes later, it further darkened to deep wine and red color. It showed that the gold solution has reduced to Au-NPs. The effect of process temperature on the size of Au-NPs prepared by sodium citrate reduction has also been investigated. With increasing temperature of Au-NPs synthesis, smaller-size Au-NPs were obtained. The higher temperatures shorten the time needed to achieve activation energy for reduction process. The resulting Au-NPs has been characterized by scanning Electron Microscope (SEM), showing the size of Au-NPs average diameter is ˜20-27 nm. The resulting colloidal gold will be used as catalyst for Si nanowires growth using VLS method.

  19. In vitro thermal effects on embryonic cells of endangered hawksbill turtle Eretmochelys imbricata.

    PubMed

    Takeshita, Satoshi; Matsuda, Naoki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    2013-12-01

    The hawksbill turtle is an ectotherm, whose sex is determined by temperature during embryonic development. This study aimed to determine whether embryonic hawksbill turtle cells respond differently to temperature than mammalian cells. Embryonic hawksbill turtle cells were established in culture, and thermal effects on these cells were investigated in vitro. Cells were maintained in Dulbecco's Modified Eagle Medium supplemented with non-essential amino acids, vitamin solution, sodium pyruvate, and 10% fetal bovine serum at 33°C and cell proliferation occurred at 25-33°C. When cells were incubated at 37°C (the temperature of mammalian cell culture) for 24 h, cell growth was completely inhibited. This growth inhibition was evidently recovered by changing the incubation temperature back to 33°C. Expression of heat shock protein was found to increase with elevating culture temperature from 25 to 33°C.

  20. Cold Shock of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins

    PubMed Central

    Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.

    2005-01-01

    The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718

  1. Numerical simulations of crystal growth in a transdermal drug delivery system

    NASA Astrophysics Data System (ADS)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  2. Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature

    NASA Astrophysics Data System (ADS)

    Guillén-Santiago, A.; Olvera, M. De La L.; Maldonado, A.; Asomoza, R.; Acosta, D. R.

    2004-04-01

    Conductive and highly transparent fluorine-doped zinc oxide (ZnO:F) thin films were deposited onto glass substrates by the chemical spray technique, using zinc acetate and hydrofluoric acid as precursors. Electrical, structural, morphological and optical characteristics were analyzed as a function of the ageing-time of the starting solution, alcoholic solvent type (methanol or ethanol) and the substrate temperature. The results show that these variables play a crucial role on the physical properties measured. The growth rates obtained were of 3 nm/s, showing that the chemical species involved are adequate for the film growth. The effect of the solution ageing-time on the electrical properties was monitored along three weeks. A gradual resistivity decrease with the ageing-time was observed, until a minimum value is reached, at 7 or 9 days depending on the alcohol employed. Films deposited after this time have resistivity values slightly higher. All the films were polycrystalline, with a hexagonal wurtzite structure whose preferential growth is strongly dependent on the deposition variables. Under optimal deposition conditions, ZnO:F films with a high transmittance in the visible spectrum (>85%), resistivity as low as 7 × 10-3 cm and maximum electronic mobility around of 4 cm2/(V-s) were obtained.

  3. Compositions of supersaturated solutions for enhanced growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and K(H{sub x}D{sub 1-x}){sub 2}PO{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soboleva, L. V., E-mail: afkonst@ns.crys.ras.ru

    2008-05-15

    The possibility of determining the optimal compositions and temperatures of supersaturated solutions for enhanced growth of single crystals of congruently and incongruently dissolving solid phases from the solubility diagrams of ternary systems is shown, and this approach is justified. The NiSO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O, Me{sub 2}SO{sub 4}-NiSO{sub 4}-H{sub 2}O, and Me{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O(D{sub 2}O) systems have been used to determine the optimal compositions and temperatures of supersaturated solutions for growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and Kmore » (H{sub x} D{sub 1-x}){sub 2}PO{sub 4} (D is deuterium) single crystals.« less

  4. Single-phase and well-dispersed Cu1.75S nanocrystals by ambient pressure diethylene glycol solution synthesis

    NASA Astrophysics Data System (ADS)

    Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan

    2013-02-01

    Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.

  5. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.

    PubMed

    Nanev, Christo N; Penkova, Anita; Chayen, Naomi

    2004-11-01

    Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.

  6. Optimization of the crystal growth of the superconductor CaKFe 4 As 4 from solution in the FeAs - CaFe 2 As 2 - KFe 2 As 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W. R.; Kong, T.; Bud'ko, S. L.

    Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe 4As 4 from a high temperature, quaternary liquid solution rich in iron and arsenic (“FeAs self-flux”). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe 4As 4, CaFe 2As 2, and KFe 2As 2 within what appearmore » to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe 4As 4. In conclusion, this optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs–CaFe 2As 2–KFe 2As 2 system.« less

  7. Optimization of the crystal growth of the superconductor CaKFe 4 As 4 from solution in the FeAs - CaFe 2 As 2 - KFe 2 As 2 system

    DOE PAGES

    Meier, W. R.; Kong, T.; Bud'ko, S. L.; ...

    2017-06-19

    Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe 4As 4 from a high temperature, quaternary liquid solution rich in iron and arsenic (“FeAs self-flux”). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe 4As 4, CaFe 2As 2, and KFe 2As 2 within what appearmore » to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe 4As 4. In conclusion, this optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs–CaFe 2As 2–KFe 2As 2 system.« less

  8. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  9. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  10. Up-scaling mineral-aqueous interfacial processes that govern isotope and trace element partitioning during calcite growth

    NASA Astrophysics Data System (ADS)

    Lammers, L. N.

    2014-12-01

    The dependence of the isotopic and trace element composition of calcium carbonate minerals on growth conditions including temperature, pH, and salinity is widely used to infer paleoclimate conditions. These inferences rely heavily on phenomenological observations of biogenic and inorganic precipitation both in and ex situ, where only limited variability in solution conditions can be explored. Ionic fluxes between the mineral surface and aqueous growth solution govern the net uptake of both stoichiometric and trace species during calcification, so developing a mechanistic understanding of the reactions governing these fluxes is critical to refine existing proxies and to develop new ones. The micro-scale mechanisms of calcite precipitation from aqueous solution have been extensively studied, and net ionic uptake post-nucleation is known to occur primarily at monomolecular kink sites along step edges at the mineral surface. In this talk, I will present a theoretical framework that uses the quasi-elementary ion attachment and detachment reactions governing ion uptake at kink sites to simultaneously model bulk mineral growth kinetics and tracer partitioning during calcite precipitation. Several distinct processes occur during ion uptake at kink sites that can influence the distribution of trace species, directly impacting the composition of various carbonate paleoproxies including δ44Ca, δ18O, Sr/Ca and Mg/Ca. The distribution of these trace species will be shown to depend on (1) the relative rates of ion desolvation during attachment to kink sites, (2) the relative rates of bond breaking during detachment from kink sites, and (3) the equilibrium partitioning of trace aqueous species. This model accounts for the impact of solution conditions on net ion fluxes and surface speciation, which in turn controls the population of kink sites available for direct ion exchange with the aqueous phase. The impacts of solution variables including pH, temperature and salinity can be treated independently, which unlike traditional partitioning studies allows the impacts of these parameters to be deconvolved. The type of theoretical framework discussed here can be readily extended to explicitly account for each of the major solution composition variables that are implicated in paleoproxy composition.

  11. Nucleation and Growth of Insulin Fibrils in Bulk Solution and at Hydrophobic Polystyrene Surfaces

    PubMed Central

    Smith, M. I.; Sharp, J. S.; Roberts, C. J.

    2007-01-01

    A technique was developed for studying the nucleation and growth of fibrillar protein aggregates. Fourier transform infrared and attenuated total reflection spectroscopy were used to measure changes in the intermolecular β-sheet content of bovine pancreatic insulin in bulk solution and on model polystyrene (PS) surfaces at pH 1. The kinetics of β-sheet formation were shown to evolve in two stages. Combined Fourier transform infrared, dynamic light scattering, atomic force microscopy, and thioflavin-T fluorescence measurements confirmed that the first stage in the kinetics was related to the formation of nonfibrillar aggregates that have a radius of 13 ± 1 nm. The second stage was found to be associated with the growth of insulin fibrils. The β-sheet kinetics in this second stage were used to determine the nucleation and growth rates of fibrils over a range of temperatures between 60°C and 80°C. The nucleation and growth rates were shown to display Arrhenius kinetics, and the associated energy barriers were extracted for fibrils formed in bulk solution and at PS surfaces. These experiments showed that fibrils are nucleated more quickly in the presence of hydrophobic PS surfaces but that the corresponding fibril growth rates decrease. These observations are interpreted in terms of the differences in the attempt frequencies and energy barriers associated with the nucleation and growth of fibrils. They are also discussed in the context of differences in protein concentration, mobility, and conformational and colloidal stability that exist between insulin molecules in bulk solution and those that are localized at hydrophobic PS interfaces. PMID:17496011

  12. Suppression of copper thin film loss during graphene synthesis.

    PubMed

    Lee, Alvin L; Tao, Li; Akinwande, Deji

    2015-01-28

    Thin metal films can be used to catalyze the growth of nanomaterials in place of the bulk metal, while greatly reducing the amount of material used. A big drawback of copper thin films (0.5-1.5 μm thick) is that, under high temperature/vacuum synthesis, the mass loss of films severely reduces the process time due to discontinuities in the metal film, thereby limiting the time scale for controlling metal grain and film growth. In this work, we have developed a facile method, namely "covered growth" to extend the time copper thin films can be exposed to high temperature/vacuum environment for graphene synthesis. The key to preventing severe mass loss of copper film during the high temperature chemical vapor deposition (CVD) process is to have a cover piece on top of the growth substrate. This new "covered growth" method enables the high-temperature annealing of the copper film upward of 4 h with minimal mass loss, while increasing copper film grain and graphene domain size. Graphene was then successfully grown on the capped copper film with subsequent transfer for device fabrication. Device characterization indicated equivalent physical, chemical, and electrical properties to conventional CVD graphene. Our "covered growth" provides a convenient and effective solution to the mass loss issue of thin films that serve as catalysts for a variety of 2D material syntheses.

  13. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  14. Double Diffusive Convection in Materials Processing

    NASA Technical Reports Server (NTRS)

    Ramachandra, Narayanan; Leslie, Fred W.

    1999-01-01

    A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in a model fluid system. Results from detailed numerical calculations, mainly two dimensional are provided. The interactions between a non-linear solute gradient and an imposed transverse thermal gradient are investigated. The buoyancy effects are treated in the traditional Boussinesq approximation and also in a more complete density formulation to address recent concerns of the first approach especially in simulations of the system response in a reduced gravity environment. Detailed flow, temperature and solute field plots along with heat and mass transfer results are presented in the paper. Implications to practical crystal growth systems as discerned from the modeling results are also explored and reported.

  15. Influence of Salt Stress on Growth and Frost Resistance of Three Winter Cereals

    NASA Astrophysics Data System (ADS)

    Matuszak-Slamani, Renata; Brzóstowicz, Aleksander

    2015-04-01

    This paper presents results of a study on the influence of 0-150 mmol NaCl dm-3 Hoagland solution on growth, chlorophyll content, photosynthesis and frost resistance of seedlings of three winter cereals: wheat - cv. Almari, rye - cv. Amilo, and triticale - cv. Tornado. Sodium chloride at 25 mmol dm-3 caused better growth of wheat shoots and roots, both of fresh and dry matter. Higher concentrations of NaCl in the medium decreased the biomass of the tested seedlings. The influence of NaCl on the chlorophyll content in the seedlings varied. The conductometry method showed that the resistance of the cell walls of wheat and rye to low temperature decreased in the presence of NaCl in the growth medium. Luminescence has shown that seedlings that grew in NaCl-containing medium indicated an impediment of electron flow at a lower temperature than the control plants.

  16. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal-Organic Framework Thin Films.

    PubMed

    Mandemaker, Laurens D B; Filez, Matthias; Delen, Guusje; Tan, Huanshu; Zhang, Xuehua; Lohse, Detlef; Weckhuysen, Bert M

    2018-04-19

    Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.

  17. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  18. Flux growth in a horizontal configuration: An analog to vapor transport growth

    DOE PAGES

    Yan, J. -Q.; Sales, B. C.; Susner, M. A.; ...

    2017-07-05

    Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge, forming a homogeneous solution before nucleation and growth of crystals takes place under proper supersaturation generated by cooling or evaporating the flux. In this paper, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the fluxmore » melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals is needed but the yield from the conventional vertical flux growth is limited. Finally, we applied this technique to the growth of IrSb 3, Mo 3Sb 7, and MnBi from self-flux, and the growth of FeSe, CrTe 3, NiPSe 3, FePSe 3, CuInP 2S 6, RuCl 3, and OsCl 4 from a halide flux.« less

  19. Solution-phase synthesis of nanomaterials at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  20. Low temperature growth of ZnO nanorods array via solution-immersion on TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    In this work, TiO2:ZNR thin films were successfully fabricated on glass substrates at low temperatures of 75 to 90°C. The substrates were coated with titanium dioxide (TiO2) using sol-gel spin coating, which act as seed layer to grow zinc oxide nanorods (ZNR) by solution-immersion method. At 90 and 95° C, ZNR with hexagonal tip are well dispersed without any aggregation and exhibit more uniform nanorods array as observed using FESEM. The diffraction peak intensity of the (0 0 2)-plane increased as the temperature increased, indicating improved orientation in the c-axis direction of the ZNR as detected in XRD patterns. From UV-Vis absorbance spectra, it was found that the samples has higher absorption properties at middle range of immersion temperatures; 80, 85 and 90°C.

  1. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. High-temperature low-cycle-fatigue and crack-growth behaviors of three superalloys: HASTELLOY X, HAYNES 230, and HAYNES 188

    NASA Astrophysics Data System (ADS)

    Lu, Yulin

    Low cycle fatigue (LCF) and fatigue crack growth (FCG) experiments on three superalloys HASTELLOY X, HAYNES 230, and HAYNES 188 have been conducted at temperatures from 649 to 982°C. Hold times were imposed at the maximum strain or load to investigate the hold-time effect. In general, the fatigue life decreased as the temperature or hold time increased. However, for the HAYNES 230 alloy at total strain ranges higher than 1.0% and without a hold time, the LCF life was longer at 927°C than at 816°C. This "abnormal" behavior was found to result from the smaller plastic strain amplitude at half-life at 927°C than that at 816°C. An increase in the temperature and/or the introduction of a hold time decreased the hardening rate and increased the softening rate for all the three alloys. The introduction of a hold time and/or the increase of the test temperature progressively changed the fracture mode from the transgranular to mixed trans/inter-granular, then to intergranular feature. Within the two phases of the fatigue process, crack initiation was more severely influenced by the change of the hold time and/or temperature. The FCG data of HASTELLOY X and HAYNES 230 alloys were analyzed with an emphasis on hold-time and temperature effects. The crack grew faster at a higher temperature and a longer hold time. Fracture-mechanics parameters, C*, Ct, and (Ct)avg, were applied to correlate the crack-growth rates. The fatigue-cracking path was mainly transgranular at 816 and 927°C. The cracking path became dominantly intergranular if the hold time increased to 2 min, indicating that the time-dependent damage mechanisms were in control. The Ct and (Ct)avg parameters were capable of consolidating time dependent crack growth rate from different temperatures and alloys. The tests were conducted in air. Therefore, the fracture surfaces were frequently covered with a dark layer of oxides, making fracture feature difficult to identify under scanning-electron-microscopy. To overcome this problem, an oxide-stripping technique has been developed. The sample is first boiled in a potassium permanganate solution for 1 h, and then electrolytically cleaned in an alkaline solution for 5 min.

  3. Synthesis and characterization of Cu3(BTC)2 membranes by thermal spray seeding and secondary growth.

    PubMed

    Noh, Seung-Jun; Kwon, Hyuk Taek; Kim, Jinsoo

    2013-08-01

    Crack-free Cu3(BTC)2 membranes were successfully prepared by thermal spray seeding and secondary growth method. Thermal spray seeding method, combining thermal seeding and pressurized spraying, uniformly distributed seed solution on the support, anchoring seed crystals tightly on the support. After secondary growth of the seeded support in the autoclave, continuous crack-free membrane was obtained by controlling cooling and drying steps. The gas permeation test was conducted at various temperatures using H2, CO2, CH4 and N2 gases.

  4. Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A model approach.

    NASA Astrophysics Data System (ADS)

    Mühlinghaus, C.; Scholz, D.; Mangini, A.

    2009-04-01

    To reconstruct past variations in Earth's climate, a variety of climate archives are studied. During the last decades stalagmites came into focus due to their long, continuous growth and absolute dating techniques. In this study a numerical model was developed, which calculates variations in temperature and precipitation during the growth period of stalagmites grown under isotopic disequilibrium conditions using the isotope profiles both along the growth axis and individual growth layers as well as the growth depth relation. The model is based on the inversion and combination of existing models (Dreybrodt 1999, Kaufmann et al. 2004, Mühlinghaus et al. 2007, Scholz et al. 2008, Mühlinghaus et al. 2008b) and incorporates important parameters describing the cave and the overlying soil. Beside the dependence on temperature and water supply it depends on the isotopic composition of the drip water, the pCO2 pressure of the soil and the cave atmosphere as well as on the mixing coefficient, which describes mixing between the impinging drop and the existing solution layer. To determine the characteristics of temperature and precipitation, in a first step all other parameters are assumed to remain constant over the whole growth period to simplify calculations. This allows to run the model with only two input variables: the isotopic composition ^13C of the drip water and a temperature information at any point of time during the growth period of the stalagmite (e.g. the recent cave temperature). All other parameters are determined by the model. The CSM (Combined Stalagmite Model, Mühlinghaus et al. 2008a) was applied to three stalagmites from the Marcelo Arévalo cave in Southern Patagonia, Chile (Schimpf 2005, Kilian et al. 2006, Schimpf et al. in prep). These stalagmites grew in a small cave next to each other during the last 4500 years. However, their isotopic profiles along the growth axis show different kinetic influences. Despite these conditions, the temperature records of the stalagmites, which were obtained by three independent model runs, follow a general trend over the whole growth period and reveal good correlations within certain time-frames. This is a promising first result of the model. In addition the calculated temperatures are robust to small variations of the input variables, giving confidence in the algorithm of the model and for further temperature reconstructions from kinetically grown stalagmites. Literature Dreybrodt, W., 1999. Chemical kinetics, speleothem growth and climate. Boreas 28, 347 -356. Kaufmann, G., Dreybrodt, W. , 2004. Stalagmite growth and palaeo-climate: an inverse approach. Earth and Planetary Science Letters 224, 529 - 545. Kilian, R., Biester, H., Behrmann, J., Baeza, O., Fesq-Martin, M., Hohner, M., Schimpf, D., Friedmann, A., Mangini, A., 2006: Millennium-scale volcanic impact on a superhumid and pristine ecosystem, Geology, 34: 609 - 612. Mühlinghaus, C., Scholz, D., Mangini, A., 2007. Modelling stalagmite growth and ^13C as a function of drip interval and temperature. Geochimica et Cosmochimica Acta 71, 2780 - 2790. Mühlinghaus, C.; Scholz, D., Mangini, A., 2008a. Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A first approach. Advances in speleothem research, PAGES News, 16 Mühlinghaus, C., Scholz, D., Mangini, A., 2008b. Fractionation of stable isotopes in stalagmites under disequilibrium conditions. Geochimica et Cosmochimica Acta, Submitted. Schimpf, D., 2005. Datierung und Interpretation der Kohlenstoff- und Sauerstoffsotopie zweier holozäner Stalagmiten aus dem Süden Chiles (Patagonien). Master's thesis, Ruprecht-Karls- University, Heidelberg. Schimpf, D., Kilian, R., Mangini, A., Spötl, C., Kronz, A., in prep. Evaluation of chemical, isotopic and detrital proxies of a high-resolution stalagmite record from the southernmost Chilean Andes (53˚ S) Scholz, D., Mühlinghaus, C., Mangini, A., 2008. Modelling the evolution of ^13C and ^18O in the solution layer on stalagmite surfaces. Geochimica et Cosmochimica Acta, Submitted.

  5. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  6. On the solubility of gallium nitride in supercritical ammonia-sodium solutions

    NASA Astrophysics Data System (ADS)

    Griffiths, Steven; Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji

    2016-12-01

    Due to the disparity between observed gallium nitride (GaN) growth under conditions for which literature reports normal solubility, GaN solubility in supercritical NH3-Na containing solutions was re-evaluated. Isothermal gravimetric experiments on polycrystalline GaN were performed in the temperature range (T =415-650 °C) for which retrograde growth of GaN routinely occurs (P ≈ 200 MPa, molar NH3:Na fill ratio =20:1). Two previously-unreported error contributions to the gravimetric determination of GaN solubility were identified: Ga-alloying of exposed Ni-containing components, and the presence of a dense, Ga-absorbing Na-rich, second phase under these conditions. Due to the inability to measure Ga-alloying of the exposed autoclave wall for each experiment, considerable scatter was introduced in the refined GaN solubility curve. No clear dependence of GaN solubility on temperature was resolvable, while most solubility values were determined to be within a band of 0.03-0.10 mol% GaN, normalized by fill NH3.

  7. Solution Growth of a Novel Nonlinear Optical Material: L-Histidine Tetrafluoroborate

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Choi, J.; Wang, W. S.; Bhat, K.; Lal, R. B.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Single crystals of L-Histidine tetrafluoroborate (L-HFB), a semiorganic nonlinear optical (NLO) material have been successfully grown by the temperature lowering and evaporation methods in our laboratory. Solubility curves of L-HFB have been determined in different solvents, such as water, ethanol and acetone. The solubility of L-HFB is very low in acetone, and ethanol, therefore, it is not feasible to grow L-HFB single crystals using these solvents. Good quality single crystals of a novel nonlinear optical material L-HFB have been grown from aqueous solution. Effects of seed orientation on morphologies of L-HFB crystals were studied. The advantages and disadvantage of both the evaporation and the temperature lowering techniques are compared. The single crystals in size 20 x 20 x 10 cubic mm were grown with deionized water as solvent in two weeks with an approximate growth rate of 1.4mm/day. The transmission range for these crystals has been found to be from 250 nm to 1500 nm.

  8. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  10. Directional growth and characterization of Fe?Al?Nb eutectic alloys

    NASA Astrophysics Data System (ADS)

    Mota, M. A.; Coelho, A. A.; Bejarano, J. M. Z.; Gama, S.; Caram, R.

    1999-03-01

    The manufacturing of components for operation at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000°C. An interesting alternative to solve such a problem is the use of directionally solidified eutectic alloys. A potentially promising system for the manufacture of structural materials, and so far not totally studied, is the eutectic based on the Fe-Al-Nb system, which involves the (FeAl) 2Nb phase and the FeAl solid solution. Eutectic samples from this system were directionally solidified in a vertical Bridgman crystal growth unit. The objective of the experiments was to determine the influence of the growth rate on the eutectic microstructure. The ingots obtained were investigated by using optical and electron scanning microscopy. At low growth rate, the eutectic microstructure remained regular, even though it showed several types of microstructure defects. As the growth rate was increased, a transition from lamellar to fibrous morphology was observed.

  11. A Few Good Crystals Please

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  12. Microgravity

    NASA Image and Video Library

    1995-09-12

    DCAM, developed by MSFC, grows crystals by the dialysis and liquid-liquid diffusion methods. In both methods, protein crystal growth is induced by changing conditions in the protein. In dialysis, a semipermeable membrane retains the protein solution in one compartment, while allowing molecules of precipitant to pass freely through the membrane from an adjacent compartment. As the precipitant concentration increases within the protein compartment, crystallization begins. In liquid-liquid diffusion, a protein solution and a precipitant solution are layered in a container and allowed to diffuse into each other. This leads to conditions which may induce crystallization of the protein. Liquid-liquid diffusion is difficult on Earth because density and temperature differences cause the solutions to mix rapidly.

  13. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.

  14. Ion temperature gradient mode driven solitons and shocks

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  15. Physical properties of V 1-xTi xO₂ (0 < x < 0.187) single crystals

    DOE PAGES

    Kong, Tai; Masters, Morgan W.; Bud’ko, Sergey L.; ...

    2015-02-13

    Free standing, low strain, single crystals of pure and titanium doped VO₂ were grown out of an excess of V ₂O₅ using high temperature solution growth techniques. At T MI ~ 340 K, pure VO₂ exhibits a clear first-order phase transition from a high-temperature paramagnetic tetragonal phase (R) to a low-temperature non-magnetic monoclinic phase (M1). With Ti doping, another monoclinic phase (M2) emerges between the R and M1 phases. The phase transition temperature between R and M2 increases with increasing Ti doping while the transition temperature between M2 and M1 decreases.

  16. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  17. Modeling of Dendritic Structure and Microsegregation in Solidification of Al-Rich Quaternary Alloys

    NASA Astrophysics Data System (ADS)

    Dai, Ting; Zhu, Mingfang; Chen, Shuanglin; Cao, Weisheng

    A two-dimensional cellular automaton (CA) model is coupled with a CALPHAD tool for the simulation of dendritic growth and microsegregation in solidification of quaternary alloys. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and the actual temperature, incorporating with the Gibbs—Thomson effect and preferential dendritic growth orientations. Based on the local liquid compositions determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and the solid concentrations at the solid/liquid (SL) interface are calculated by the CALPHAD tool. The model was validated through the comparisons of the simulated results with the Scheil predictions for the solid composition profiles as a function of solid fraction in an Al-6wt%Cu-0.6wt%Mg-1wt%Si alloy. It is demonstrated that the model is capable of not only reproducing realistic dendrite morphologies, but also reasonably predicting microsegregation patterns in solidification of Al-rich quaternary alloys.

  18. Rapid Fabrication of Gold Nanoflowers Tuned by pH: Insights Into the Growth Mechanism.

    PubMed

    Lv, Chen; Zhang, Xiao-Yue; Mu, Chun-Lei; Wu, Dong; Wang, Cheng-Ming; Zhang, Qun-Lin

    2015-04-01

    We reported a one-pot, no added seeding and green method to synthesize gold nanoflowers, in which HAuC4 and H2O2 were added one by one into the alkaline protocatechuic aldehyde solution at room temperature. Au(III) was partially reduced by protocatechuic aldehyde to produce primary Au nanocrystals, and then Au nanocrystals agglomerated into loose flower-like nanoparticles as seeds, which catalyzed H2O2 reduction of the residual Au(III), thus accelerating the formation of compact 3D gold nanoflowers. The key synthesis strategy was to use protocatechuic aldehyde as a structure-induced agent to influence the growth of gold nanoflowers. The pH value of growth solution could tune the size and/or morphology of gold nanoflowers through its influence on the adhesion force of protocatechuic aldehyde on gold surfaces and the species type of Au(III) complexes. When the pH value of growth solution was above 7.26 (the pKa of protocatechuic aldehyde), the flower-like of gold nanostructural architectures with different sizes could be fabricated. The obtained gold nanoflowers had a large dimension of 198 and 157 nm at the pH of 7.6 and 8, respectively. Size control of gold nanoflowers can be accomplished in the growth solutions of pH 9.4-12.0 with a similar diameter around 60 nm. The as-synthesized gold nanoflowers exhibited good stability and have the prospects for surface-enhanced Raman scattering enhancement.

  19. Similar solutions of double-diffusive dissipative layers along free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1990-10-01

    Free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection) generated by temperature and concentration gradients is discussed together with the formation of double-diffusive boundary layers along liquid-gas interfaces. Similarity solutions for each class of free convection are derived and the resulting nonlinear two-point problems are solved numerically using the quasi-linearization method. Velocity, temperature, concentration profiles, interfacial velocity, heat and mass transfer bulk coefficients for various Prandtl and Schmidt numbers, and different values of the similarity parameters are determined. The convective flows are of particular interest because they are considered to influence the processes of crystal growth, both on earth and in a microgravity environment.

  20. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  1. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  2. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  3. Growth of Compound Semiconductors in a Low Gravity Environment: Microgravity Growth of PbSnTe

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Rosch, W. R.; Baker, N. R.; Narayanan, R.

    1999-01-01

    The growth of the alloy compound semiconductor lead tin telluride (PbSnTe) was chosen for a microgravity flight experiment in the Advanced Automated Directional Solidification Furnace (AADSF), on the United States Microgravity Payload-3 (USNP-3) in February, 1996 and on USNW- 4 in November, 1997. The objective of these experiments was to determine the effect of the reduction in convection, during the growth process, brought about by the microgravity environment. The properties of devices made from PbSnTe, an alloy of PbTe and SnTe, are dependent on the ratio of the elemental components in the starting crystal. Compositional uniformity in the crystal is only obtained if there is no significant mixing in the liquid during growth. The technological importance of PbSnTe lies in its band gap versus composition diagram which has a zero energy crossing at approximately 40% SnTe. This facilitates the construction of long wavelength (greater than 6 gm) infrared detectors and lasers. The properties and utilization of PbSnTe are the subject of other papers. 1,2 PbSnTe is also interesting from a purely scientific point of view. It is, potentially, both solutally and thermally unstable due to the temperature and density gradients present during growth. Density gradients, through thermal expansion, are imposed in directional solidification because temperature gradients are required to extract heat. Solutal gradients occur in directional solidification of alloys due to segregation at the interface. Usually the gradients vary with both experiment design and inherent materials properties. In a simplified one dimensional analysis with the growth axis parallel to the gravity vector, only one of the two instabilities work at a time. During growth, the temperature in the liquid increases ahead of the interface. Therefore the density, due to thermal expansion, is decreasing in that direction. However, the phase diagram shows that the lighter SnTe is preferentially rejected at the interface. This causes the liquid density to increase with distance away from the interface.

  4. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  5. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Donghui; Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050; Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes themore » nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.« less

  7. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  8. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  9. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  10. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  11. Slow Crack Growth Analysis of Brittle Materials with Finite Thickness Subjected to Constant Stress-Rate Flexural Loading

    NASA Technical Reports Server (NTRS)

    Chio, S. R.; Gyekenyesi, J. P.

    1999-01-01

    A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.

  12. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  13. Mathematical model for the Bridgman-Stockbarger crystal growing system

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1986-01-01

    In a major technical breakthrough, a computer model for Bridgman-Stockbarger crystal growth was developed. The model includes melt convection, solute effects, thermal conduction in the ampule, melt, and crystal, and the determination of the curved moving crystal-melt interface. The key to the numerical method is the use of a nonuniform computational mesh which moves with the interface, so that the interface is a mesh surface. In addition, implicit methods are used for advection and diffusion of heat, concentration, and vorticity, for interface movement, and for internal gracity waves. This allows large time-steps without loss of stability or accuracy. Numerical results are presented for the interface shape, temperature distribution, and concentration distribution, in steady-state crystl growth. Solutions are presented for two test cases using water, with two different salts in solution. The two diffusivities differ by a factor of ten, and the concentrations differ by a factor of twenty.

  14. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    PubMed

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  15. Pseudomorphic Semiconducting Heterostructures from Combinations of AlN, GaN and Selected SiC Polytypes: Theoretical Advancement and its Coordination with Experimental Studies of Nucleation, Growth, Characterization and Device Development

    DTIC Science & Technology

    1994-06-01

    simultaneously expluiting the favorable characteristics of these materials include the thin film deposition of both pseudomorphic beterostructure and alloys ...diagram proposed by Zangvil and Ruh [10] shows a flat miscibility gap at =1900*C between -20 and 80 wt % AIN. Above this temperature, a 2H solid solution...was reported from >20 wt % AIN. For .20 wt % AIN, 8 I I solutions and two phase mixtures of 6H, 4H, and 2H were observed. Thin film solid solutions

  16. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  17. Cyclic growth and dissolution of camphor crystals in quinary, ternary, and binary solutions: A study on crystal behavior in storm glass

    NASA Astrophysics Data System (ADS)

    Mitsuya, Takuro; Takahashi, Kyohei; Nagashima, Kazushige

    2014-09-01

    "Storm glass" is a hermetically sealed glass tube containing a solution of camphor. In 19th-century England, the pattern and quantity of the crystals were observed and interpreted as a weather forecasting tool. In the present study, the appearance of camphor crystals under cyclic temperature change was studied in three sample solutions, the storm glass solution (quinary system), camphor-ethanol-water (ternary system), and camphor-ethanol (binary system), to elucidate the effect of components in the storm glass on the appearance of camphor crystals. Equilibrium temperatures of camphor crystals as a function of the camphor concentration were also obtained to estimate the quantity of camphor crystals precipitated in the solutions. During the temperature cycles, the crystal height increased and decreased. The ranges (local maxima and minima) of crystal heights gradually decreased to approximately a constant range. Not only the crystal height but also the amplitude of the height variation in the quinary and ternary systems were much larger than those in the binary system, although the estimated weights of crystals precipitated in the quinary and ternary systems were smaller than that in the binary system. This fact resulted from the formation of dendrites in the quinary and ternary systems, which caused high porosity of sedimented crystals.

  18. Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry.

    PubMed

    Olivares, Astrid; Laskin, Julia; Johnson, Grant E

    2014-09-18

    The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.

  19. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGES

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (E g = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flowmore » cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  20. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    PubMed

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  1. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lanaro, G.; Patey, G. N.

    2018-01-01

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (˜49 kJ mol-1) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li+ and F- ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  2. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    PubMed

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  3. Complexity growth in massive gravity theories, the effects of chirality, and more

    NASA Astrophysics Data System (ADS)

    Ghodrati, Mahdis

    2017-11-01

    To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.

  4. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  5. Synthesis of mono-dispersed nanofluids using solution plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yong Kang, E-mail: yk@rd.numse.nagoya-u.ac.jp; Bratescu, Maria Antoaneta, E-mail: maria@rd.numse.nagoya-u.ac.jp; Knowledge Hub Aichi, Yakusa-cho, Nagakute-ku, Toyota

    2014-07-14

    Small-sized and well-dispersed gold nanoparticles (NPs) for nanofluidics have been synthesized by electrical discharge in liquid environment using termed solution plasma processing (SPP). Electrons and the hydrogen radicals are reducing the gold ions to the neutral form in plasma gas phase and liquid phase, respectively. The gold NPs have the smallest diameter of 4.9 nm when the solution temperature was kept at 20 °C. Nucleation and growth theory describe the evolution of the NP diameter right after the reduction reaction in function of the system temperature, NP surface energy, dispersion energy barrier, and nucleation rate. Negative charges on the NPs surface duringmore » and after SPP generate repulsive forces among the NPs avoiding their agglomeration in solution. Increasing the average energy in the SPP determines a decrease of the zeta potential and an increase of the NPs diameter. An important enhancement of the thermal conductivity of 9.4% was measured for the synthesized nanofluids containing NPs with the smallest size.« less

  6. Accelerated Testing Methodology for the Determination of Slow Crack Growth of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Gyekenyesi, John P.

    1997-01-01

    Constant stress-rate (dynamic fatigue) testing has been used for several decades to characterize slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity: Strengths are measured in a routine manner at four or more stress rates by applying a constant crosshead speed or constant loading rate. The slow crack growth parameters (n and A) required for design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time can be achieved. If a preload corresponding to 50 % of the strength is applied to the specimen prior to testing, 50 % of the test time can be saved as long as the strength remains unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in strength testing of ceramics or optical fibers to apply some preloading (less then 40%). The purpose of this work is to study the effect of preloading on the strength to lay a theoretical foundation on such an empirical practice. For this purpose, analytical and numerical solutions of strength as a function of preloading were developed. To verify the solution, constant stress-rate testing using glass and alumina at room temperature and alumina silicon nitride, and silicon carbide at elevated temperatures was conducted in a range of preloadings from O to 90 %.

  7. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    ScienceCinema

    Mohite, Aditya; Nie, Wanyi

    2018-05-11

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  8. Steps in Solution Growth: Revised Gibbs-Thomson Law, Turbulence and Morphological Stability

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G.

    2004-01-01

    Two groups of new phenomena revealed by AFM and high resolution optical interferometry on crystal faces growing from solutions will be discussed. 1. Spacing between strongly polygonized spiral steps with low less than 10(exp -2) kink density on lysozyme and K- biphtalate do not follow the Burton-cabrera-Frank theory. The critical length of the yet immobile first Short step segment adjacent to a pinning defect (dislocation, stacking fault) is many times longer than that following from the step free energy. The low-kink density steps are typical of many growth conditions and materials, including low temperature gas phase epitaxy and MBE. 2. The step bunching pattern on the approx. 1 cm long { 110) KDP face growing from the turbulent solution flow (Re (triple bonds) 10(exp 4), solution flow rate approx. 1 m/s) suggests that the step bunch height does not increase infinitely as the bunch path on the crystal face rises, as is usually observed on large KDP crystals. The mechanism controlling the maximal bunch width and height is based on the drag of the solution depleted by the step bunch down thc solution stream. It includes splitting, coagulation and interlacing of bunches

  9. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    NASA Astrophysics Data System (ADS)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.

  10. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  11. Growth of alkyl-monosubstituted thiophene/phenylene co-oligomer crystals and their device application

    NASA Astrophysics Data System (ADS)

    Sugahara, Kazuchika; Nakagawa, Takao; Hirase, Ryuji; Katagiri, Toshifumi; Inada, Yuhi; Yamao, Takeshi; Hotta, Shu

    2018-04-01

    We synthesized a novel small-molecule organic semiconductor, which is soluble in organic solvents at room temperature under normal pressure. We demonstrated that its high-quality crystalline films can be directly grown on substrates using various solution techniques such as solution casting, slow evaporation, and edge casting. We applied crystals to FETs with a bottom- or top-contact configuration, revealing that the carrier mobility ranged from ˜10-4 to ˜10-2 cm2 V-1 s-1.

  12. Quality and safety of red blood cells stored in two additive solutions subjected to multiple room temperature exposures.

    PubMed

    de Grandmont, M J; Ducas, E; Girard, M; Méthot, M; Brien, M; Thibault, L

    2014-10-01

    Many international standards state that red blood cell (RBC) products should be discarded if left out of controlled temperature storage for longer than 30 min to reduce the risk of bacterial growth and RBC loss of viability. This study aimed to verify whether repeated short-time exposures to room temperature (RT) influence RBCs quality and bacterial proliferation. Saline-adenine-glucose-mannitol (SAGM) and AS-3 RBC units were split and exposed to RT for 30 or 60 min on day 2, 7, 14, 21, and 42 of storage while reference units remained stored at 1-6°C. Red blood cell in vitro quality parameters were evaluated after each exposure. In a second experiment, SAGM and AS-3 RBC units were split and inoculated with Staphylococcus epidermidis (5 CFU/ml), Serratia marcescens (1 CFU/ml), and Serratia liquefaciens (1 CFU/ml). Reference units remained in storage while test units were exposed as described previously. Bacterial concentrations were investigated after each exposure. No differences were noticed between reference and test units in any of the in vitro parameters investigated. S. epidermidis did not grow in either reference or exposed RBCs. While S. marcescens did not grow in AS-3, bacterial growth was observed in RT-exposed SAGM RBCs on day 42. Similar growth was obtained for S. liquefaciens in the two additive solutions for both reference and test units. Short-time exposures to RT do not affect RBC quality and do not significantly influence bacterial growth. An expansion of the '30-minute' rule to 60 min should be considered by regulatory agencies. © 2014 International Society of Blood Transfusion.

  13. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  14. Solvothermal synthesis of nanocrystalline TiO 2 in toluene with surfactant

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Choi, Byung-Chun; Seo, Hyo-Jin

    2003-10-01

    Synthesis of narrow-dispersed nanocrystalline TiO 2 was investigated by surfactant-aided solvothermal synthetic method in toluene solutions. Titanium isopropoxide (TIP) was used as precursor, which was decomposed at high temperature in the surfactant-dissolved solution. After the solution was thermally treated at 250°C for 20 h in an autoclave, low-dispersed TiO 2 nanocrystalline particles with average size of <6 nm were synthesized. When sufficient amount of TIP or surfactant was added in the solution, long dumbbell-shaped nanorods were formed, which may be due to the oriented growth of particles along [0 0 1] axis. Characterization of products was investigated by X-ray diffraction and transmission electron microscopy.

  15. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  16. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    NASA Astrophysics Data System (ADS)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  17. General kinetic solution for the Biermann battery with an associated pressure anisotropy generation

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Silva, L. O.

    2018-01-01

    Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.

  18. Method for fabricating wrought components for high-temperature gas-cooled reactors and product

    DOEpatents

    Thompson, Larry D.; Johnson, Jr., William R.

    1985-01-01

    A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

  19. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    NASA Astrophysics Data System (ADS)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  20. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal–Organic Framework Thin Films

    PubMed Central

    2018-01-01

    Metal–organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films. PMID:29595980

  1. Nonlinear interactions in mixing layers and compressible heated round jets. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Jarrah, Yousef Mohd

    1989-01-01

    The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.

  2. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure formore » robust device performance and the advantage of this contact method.« less

  3. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans.

    PubMed

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.

  4. Inhibition of heparin precipitation, bacterial growth, and fungal growth with a combined isopropanol-ethanol locking solution for vascular access devices.

    PubMed

    Restrepo, Daniel; Laconi, Nicholas S; Alcantar, Norma A; West, Leigh A; Buttice, Audrey L; Patel, Saumil; Kayton, Mark L

    2015-03-01

    Clinical reports of ethanol-lock use for the prevention of catheter-related bloodstream infections have been marked by the occurrence of serious catheter occlusions, particularly among children with mediports. We hypothesized that precipitate forms when ethanol mixes with heparin at the concentrations relevant for vascular access devices, but that the use of a combination of two alcohols, ethanol and isopropanol, would diminish heparin-related precipitation, while retaining anti-bacterial and anti-fungal effects. Heparin (0-100units/mL) was incubated in ethanol-water solutions (30%-70% vol/vol) or in an aqueous solution containing equal parts (35% and 35% vol/vol) of isopropanol and ethanol. Precipitation at temperatures from 4 to 40°C was measured in nephelometric turbidity units using a benchtop turbidimeter. Growth of Escherichia coli, Staphylococcus aureus, and Candida albicans colonies were measured following exposure to solutions of ethanol or isopropanol-ethanol. Groupwise comparisons were performed using analysis of variance with Bonferroni-corrected, post-hoc T-testing. Seventy percent ethanol and heparin exhibit dose-dependent precipitation that is pronounced and significant at the concentrations typically used in mediports (p<0.05). Precipitate is significantly reduced by use of a combined 35% isopropanol-35% ethanol solution rather than 70% ethanol (p<0.05), while maintaining the solution's anti-bacterial and anti-fungal properties. On the other hand, although ethanol solutions under 70% form less precipitate with heparin, such concentrations are also less effective at bacterial colony inhibition than solutions of either 70% ethanol or 35% isopropanol-35% ethanol (p<0.05). A combined 35% isopropanol-35% ethanol locking solution inhibits bacterial and fungal growth similarly to 70% ethanol, but results in less precipitate than 70% ethanol when exposed to heparin. Further study of a combined isopropanol-ethanol locking solution for the prevention of catheter-related bloodstream infections should focus on the determination as to whether such a locking solution may reduce the rate of precipitation-related catheter occlusion, and whether it may be administered with low systemic toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Superheating of ice crystals in antifreeze protein solutions

    PubMed Central

    Celik, Yeliz; Graham, Laurie A.; Mok, Yee-Foong; Bar, Maya; Davies, Peter L.; Braslavsky, Ido

    2010-01-01

    It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 °C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

  6. Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred W.

    2000-01-01

    A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.

  7. How Copper Nanowires Grow and How To Control Their Properties.

    PubMed

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an understanding of the structure-property relationship of nanowires in transparent conducting films, enabled the production of copper nanowires that can be coated from solution to make films with properties that rival the dominant transparent conductor, indium tin oxide. Finally, we show how copper nanowires can be coated with Zn, Sn, In, Ni, Co, Ag, Au, and Pt to protect them from oxidation or enable their use as transparent electrocatalysts.

  8. Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials

    NASA Astrophysics Data System (ADS)

    Dong, Zhizhong

    Tungsten-oxide and molybdenum-oxide nanostructures are fabricated directly from the surfaces of metal substrates using counter-flow diffusion-flame synthesis method, which allows for correlation of morphologies with local conditions. Computational simulations aid in tailoring the flame structure with respect to chemical species and temperature. Furthermore, methane flames are compared with hydrogen flames, which only have H2O (and no CO2) as product species. The temperature profiles of the methane and hydrogen flames are strategically matched in order to compare the effect of chemical species produced by the flame which serve as reactants for nanostructure growth. Single-crystalline, well-vertically-aligned, and dense WO2.9 nanowires (diameters of 20-50 nm, lengths of >10 microm) are obtained at a gas-phase temperature of 1720 K, where the CO2 route is presumed to seed the growth of nanowires at the nucleation stage, with subsequent vapor-solid growth. Similarly, single-crystalline, vertically-aligned, and dense MoO 2 nanoplates (thicknesses of 60-80 nm, widths of 200-450 nm, lengths of 1-2 microm) are obtained at 1720 K. Nanoheterostructures are fabricated by decorating/coating the above flame-synthesized tungsten-oxide nanowires with other materials using an aqueous solution synthesis method. With WO 2.9 nanowires serving as the scaffold, sequential growth of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for different Zn2+:Sn2+ concentration ratios. High-resolution transmission electron microscopy (HRTEM) of the interfaces at the nanoheterojunctions show atomically abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches. Separately, co-axial nanoheterostructures are fabricated using ionic-liquid solutions, where single-crystal nanoscale Al layer are electrodeposited on the surfaces of the above flame-synthesized WO2.9 nanowires. These tungsten-oxide/aluminum coaxial nanowire arrays constitute thermite nanocomposites with high reactivity. These geometries not only present an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer, but also possibly eliminate or at least minimize the presence of Al2O3 passivation films between the aluminum and metal oxide.

  9. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Cook, Joanne L; Stott, Ian P; Pelan, Eddie G

    2018-06-01

    Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, C i E j . Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    USDA-ARS?s Scientific Manuscript database

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under vario...

  11. Purification and crystal growth of NPB via imidazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Oh, Yong-Taeg; Shin, Dong-Chan

    2018-04-01

    Here we report the production of high purity and crystallinity organic electronic material of NPB (N,N‧-Di-[(1-naphthyl)-N,N‧-diphenyl]-1,1‧-biphenyl-4,4‧-diamine (C44H32N2) through solution recrystallization within imidazolium based ionic liquids. When low purity NPB was recrystallized at 170 °C within C8MIM[TFSI], its purity was drastically improved from 82% to 99.92%. These recrystallized NPB crystals showed 0.040° FWHM (Full Width Half Maximum) of X-ray (1 1 1) diffraction peak. Such small FWHM angle indicates single-crystal like crystallinity. Initial NPB powder was dissolved at 100 °C and recrystallized at temperature above 110 °C. At higher temperature of 170 °C, a small number of bigger crystals were formed compared to those at 110 °C. This can be well explained by the classical nucleation and growth theory. Therefore, solution recrystallization process using ionic liquid might be promising for mass production of organic electronic materials by replacing the widely-used sublimation purification method.

  12. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station.

    PubMed

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature T(e) changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration C(s). To correct σ, the actual C(s) and protein concentration C(p), which correctly represent the measured T(e) value in space, were first calculated. Second, a new solubility curve with the corrected C(s) was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the C(s) and C(p) of the solution.

  13. A carrot leucine-rich-repeat protein that inhibits ice recrystallization.

    PubMed

    Worrall, D; Elias, L; Ashford, D; Smallwood, M; Sidebottom, C; Lillford, P; Telford, J; Holt, C; Bowles, D

    1998-10-02

    Many organisms adapted to live at subzero temperatures express antifreeze proteins that improve their tolerance to freezing. Although structurally diverse, all antifreeze proteins interact with ice surfaces, depress the freezing temperature of aqueous solutions, and inhibit ice crystal growth. A protein purified from carrot shares these functional features with antifreeze proteins of fish. Expression of the carrot complementary DNA in tobacco resulted in the accumulation of antifreeze activity in the apoplast of plants grown at greenhouse temperatures. The sequence of carrot antifreeze protein is similar to that of polygalacturonase inhibitor proteins and contains leucine-rich repeats.

  14. Comparison and extension of free dendritic growth models through application to silver-15 mass percent copper alloy

    NASA Astrophysics Data System (ADS)

    Onel, Selis

    Modeling free dendritic growth in supercooled alloys is a critical requirement in controlling the microstructure of materials during rapid solidification processing of materials. Recent models developed to predict the growth of a dendrite in a highly supercooled melt adopt modifications that account for the interface kinetics and thermodynamics at high interface velocities, but the assumptions necessary to simplify the mathematical problem impose inherent restrictions. The assumption of straight phase boundaries adopted in early models often loses validity at high supercoolings, where phase boundaries are often curved. The use of equations with Henrian restrictions, such as the Baker-Cahn equation for the interfacial driving force and the Aziz equation for solute trapping confine these models to dilute solutions. Turnbull's collision-limited linear kinetic equation for interface growth may not apply to large interfacial driving forces. Therefore, a useful application and modification of free dendritic growth models require a thorough understanding of their limitations in producing consistent results. One of the objectives of this research is to numerically compare the free dendritic growth models derived from the earlier LGK model developed by Lipton et al. The subsequent LKT model by Lipton et al., the TLK model by Trivedi et al., and the BCT model by Boettinger et al., together with a modification of the TLK model, and the DA model by DiVenuti and Ando are compared through application to an Ag-15 mass % Cu alloy. In addition, a new model to extend the DA model is developed by incorporating a thermodynamic solution model for the calculation of the interfacial driving force, thereby eliminating the Baker-Cahn equation that limits the use of the correct BCT and DA models to dilute solutions. Direct computation of the interfacial driving force by calculating a metastable phase diagram for the Ag-Cu system using a temperature dependent subregular solution model is carried out. Comparison of the results of the new model with the DA model confirms that the Baker-Cahn equation is applicable at low solute concentrations. As a future research direction, the new model can be extended to apply to higher concentration alloys by using a new solute trapping equation to further eliminate the dilute solution limitations.

  15. Low and high frequency instabilities in an explosion-generated-plasma and possibility of wave triplet

    NASA Astrophysics Data System (ADS)

    Malik, O. P.; Singh, Sukhmander; Malik, Hitendra K.; Kumar, A.

    2015-01-01

    An explosion-generated-plasma is explored for low and high frequency instabilities by taking into account the drift of all the plasma species together with the dust particles which are charged. The possibility of wave triplet is also discussed based on the solution of dispersion equation and synchronism conditions. High frequency instability (HFI) and low frequency instability (LFI) are found to occur in this system. LFI grows faster with the higher concentration of dust particles, whereas its growth rate goes down if the mass of the dust is higher. The ion and electron temperatures affect its growth in opposite manner and the electron temperature causes this instability to grow. In addition to the instabilities, a simple wave is also observed to propagate, whose velocity is larger for larger wave number, smaller mass of the dust and higher ion temperature.

  16. Nanoscale dissolution and growth on anhydrite cleavage faces

    NASA Astrophysics Data System (ADS)

    Pina, Carlos M.

    2009-12-01

    In situ atomic force microscopy (AFM) was used to study the molecular-scale reactivity of anhydrite (1 0 0), (0 1 0), and (0 0 1) faces exposed to water and CaSO 4 aqueous solutions at room temperature. In pure water, dissolution occurs by step retreat and etch pit nucleation and growth. Both the kinetics of the step retreat and the shape of the etch pits are surface-specific and crystallographically controlled. In CaSO 4 aqueous solutions with concentrations ranging from 0.030 mol/l to 0.075 mol/l, the growth kinetics on anhydrite (1 0 0) and (0 1 0) faces was studied. Growth is also strongly controlled by crystallographic constraints and occurs exclusively from pre-existing step edges by highly anisotropic spreading of monolayers (˜3.5 Å in height). The AFM observations demonstrate that monolayer growth can occur on anhydrite (0 1 0) and (1 0 0) faces even from slightly supersaturated solutions. In addition, the comparison of the step kinetics on anhydrite faces shows that the mechanisms of step dissolution and growth are essentially the same, with the direction of migration of crystal building units being reversed at the anhydrite saturation point. Moreover, the analysis of both high resolution AFM images and lateral force microscopy (LFM) images confirms that the newly-formed monolayers are anhydrite growing in structural continuity with the original (1 0 0) and (0 1 0) surfaces. However, the formation of the first monolayers is metastable and two-dimensional nucleation and further multilayer growth of anhydrite are strongly inhibited even at high supersaturations.

  17. Morphology-selective synthesis of polyhedral gold nanoparticles: what factors control the size and morphology of gold nanoparticles in a wet-chemical process.

    PubMed

    Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi

    2007-12-15

    Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.

  18. Cadmium sulfide thin films growth by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  19. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli

    PubMed Central

    2012-01-01

    Background The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions. Results Besides trehalose as major compatible solute, R. etli CE3 also accumulated glutamate and, if present in the medium, mannitol. Putative genes for trehalose synthesis (otsAB/treS/treZY), uptake (aglEFGK/thuEFGK) and degradation (thuAB/treC) were scattered among the chromosome and plasmids p42a, p42c, p42e, and p42f, and in some instances found redundant. Two copies of the otsA gene, encoding trehalose-6-P-synthase, were located in the chromosome (otsAch) and plasmid p42a (otsAa), and the latter seemed to be acquired by horizontal transfer. High temperature alone did not influence growth of R. etli, but a combination of high temperature and osmotic stress was more deleterious for growth than osmotic stress alone. Although high temperature induced some trehalose synthesis by R. etli, trehalose biosynthesis was mainly triggered by osmotic stress. However, an otsAch mutant, unable to synthesize trehalose in minimal medium, showed impaired growth at high temperature, suggesting that trehalose plays a role in thermoprotection of R. etli. Desiccation tolerance by R. etli wild type cells was dependent of high trehalose production by osmotic pre-conditioned cells. Cells of the mutant strain otsAch showed ca. 3-fold lower survival levels than the wild type strain after drying, and a null viability after 4 days storage. Conclusions Our findings suggest a beneficial effect of osmotic stress in R. etli tolerance to desiccation, and an important role of trehalose on the response of R. etli to high temperature and desiccation stress. PMID:22985230

  20. Precipitate resolution in an electron irradiated ni-si alloy

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.

    1988-09-01

    Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.

  1. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  2. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  3. Effect of thermal implying during ageing process of nanorods growth on the properties of zinc oxide nanorod arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my

    Undoped and Sn-doped Zinc oxide (ZnO) nanostructures have been fabricated using a simple sol-gel immersion method at 95°C of growth temperature. Thermal sourced by hot plate stirrer was supplied to the solution during ageing process of nanorods growth. The results showed significant decrement in the quality of layer produced after the immersion process where the conductivity and porosity of the samples reduced significantly due to the thermal appliance. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi, E-mail: zhouyihn@163.com; Huang, Yan; Li, Dang

    Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized onmore » a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.« less

  5. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  6. In situ detection of microbial respiration in soils and salt flats. [Nevada desert

    NASA Technical Reports Server (NTRS)

    Tew, R. W.

    1973-01-01

    Increase in CO2 partial pressures over a desert soil treated with casamino-acids glucose solution correlated with bacterial growth. Few or no increases in numbers of bacteria or CO2 concentrations were noted in similar plots treated with water only or receiving no treatment. Growth in the soil appeared to be severely nutrient limited during the 10 day experiment. Especially rapid growth took place between the third and fifth day, when temperatures ranged from 0 deg. (night) to a maximum of 17.4 deg. (day). Under the conditions of the experiment, intermittent CO2 assay was an insensitive indicator of growth, possibly because of restiction of gas escape by the desert pavement or solution, exchange, or precipitation of carbonate, but more likely because of inefficient sealing of hoods to and below the soil surface. CO2 assay was unable to detect microbial successions. The unpredictable course of these successions, plus unpredictable relative retentions mitigates against assay of organic gases as reliable in situ detection of microbial activity, except perhaps in very alkaline environments such as Owens Lake salts.

  7. A Novel Method of Supplying Nutrients Permits Predictable Shoot Growth and Root : Shoot Ratios of Pre-transplant Bedding Plants

    PubMed Central

    Greenwood, Duncan J.; Mckee, John M. T.; Fuller, Deborah P.; Burns, Ian G.; Mulholland, Barry J.

    2007-01-01

    Background and Aims Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. Methods A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m−2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. Key Results For each level of nutrient supply Ws increased with time (t) in days, according to the equation ΔWs/Δt=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro≈Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. Conclusion The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions. PMID:17210608

  8. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr

    2016-06-15

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less

  9. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  10. Anisotropic growth and formation mechanism investigation of 1D ZnO nanorods in spin-coating sol-gel process.

    PubMed

    Song, Yijian; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-01-01

    ZnO nanorods are fabricated on glass substrate by spin-coating sol-gel process using non-basic aged solution and annealing. Sample solutions reserved in room temperature for different time (one day, one month, two months and four months) are prepared for the experiment. The morphology study indicates that the aging time has direct influence on the final products. This is verified by the Transmission Electron Microscopy and Photon Correlation Spectroscopy study. Small crystalline nanoparticles would gradually nucleate and aggregate in the sol during the aging process. They act as nucleation site for the secondary crystal growth into nanorods during anneal. Both the size of crystalline particles in the sol and the size of nanorods will grow bigger as the aging time increases. The products' structure and optical property are further studied by X-ray diffraction spectroscopy, Photoluminescence and Raman spectroscopy. This work also helps to further clarify the formation mechanism of ZnO nanorods by solution-based method.

  11. One-pot synthesis of triangular Ag nanoplates with tunable edge length.

    PubMed

    Zhang, Yulan; Yang, Ping; Zhang, Lipeng

    2012-11-01

    Triangular Ag nanoplates were prepared via a one-pot synthesis method by using citrate and poly (vinyl pyrolidone) (PVP). The edge length of the nanoplates was changed from 30 nm to 100 nm with increasing the concentration of PVP and the amount of sodium borohydride in aqueous solutions during preparation. The molar ratio of PVP to Ag nitrate affected the morphologies of the nanoplates. PVP plays an important role for determining the final morphologies and edge length of resulting nanoplates because the amount of PVP affected the viscosity of solutions. The viscosity of solutions kinetically controlled the nucleation and growth of Ag nanoplates. Furthermore, Ag nanoplates were not created in the case of without PVP. After adding sodium chloride, irregular Ag nanoparticles (NPs) instead of nanoplates were fabricated because of a Cl-/O2 etching process. Stacking fault was a key for the growth of triangular nanostructures. Reaction temperature and aging time also affected the formation of Ag nanoplates.

  12. The Invasion of the Giant Spore. SOLINET Preservation Program Leaflet Number 5.

    ERIC Educational Resources Information Center

    Nyberg, Sandra

    This report addresses solutions to problems of fungus growth on library materials. The first of four sections--"What Is Mold? Where Does It Come From?"--defines mold, mildew, and fungi, and describes their optimum environment (i.e., generally in conditions with temperatures above 70 degrees and relative humidity above 78%). The second…

  13. Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a video microscope camera mounted on three axis computer controlled translation stages. The fluids assembly consists of macromolecule and precipitant reservoirs, a temperature controlled growth cell and waste container, The data acquisition is achieved by using a frame-gabber, with images being stored on a hard drive. In operation, macromolecule and precipitant solution will be injected into the temperature controlled growth cell. As macromolecule crystals grow, the video microscope camera controlled by the translation stages, will be used to locate and record images of individual crystals, returning to the same crystals at specific time intervals. The images will be stored on the hard drive and used to calculate the crystal growth rate. To prevent vibrations interfering in the crystal growth rate measurements (Snell et al., 1997) Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS).

  14. Controlled Homoepitaxial Growth of Hybrid Perovskites.

    PubMed

    Lei, Yusheng; Chen, Yimu; Gu, Yue; Wang, Chunfeng; Huang, Zhenlong; Qian, Haoliang; Nie, Jiuyuan; Hollett, Geoff; Choi, Woojin; Yu, Yugang; Kim, NamHeon; Wang, Chonghe; Zhang, Tianjiao; Hu, Hongjie; Zhang, Yunxi; Li, Xiaoshi; Li, Yang; Shi, Wanjun; Liu, Zhaowei; Sailor, Michael J; Dong, Lin; Lo, Yu-Hwa; Luo, Jian; Xu, Sheng

    2018-05-01

    Organic-inorganic hybrid perovskites have demonstrated tremendous potential for the next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. Current studies are focusing on polycrystals, since controlled growth of device compatible single crystals is extremely challenging. Here, the first chemical epitaxial growth of single crystal CH 3 NH 3 PbBr 3 with controlled locations, morphologies, and orientations, using combined strategies of advanced microfabrication, homoepitaxy, and low temperature solution method is reported. The growth is found to follow a layer-by-layer model. A light emitting diode array, with each CH 3 NH 3 PbBr 3 crystal as a single pixel, with enhanced quantum efficiencies than its polycrystalline counterparts is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  16. The influence of H{sub 2}O{sub 2} concentration to the structure of silicon nanowire growth by metal-assisted chemical etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, Hafsa, E-mail: mrshafsaomar@gmail.com; Jani, Abdul Mutalib Md., E-mail: abdmutalib@perlis.uitm.edu.my; Abdullah, Saifollah, E-mail: saifollah@salam.utm.edu.my

    2016-07-06

    A simple and low cost method to produce well aligned silicon nanowires at large areas using Ag-assisted chemical etching at room temperature were presented. The structure of silicon nanowires growth by metal-assisted chemical etching was observed. Prior to the etching, the silicon nanowires were prepared by electroless metal deposited (EMD) in solution containing hydrofluoric acid and hydrogen peroxide in Teflon vessel. The silver particle was deposited on substrate by immersion in hydrofluoric acid and silver nitrate solution for sixty second. The silicon nanowires were growth in different hydrogen peroxide concentration which are 0.3M, 0.4M, 0.5M and 0.6M and 0.7M.The influencemore » of hydrogen peroxide concentration to the formation of silicon nanowires was studied. The morphological properties of silicon nanowires were investigated using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS).« less

  17. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth

    PubMed Central

    Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L.; Braslavsky, Ido

    2013-01-01

    Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

  18. Purification, crystal growth and characterization of CdSe single crystals

    NASA Astrophysics Data System (ADS)

    Burger, A.; Henderson, D. O.; Morgan, S. H.; Silberman, E.

    1991-02-01

    CdSe single crystals have been grown from the stoichiometric melt and from Se rich solutions. Here we report the first mid and far infrared spectra of CdSe crystals free of any known impurity bands. Previous studies of the lattice vibrational properties of CdSe crystals have shown the presence of two bands at 538 and 270 cm -1. Modifications in the purification and crystal growth conditions lead us to assign these two bands to a sulfur impurity. Low temperature photoluminescence spectra are also presented and discussed.

  19. Single crystal growth of 67%BiFeO 3 -33%BaTiO 3 solution by the floating zone method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Y.; Zheng, H.; Krogstad, M. J.

    The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects ofmore » CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.« less

  20. Single crystal growth of 67%BiFeO3-33%BaTiO3 solution by the floating zone method

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.

    2018-01-01

    The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.

  1. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    PubMed

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  2. Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer Ann

    1999-11-01

    The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.

  3. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport.

    PubMed

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; Olvera, María De La Luz; Maldonado, Arturo

    2012-03-12

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.

  4. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  5. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream.

    PubMed

    Liljeqvist, Maria; Ossandon, Francisco J; González, Carolina; Rajan, Sukithar; Stell, Adam; Valdes, Jorge; Holmes, David S; Dopson, Mark

    2015-04-01

    An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, S. H.

    2008-12-01

    Room-temperature friction and indentation experiments suggest fault strengthening during the interseismic period results from increases in asperity contact area due to solid-state deformation. However, field observations on exhumed fault zones indicate that solution-transport processes, pressure solution, crack healing and contact overgrowth, influence fault zone rheology near the base of the seismogenic zone. Contact overgrowths result from gradients in surface curvature, where material is dissolved from the pore walls, diffuses through the fluid and precipitates at the contact between two asperities, cementing the asperities together without convergence normal to the contact. To determine the mechanisms and kinetics of asperity cementation, we conducted laboratory experiments in which convex and flat lenses prepared from quartz single crystals were pressed together in an externally heated pressure vessel equipped with an optical observation port. Convergence between the two lenses and contact morphology were continuously monitored during these experiments using reflected-light interferometry through a long-working-distance microscope. Contact normal force is constant with an initial effective normal stress of 1.7 MPa. Four single-phase experiments were conducted at temperatures between 350 and 530C at 150 MPa water pressure, along with two controls: one single phase, dry at 425C and one bimaterial (qtz/sapphire) at 425C and 150 MPa water pressure. No contact growth or convergence was observed in either of the controls. For wet single-phase contacts, however, growth was initially rapid and then decreased with time following an inverse squared dependence of contact radius on aperture. No convergence was observed over the duration of these experiments, suggesting that neither significant pressure solution nor crystal plasticity occurred at these stresses and temperatures. The formation of fluid inclusions between the lenses indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth, a definitive indication of diffusion-limited growth. Diffusion-limited growth is also consistent with the inverse squared aperture dependence. However, the apparent activation energy is ~125 kJ/mol, much higher than expected for silica diffusion in bulk water; at present we do not have a complete explanation for the high activation energy. When our lab-measured overgrowth rates are extrapolated to the 5 to 30 micron radius contacts inferred from near-field recordings of M-2 sized earthquakes in deep drill holes and mines (i.e., SAFOD and NELSAM), we predict rates of contact area increase that are orders of magnitude faster than seen in dry, room-temperature friction experiments. This suggests that natural strength recovery should be dominated by fluid-assisted processes at hypocentral conditions near the base of the seismogenic zone.

  7. Growth and characterization of crystals for room temperature I.R. detectors and second harmonic generation devices

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1995-01-01

    One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.

  8. Aqueous solution epitaxy of CdS layers on CuInSe 2

    NASA Astrophysics Data System (ADS)

    Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortès, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D.

    1998-09-01

    Epitaxial CdS thin films have been deposited from an aqueous ammonia solution containing cadmium ions and thiourea as precursors on single crystalline CuInSe 2 films prepared by MBE on Si(1 1 1) and GaAs(1 0 0) substrates. The structure and quality of the films were investigated by RHEED, glancing angle XRD and HRTEM in cross-section. The films are cubic on (1 0 0) substrates, and mixed cubic and hexagonal on (1 1 1) substrates due to the presence of stacking faults parallel to the substrate. The growth is under surface kinetic control with an activation energy of 85 kJ mol -1. Epitaxy improves with increasing temperature and an epitaxial transition temperature at approx. 60°C is demonstrated in the selected experimental conditions. The epitaxy is very sensitive to the preparation of the surface. Beneficial effects of in situ or ex situ chemical etching are found. Similarities between aqueous solution and vapor-phase chemical depositions are pointed out.

  9. Effect of americium-241 on luminous bacteria. Role of peroxides.

    PubMed

    Alexandrova, M; Rozhko, T; Vydryakova, G; Kudryasheva, N

    2011-04-01

    The effect of americium-241 ((241)Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of (241)Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 °C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the (241)Am is discussed. The effect of (241)Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in (241)Am solutions was demonstrated; and the similarity of (241)Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Improved interface growth and enhanced flux pinning in YBCO films deposited on an advanced IBAD-MgO based template

    NASA Astrophysics Data System (ADS)

    Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.

    2018-02-01

    The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.

  11. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    PubMed

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (< or = 0.03 ppm). The new Ti-15%Zr-4%Nb-4%Ta-0.2%Pd alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  12. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  13. Method for fabricating hafnia films

    DOEpatents

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  14. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  15. Atomic layer epitaxy of YBaCuO for optoelectronic applications

    NASA Technical Reports Server (NTRS)

    Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.

    1992-01-01

    An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.

  16. A study of the piezoelectric resonance in metal organic NLO single crystals: Sodium D-isoascorbate monohydrate and Lithium L-ascorbate dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja

    2016-05-06

    Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.

  17. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  18. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  19. Segregation effects during solidification in weightless melts. [effects of evaporation and solidification on crystalization

    NASA Technical Reports Server (NTRS)

    Li, C.

    1975-01-01

    Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.

  20. Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.

  1. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.

  2. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1994-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement techniques for transport properties necessary for high fidelity modelling of crystal growth from the melt and solution. Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and development of an expedient diffusivity measurement technique for concentrated and supersaturated solutions. We have focused on developing a code to solve for interface shape, heat and species transport during directional solidification. The work involved the computation of heat, mass and momentum transfer during Bridgman-Stockbarger solidification of compound semiconductors. Domain decomposition techniques and preconditioning methods were used in conjunction with Chebyshev spectral methods to accelerate convergence while retaining the high-order spectral accuracy. During the report period we have further improved our experimental setup. These improvements include: temperature control of the measurement cell to 0.1 C between 10 and 60 C; enclosure of the optical measurement path outside the ZYGO interferometer in a metal housing that is temperature controlled to the same temperature setting as the measurement cell; simultaneous dispensing and partial removal of the lower concentration (lighter) solution above the higher concentration (heavier) solution through independently motor-driven syringes; three-fold increase in data resolution by orientation of the interferometer with respect to diffusion direction; and increase of the optical path length in the solution cell to 12 mm.

  3. Habit modification of epsomite in the presence of urea

    NASA Astrophysics Data System (ADS)

    Ramalingom, S.; Podder, J.; Narayana Kalkura, S.; Bocelli, G.

    2003-01-01

    The pure and urea doped epsomite (MgSO 4·7H 2O) crystals were grown at low temperature by the slow cooling technique. The effect of pH on the growth rate of pure MgSO 4·7H 2O was studied. It was found that the higher pH values increased the growth rate and the size of the crystals. The quantity of urea present in the doped magnesium sulphate crystals was estimated. The incorporation of urea into the mother solution was found to promote the growth rate. The habit of the crystals changed from orthorhombic to tetragonal. Further, there was an increase of microhardness of the crystals on doping of urea.

  4. Nanodevices from Nanocomponents: Memory Logic and Mechanical Nanodevices

    DTIC Science & Technology

    2009-05-11

    microemulsion method at room temperature. The microemulsion system was made up of cyclohexane, NP-5, PbSe and dimethylamine. Typically, 10 ml...30 min after the microemulsion system was formed, 100 \\i\\ dimethylamine aqueous solution (40wt %) was introduced to initiate the polymerization...growth was completed after 24 h of stirring. The nanoparticles were destabilized from the microemulsion using acetone and precipitated by

  5. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    NASA Astrophysics Data System (ADS)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  6. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    NASA Astrophysics Data System (ADS)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  7. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    NASA Astrophysics Data System (ADS)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  8. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.

    PubMed

    Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain

    2017-04-14

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  9. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    PubMed

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  10. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  11. Development of shelf stable pork sausages using hurdle technology and their quality at ambient temperature (37±1°C) storage.

    PubMed

    Thomas, R; Anjaneyulu, A S R; Kondaiah, N

    2008-05-01

    Shelf stable pork sausages were developed using hurdle technology and their quality was evaluated during ambient temperature (37±1°C) storage. Hurdles incorporated were low pH, low water activity, vacuum packaging and post package reheating. Dipping in potassium sorbate solution prior to vacuum packaging was also studied. Reheating increased the pH of the sausages by 0.17units as against 0.11units in controls. Incorporation of hurdles significantly decreased emulsion stability, cooking yield, moisture and fat percent, yellowness and hardness, while increasing the protein percent and redness. Hurdle treatment reduced quality deterioration during storage as indicated by pH, TBARS and tyrosine values. About 1 log reduction in total plate count was observed with the different hurdles as were reductions in the coliform, anaerobic, lactobacilli and Staphylococcus aureus counts. pH, a(w) and reheating hurdles inhibited yeast and mold growth up to day 3, while additional dipping in 1% potassium sorbate solution inhibited their growth throughout the 9 days storage. Despite low initial sensory appeal, the hurdle treated sausages had an overall acceptability in the range 'very good' to 'good' up to day 6.

  12. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  13. Empirical High-Temperature Calibration for the Carbonate Clumped Isotopes Paleothermometer

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.; Davis, S.; Crawshaw, J.

    2013-12-01

    The clumped isotope paleothermometer is being used in a wide range of applications related to carbonate mineral formation, focusing on temperature and fluid δ18O reconstruction. Whereas the range of typical Earth surface temperatures has been the focus of several studies based on laboratory experiments and biogenic carbonates of known growth temperatures, the clumped isotope-temperature relationship above 70 °C has not been assessed by direct precipitation of carbonates. We investigated the clumped isotope-temperature relationship by precipitating carbonates between 20 and 200°C in the laboratory. The setup consists of a pressurized vessel in which carbonate minerals are precipitated from the mixture of two solutions (CaCl2, NaHCO3). Both solutions are thermally and isotopically equilibrated before injection in the pressure vessel. Minerals precipitated in this setup generally consist of calcite. Samples were reacted with 105% orthophosphoric acid for 10 min at 90°C. The evolved CO2 was continuously collected and subsequently purified with a Porapak trap held at -35°C. Measurements were performed on a MAT 253 using the protocol of Huntington et al. (2009) and Dennis et al. (2011). Clumped isotope values from 20-90°C are consistent with carbonates that were precipitated from a CaCO3 super-saturated solution using the method of McCrea (1950). This demonstrates that the experimental setup does not induce any kinetic fractionation, and can be used for high-temperature carbonate precipitation. The new clumped isotope calibration at high temperature follows the theoretical calculations of Schauble et al. (2006) adjusted for phosphoric acid digestion at 90°C. We gratefully acknowledge funding from Qatar Petroleum, Shell and the Qatar Science and Technology Park.

  14. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  15. The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.

    2018-05-01

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  16. The microstructure and tensile properties of nitrogen containing vacuum atomized Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, G.E.; Hayden, S.Z.

    1991-02-01

    The mechanical properties and microstructure of a heat of nitrogen containing vacuum atomized A690 have been characterized. Although wrought A690 exhibits extensive grain growth during solution annealing heat treatments, only limited grain growth was observed in P/M690N{sub 2}. The presence of the nitrogen in the P/M690N{sub 2} resulted in the formation of a fine dispersion of Ti(C,N) which limited grain growth during elevated temperature exposures. The yield and ultimate tensile strength of the P/M690N{sub 2} was significantly greater than wrought A690 and elevated temperature exposures did not greatly affect the properties of the P/M690N{sub 2}. Although the P/M690N{sub 2} didmore » exhibit appreciably higher strengths than wrought A690, the ductility was not adversely affected. In general, the resulting microstructure and, hence, mechanical properties of the P/M690N{sub 2} were very stable, uniform, and reproducible, even after long-term elevated temperature exposures of up to 24 hours at 1100{degree}C. 14 refs., 5 figs., 1 tab.« less

  17. Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering.

    PubMed

    Sidebottom, D L; Tran, Tri D

    2010-11-01

    Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.

  18. Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wei, Yanhong

    2018-02-01

    A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.

  19. Vitrification

    NASA Astrophysics Data System (ADS)

    A. Takahashi, Tsuneo

    Vitrification is an alternative to customary approaches to cryopreserve cell, tissue and organ. In this method, ice formation can be prevented by a combination of high solute concentration and rapid cooling, a solution become glassy without ice crystalline formation at temperatures below-115°C. The cell and tissue damage associated with ice formation is avoided, but thawing should be rapid enough to prevent ice growth during warming and they should be equilibrated with the vitrification medium without injury. This approach has been extensively studied in the past few years, and has the potential to be an alternative approach to the cryopreservation of a wide range of biological systems.

  20. Modeling Tetragonal Lysozyme Crystal Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2003-01-01

    Tetragonal lysozyme 110 face crystal growth rates, measured over 5 orders of magnitude in range, can be described using a model where growth occurs by 2D nucleation on the crystal surface for solution supersaturations of c/c(sub eq) less than or equal to 7 +/- 2. Based upon the model, the step energy per unit length, beta was estimated to be approx. 5.3 +/- 0.4 x 10(exp -7) erg/mol-cm, which for a step height of 56 A corresponds to barrier of approx. 7 +/- 1 k(sub B)T at 300 K. For supersaturations of c/c(sub eq) > 8, the model emphasizing crystal growth by 2D nucleation not only could not predict, but also consistently overestimated, the highest observable crystal growth rates. Kinetic roughening is hypothesized to occur at a cross-over supersaturation of c/c(sub eq) > 8, where crystal growth is postulated to occur by a different process such as adsorption. Under this assumption, all growth rate data indicated that a kinetic roughening transition and subsequent crystal growth by adsorption for all solution conditions, varying in buffer pH, temperature and precipitant concentration, occurs for c/c(sub eq)(T, pH, NaCl) in the range between 5 and 10, with an energy barrier for adsorption estimated to be approx. 20 k(sub B)T at 300 K. Based upon these and other estimates, we determined the size of the critical surface nucleate, at the crossover supersaturation and higher concentrations, to range from 4 to 10 molecules.

  1. Damage evolution in viscoelastic polymers

    NASA Astrophysics Data System (ADS)

    Clements, B. E.

    2000-04-01

    Constitutive relations are derived for viscoelastic polymers. These relations are applicable to polymers for temperatures above their glass transition temperature and strain rates ranging from quasistatic up to shock regimes. Linear viscoelasticity is assumed for small tensile deformations but nonlinear effects, arising from void growth, become important at larger strains. Our void growth model is based on a generalization of Eshelby's Green's function solution to the problem of an ellipsoidal void in an elastic material. We apply our analysis to study the mechanical properties of polyvinyl acetate under dynamic loading conditions. Void concentration and aspect ratio considerations are found to be important in general deformation events. Uniaxial tension tends to favor aspect ratio change, while non-spherical voids are observed to evolve into spherical ones as tensile strain approaches triaxiality. [Research supported by the USDOE under contract W-7405-ENG-36

  2. Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds

    NASA Astrophysics Data System (ADS)

    Krishnan, Deepti; Pradeep, T.

    2009-07-01

    Shape-selected synthesis of a large number of zinc oxide (ZnO) nano- and microstructures was achieved by the seed-mediated growth of oligoaniline-coated gold nanoparticle precursors. Distinctive ZnO structures such as nanoplates, nanospheres, microstars, microflowers, microthorns and micromultipods were synthesized by this method. Slightly different shapes were obtained in the absence of the seed solution. This is a fast, low temperature (60 °C) and biomimetic route to make a wide variety of structures. The structure and morphology of the nanostructures were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized for the characterization of the nanostructures. A growth mechanism for these nanostructures was proposed based on these results. The concentrations of the reacting species were the main parameter causing the changes in the morphologies. The variation in morphologies of these structures is believed to be due to the ability of the seed solution as well as polyvinylpyrrolidone (PVP) to selectively suppress/depress the growth of certain planes, allowing growth to occur only in certain specific directions. Changes in the amount of growth nuclei with varying sodium hydroxide (NaOH) concentration is also seen to affect the morphology of these structures.

  3. Growth of single crystals of organic salts with large second-order optical nonlinearities by solution processes for devices

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1995-01-01

    Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.

  4. Warming of infusion syringes caused by electronic syringe pumps.

    PubMed

    Cornelius, A; Frey, B; Neff, T A; Gerber, A C; Weiss, M

    2003-05-01

    To evaluate inadvertent warming of the infusion syringe in four different types of electronic syringe pumps. Ambient temperature and syringe surface temperature were simultaneously measured by two electronic temperature probes in four different models of commercially available syringe pumps. Experiments were performed at an infusion rate of 1 ml h(-1) using both battery-operated and main power-operated pumps. Measurements were repeated four times with two pumps from each of the four syringe pump types at a room temperature of approximately 23 degrees C. Differences among the four syringe pump brands regarding ambient to syringe temperature gradient were compared using ANOVA. A P-value of less than 0.05 was considered statistically significant. Syringe warming differed significantly between the four syringe brands for both the battery-operated and main power-operated mode (ANOVA, P< 0.001 for both modes). Individual differences between syringe surface and ambient temperature ranged from 0.3 to 1.9 degrees C for battery operation and from 0.5 to 11.2 degrees C during main-power operation. Infusion solutions can be significantly warmed by syringe pumps. This has potential impact on bacterial growth and the stability of drug solutions and blood products infused, as well as on the susceptibility to hydrostatic pressure changes within the infusion syringe.

  5. Temperature Oscillation Modulated Self-Assembly of Periodic Concentric Layered Magnesium Carbonate Microparticles

    PubMed Central

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2⋅4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410

  6. Sweet potato growth parameters, yield components and nutritive value for CELSS applications

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Hill, W. A.; Ogbuehi, C. R.; Mortley, D. G.

    1989-01-01

    Sweet potatoes have been grown hydroponically using the nutrient film technique (NFT) to provide a potential food source for long-term manned space missions. Experiments in both sand and NFT cultivars have produced up to 1790 g/plant of fresh storage root with an edible biomass index ranging from 60-89 percent and edible biomass linear growth rates of 39-66 g/sq m day in 105 to 130 days. Experiments with different cultivars, nutrient solution compositions, application rates, air and root temperatures, photoperiods, and light intensities indicate good potential for sweet potatoes in CELSS.

  7. The Use of Selective Area Growth for the Reduction of Threading Dislocation Densities in Heteroepitaxy.

    DTIC Science & Technology

    1994-03-31

    Selective Area Growth, GaAs on Si3 1.SE Q.SWICATIQU10 IL. SEOJUFTY ISICTO 9 SEICUTY TUI& UNTATIM OF ABSTRACT OP SEP03 OF THIS PAGEI OF ABSTRACT...sides were produced by etching in a solution of 30 wt .% KOH in H20 at a temperature of -800 C using an Si0 2 pattern on the substrate to define the...energy which we associate with a bond between atoms i and j. The ni are the number of atoms of type i and the nij are the numbers of each type of bond

  8. Recent developments in the growth, processing, and testing of rare earth doped YVO{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    The production of the laser host material YVO{sub 4} via high temperature solution growth (HTSG) is described as a facile alternative for producing optical quality crystals for research. The effects of dopant concentration on optical absorption properties in 0.7% and 3% Nd:YVO{sub 4} crystals are discussed. The rare earths ions Ho{sup 3+} and Er{sup 3+} have been doped into YVO{sub 4} with the HTSG method, and inaugural optical properties of Ho{sub 0.04}Y{sub 0.96}VO{sub 4} are presented.

  9. Organized one dimensional nanomaterials: From preparations to applications

    NASA Astrophysics Data System (ADS)

    Wen, Xiaogang

    This thesis is mainly concerned with the development of organized one dimensional (1D) nanomaterials and their applications. We have synthesized Ag2S, Cu2S nanowires, Fe2O3 nanobelt and nanowire arrays and ZnO nanobelt arrays from corresponding metal substrate respectively via gas solid reaction methods under different growth conditions. The effect of various parameters including temperature, reaction time, composition of gas, surface pre-oxidation, size of source materials etc. on the growth of metal oxide/sulfide 1D nanostructure have been studied systemically. The size and morphology of these 1D nanomaterials could be rationally controlled by adjusting the growth conditions. A tip growth mechanism has been confirmed based our results. The properties including PL, Raman, field effect transistors, and field emission of these materials have been measured. Cu(OH)2 nanoribbons have been synthesized by a solution solid reaction method using Cu and Cu2S nanowires as precursors. Cu(OH) 2 nanoribbons can form well-aligned arrays on Cu substrate. Low temperature facilitate the formation of Cu(OH)2 nanoribbon arrays. Reaction conditions affect the morphology, crystal structure, even composition of the products much. CuO nanorod arrays of several nm in diameter could be synthesis in changed condition. Cu(OH)2 nanoribbon arrays are good sacrifice template for synthesizing other Cu-based 1D nanomaterials. It has been converted to CuO, Cu2O, Cu8S9, Cu etc. 1D nanostructure through different physical and chemical reaction process. Au/Cu2S core/sheath nanowires have been synthesized in solution phase via a simple template-induced redox deposition process, after removing the Cu2S template, Au nanotubes have been formed. The photoelectrochemistry (PEC) properties of it have been studied. Ag dendritic nanostructures have been prepared via solution reaction. We have revealed that the stem, branch, and sub-branch grow along <100>, <111> and <100> directions, respectively. Such a preferential growth pattern along <100> and <111> alternately lead to the formation of the Ag nanodendrites. In another development, we have synthesized unltrathin Zn nanowires (<5nm) by a vapor transport method. Small molecules are induced into the gas phase as capping reagents. In this process, the small molecules serve as capping reagents or templates to confine the lateral growth and facilitate the formation of ultrathin 1D nanostructures. (Abstract shortened by UMI.)

  10. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent noise in the interferometric data do not affect the resultant phase values. Brief comparisons of the accuracy of the WFT with other standard techniques such as conventional Fourier-filtering methods are also presented.

  11. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  12. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO2 films prepared at low temperature

    NASA Astrophysics Data System (ADS)

    Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  13. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, Sergiy; Livescu, Daniel

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  14. Factors influencing inactivation of Klebsiella pneumoniae by chlorine and chloramine.

    PubMed

    Goel, Sudha; Bouwer, Edward J

    2004-01-01

    Inactivation of Klebsiella pneumoniae cultures by chlorine and chloramine was evaluated under different growth conditions by varying nutrient media dilution, concentrations of essential inorganic nutrients (FeCl3, MgSO4, phosphate, and ammonium salts), and temperature. All inactivation assays were performed at room temperature (22-23 degrees C) and near neutral pH (7.2-7.5). C*T(99.9) values for chlorine increased >20-fold and for chloramine increased 2.6-fold when cells were grown in 100-fold diluted nutrient broth (2NB) solutions (final TOC of 35-40 mg/L). Background levels of Mg: 6.75 x 10(-2) mM and Fe: 3.58 x 10(-5) mM or high levels of FeCl3 (0.01 mM) and MgSO4 (1 mM) during growth resulted in the highest resistances to chlorine with C*T(99.9) values of 13.06 (+/-0.91) and 13.78 (+/-1.97) mg-min/L, respectively. Addition of low levels of FeCl3 (0.001 mM) and MgSO4 (0.1 mM) to K. pneumoniae cultures during growth resulted in the lowest bacterial resistances to inactivation; C*T(99.9) values ranged from 0.28 (+/-0.06) to 1.88 (+/-0.53)mg-min/L in these cultures. Increase in growth temperature from 22.5 degrees C to 35 degrees C for unamended 2NB cultures resulted in a 42-fold decrease in C*T(99.9) values for chlorine. A similar change in temperature resulted in no significant change in C*T(99.9) values for chloramine. These results indicate that inactivation of K. pneumoniae cultures by chlorine was highly sensitive to changes in growth conditions unlike inactivation by chloramine.

  15. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGES

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  16. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  17. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    NASA Astrophysics Data System (ADS)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  18. Fatigue properties of an 1421 aluminum alloy processed by ECAE

    NASA Astrophysics Data System (ADS)

    Mogucheva, A.; Kaibyshev, R.

    2010-07-01

    Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of ~4 at a temperature of 325°C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was ~80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al3Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of ~185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K1c, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.

  19. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    PubMed

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  20. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  1. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  2. Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schwuttke, G. H. (Inventor)

    1979-01-01

    A saturated solution of silicon and an element such as carbon having a segregation coefficient less than unity is formed by placing a solid piece of carbon in a body of molten silicon having a temperature differential decreasing toward the surface. A silicon carbide seed crystal is disposed on a holder beneath the surface of the molten silicon. As a rod or ribbon of silicon is slowly pulled from the melt, a supersaturated solution of carbon in silicon is formed in the vicinity of the seed crystal. Excess carbon is emitted from the solution in the form of silicon carbide which crystallizes on the seed crystal held in the cool region of the melt.

  3. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  4. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport

    PubMed Central

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; De La Luz Olvera, María; Maldonado, Arturo

    2012-01-01

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution. PMID:28817056

  5. Effect of Ternary Solutes on the Evolution of Structure and Gel Formation in Amphiphilic Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Meznarich, Norman Anthony Kang

    Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) amphiphilic triblock copolymers (commercially known as Pluronic surfactants) undergo reversible and temperature-dependent micellization and arrangement into cubic ordered lattices known as "micelle gels". The macroscopic behavior of the ordering is a transition from a liquid to a gel. While the phase behavior and gel structure of pure Pluronic surfactant solutions have been well studied, less is known about the effects of added ternary solutes. In this dissertation, a comprehensive investigation into the effects of the added pharmaceutical methylparaben on solutions of F127 ranging from 10 to 30 wt% was conducted in order to better understand the behavior of F127 in multicomponent pharmaceutical formulations. The viscoelastic properties of F127 gel formation were studied using rheometry, where heating rates of 0.1, 1, and 10 degrees C/min were also used to probe the kinetics of the gel transition. In solutions containing methylparaben, F127 gelation occurred at up to 15 degrees C lower temperatures and was accelerated by a factor of three to four. Small angle x-ray scattering (SAXS) was used to characterize the structure of the ordered domains, and how they were affected by the presence of dissolved pharmaceuticals. It was found that ordered domain formation changed from heterogeneous nucleation and growth to possible homogeneous nucleation and growth. A roughly 2% reduction in the cubic lattice parameter was also observed for solutions containing methylparaben. Differential scanning calorimetry (DSC) experiments were performed on a series of different Pluronic surfactants in order to characterize the micellization behavior as a function of PPO center block length and PEO/PPO ratio. Added methylparaben suppressed the micellization endotherm, the degree of suppression depending linearly on the amount of added methylparaben, as well as the length of the PPO center block and PEO/PPO ratio. This dissertation yielded a thorough characterization of the changes in micellization and gelation behavior in F127 gels as a result of added pharmaceuticals. Previously unobserved behavior such as the onset of ordered domain formation in F127 gels was observed, and a greater understanding of the interactions between amphiphilic copolymer solutions and dissolved solutes was achieved.

  6. Project Description and Publications List for UAH CMMR

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1999-01-01

    This research combines a state of the art X-ray Transmission Microscope, XTM, with a specially designed x-ray transparent horizontal Bridgman furnace to image (with resolutions up to 3 micrometers) the solidification of metal alloys in real-time. The objective is to obtain real-time dynamic data to provide direct measure of the solute profile in the liquid, phase coalescence and growth in the liquid, and the detailed interface morphology (e,g., dendrites and cells) during solidification. We are also enhancing the XTM data with precise solid-liquid interfacial temperature and the thermal gradient measurement techniques, and working on the application of this technology to the study of the fundamentals of solidification in microgravity. Over the last several years we have successfully imaged in real-time: interfacial-morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid. Interfacial undercoolings are being measured either with a special Seebeck furnace or with micro-thermocouple arrays we are developing. These later techniques are presently being incorporated with the XTM furnace. This last year emphasized the investigation of the solute layer in the melt during solidification. Methods were developed to quantify the solute concentrations using x-ray absorption and to compare to predictions from simulations. In addition, work is being completed on a brass-board portable XTM that incorporates a vertical Bridgman furnace.

  7. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE PAGES

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  8. New connection method for isolating and disinfecting intraluminal path during peritoneal dialysis solution-exchange procedures.

    PubMed

    Grabowy, R S; Kelley, R; Richter, S G; Bousquet, G G; Carr, K L

    1998-01-01

    Microbiological data have been collected on the performance of a new method of isolating and disinfecting the intraluminal path at the connect/disconnect site of a peritoneal dialysis (PD)-exchange pathway. High-temperature moist-heat (HTMH) disinfection is accomplished by a new device that uses microwave energy to heat the solution contained in the pressure-tight inner lumen of PD connector pairs between the transfer-set connector-clamp and the bag-connector break-away seal. An 85 degrees C (S.D. = 2.4 degrees C, n = 10) rise in solution temperature is seen in 12 seconds, thus yielding temperatures under pressure well over 100 degrees C with starting temperatures of 25 degrees C. Connector pairs were prepared by inoculation of a solution suspension containing at least 10(6) colony-forming units (CFU) of a test micro-organism. Approximately 0.4 mL of solution was contained within the mated connector pair. Using standard D-value determination methods, data were obtained for surviving organisms versus five exposure times and a positive control to obtain a population reduction curve. Four micro-organisms (S. epidermidis, P. aeruginosa, C. albicans, and A. niger) recognized to be among the most prevalent or problematic in causing peritonitis were tested. After microwave heating, the treated solution was aseptically withdrawn from the connector pair using a needle and syringe, plated in growth media, and incubated. Population counts of CFUs after incubation were used to establish survival curves. Results showed a tenfold population reduction in less than 3 seconds for all organisms tested. A 30-second cycle time safely achieves a > 10(8) population-reduction for bacteria and yeast organisms, and a > 10(7) population reduction for fungi. One potential benefit of using this new intraluminal disinfection method is that it may help reduce peritonitis resulting from the even more problematic pathogens such as the gram-negative bacteria and fungal organisms.

  9. Three dimensional modeling of cirrus during the 1991 FIRE IFO 2: Detailed process study

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.

    1993-01-01

    A three-dimensional model of cirrus cloud formation and evolution, including microphysical, dynamical, and radiative processes, was used to simulate cirrus observed in the FIRE Phase 2 Cirrus field program (13 Nov. - 7 Dec. 1991). Sulfate aerosols, solution drops, ice crystals, and water vapor are all treated as interactive elements in the model. Ice crystal size distributions are fully resolved based on calculations of homogeneous freezing of solution drops, growth by water vapor deposition, evaporation, aggregation, and vertical transport. Visible and infrared radiative fluxes, and radiative heating rates are calculated using the two-stream algorithm described by Toon et al. Wind velocities, diffusion coefficients, and temperatures were taken from the MAPS analyses and the MM4 mesoscale model simulations. Within the model, moisture is transported and converted to liquid or vapor by the microphysical processes. The simulated cloud bulk and microphysical properties are shown in detail for the Nov. 26 and Dec. 5 case studies. Comparisons with lidar, radar, and in situ data are used to determine how well the simulations reproduced the observed cirrus. The roles played by various processes in the model are described in detail. The potential modes of nucleation are evaluated, and the importance of small-scale variations in temperature and humidity are discussed. The importance of competing ice crystal growth mechanisms (water vapor deposition and aggregation) are evaluated based on model simulations. Finally, the importance of ice crystal shape for crystal growth and vertical transport of ice are discussed.

  10. In Vitro Conservation of Date Palm Shoot-Tip Explants and Callus Cultures Under Minimal Growth Conditions.

    PubMed

    El-Dawayati, Maiada M

    2017-01-01

    Date palm fruit production has great economic significance for many countries. There is a fundamental necessity to conserve valuable date palm germplasm, but there are various problems with in vivo and ex situ conservation. In vitro storage has several advantages over conventional germplasm conservation methods. The in vitro technique offers a developed method of slow-growth storage, which is considered as an alternate solution for short- and medium-term storage of date palm germplasm under controlled conditions. Minimal growth conditions for germplasm conservation are generally achieved by reducing growth rate through modification of environmental growing conditions and culture, by using low temperatures, and the addition of growth retardants and osmotic agents. This chapter describes a protocol for short-term in vitro conservation of date palm shoot-tip and callus cultures under slow-growth storage conditions, using sucrose as an osmotic agent and abscisic acid (ABA) as a growth retardant at 15 °C for 12 months.

  11. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  12. Velocity shear Kelvin-Helmholtz instability with inhomogeneous DC electric field in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Kaur, Rajbir; Pandey, R. S.

    2018-01-01

    In this paper parallel flow velocity shear Kelvin-Helmholtz instability has been studied in two different extended regions of the inner magnetosphere of Saturn. The method of the characteristic solution and kinetic approach has been used in the mathematical calculation of dispersion relation and growth rate of K-H waves. Effect of magnetic field (B), inhomogeneity (P/a), velocity shear scale length (Ai), temperature anisotropy (T⊥ /T||), electric field (E), ratio of electron to ion temperature (Te /Ti), density gradient (εnρi) and angle of propagation (θ) on the dimensionless growth rate of K-H waves in the inner magnetosphere of Saturn has been observed with respect to k⊥ρi . Calculations of this theoretical analysis have been done taking the data from the Cassini in the inner magnetosphere of Saturn in the two extended regions of Rs ∼4.60-4.01 and Rs ∼4.82-5.0. In our study velocity shear, temperature anisotropy and magnitude of the electric field are observed to be the major sources of free energy for the K-H instability in both the regions considered. The inhomogeneity of electric field, electron-ion temperature ratio, and density gradient have been observed playing stabilizing effect on K-H instability. This study also indicates the effect of the vicinity of icy moon Enceladus on the growth of K-H instability.

  13. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  14. Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures

    PubMed Central

    2010-01-01

    A new thermographic phosphor based on chromium(III)-doped yttrium aluminum borate (YAB) is obtained as single crystals by high temperature flux growth and as a microcrystalline powder via solution combustion synthesis. The phosphor is excitable both in the blue (λmax 422 nm) and in the red part of the spectrum (λmax 600 nm) and shows bright NIR emission. The brightness of the phosphor is comparable to that of a well-known lamp phosphor Mn(IV)-doped magnesium fluorogermanate. At ambient temperatures, the Cr(III)-doped YAB shows high temperature dependence of the luminescence decay time, which approaches 1% per deg. The material shows no decrease in luminescence intensity at higher temperatures. The new phosphor is particularly promising for applications in temperature-compensated optical chemosensors (including those based on NIR-emitting indicators) and in pressure-sensitive paints. PMID:20473368

  15. Growth of Tungsten Bronze Family Crystals

    DTIC Science & Technology

    1989-03-01

    BaTiO, exhibits several plane.’ s A wide range of solid solutions can be obtained structural transitions, and it has a room-temperature tetrag- by...hiro117Ccrystals are as tbilbis Tu ngst en Hri nze (’’mpi s itiotis 71ungst en Hirwnze Ci injw site ’i ( It The\\~ are molticompi nent and siilid -siilut in svs...cttntrol temperature instabilitY because of poor .0OD-10.1i :NG t-St. G-0 IoCA, LSA.( .. Is...asSO* Ihermal (otnduc(ti\\ it ,. -"o~ s . .. O"oA’’ Ci(o~ ’ing

  16. Dynamics of Magnesite Formation at Low-Temperature and High pCO2 in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Dixon, David A.; Rosso, Kevin M.

    2015-09-17

    Like many metal carbonate minerals, despite conditions of supersaturation, precipitation of magnesite from aqueous solution is kinetically hindered at low temperatures, for reasons that remain poorly understood. The present study examines precipitation products from reaction of Mg(OH)2 in aqueous solutions saturated with supercritical CO2 at high pressures (90 atm and 110 atm) and low temperatures (35 °C and 50 °C). Traditional bulk characterization (X-ray diffraction) of the initial solid formed indicated the presence of hydrated magnesium carbonates (hydromagnesite and nesquehonite), thermodynamically metastable phases that were found to slowly react during ageing to the more stable anhydrous form, magnesite, at temperaturesmore » as low as 35 °C (135-140 days) and at a faster rate at 50 °C (56 days). Undetected by bulk measurements, detailed examination of the precipitates by scanning electron microscopy (SEM) showed that magnesite is present as a minor component at relatively early reaction times (7 days) at 50 °C. In addition to magnesite dominating the solid phases over time, we find that mangesite nucleation and growth occurs more quickly with increasing partial pressure of CO2, and in electrolyte solutions with high bicarbonate content. Furthermore, formation of magnesite was found to be enhanced in sulfate-rich solutions, compared to chloride-rich solutions. We speculate that much of this behavior is possibly due to sulfate serving as sink of protons generated during carbonation reactions. These results support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of carbon dioxide sequestration on subsurface formations at long time scales.« less

  17. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Metal-organic vapor phase epitaxy of (GaAl)As for 0.85-μm laser diodes

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.

    1988-11-01

    Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.

  18. Polypyrrole polyvinylidene difluoride composite stripe and zigzag actuators for use in facial robotics

    NASA Astrophysics Data System (ADS)

    Tadesse, Yonas; Priya, Shashank; Ramannair Chenthamarakshan, C.; de Tacconi, Norma R.; Rajeshwar, Krishnan

    2008-04-01

    Composite stripe and zigzag actuators consisting of a sandwich polypyrrole (PPy)/polyvinylidene difluoride (PVDF)/PPy structure were synthesized using potentiodynamic film growth on gold electrodes. The synthesis was done from an aqueous solution containing tetrabutylammonium perchlorate and pyrrole by polymerization at room temperature. The actuator displacement was modeled using finite element simulations. For depositing thin PPy films and thereby minimizing the response time, experimental optimization of the deposition conditions was performed. The number of current-potential (potentiodynamic) growth cycles and the thickness of the deposited PPy film were highly correlated in the initial stages of polymer film growth. The actuation response measurements indicate that the zigzag shaped actuators provide promising properties to develop artificial muscle.

  19. Stability of Hydrocortisone Preservative-Free Oral Solutions.

    PubMed

    Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël

    2015-01-01

    The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.

  20. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  1. Description of concept and first feasibility test results of a life support subsystem of the Botany Facility based on water reclamation

    NASA Technical Reports Server (NTRS)

    Loeser, H. R.

    1986-01-01

    The Botany Facility allows the growth of higher plants and fungi over a period of 6 months maximum. It is a payload planned for the second flight of the Eureca platform around 1990. Major tasks of the Life Support Subsystem (LSS) of the Botany Facility include the control of the pressure and composition of the atmosphere within the plant/fungi growth chambers, control of the temperature and humidity of the air and the regulation of the soil water content within specified limits. Previous studies have shown that various LSS concepts are feasible ranging from heavy, simple and cheap to light, complex and expensive solutions. A summary of those concepts is given. A new approach to accomplish control of the temperature and humidity of the air within the growth chambers based on water reclamation is discussed. This reclamation is achieved by condensation with a heat pump and capillary transport of the condensate back into the soil of the individual growth chamber. Some analytical estimates are given in order to obtain guidelines for circulation flow rates and to determine the specific power consumption.

  2. Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in Ribes multiflorum ssp. sandalioticum (Grossulariaceae).

    PubMed

    Mattana, E; Pritchard, H W; Porceddu, M; Stuppy, W H; Bacchetta, G

    2012-01-01

    Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kit ex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S) of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA(3), 250 mg · l(-1)) and warm stratification (25 °C for 3 months) followed by low temperature (<15 °C) enhanced embryo growth rate (maximum of ca. 0.04 mm · day(-1) at 10 °C) and subsequent seed germination (radicle emergence; ca. 80% at 10 °C). Low germination occurred at warmer temperatures, and cold stratification (5 °C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca. 2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA(3) . Seeds of this species showed non-deep simple (root) - non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W.

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX 3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX 3) that feature red-shifted emission and better thermal stability compared to MAPbX 3. We demonstrate optically pumped room-temperature near-infrared (~820 nm) and green lasing (~560more » nm) from FAPbI 3 (and MABr-stabilized FAPbI 3) and FAPbBr 3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500–2300. More remarkably, the FAPbI 3 and MABr-stabilized FAPbI 3 nanowires display durable room-temperature lasing under ~10 8 shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI 3 (~10 7 laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI 3 and (FA,MA)Pb(I,Br) 3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.« less

  4. Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure.

    PubMed

    Li, Yang; Xu, Zheng; Zhao, Suling; Qiao, Bo; Huang, Di; Zhao, Ling; Zhao, Jiao; Wang, Peng; Zhu, Youqin; Li, Xianggao; Liu, Xicheng; Xu, Xurong

    2016-09-01

    Alternative low-temperature solution-processed hole-transporting materials (HTMs) without dopant are critical for highly efficient perovskite solar cells (PSCs). Here, two novel small molecule HTMs with linear π-conjugated structure, 4,4'-bis(4-(di-p-toyl)aminostyryl)biphenyl (TPASBP) and 1,4'-bis(4-(di-p-toyl)aminostyryl)benzene (TPASB), are applied as hole-transporting layer (HTL) by low-temperature (sub-100 °C) solution-processed method in p-i-n PSCs. Compared with standard poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) HTL, both TPASBP and TPASB HTLs can promote the growth of perovskite (CH 3 NH 3 PbI 3 ) film consisting of large grains and less grain boundaries. Furthermore, the hole extraction at HTL/CH 3 NH 3 PbI 3 interface and the hole transport in HTL are also more efficient under the conditions of using TPASBP or TPASB as HTL. Hence, the photovoltaic performance of the PSCs is dramatically enhanced, leading to the high efficiencies of 17.4% and 17.6% for the PSCs using TPASBP and TPASB as HTL, respectively, which are ≈40% higher than that of the standard PSC using PEDOT:PSS HTL. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.

  6. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    PubMed

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  7. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    PubMed Central

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211

  8. Phase diagram of a crystalline protein: Determination of the solubility of concanavalin A by a microquantitation assay

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Giegé, Richard

    1989-09-01

    A quick and miniature method has been devised for determining protein solubility and used to investigate the equilibrium solubility of concanavalin A from the Jack Bean with its crystals as a function of ammonium sulfate concentration, temperature and pH. The crystals were characterized by X-ray diffraction and their morphologies related to the corresponding solubilities. The protein solution concentration was estimated out of small crystallizing drops using a rapid and sensitive microassay. Measurements of protein quantity were carried out in 96-well microplates in an automatic spectrophotometer. The resulting phase diagram has permitted to analyse the solubility of concanavalin A, to estimate supersaturation and to devise readily new ways of crystal growth of this lectin, namely by pH and temperature variations. Moreover, the approach is proved to be a valuable tool to design crystallization experiments of new molecules and to improve and control protein crystal growth.

  9. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  10. The formation of CdS quantum dots and Au nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Schmidt, Ella; Bergmann, Christoph

    Abstract We report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 μs. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionicmore » assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25°C to 45°C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment- free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed.« less

  11. Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite

    NASA Astrophysics Data System (ADS)

    van Aken, D. C.; Krajewski, P. E.; Vyletel, G. M.; Allison, J. E.; Jones, J. W.

    1995-06-01

    Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter.

  12. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification

    PubMed Central

    Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene

    2017-01-01

    Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991

  13. Extension of Ostwald Ripening Theory

    NASA Technical Reports Server (NTRS)

    Baird, J.; Naumann, R.

    1985-01-01

    The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.

  14. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    NASA Astrophysics Data System (ADS)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  15. Experimental Study of Sr Partitioning into Calcite at Various Linear Growth Rates and Temperatures: Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Watson, B. E.

    2004-05-01

    The surface of a crystal in equilibrium with surrounding fluid can have a composition that differs from the bulk crystal. If growth rate of the crystal exceeds a minimum value at which partitioning-equilibrium can be maintained, then the crystal surface composition may be "captured" by the newly-formed lattice. The degree of this entrapment increases with increasing crystal growth rate. Non-equlibrium partitioning of Sr into calcite probably occurs by this entrapment mechanism. Sr and calcite are geochemically significant in understanding the thermal history of the ocean because the substitution of Sr for Ca in calcite is temperature dependent. To improve our understanding of the partitioning of Sr into calcite, we conducted two different types of experiment: 1) calcite growth from Sr-bearing solution with analysis of the crystal cross-section by electron microprobe (bulk crystal-liquid runs); and 2) treatment of calcite cleavage surfaces with Sr-bearing solutions and examination of the top few nm surface layer by X-ray photoelectron spectroscopy (surface-liquid runs). In the series of bulk-liquid experiments crystals were grown by three different procedures: 1) precipitation on glass slide (pre-coated with calcite), where a steady flow of CaCl2 - SrCl2 and Na2CO3 solutions were mixed just before passage through a tube and allowed to drip onto a slide ("cave"-type experiments, ionic strength I=0.01); 2) growth from a CaCl2 - NH4Cl - SrCl2 solution by diffusion of CO2 from an ammonium carbonate source ("drift" experiments, I=0.52); 3) coarsening of small calcite crystals in the CaCO3-SrCO3-NaCl-H2O system at 800-950° C and 0.5-1 kb in a cold seal apparatus. The growth rate of individual crystals was determined by periodic monitoring of crystal size with time or roughly by comparison of final size with duration of the experiment. Surface-liquid experiments were performed by treatment of cleavage surfaces of natural calcite fragments in a Sr(ClO4)2 solution for 1 minute. After treatment the remaining solution was blown out by a stream of nitrogen to preclude the precipitation of Sr phase. We observed that the precipitated calcite crystals can be very different in size even if the runs have the same input rate of calcite components. The cave-type and cold-seal runs yielded 15-40 μ m calcites, but in the drift experiments crystal size varied between 60 μ m and 1 mm. Electron microprobe analysis across the large crystals show that the concentration of Sr is higher in the center and decreases toward the edge. This is probably due to the cube-root dependence of radial growth on the volume change of the growing crystals. Like previous workers who measured bulk uptake of Sr as a function of precipitation rate, we observed that increased growth rate (V, nm/s) enhances Sr uptake into the crystal, raising Kdbulk/liquid=(Sr/Ca)bulk/(Sr/Ca)liquid. Kdbulk/liquid = 0.03 to 0.06 when log(V)=-1.1 to -0.6 at 25° C in the cave-type runs (I=0.01). At higher ionic strength (I=0.52) and T=55° C, Kdbulk/liquid=0.11 to 0.15 when log(V)=-0.6 to 0.4 in the drift experiments. XPS analysis of surface-liquid experiments yielded higher Kdsurface/liquid=(Sr/Ca)surface/(Sr/Ca)liquid values compared with Kdbulk/liquid. This combined evidence supports the idea that Sr is enriched at the calcite surface relative to the bulk crystal during crystal growth.

  16. Synthesis and Physical Properties Characterization of CdSe1-ySy Nanolayers Deposited by Chemical Bath Deposition at Low-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Contreras-Rascón, J. I.; Diaz-Reyes, J.; Castillo-Ojeda, R. S.

    In this work, we present the synthesis and structural and optical characterizations of CdSe1-y S y deposited by chemical bath deposition (CBD) technique on corning glass at a temperature of 20 ± 2 °C. The sulfur molar fraction was varied from 0 to 42.13 %, which was realized by varying the thiourea volume added to the growth solution in the range from 0 to 30 mL. The chemical stoichiometry was estimated by energy dispersive spectrometry (EDS). The CdSe1-y S y showed hexagonal wurtzite crystalline phase that was found by X-ray diffraction (XRD) analysis and Raman spectroscopy. The average grain size range of the films was 1.48-1.68 nm that was determined using the Debye-Scherrer equation W(002) direction and was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behavior and the multipeaks adjust to the first optical longitudinal mode for the CdSeS, in all cases, Raman spectra show two dominant vibrational bands about 208 and 415 cm-1 associated at CdSe-1LO-like and CdSe-2LO-like. CdSe1-y S y band gap energy can be varied from 1.86 to 2.16 eV by varying the thiourea volume added in growth solution in the investigated range obtained by transmittance measurements at room temperature. The room temperature photoluminescence shows a dominant radiation band at about 3.0 eV that can be associated with exciton bonded to donor impurity and the quantum confinement because of the grain size is less than the Bohr radius.

  17. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    DOE PAGES

    Avila, Jason R.; DeMarco, Erica J.; Emery, Jonathan D.; ...

    2014-07-21

    Through in-situ quartz crystal microbalance (QCM) monitoring we resolve the growth of a self-assembled monolayer (SAM) and subsequent metal oxide deposition with high resolution. Here, we introduce the fitting of mass deposited during each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables quantification of growth inhibition, nucleation density, and the uninhibited ALD growth rate. A long-chain alkanethiol was self-assembled as a monolayer on gold-coated quartz crystals in order to investigate its effectiveness as a barrier to ALD. Compared to solution-loading, vapor-loading is observed to produce a SAM with equal or greater inhibition-ability in minutes vs. days.more » The metal oxide growth temperature and the choice of precursor also significantly affect the nucleation density, which ranges from 0.001 to 1 sites/nm 2. Finally, we observe a minimum 100 cycle inhibition of an oxide ALD process, ZnO, under moderately optimized conditions.« less

  18. Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Gu, Cheng; Liu, Yun; Wei, Yanhong

    2017-10-01

    A cellular automaton (CA)-finite difference model is developed to simulate dendrite growth and solute diffusion during solidification process in the molten pool of Al-Cu alloy. In order to explain the interaction between the dendritic growth and solute distribution, a series of CA simulations with different solute diffusion velocity coefficients are carried out. It is concluded that the solute concentration increases with dendrite growing and solute accumulation in the dendrite tip. Converged value of the dendrite tip growth velocity is about 480 μm/s if the mesh size is refined to 2 μm or less. Growth of the primary dendrite and the secondary dendrite is mainly influenced by solute diffusion at the dendrite tips. And growth of secondary and tertiary dendrites is mainly influenced by solute diffusion at interdendrite.

  19. Numerical and Experimental Study of Transport Phenomena in Directional Solidification of Succinonitrile

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C., III; Yao, Minwu

    1994-01-01

    A numerical and experimental study of the growth of succinonitrile (SCN) using a horizontal Bridginan furnace and transparent glass ampoule was conducted. Two experiments were considered: one in which the temperature profile was fixed relative to the ampoule (no-growth case); and a second in which the thermal profile was translated at a constant rate (steady growth case). Measured temperature profiles on the outer surface of the ampoule were used as thermal boundary conditions for the modelling. The apparent heat capacity formulation combined with the variable viscositymeth was used to model the phase change in SeN. Both 2-D and 3-D models were studied and numerical solutions obtained using the commercial finite element code, FIDAP1. Comparison of the numerical results to experimental data showed excellent agreement. The complex 3-D shallow-cavity flow in the melt, differences between 2-D and 3-D models, effects of natural convection on the thermal gradient and shape of the solid/liquid interface, and the sensitivity of simulations to specific assumptions, are also discussed.

  20. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block.

    PubMed

    Fan, Bin; Liu, Lei; Li, Jun-Huan; Ke, Xi-Xian; Xu, Jun-Ting; Du, Bin-Yang; Fan, Zhi-Qiang

    2016-01-07

    Crystallization-driven self-assembly of polyethylene-b-poly(tert-butylacrylate) (PE-b-PtBA) block copolymers (BCPs) in N,N-dimethyl formamide (DMF) was studied. It is found that all three PE-b-PtBA BCPs used in this work can self-assemble into one-dimensional crystalline cylindrical micelles. When the BCP solution is cooled to crystallization temperature (Tc) from 130 °C, the seed micelles may be produced via two competitive processes in the initial period: stepwise micellization/crystallization and simultaneous crystallization/micellization. Subsequently, the seed micelles can undergo growth driven by the epitaxial crystallization of the unimers. The lengths of both the seed micelles and the grown micelles are longer for the BCP with a longer PtBA block at a higher Tc. Quasi-living growth of the PE-b-PtBA crystalline cylindrical micelles is achieved at a higher Tc. A longer PtBA block evidently retards the attachment of unimers to the crystalline micelles, leading to a slower growth rate.

  1. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism.

  2. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    NASA Astrophysics Data System (ADS)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  3. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  4. Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.

    PubMed

    Inoue, Tohru; Misono, Takeshi

    2008-10-15

    The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.

  5. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  6. Microstructure and Hardness of Mg - 9Li - 6Al Alloy After Different Variants of Solid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Haipeng; Fei, Pengfei; Wu, Ruizhi; Hou, Legan; Zhang, Milin

    2018-03-01

    The microstructure and the hardness of cast magnesium alloy Mg - 9% Li - 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 - 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

  7. Bioregenerative life support systems for microgravity

    NASA Technical Reports Server (NTRS)

    Nevill, Gail E., Jr.; Hessel, Michael I., Jr.; Rodriguez, Jose; Morgan, Steve (Editor)

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence.

  8. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  9. Morphogenesis and crystallization of ZnS microspheres by a soft template-assisted hydrothermal route: synthesis, growth mechanism, and oxygen sensitivity.

    PubMed

    Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai

    2009-01-05

    Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.

  10. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  11. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics.

    PubMed

    Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang

    2016-01-08

    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  12. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  13. Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics

    NASA Astrophysics Data System (ADS)

    Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.

    2014-10-01

    In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.

  14. Synthesis of porous carbon nanofiber with bamboo-like carbon nanofiber branches by one-step carbonization process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho

    2017-04-01

    Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.

  15. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  16. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    NASA Astrophysics Data System (ADS)

    Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  17. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  18. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  19. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Gregory Kia Liang; Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg; Huang, Tang Jiao

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantlymore » increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.« less

  20. Effect of solute concentration on grain boundary migration with segregation in stainless steel and model alloys

    NASA Astrophysics Data System (ADS)

    Kanda, H.; Hashimoto, N.; Takahashi, H.

    The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M.; Afaah, A. N.

    In this work, solution-immersion method was used to grow ZnO rods on PMMA-coated substrate. For this purpose, 0.15 M of zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}.6H{sub 2}O) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}) were used to growth of ZnO films at different annealing temperatures (room temperature, 80, 100, 120 and 140 °C). The morphology of the films was investigated by Scanning Electron Microscope (SEM) and optical properties were studied by Ultraviolet (UV-Vis) Spectroscopy. SEM analysis showed ubiquitous growth of ZnO rods that became better aligned and more closely-packed as the annealing temperature increased. As the annealing temperature exceeds 100 °C,more » the rods tend to merge to adjacent particles and the UV absorption decreased for the sample at higher temperatures (120 °C and 140 °C). Good absorption and better orientation of ZnO was obtained for the sample annealed at 100 °C due to the film possess better distribution and these improved orientation of particles caused the light to be effectively scattered on the sample. Both surface morphology and UV was significantly affected by the change in annealing temperatures thus thermal effect played a dominant role in shaping and improving the orientation of ZnO rods on PMMA-coated and its UV absorption.« less

  2. On the Growth of Ice in Aqueous Solutions Contained in Capillaries

    NASA Astrophysics Data System (ADS)

    Pruppracher, H. R.

    1967-06-01

    The growth rate of ice in supercooled water and in dilute aqueous solutions of various salts which dissociate in water into univalent ions was studied. The solutions contained in polyethylene tubes of small bore had concentrations between 10-6 and 10-1 moles liter-1 and were investigated at bath supercoolings between 1° and 15°C. The growth rate of ice which in pure water was found to vary approximately with the square of the bath supercooling was affected in a systematic manner by the type and concentration of the salt in solution. At salt concentrations smaller than 5 × 10-2 moles liter-1 most salts did not affect the growth rate. However, the fluorides were found to increase the growth rate over and above the one in pure water. At concentrations larger than 5 × 10-2 moles liter-1 all the salts reduced the growth rate of ice below the one in pure water. By comparing solutions of salts with common anion it was found that at a particular bath supercooling and salt concentration the growth rate of ice was reduced most in lithium solutions and least in cesium and ammonium solutions. By comparing solutions of salts with common cation it was found that the growth rate of ice was reduced most in fluoride solutions and least in bromide solutions. It was concluded that in solutions with salt concentrations larger than 5 × 10-2 moles liter-1 the rate of dissipation of latent heat which controls the growth rate of ice is affected in a systematic manner by the freezing point lowering effects which result from pure mass transfer conditions prevailing at the ice-solution interface of a stagnant system. Some features of the observed growth rates are discussed in terms of the effect of dissolved salts on the growth forms of ice in aqueous solutions.

  3. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  4. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L.

    PubMed

    Mimmo, Tanja; Hann, Stephan; Jaitz, Leonhard; Cesco, Stefano; Gessa, Carlo Emanuele; Puschenreiter, Markus

    2011-11-01

    Root exudates influence significantly physical, chemical and biological characteristics of rhizosphere soil. Their qualitative and quantitative composition is affected by environmental factors such as pH, soil type, oxygen status, light intensity, soil temperature, plant growth, nutrient availability and microorganisms. The aim of the present study was to assess the influence of growth substrate and plant age on the release of carboxylates from Lupinus albus L. and Brassica napus L. Both plant species were studied in continuously percolated microcosms filled with either sand, soil or sand + soil (1:1) mixture. Soil solution was collected every week at 7, 14, 21, 28 and 35 days after planting (DAP). Carboxylate concentrations were determined by reversed-phase liquid chromatography - electrospray ionization - time of flight mass spectrometry (LC-ESI-TOFMS). Oxalate, citrate, succinate, malate and maleate were detected in soil solutions of both plant species. Their concentrations were correlated with the physiological status of the plant and the growth substrate. Oxalate was the predominant carboxylate detected within the soil solution of B. napus plants while oxalate and citrate were the predominant ones found in the soil solutions of L. albus plants. The sampling determination of carboxylates released by plant roots with continuous percolation systems seems to be promising as it is a non-destructive method and allows sampling and determination of soluble low molecular weight organic compounds derived from root exudation as well as the concentration of soluble nutrients, which both might reflect the nutritional status of plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.

    PubMed

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Díaz, C Ignacio; Stodieck, Louis S

    2011-04-05

    We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.

  6. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less

  7. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  8. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making.

    PubMed

    Benito, S; Palomero, F; Morata, A; Calderón, F; Suárez-Lepe, J A

    2009-01-01

    The growth of Dekkera/Brettanomyces yeasts during the ageing of red wines-which can seriously reduce the quality of the final product-is difficult to control. The present study examines the hydroxycinnamate decarboxylase/vinylphenol reductase activity of different strains of Dekkera bruxellensis and Dekkera anomala under a range of growth-limiting conditions with the aim of finding solutions to this problem. The yeasts were cultured in in-house growth media containing different quantities of growth inhibitors such as ethanol, SO(2), ascorbic acid, benzoic acid and nicostatin, different sugar contents, and at different pHs and temperatures. The reduction of p-coumaric acid and the formation of 4-ethylphenol were periodically monitored by HPLC-PDA. The results of this study allow the optimization of differential media for detecting/culturing these yeasts, and suggest possible ways of controlling these organisms in wineries.

  9. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated crystal that is observed in pure ice under high pressure and low temperature is reproduced in ice under the influence of sbwAFP at ambient pressure and temperatures near 0 °C.

  10. Aqueous Nucleation and Growth of Titanium Oxides Using Time-Resolved Synchrotron X- ray Diffraction

    NASA Astrophysics Data System (ADS)

    Hummer, D. R.; Heaney, P. J.; Post, J. E.

    2006-05-01

    The inorganic precipitation of oxide minerals in soil environments has profound effects on a variety of geochemical processes. These include the removal of metals from the aqueous phase, the production of coatings that reduce the reactive surface area of pre-existing mineral grains, and the generation of feedstocks for microbial metabolic reactions. Recent observations of transient, metastable phases during the growth of oxide crystallites has raised questions about their role in crystallization mechanisms, and created a need for more detailed structural measurements. To better understand the process of nucleation and growth, we investigated the crystallization of Ti oxides from aqueous 0.5 M TiCl4 solutions using synchrotron X-ray diffraction at temperatures of 100 and 150 °C. Solutions were heated in a 1.0 mm internal diameter quartz glass capillary sealed with epoxy. Powder diffraction patterns of the growing crystallites were collected using image plate technology with a time step of ~ 4 minutes, providing high resolution in situ measurements of structural changes during the crystallization process. The data indicate a co-precipitation of the two crystalline phases anatase and rutile within the first 30 minutes of heating, followed by a gradual phase transition from anatase to rutile during particle coarsening throughout the 10 hour duration of an experiment. The co-existence of anatase and rutile at the onset of crystallization lends additional support to the assertion of nearly identical free energies for anatase and rutile at the nanoscale, believed to be due to the prominence of surface energy effects (Ranade et al., 2001). Whole pattern analyses using the Rietveld refinement method also documented previously unobserved changes in lattice parameters of both phases during growth, on the order of 0.2-0.3 % expansion for each axis. The trends in lattice parameters are observed to be temperature dependent, generally having lower values at higher crystallization temperature. In addition to increased surface energy, these small but measurable structural changes may be partially responsible for the observed reversals in thermodynamic stability between crystalline Ti oxide phases at very small particle sizes.

  11. Relationship between supersaturation ratio and supply rate of solute in the growth process of monodisperse colloidal particles and application to AgBr systems.

    PubMed

    Shiba, Fumiyuki; Okawa, Yusuke

    2005-11-24

    Supersaturation ratio, S, has been theoretically related to the supply rate of solute, Q, from growth rate and mass-balance equations in the quasi-steady state in the growth process of isotropic monodisperse particles. The derived equation, (S - 1) = (1/D + 1/kr)(Q/betaC(0)nr) + 2V(m)gamma/rRT, suggests a linear dependence of S on Q under constant n and r, where D is the diffusion coefficient, k is the rate constant for surface-reaction, C(0) is the solubility, n and r are the number and radius of growing particles, respectively, V(m) is the molar volume of particles, R is the gas constant, T is the absolute temperature, and beta is the shape factor defined by beta identical with (1/r(2)) dupsilon/dr, where upsilon is the volume of an individual particle. The equation was applied to the analysis of growth kinetics and determinations of critical supersaturation ratio in monodisperse AgBr particles in the controlled double-jet system with the assistance of a potentiometric supersaturation measurement. In both cubic and octahedral particles, growth rates were completely limited by diffusion and surface-reaction at pBr ( identical with -log[Br(-)]) 3.0 and 1.0, respectively, while the growths were intermediate of them at pBr 2.0 and 4.0. The growth parameters, DC(0) and kC(0), were experimentally determined. Also, critical supersaturation ratio was estimated as 1.28 as an average in the present study.

  12. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  13. Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films

    NASA Astrophysics Data System (ADS)

    Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria

    2018-02-01

    The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.

  14. Crystallization of proteins by dynamic control of supersaturation. Ph.D. Thesis Semiannual Status Report, 21 Mar. - 20 Sep. 1990

    NASA Technical Reports Server (NTRS)

    Wilson, Lori June

    1990-01-01

    The growth of protein crystals is known to be the limiting factor in the determination of the three-dimensional structures of most proteins. It is expected that the kinetics of supersaturation, which is directly related to solvent evaporation, will affect protein crystal growth and nucleation and accordingly determine the quality, number, size, and morphology of the crystals. With a technique that controls the evaporation of solvent from a protein solution with N2(g) it is possible to determine the effect of different evaporation profiles on hen egg white lysozyme crystals. Hen egg white lysozyme was chosen as the model protein because it crystallizes easily and has solubility data available for most salt, pH, and temperature ranges. Commercially available lysozyme was further purified by a number of methods. Crystals grown with the purified lysozyme and with the unpurified lysozyme in citrate buffer were different shapes but were found to be of the same symmetry space group by precession photos. Differences were seen in the lysozyme crystals grown using different evaporation rates. At three of the four initial conditions for lysozyme crystal growth, longer evaporation times yielded better crystals. The evaporation times required to see a change in the appearance of the crystals was much longer than expected. The number of rates studied so far represent only a small fraction of the ones now available with the gas evaporation device. The technique also provides for control of both solution pH and temperature which are related to the solubilities of proteins.

  15. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  16. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  17. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Evaluation of the In Vitro Effect of Gold Nanorod Aspect Ratio, Surface Charge and Chemistry on Cellular Association and Cytotoxicity

    DTIC Science & Technology

    2016-03-28

    Synthesis of GNRs ..............................................................................................................3 3.2 PEG...chemistry we can enhance their biocompatibility while maintaining their cellular uptake. 3 3.0 METHODS 3.1 Synthesis of GNRs MTAB GNRs (MTAB-1...chlorauric acid (0.1 M) was combined at room temperature with a growth solution of CTAB (0.1 M), chlorauric acid (0.1 M) silver nitrate (0.1 M) ascorbic

  19. Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo

    2003-01-01

    Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well characterized, the constituent metals are available in a very pure form, and the thermophysical properties are well known. During solidification of hypoeutectic alloys, e.g., 55 wt pct Pb, the primary dendrites reject the less dense tin, and for the hypereutectic alloys, e.g., 75 wt pct Sn, the primary dendrites reject denser lead. Alloys were prepared by melting appropriate amounts of lead and tin in a glass crucible after which the homogeneous liquid was sucked directly into 5-mm i.d. glass tubes. The sample tube, containing approximately 30 cm of alloy, was then mechanically driven into the directional solidification furnace assembly and positioned such that approx. 20 cm of the sample was remelted. Subsequently, directional solidification was initiated by withdrawing the sample through a water-cooled jacket at a constant growth velocity of 2 ,microns/s. After 5 to 6 cm of growth, the sample was quickly removed from the furnace and quenched in a water bath to preserve the solid-liquid interface. Samples were directionally solidified vertically upward, nearly horizontally, and some in conjunction with an applied axial rotation of the crucible. Temperature gradients at the solid-liquid interface were measured with an in-siru K-type thermocouple. Solidified samples were cut perpendicular and parallel to the growth direction and conventionally prepared for microscopic examination.

  20. Moist heat intraluminal disinfection of CAPD connectors.

    PubMed

    Fessia, S L; Grabowy, R S; Bousquet, G G

    1990-01-01

    A moist heat technique for disinfecting the inner lumen of commercially available connectology used in the exchange process for Continuous Ambulatory Peritoneal Dialysis (CAPD) was evaluated. Moist heat was generated by a device (PDM-1) that directed microwave energy to heat a sample solution containing a concentration of 10(6) microorganisms inside a pair of mated plastic CAPD connectors. Microorganisms tested included those most prevalent and most problematic in causing peritonitis. Testing, performed according to F.D.A. approved standards, involved heating a sample solution and then placing the sample solution into vials which were then sealed and incubated. Absolute determination of growth versus no growth was measured by macroscopic observation. Positive control samples were performed in the same manner but were not exposed to heat. Negative controls were performed in the same manner in the absence of test organisms. At temperatures of approximately 100 degrees C a D-value of 6.6 seconds was determined using the organism found the most thermoresistant. A cycle time of 54 seconds appeared sufficient to achieve a 10(6) population reduction of all microorganisms tested. The moist heat technique offers a safe, effective method for disinfection of the inner lumen of CAPD connectors.

  1. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  2. Analysis of composite ablators using massively parallel computation

    NASA Technical Reports Server (NTRS)

    Shia, David

    1995-01-01

    In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.

  3. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability

    DOE PAGES

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W.; ...

    2016-01-04

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX 3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX 3) that feature red-shifted emission and better thermal stability compared to MAPbX 3. We demonstrate optically pumped room-temperature near-infrared (~820 nm) and green lasing (~560more » nm) from FAPbI 3 (and MABr-stabilized FAPbI 3) and FAPbBr 3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500–2300. More remarkably, the FAPbI 3 and MABr-stabilized FAPbI 3 nanowires display durable room-temperature lasing under ~10 8 shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI 3 (~10 7 laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI 3 and (FA,MA)Pb(I,Br) 3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.« less

  4. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.

    PubMed

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song

    2016-02-10

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  5. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  6. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  7. Theoretical aspects of stress corrosion cracking of Alloy 22

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Macdonald, Digby D.

    2018-05-01

    Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.

  8. Characterization of Methane Hydrate Growth from Aqueous Solution by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chou, I.; Lu, W.; Yuan, S.; Li, J.; Burruss, R. C.

    2009-12-01

    We observed the growth of methane hydrate from aqueous solution in fused silica capillaries near room temperature (RT) in two different experiments. In the first, we sealed methane together with ~2 wt% Na2SO4 solution in a fused silica capillary (0.3x0.3 mm cross-section with 0.05x0.05 mm cavity, and ~6 cm long), using the method of Chou et al. (2008, Geochim. Cosmochim. Acta, 72, 2517). The hydrate, liquid, and vapor coexist at ~23 °C and ~36.5 MPa. The behavior of two methane bubbles, one of which was enclosed by a hydrate crystal and the other near a small hydrate crystal, was monitored. These two bubbles are the only methane sources near the hydrate crystals. The system was slowly cooled to RT (~21 °C), and images were recorded continuously for a period of ~1.5 hours, together with temperature and time information. The images show the exposed bubble decreased in size, while both of the hydrate crystals increased in size, which was caused by the transfer of methane in solution. According to our previous report (Fig. 8 of Lu et al., 2008, Geochim. Cosmochim. Acta, 72, 412), the concentrations of methane in the solution near the exposed bubble are higher than those near the hydrate crystals. Most of the dissolved methane, transferred down the concentration gradient, was consumed and encaged in the nearby crystal, with only a small fraction of methane being consumed by the more distant crystal. Eventually, the exposed vapor bubble was totally consumed, but the bubble shielded by the hydrate crystal remained. This shows hydrate can grow from dissolved methane in the solution far away from free gas. In the 2nd experiment, we sealed methane, together with pure H2O and glass beads (0.04 to 0.07 mm in dia.), in a fused silica capillary (0.3 mm OD, 0.1 mm ID, and ~6 cm long) using the method cited above. We separated the vapor phase from the solution and glass beads by centrifuging the sealed capsule, then imposed a T gradient to the sample by cooling the solution end of the capsule to ~0 °C. It is difficult to recognize the nucleation and growth of hydrate crystals under a microscope, but Raman spectroscopy was used to identify and map the distribution of hydrate crystals along the capsule. Near the original vapor-aqueous phase boundary (V-A B), Raman signals show 100% methane hydrate. However, the lack of dissolved methane in the solution further away from the V-A B limited the growth of hydrate, as indicated by the increase in water/hydrate ratio when the Raman spectrum, which combines signals from both water and hydrate, was collected further away from the V-A B. We are investigating other possible ways to map the distribution of hydrate crystals around the glass beads, including x-ray computed tomography, to understand the nature of methane hydrate crystals that grow around grains in marine sediments from pore water. These observations will improve our ability to interpret the geophysical responses (e.g., electric and acoustic signals) obtained from hydrate-bearing sediments in the field.

  9. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study

    NASA Technical Reports Server (NTRS)

    Hill, J.; Douglas, D.; David, P.; Mortley, D.; Trotman, A.; Bonsi, C.

    1996-01-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions.

  10. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility.

    PubMed

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J

    2013-11-27

    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (<2 V) is possible with ION:IOFF = 10(7), SS = 125 mV/dec, near-zero Vth, and large electron mobility, μFE(avg) = 20.6 ± 4.3 cm(2) V(-1) s(-1), μFE(max) = 50 cm(2) V(-1) s(-1). Furthermore, X-ray diffraction analysis indicates that the 300 °C IGZO combustion processing leaves the underlying Hf-SAND microstructure and capacitance intact. This work establishes the compatibility and advantages of all-solution, low-temperature fabrication of inkjet-printed, combustion-derived high-mobility IGZO TFTs integrated with self-assembled hybrid organic-inorganic nanodielectrics.

  11. Synthesis and characterization of nanostructured bismuth selenide thin films.

    PubMed

    Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong

    2010-12-07

    Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).

  12. Growth and characterization of organic layers deposited on porous-patterned Si surface

    NASA Astrophysics Data System (ADS)

    Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz

    2017-01-01

    The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.

  13. Rapid photogeneration of silver nanoparticles in ethanolic solution: a kinetic study.

    PubMed

    Yahyaei, Bahareh; Azizian, Saeid

    2013-01-15

    Ag nanoparticles have been synthesized via UV irradiation of ethanolic solution of AgNO3 in presence of pluronic F127 surfactant. This study is aimed at developing a rapid, simple and green method to prepare Ag nanoparticles and understanding its generation kinetics. The formation dependency of silver nanoparticles on the concentration of reactants, UV exposure time and temperature has been investigated by using UV-vis spectroscopy. The 2D map technique has been used for the first time to estimate the switching time between the nucleation and growth of Ag nanoparticles. Appropriate kinetic models were used for modelling of both stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Convective and morphological instabilities during crystal growth: Effect of gravity modulation

    NASA Technical Reports Server (NTRS)

    Coreill, S. R.; Murray, B. T.; Mcfadden, G. B.; Wheeler, A. A.; Saunders, B. V.

    1992-01-01

    During directional solidification of a binary alloy at constant velocity in the vertical direction, morphological and convective instabilities may occur due to the temperature and solute gradients associated with the solidification process. The effect of time-periodic modulation (vibration) is studied by considering a vertical gravitational acceleration which is sinusoidal in time. The conditions for the onset of solutal convection are calculated numerically, employing two distinct computational procedures based on Floquet theory. In general, a stable state can be destabilized by modulation and an unstable state can be stabilized. In the limit of high frequency modulation, the method of averaging and multiple-scale asymptotic analysis can be used to simplify the calculations.

  15. Kinetically-controlled template-free synthesis of hollow silica micro-/nanostructures with unusual morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2014-04-01

    We report a kinetically-controlled template-free room-temperature production of hollow silica materials with various novel morphologies, including tubes, crutches, ribbons, bundles and bells. The obtained products, which grew in a well-controlled manner, were monodispersed in shape and size. The role of ammonia, sodium citrate, polyvinylpyrrolidone, chloroauric acid and NaCl in shape control is discussed in detail. The oriented growth of these micro-/nanostructures directed by reverse micelles followed a solution-solution-solid (SSS) mechanism, similar to the classic vapor-liquid-solid mechanism. The evolution processes of silica rods, tubes, crutches, bundles and bells were recorded using transmission electron microscopy to prove the SSS mechanism.

  16. rhEGF-containing thermosensitive and mucoadhesive polymeric sol-gel for endoscopic treatment of gastric ulcer and bleeding.

    PubMed

    Maeng, Jin Hee; So, Jung Won; Kim, Jungju; Kim, In Ae; Jung, Ji Hoon; Min, Kyunghyun; Lee, Don Haeng; Yang, Su-Geun

    2014-03-01

    Gastrointestinal endoscopy is a standard diagnostic tool for gastrointestinal ulcers and cancer. In this study, we have developed recombinant human epidermal growth factor-containing ulcer-coating polymeric sol-gel for endoscopic application. Chitosan and pluronic F127 were employed for their thermoresponsive and bioadhesive properties. At temperatures below 21, polymeric sol-gel remains liquid during endoscopic application and transforms to gel at body temperature after application on ulcers. In an in vitro cellular wounding assay, recombinant human epidermal growth factor sol-gel significantly enhanced the cell migration and decreased the wounding area (68%) compared to nontreated, recombinant human epidermal growth factor solution, and sol-gel without recombinant human epidermal growth factor (42, 49, and 32 % decreased at day 1). The in vivo ulcer-healing study was performed in an acetic acid-induced gastric ulcer rat model and proved that our recombinant human epidermal growth factor endoscopic sol-gel facilitated the ulcer-healing process more efficiently than the other treatments. Ulcer sizes in the recombinant human epidermal growth factor sol-gel group were decreased 2.9- and 2.1-fold compared with those in the nontreated group on days 1 and 3 after ulceration, respectively. The mucosal thickness in the recombinant human epidermal growth factor sol-gel group was significantly increased compared to that in the nontreated group (3.2- and 6.9-fold on days 1 and 3 after ulceration, respectively). In a gastric retention study, recombinant human epidermal growth factor sol-gel stayed on the gastric mucosa more than 2 h after application. The present study suggests that recombinant human epidermal growth factor sol-gel is a prospective candidate for treating gastric ulcers via endoscopic application.

  17. Aboveground mechanical stimuli affect belowground plant-plant communication.

    PubMed

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  18. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  19. Numerical Simulations of Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.; Abbaschian, Reza

    1999-01-01

    The directional solidification of a dilute binary alloy (Bi-1.0 at.%Sn)is investigated. Results are obtained at a gravity level of I pg. Computations are performed in two dimensions with a fixed, non-uniform grid. The simulation involves a solution of the species concentration equation (modified to account for solute rejection at the interface) and energy equation (modified to account for phase-change) for both the solid and liquid phases, in addition to the constitutive equations for describing convective flow in the melt. The effects of conductive heat transfer in the ampoule and in a capillary tube in the sample are included. To gauge the effects of including this growth capillary tube in the apparatus, simulations both with and without the capillary tube are presented and compared. Fully transient simulations have been performed; no simplifying steady-state approximations are used, however, the influence of solute on the melting temperature at the interface is not included. Both thermal and solutal convective cells are seen to form. Convective velocities are significantly damped inside the capillary, causing less segregation due to convection. As solidification proceeds beyond the capillary tube, longitudinal segregation arises as a result of the change in cross-sectional area of solidifying material. The magnitudes of the velocities in this cell increase significantly once the solid/liquid front passes beyond the end of the capillary tube; this causes a corresponding increase in the level of radial solute segregation in the solidified material.

  20. The Scale Formation of Barite (BaSO4) from Laminar Flowing Water in The Presence of Tartaric Acid and Ba2+ Concentration Variation of Solution

    NASA Astrophysics Data System (ADS)

    Fatra, F.; Ivanto, G.; Dera, N. S.; Muryanto, S.; Bayuseno, A. P.

    2017-05-01

    The barite (BaSO4) scale is a mineral deposit that can be precipitated during the process of drilling oil and gas in the offshore. Deposite scale in pipes can cause a narrowing of the diameter of pipes, and can reduce water flowing in the pipe. The aim of this study is to investigation the effect of the tartaric acid additive and Ba2+ concentration on the growth o the scale formation of barite in the laminar flow of the piping system. Solution forming barite crystal was prepared by mixing equimolar solutions of barium chloride (BaCl2) and sodium sulfate (Na2SO4) with concentration variations of Ba2+ of 3000, 3500, 4000, 4500, and 5000 ppm. The flow rate of solution is 40 ml/min at temperature of 50 °C. Various concentrations of tartaric acid (C4H6O6) of 0 ppm, 5 ppm and 10 ppm were added to the solutions. The formation of barite from the solution was observed by ion conductivity measurement. The obtained barite crystals before and after adding tartaric acid were dried and characterized by using SEM/EDX for morphology and elemental analysis, and XRD for phase identification. The SEM results show that the morphology of the crystals are star-like particles, while XRD analysis confirmed that the barite crystals were produced during the experiments are high purity. Moreover, the tartaric acid can inhibit the crystal growth of barite.

  1. Coupling Effects of Melt Treatment and Ultrasonic Treatment on Solidifying Microstructure and Mechanical Performance of Ti44Al6Nb1Cr Alloy

    NASA Astrophysics Data System (ADS)

    Deshuang, Zheng; Ruirun, Chen; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu

    2018-02-01

    The coupling effects of melt treatment and ultrasonic treatment on the solidifying microstructure and mechanical performance of Ti44Al6Nb1Cr alloy are investigated. During melt treatment, a low superheat degree is beneficial for microstructure refinement, with the lamellar colony size decreasing from 512 to 243 μm, while a low cooling rate leads to the microstructure coarsening as the lamellar colony size enlarges from 458 to 615 μm. After coupling with ultrasonic treatment, under moderate superheat degree and cooling rate, the original coarse lamellar colony size is significantly refined to 56 and 38 μm, the compressive strength is improved by 60.71 and 47.89 pct, and the compressive strain is enlarged by 80.19 and 112.33 pct, respectively. It is found that the ultrasonic refining efficiency is dominated by the melt temperature, and there is an optimum temperature range near the crystallization temperature: a too-high temperature leads to the remelting of crystal nuclei, impairing the refining efficiency, whereas a too-low temperature results in high viscosity, hindering the ultrasonic effects. Under ultrasonic treatment, the melt supercooling is increased, leading to an extended constitutional supercooling region, which will enlarge the crystal nucleation; the solute enrichment is enhanced, forming a quasi-steady state with a higher solution concentration gradient, which improves the crystal growth velocity.

  2. A drug-compatible and temperature-controlled microfluidic device for live-cell imaging.

    PubMed

    Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny; Coudreuse, Damien

    2016-08-01

    Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. © 2016 The Authors.

  3. A drug-compatible and temperature-controlled microfluidic device for live-cell imaging

    PubMed Central

    Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny

    2016-01-01

    Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. PMID:27512142

  4. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  5. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  6. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  7. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    PubMed Central

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  8. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  9. Formation of natural gypsum megacrystals in Naica, Mexico

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan Manuel; Villasuso, Roberto; Ayora, Carlos; Canals, Angels; Otálora, Fermín

    2007-04-01

    Exploration in the Naica mine (Chihuahua, Mexico) recently unveiled several caves containing giant, faceted, and transparent single crystals of gypsum (CaSO4•2H2O) as long as 11 m. These large crystals form at very low supersaturation. The problem is to explain how proper geochemical conditions can be sustained for a long time without large fluctuations that would trigger substantial nucleation. Fluid inclusion analyses show that the crystals grew from low-salinity solutions at a temperature of ˜54 °C, slightly below the one at which the solubility of anhydrite equals that of gypsum. Sulfur and oxygen isotopic compositions of gypsum crystals are compatible with growth from solutions resulting from dissolution of anhydrite previously precipitated during late hydrothermal mineralization, suggesting that these megacrystals formed by a self-feeding mechanism driven by a solution-mediated, anhydrite-gypsum phase transition. Nucleation kinetics calculations based on laboratory data show that this mechanism can account for the formation of these giant crystals, yet only when operating within the very narrow range of temperature identified by our fluid inclusion study. These singular conditions create a mineral wonderland, a site of scientific interest, and an extraordinary phenomenon worthy of preservation.

  10. The Effect of Stabilization Treatments on Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.; Ellis, David L.

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 or 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments can also decrease creep capability. In this study, a systematic variation of stabilization temperature and time was investigated to determine its effect on 1300 F tensile and, more importantly, creep behavior. Dwell crack growth rates were also measured for selected stabilization conditions. As these advanced disk alloys may be given a supersolvus solution or a subsolvus solution heat treatment for a given application, it was decided that both options would be studied.

  11. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  12. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE PAGES

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; ...

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  13. The role of amorphous precursors in the crystallization of La and Nd carbonates

    NASA Astrophysics Data System (ADS)

    Vallina, Beatriz; Rodriguez-Blanco, Juan Diego; Brown, Andrew P.; Blanco, Jesus A.; Benning, Liane G.

    2015-07-01

    Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion.Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01497b

  14. On type B cyclogenesis in a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Grotjahn, Richard

    2005-01-01

    A quasi-geostrophic (QG) model is used to approximate some aspects of 'type B' cyclogenesis as described in an observational paper that appeared several decades earlier in this journal. Though often cited, that earlier work has some ambiguity that has propagated into subsequent analyses. The novel aspects examined here include allowing advective nonlinearity to distort and amplify structures that are quasi-coherent and nearly stable in a linear form of the model; also, separate upper and lower structures are localized in space. Cases are studied separately where the upper trough tracks across different low-level features: an enhanced baroclinic zone (stronger horizontal temperature gradient) or a region of augmented temperature. Growth by superposition of lower and upper features is excluded by experimental design. The dynamics are evaluated with the vertical motion equation, the QG vorticity equation, the QG perturbation energy equation, and 'potential-vorticity thinking'. Results are compared against 'control' cases having no additional low-level features. Nonlinearity is examined relative to a corresponding linear calculation and is generally positive. The results are perhaps richer than the seminal article might imply, because growth is enhanced not only when properties of the lower feature reinforce growth but also when the lower feature opposes decay of the upper feature. For example, growth is enhanced where low-level warm advection introduces rising warm air to oppose the rising cold air ahead of the upper trough. Such growth is magnified when adjacent warm and cold anomalies have a strong baroclinic zone between them. The enhanced growth triggers an upstream tilt in the solution whose properties further accelerate the growth.

  15. Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Han, Shengnan; Zhang, Jingwei; Song, Jiageng; Hao, Chongyan; Deng, Manjiao; Ge, Lingjing; Gu, Zhengfei; Liu, Xinyu

    2018-02-01

    Abnormal grain growth (AGG) has been a common phenomenon during the ceramic or metallurgy processing since prehistoric times. However, usually it had been very difficult to grow big single crystal (centimeter scale over) by using the AGG method due to its so-called occasionality. Based on the AGG, a solid-state crystal growth (SSCG) method was developed. The greatest advantages of the SSCG technology are the simplicity and cost-effectiveness of the technique. But the traditional SSCG technology is still uncontrollable. This article first summarizes the history and current status of AGG, and then reports recent technical developments from AGG to SSCG, and further introduces a new seed-free, solid-state crystal growth (SFSSCG) technology. This SFSSCG method allows us to repeatedly and controllably fabricate large-scale single crystals with appreciable high quality and relatively stable chemical composition at a relatively low temperature, at least in (K0.5Na0.5)NbO3(KNN) and Cu-Al-Mn systems. In this sense, the exaggerated grain growth is no longer 'Abnormal' but 'Normal' since it is able to be artificially controllable and repeated now. This article also provides a crystal growth model to qualitatively explain the mechanism of SFSSCG for KNN system. Compared with the traditional melt and high temperature solution growth methods, the SFSSCG method has the advantages of low energy consumption, low investment, simple technique, composition homogeneity overcoming the issues with incongruent melting and high volatility. This SFSSCG could be helpful for improving the mechanical and physical properties of single crystals, which should be promising for industrial applications.

  16. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.

    PubMed

    Cochrane, T T; Cochrane, T A

    2016-01-01

    To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.

  17. MOVPE growth and transport characterization of Bi2-xSbxTe3-ySey films

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Shchamkhalova, B. S.; Jitov, V. A.; Temiryazev, A. G.; Sizov, V. E.; Yapaskurt, V. O.

    2018-02-01

    We present a first study of films of the quaternary Bi2-xSbxTe3-ySey solid solutions on (0 0 0 1) sapphire substrates grown by atmospheric pressure MOVPE. Trimethylbismuth, trimethylantimony, diisopropylselenide and diethyltelluride were used as precursors. To passivate the free bonds of the substrate and to improve the epitaxy, a thin (15 nm) ZnTe buffer layer was first grown. EDX analysis of the films grown at a temperature of 445 °C and about 10-fold excess of chalcogen in the vapor phase indicates on their compliance with V2VI3 stoichiometry. AFM and SEM investigations showed that at the initial stage of deposition the Stranski-Krastanov growth mode is dominant. Complete coalescence of nanoislands occurs at a thickness about 60 nm and further film formation is in the 2D layer-by-layer growth mode. A high mole fraction of antimony in the vapor phase leads to bad crystalline quality of the films and even to their discontinuity. Transport properties of the Bi2-xSbxTe3-ySey films were evaluated using Van der Pauw Hall effect measurements in the range of temperatures of 10-300 K. Some films are always n- or p-type; in other samples the change of conductivity from p- to n-type was observed when the temperature decreases.

  18. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  19. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells.

    PubMed

    Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J

    2017-07-14

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.

  20. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    PubMed

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  1. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    PubMed

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  2. Phase separation within NiSiN coatings during reactive HiPIMS discharges: A new pathway to grow NixSi nanocrystals composites at low temperature

    NASA Astrophysics Data System (ADS)

    Keraudy, J.; Boyd, R. D.; Shimizu, T.; Helmersson, U.; Jouan, P.-Y.

    2018-10-01

    The precise control of the growth nanostructured thin films at low temperature is critical for the continued development of microelectronic enabled devices. In this study, nanocomposite Ni-Si-N thin films were deposited at low temperature by reactive high-power impulse magnetron sputtering. A composite Ni-Si target (15 at.% Si) in combination with a Ar/N2 plasma were used to deposit films onto Si(0 0 1) substrates, without any additional substrate heating or any post-annealing. The films microstructure changes from a polycrystalline to nanocomposite structure when the nitrogen content exceeds 16 at.%. X-ray diffraction and (scanning) transmission electron microscopy analyses reveal that the microstructure consists of nanocrystals, NixSi (x > 1) 7-8 nm in size, embedded in an amorphous SiNx matrix. It is proposed that this nanostructure is formed at low temperatures due to the repeated-nucleation of NixSi nanocrystals, the growth of which is restricted by the formation of the SiNx phase. X-ray photoelectron spectroscopy revealed the trace presence of a ternary solid solution mainly induced by the diffusion of Ni into the SiNx matrix. Four-probe electrical measurements reveal all the deposited films are electrically conducting.

  3. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  4. Intrinsic noise analysis and stochastic simulation on transforming growth factor beta signal pathway

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Ouyang, Qi

    2010-10-01

    A typical biological cell lives in a small volume at room temperature; the noise effect on the cell signal transduction pathway may play an important role in its dynamics. Here, using the transforming growth factor-β signal transduction pathway as an example, we report our stochastic simulations of the dynamics of the pathway and introduce a linear noise approximation method to calculate the transient intrinsic noise of pathway components. We compare the numerical solutions of the linear noise approximation with the statistic results of chemical Langevin equations, and find that they are quantitatively in agreement with the other. When transforming growth factor-β dose decreases to a low level, the time evolution of noise fluctuation of nuclear Smad2—Smad4 complex indicates the abnormal enhancement in the transient signal activation process.

  5. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  6. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  7. The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures.

    PubMed

    Syu, Chien-Hui; Chien, Po-Hsuan; Huang, Chia-Chen; Jiang, Pei-Yu; Juang, Kai-Wei; Lee, Dar-Yuan

    2017-01-01

    Limited information is available on the effects of gallium (Ga) and indium (In) on the growth of paddy rice. The Ga and In are emerging contaminants and widely used in high-tech industries nowadays. Understanding the toxicity and accumulation of Ga and In by rice plants is important for reducing the effect on rice production and exposure risk to human by rice consumption. Therefore, this study investigates the effect of Ga and In on the growth of rice seedlings and examines the accumulation and distribution of those elements in plant tissues. Hydroponic cultures were conducted in phytotron glasshouse with controlled temperature and relative humidity conditions, and the rice seedlings were treated with different levels of Ga and In in the nutrient solutions. The growth index and the concentrations of Ga and In in roots and shoots of rice seedlings were measured after harvesting. A significant increase in growth index with increasing Ga concentrations in culture solutions (<10mgGaL -1 ) was observed. In addition, the uptake of N, K, Mg, Ca, Mn by rice plants was also enhanced by Ga. However, the growth inhibition were observed while the In concentrations higher than 0.08mgL -1 , and the nutrients accumulated in rice plants were also significant decreased after In treatments. Based on the dose-response curve, we observed that the EC 10 (effective concentration resulting in 10% growth inhibition) value for In treatment was 0.17mgL -1 . The results of plant analysis indicated that the roots were the dominant sink of Ga and In in rice seedlings, and it was also found that the capability of translocation of Ga from roots to shoots were higher than In. In addition, it was also found that the PT 10 (threshold concentration of phytotoxicity resulting in 10% growth retardation) values based on shoot height and total biomass for In were 15.4 and 10.6μgplant -1 , respectively. The beneficial effects on the plant growth of rice seedlings were found by the addition of Ga in culture solutions. In contrast, the In treatments led to growth inhibition of rice seedlings. There were differences in the phytotoxicity, uptake, and translocation of the two emerging contaminants in rice seedlings. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Growth and optoelectronic characteristic of n-Si/p-CuIn(S 1-xSe x) 2 thin-film solar cell by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-07-01

    The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.

  9. Numerical simulation of heat and mass transport during space crystal growth with MEPHISTO

    NASA Technical Reports Server (NTRS)

    Yao, Minwu; Raman, Raghu; Degroh, Henry C., III

    1995-01-01

    The MEPHISTO space experiments are collaborative United States and French investigations aimed at understanding the fundamentals of crystal growth. Microgravity experiments were conducted aboard the USMP-1 and -2 missions on STS-52 and 62 in October 1992 and March 1994 respectively. MEPHISTO is a French designed and built Bridgman type furnace which uses the Seebeck technique to monitor the solid/liquid interface temperature and Peltier pulsing to mark the location and shape of the solid/liquid interface. In this paper the Bridgman growth of Sn-Bi and Bi-Sn under terrestrial and microgravity conditions is modeled using the finite element code, FIDAP*. The numerical model considers fully coupled heat and mass transport, fluid motion and solid/liquid phase changes in the crystal growth process. The primary goals of this work are: to provide a quantitative study of the thermal buoyancy-induced convection in the melt for the two flight experiments; to compare the vertical and horizontal growth configurations and systematically evaluate the effects of various gravity levels on the solute segregation. Numerical results of the vertical and horizontal Bridgman growth configurations are presented.

  10. Growth morphologies of wax in the presence of kinetic inhibitors

    NASA Astrophysics Data System (ADS)

    Tetervak, Alexander A.

    Driven by the need to prevent crystallization of normal alkanes from diesel fuels in cold climates, the petroleum industry has developed additives to slow the growth of these crystals and alter their morphologies. Although the utility of these kinetic inhibitors has been well demonstrated in the field, few studies have directly monitored their effect at microscopic morphology, and the mechanisms by which they act remain poorly understood. Here we present a study of the effects of such additives on the crystallization of long-chain n-alkanes from solution. The additives change the growth morphology from plate-like crystals to a microcrystalline mesh. When we impose a front velocity by moving the sample through a temperature gradient, the mesh growth may form a macroscopic banded pattern and also exhibit a burst-crystallization behavior. In this study, we characterize these crystallization phenomena and also two growth models: a continuum model that demonstrates the essential behavior of the banded crystallization, and a simple qualitative cellular automata model that captures basics of the burst-crystallization process. Keywords: solidification; mesh crystallization; kinetic inhibitor; burst growth.

  11. Phase Shift Interferometer and Growth Set Up to Step Pattern Formation During Growth From Solutions. Influence of the Oscillatory solution Flow on Stability

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Booth, N. A.; Vekilov, P. G.; Murray, B. T.; McFadden, G. B.

    2000-01-01

    We have assembled an experimental setup based on Michelson interferometry with the growing crystal surface as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a flow of solution of controlled direction and speed. The reference arm of the interferometer contains a liquid crystal element that allows controlled shifts of the phase of the interferograms. We employ an image-processing algorithm, which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 60 frames per second. The device allows data collection on surface morphology and kinetics during the face layers growth over a relatively large area (approximately 4 sq. mm) in situ and in real time during growth. The estimated depth resolution of the phase shifting interferometry is approximately 50 Angstroms. The data will be analyzed in order to reveal and monitor step bunching during the growth process. The crystal chosen as a model for study in this work is KH2PO4 (KDP). This optically non-linear material is widely used in frequency doubling applications. There have been a number of studies of the kinetics of KDP crystallization that can serve as a benchmark for our investigations. However, so far, systematic quantitative characteristics of step interaction and bunching are missing. We intend to present our first quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, flow rate, and flow direction. Behavior of a vicinal face growing from solution flowing normal to the steps and periodically changing its direction in time was considered theoretically. It was found that this oscillating flow reduces both stabilization and destabilization effects resulted from the unidirectional solution flow directed up the step stream and down the step stream. This reduction of stabilization and destabilization comes from effective mixing which entangles the phase shifts between the spatially periodic interface perturbation and the concentration wave induced by this perturbation. Numerical results and simplified mixing criterion will be discussed.

  12. Miscibility as a factor for component crystallization in multisolute frozen solutions.

    PubMed

    Izutsu, Ken-Ichi; Shibata, Hiroko; Yoshida, Hiroyuki; Goda, Yukihiro

    2014-07-01

    The relationship between the miscibility of formulation ingredients and their crystallization during the freezing segment of the lyophilization process was studied. The thermal properties of frozen solutions containing myo-inositol and cosolutes were obtained by performing heating scans from -70 °C before and after heat treatment at -20 °C to -5 °C. Addition of dextran 40,000 reduced and prevented crystallization of myo-inositol. In the first scan, some frozen solutions containing an inositol-rich mixture with dextran showed single broad transitions (Tg's: transition temperatures of maximally freeze-concentrated solutes) that indicated incomplete mixing of the concentrated amorphous solutes. Heat treatment of these frozen solutions induced separation of the solutes into inositol-dominant and solute mixture phases (Tg' splitting) following crystallization of myo-inositol (Tg' shifting). The crystal growth involved myo-inositol molecules in the solute mixture phase. The amorphous-amorphous phase separation and resulting loss of the heteromolecular interaction in the freeze-concentrated inositol-dominant phase should allow ordered assembly of the solute molecules required for nucleation. Some dextran-rich and intermediate concentration ratio frozen solutions retained single Tg's of the amorphous solute mixture, both before and after heat treatments. The relevance of solute miscibility on the crystallization of myo-inositol was also indicated in the systems containing glucose or recombinant human albumin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  14. Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires

    DOE PAGES

    Guo, Shaojun; Andrew F. Fidler; He, Kai; ...

    2015-11-06

    In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead tomore » elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.« less

  15. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0

  16. Exploiting the Temperature Dependence of Magnetic Susceptibility to Control Convective in Fundamental Studies of Solidification Phenomena

    NASA Technical Reports Server (NTRS)

    Seybert, C.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    It is well known that convection is a dominant mass transport mechanism when materials are solidified on Earth's surface. This convection is caused by gradients in density (and therefore gravitational force) that are brought about by gradients in temperature, composition or both. Diffusion of solute is therefore dwarfed by convection and the study of fundamental parameters, such as dendrite tip shape and growth velocity in the absence of convection is nearly impossible. Significant experimental work has therefore been carried out in orbiting laboratories with the intent of minimizing convection by minimizing gravity. One of the best known experiments of this kind is the Isothermal Dendritic Growth Experiment (IDGE), supported by NASA. Naturally such experiments are costly and one objective of the present investigation is to develop an experimental method whereby convection can be halted, in solidification and other experiments, on the Earth's surface. A second objective is to use the method to minimize convection resulting from the residual accelerations suffered by experiments in microgravity.

  17. Stability of the sectored morphology of polymer crystallites

    NASA Astrophysics Data System (ADS)

    Alageshan, Jaya Kumar; Hatwalne, Yashodhan; Muthukumar, Murugappan

    2016-09-01

    When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored, with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless anisotropic line tension parameter α =γa n/√{h4Kϕ } (γa n = anisotropic line tension, h4 = fold energy parameter, Kϕ = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends on the size of the square.

  18. A flow-free droplet-based device for high throughput polymorphic crystallization.

    PubMed

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.

  19. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  20. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  1. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    NASA Astrophysics Data System (ADS)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  2. Effects of postharvest handling conditions on internalization and growth of Salmonella enterica in tomatoes.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Yang, Yang; Wu, Yunpeng; Wang, Qin

    2014-03-01

    Salmonella internalization in tomatoes during postharvest handling is a major food safety concern. This study was conducted to determine the effect of immersion time, immersion depth, and temperature differential between bacterial suspension and tomato pulp on the internalization of Salmonella enterica in tomato fruits. The effect of storage temperature and duration on the survival and growth of internalized Salmonella cells was also evaluated. Overall, immersion time significantly affected the incidence and extent of S. enterica internalization (P < 0.0001), with a linear correlation between immersion time and Salmonella internalization. The depth of Salmonella internalization in tomato tissues also increased with increasing immersion time. Immersion time also significantly influenced the degree to which the temperature differential affected Salmonella internalization. With an immersion time of 2 min, the temperature differential had no significant effect on Salmonella internalization (P = 0.2536). However, with an immersion time of 15 min, a significantly larger Salmonella population became internalized in tomatoes immersed in solutions with a -30°F (-16.7°C) temperature differential. Internalized S. enterica cells persisted in the core tissues during 14 days of storage. Strain type and storage duration significantly affected (P < 0.05) both the frequency detected and the population of internalized Salmonella recovered, but storage temperatures of 55 to 70°F (12.8 to 21.1°C) did not (P > 0.05). These findings indicate the importance of preventing pathogen internalization during postharvest handling.

  3. The rate of bubble growth in a superheated liquid in pool boiling

    NASA Astrophysics Data System (ADS)

    Abdollahi, Mohammad Reza; Jafarian, Mehdi; Jamialahmadi, Mohammad

    2017-12-01

    A semi-empirical model for the estimation of the rate of bubble growth in nucleate pool boiling is presented, considering a new equation to estimate the temperature history of the bubble in the bulk of liquid. The conservation equations of energy, mass and momentum have been firstly derived and solved analytically. The present analytical model of the bubble growth predicts that the radius of the bubble grows as a function of √{t}.{\\operatorname{erf}}( N√{t}) , while so far the bubble growth rate has been mainly correlated to √{t} in the previous studies. In the next step, the analytical solutions were used to develop a new semi-empirical equation. To achieve this, firstly the analytical solution were non-dimensionalised and then the experimental data, available in the literature, were applied to tune the dimensionless coefficients appeared in the dimensionless equation. Finally, the reliability of the proposed semi-empirical model was assessed through comparison of the model predictions with the available experimental data in the literature, which were not applied in the tuning of the dimensionless parameters of the model. The comparison of the model predictions with other proposed models in the literature was also performed. These comparisons show that this model enables more accurate predictions than previously proposed models with a deviation of less than 10% in a wide range of operating conditions.

  4. On the botanic model of plant growth with intermediate vegetative-reproductive stage.

    PubMed

    Ioslovich, Ilya; Gutman, Per-Olof

    2005-11-01

    The application of dynamic optimization to mathematical models of ontogenic biological growth has been the subject of much research [see e.g. . J. Theor. Biol. 33, 299-307]. Kozłowsky and Ziółko [1988. Thor. Popul. Biol. 34, 118-129] and Ziółko and Kozłowski [1995. IEEE Trans. Automat. Contr. 40(10), 1779-1783] presented a model with gradual transition from vegetative to reproductive growth. The central point of their model is a mixed state-control constraint on the rate of reproductive growth, which leads to a mixed vegetative-reproductive growth period. Their model is modified here in order to take into account the difference of photosynthesis use efficiency when energy is accumulated in the vegetative and in the reproductive organs of a plant, respectively. The simple assumption on correlation between photosynthesis and temperature permits us to modify the model in a form that is useful for changing climate. Unfortunately, the mathematical solution of the optimal control problem in Kozłowsky and Ziółko (1988) and Ziółko and Kozłowski (1995) is incorrect. The strict mathematical solution is presented here, the numerical example from is solved, and the results are compared. The influence of the length of the season and the relative photosynthesis use efficiency, as well as of the potential sink demand of the reproductive organs, on the location and duration of the mixed vegetative-reproduction period of growth is investigated numerically. The results show that the mixed growth period is increased and shifted toward the end of the season when the lengths of the season is increased. Additional details of the sensitivity analysis are also presented.

  5. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f} using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.« less

  6. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  7. A System for Managing Replenishment of a Nutrient Solution Using an Electrical Conductivity Controller

    NASA Technical Reports Server (NTRS)

    Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120-130 mS/m) a set amount of a stock solution of nutrients is automatically added by a metering pump to bring the EC back into operating range [Fortson, 1992]. This paper describes a system developed at Tuskegee University for controlling the EC of a nutrient solution used for growing sweetpotatoes with an EC controller and a computer with LabView data acquisition and instrumentation software. It also describes the preliminary data obtained from the growth of sweetpotatoes using this prototype control system.

  8. Temperature dependence of needle and shoot elongation before bud break in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Mäkelä, Annikki

    2017-03-01

    Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less

  10. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Higginbotham, Henry Keith (Technical Monitor)

    2001-01-01

    For in-situ studies of the formation and evolution of step patterns during the growth of protein crystals, we have designed and assembled an experimental setup based on Michelson interferometry with the surface of the growing protein crystal as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a developed solution flow of controlled direction and speed. The reference arm of the interferometer contains a liquid-crystal element that allows controlled shifts of the phase of the interferograms. We employ an image processing algorithm which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 6-8 frames per second. The device allows data collection data regarding growth over a relatively large area (approximately .3 sq. mm) in-situ and in real time during growth. The estimated dept resolution of the phase shifting interferometry is about 100 A. The lateral resolution, depending on the zoom ratio, varies between 0.3 and 0.6 micrometers. We have now collected quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, position on the facet, crystal size and temperature with the proteins ferritin, apoferritin and thaumatin. Comparisons with theory, especially with the AFM results on the molecular level processes, see below, allow tests of the rational for the effects of convective flows and, as a particular case, the lack thereof, on step bunching.

  11. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE PAGES

    Wang, Sibo; Wu, Yunchao; Miao, Ran; ...

    2017-07-26

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  12. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Wu, Yunchao; Miao, Ran

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  13. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Tang, Xiao; Wu, Wei; Grivel, Jean-Claude

    2014-05-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/NiW. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of the films deposited at high sintering temperatures. Based on these results, the optimized growth conditions of YBCO films were established, and a high critical current density (Jc) of about 2 MA/cm2 (77 K, self field) is achieved in a 200 nm thick YBCO film in the architecture made by our all CSD route.

  14. Resistance of Pseudomonas to Quaternary Ammonium Compounds. I. Growth in Benzalkonium Chloride Solution

    PubMed Central

    Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus

    1969-01-01

    Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761

  15. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.

  16. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    PubMed

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Integration of Wearable Solutions in AAL Environments with Mobility Support.

    PubMed

    Costa, Susana E P; Rodrigues, Joel J P C; Silva, Bruno M C; Isento, João N; Corchado, Juan M

    2015-12-01

    The overall demographic profile of current societies point to a significant growth of the elderly people. Associated with the increase of the average hope of life and consequent increase in chronic diseases, there is the need for protection and daily care. Increasing investments in technology, such as Ambient Assisted Living (AAL) solutions, promote the quality of live extending the time people can live in their desired environment. This paper proposes the design, deployment, and real testbed of an e-health wearable monitoring system based on the integration of several AAL tools and platforms for elderly's bio-signals monitoring. This solution includes electrocardiography (ECG), respiration rate, beats per minute, body temperature, and falls detention and notification. The paper also describes, in detail, the real pilot and analyzes some early results concerning the users quality of experience, and the found results are very promising.

  18. Formulating Precursors for Coating Metals and Ceramics

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Gatica, Jorge E.; Reye, John T.

    2005-01-01

    A protocol has been devised for formulating low-vapor-pressure precursors for protective and conversion coatings on metallic and ceramic substrates. The ingredients of a precursor to which the protocol applies include additives with phosphate esters, or aryl phosphate esters in solution. Additives can include iron, chromium, and/or other transition metals. Alternative or additional additives can include magnesium compounds to facilitate growth of films on substrates that do not contain magnesium. Formulation of a precursor begins with mixing of the ingredients into a high-vapor-pressure solvent to form a homogeneous solution. Then the solvent is extracted from the solution by evaporation - aided, if necessary, by vacuum and/or slight heating. The solvent is deemed to be completely extracted when the viscosity of the remaining solution closely resembles the viscosity of the phosphate ester or aryl phosphate ester. In addition, satisfactory removal of the solvent can be verified by means of a differential scanning calorimetry essay: the absence of endothermic processes for temperatures below 150 C would indicate that the residual solvent has been eliminated from the solution beyond a detectable dilution level.

  19. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  20. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    NASA Astrophysics Data System (ADS)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  1. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Nicholas Cole

    2013-01-01

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Nimore » $$\\subset$$ SiO 2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni 0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni$$\\subset$$SiO 2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.« less

  2. Convection-induced distortion of a solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1984-01-01

    Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.

  3. Use of Plastic Capillaries for Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  4. Fundamental Studies on High Temperature Deformation, Recrystallization, and Grain Growth of Two-Phase Materials

    DTIC Science & Technology

    1990-09-26

    50 ml. Glycerine R -etch 17 ml. Benzalkonium Chloride 35 ml. Ethanol Kroll - etch 2 ml. Hydrofluoric Acid ( 50 %) 4 ml. Nitric Acid Conc. 100 ml...The amount of work given ( 60 % reduction in area ) in this last step was found to be sufficient to recrystallize all of the alloys within 12 hours at...formed at the center of thedisc with the following solution: 10 gins. Zinc Chloride 5 gms. Aluminum Chloride 300 ml. Methanol 50 ml. N - Butanol A JEOL

  5. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  6. Sodium sulfate crystallisation monitoring using IR thermography

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.

    2018-03-01

    In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.

  7. Antifreeze Proteins Modify the Freezing Process In Planta12

    PubMed Central

    Griffith, Marilyn; Lumb, Chelsey; Wiseman, Steven B.; Wisniewski, Michael; Johnson, Robert W.; Marangoni, Alejandro G.

    2005-01-01

    During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3°C to 1.2°C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice. PMID:15805474

  8. Measurement of Microscopic Growth Rates in Float-Zone Silicon Crystals

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Time dependent convective flows during crystal growth of doped semiconductors lead to fluctuations of the composition, so called dopant striations. In general, it is difficult to decide which is the main mechanism for the generation of these striations, it might be either the fluctuation of the concentration field in the melt and the extent of the solute boundary layer ahead of the solid-liquid interface or a variation of the growth velocity. Direct access to the concentration field is rather complicated to achieve, especially considering the high process temperature and the chemical activity of liquid silicon. The contribution of growth rate fluctuations to the formation of compositional fluctuations can be determined by measuring microscopic growth rates. The classical method of current pulses requires electrical feed-throughs and good electrical contacts, both are critical issues for the growth of high purity silicon crystals. Using a radiation based heating system, the heating power can be modulated very fast and effectively. We added to the normal heater power a sinusoidal off-set in the frequency range of 1 to 10 Hz, generating a narrow spaced weak rippling in the grown crystals which are superposed to the dopant striations caused by natural and by thermocapillary convection. The pulling speed was varied between 1 and 4mm/min. The microscope images of etched crystals slices have been analyzed by peak-search algorithms (measuring the spacing between each artificially induced marker) and by FFT. Performing growth experiments under a time-dependent flow regime, fluctuations of the microscopic growth velocity of Delta(v)/v(sub average) up to 50% have been measured. Damping the time-dependent convection by the use of an axial, static magnetic field of 500mT, the microscopic growth rate became constant within the resolution limit of this method. The results will be discussed using analytical methods for the calculation of microscopic growth velocity and by comparing them with measurements of temperature fluctuations in the melt during growth experiments itself.

  9. Transformation and precipitation in vanadium treated steels

    NASA Astrophysics Data System (ADS)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature tempering and at higher tempering temperature introduced secondary hardening. The intensity of secondary hardening increased with increasing vanadium, whereas austenitising temperature had little or no effect. The softening after the secondary hardening was faster after austenitising at the higher temperature and when recrystallisation occurred at the highest tempering temperatures, the hardness was lower due to coarse recrystallised ferrite.Isothermal transformation studies showed that vanadium additions raised the Ar3 temperature and accelerated ferrite nucleation, whilst the growth of ferrite was delayed due to the formation of V(CN) interphase and general precipitation pinning, of the transformation front. Increasing nitrogen content in the V-steel increased the incubation period for ferrite nucleation and increasingly reduced the ferrite growth by increasing V(CN) precipitation pinning of the transformation front.Transformation during continuous cooling was examined in relation to the effect of vanadium, carbon and nitrogen together with the effect of austenitising temperature. Increasing austenitising temperature increased the austenite grain size, and it then became apparent that increasing vanadium, carbon and nitrogen increased the hardenability and raised the hardness level of the jominy curve for the non-martensitic products. (Abstract shortened by ProQuest.).

  10. Spectroscopic studies on the conformational transitions of a bovine growth hormone releasing factor analog

    NASA Astrophysics Data System (ADS)

    Sarver, Ronald W.; Friedman, Alan R.; Thamann, Thomas J.

    1997-10-01

    The secondary structure of the bovine growth hormone releasing factor analog, [Ile 2, Ser 8,28, Ala 15, Leu 27, Hse 30] bGRF(1-30)-NH-Ethyl, acetate salt (U-90699F) was studied in solution by Fourier transform infrared and Raman spectroscopies. Spectroscopic studies revealed that concentrated aqueous solutions of U-90699F (100 mg ml -1) undergo a secondary structure transition from disordered coil/α-helix to intermolecular β-sheet. Disordered coil and α-helical structure were grouped together in the infrared and Raman studies since the amide I vibrations are close in frequency and overlap in assignments was possible. Before the conformational transition, the facile exchange of the peptide's amide hydrogens for deuterium indicated that the majority of amide hydrogens were readily accessible to solvent. The kinetics of the conformational transition coincided with an increase in solution viscosity and turbidity. An initiation phase preceded the conformational transition during which only minor spectral changes were observed by infrared spectroscopy. The initiation phase and reaction kinetics were consistent with a highly cooperative nucleation ultimately leading to a network of intermolecular β-sheet structure and gel formation. Increased temperature accelerated the conformational transition. The conformational transition was thermally irreversible but the β-sheet structure of aggregated or gelled peptide could be disrupted by dilution and agitation.

  11. Wheat production in controlled environments.

    PubMed

    Salisbury, F B; Bugbee, B; Bubenheim, D

    1987-01-01

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearly with increasing irradiance from 400 to 1700 micromoles m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27 degrees C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20 degrees C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).

  12. Wheat production in controlled environments

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 μmol m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27°C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20°C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).

  13. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    NASA Astrophysics Data System (ADS)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading to a relatively constant foraminifer calcite δ18O-temperature relationship (-0.21 ± 0.01‰/°C). The lower average coral δ18O data relative to foraminifers and other calcifiers is best explained by the precipitation of internal DIC derived from hydrated CO2 in a high-pH calcifying fluid and minimal subsequent DIC-H2O isotopic equilibration. This leads to a reduced and variable coral aragonite δ18O-temperature relationship (-0.11 to -0.22‰/°C). Together, the model presented here reconciles observations of oxygen isotope fractionation over a range of CaCO3-DIC-H2O systems.

  14. Study of electrostatic electron cyclotron parallel flow velocity shear instability in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Pandey, R. S.

    2018-05-01

    In the present paper, the study of electrostatic electron cyclotron parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field has been carried out in the magnetosphere of Saturn. Dimensionless growth rate variation of electron cyclotron waves has been observed with respect to k⊥ ρe for various plasma parameters. Effect of velocity shear scale length (Ae), inhomogeneity (P/a), the ratio of ion to electron temperature (Ti/Te) and density gradient (ɛnρe) on the growth of electron cyclotron waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation and computation of dispersion relation and growth rate have been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the relevant data from the Cassini spacecraft in the inner magnetosphere of Saturn. We have considered ambient magnetic field data and other relevant data for this study at the radial distance of ˜4.82-5.00 Rs. In our study velocity shear and ion to electron temperature ratio have been observed to be the major sources of free energy for the electron cyclotron instability. The inhomogeneity of electric field caused a small noticeable impact on the growth rate of electrostatic electron cyclotron instability. Density gradient has been observed playing stabilizing effect on electron cyclotron instability.

  15. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    NASA Astrophysics Data System (ADS)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  16. Process modelling for space station experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1988-01-01

    The work performed during the first year 1 Oct. 1987 to 30 Sept. 1988 involved analyses of crystal growth from the melt and from solution. The particular melt growth technique under investigation is directional solidification by the Bridgman-Stockbarger method. Two types of solution growth systems are also being studied. One involves growth from solution in a closed container, the other concerns growth of protein crystals by the hanging drop method. Following discussions with Dr. R. J. Naumann of the Low Gravity Science Division at MSFC it was decided to tackle the analysis of crystal growth from the melt earlier than originally proposed. Rapid progress was made in this area. Work is on schedule and full calculations were underway for some time. Progress was also made in the formulation of the two solution growth models.

  17. Adsorption inhibition as a mechanism of freezing resistance in polar fishes.

    PubMed Central

    Raymond, J A; DeVries, A L

    1977-01-01

    Polar fishes are known to have serum proteins and glycoproteins that protect them from freezing, by a noncolligative process. Measurements of antifreeze concentrations in ice and scanning electron micrographs of freeze-dried antifreeze solutions indicate that the antifreezes are incorporated in ice during freezing. The antifreezes also have a pronounced effect on the crystal habit of ice grown in their presence. Each of four antifreezes investigated caused ice to grow in long needles whose axes were parallel to the ice c axis. Together these results indicate the antifreezes adsorb to ice surfaces and inhibit their growth. A model in which adsorbed antifreezes raise the curvature of growth steps on the ice surface is proposed to account for the observed depression of the temperature at which freezing occurs and agrees well with experimental observations. The model is similar to one previously proposed for other cases of crystal growth inhibition. Images PMID:267952

  18. A comparison of the reduced and approximate systems for the time dependent computation of the polar wind and multiconstituent stellar winds

    NASA Technical Reports Server (NTRS)

    Browning, G. L.; Holzer, T. E.

    1992-01-01

    The paper derives the 'reduced' system of equations commonly used to describe the time evolution of the polar wind and multiconstituent stellar winds from the equations for a multispecies plasma with known temperature profiles by assuming that the electron thermal speed approaches infinity. The reduced system is proved to have unbounded growth near the sonic point of the protons for many of the standard parameter cases. For the same parameter cases, the unmodified system exhibits growth in some of the Fourier modes, but this growth is bounded. An alternate system (the 'approximate' system) in which the electron thermal speed is slowed down is introduced. The approximate system retains the mathematical behavior of the unmodified system and can be shown to accurately describe the smooth solutions of the unmodified system. Other advantages of the approximate system over the reduced system are discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salii, R. A.; Mintairov, S. A.; Brunkov, P. N.

    The specific features of growth in the InAs-GaAs system by the metal-organic chemical vapor deposition method are studied. The dependences of the In content of the InxGa{sub 1−x}As solid solution and of the InAs growth rate on the molar flow of In in a wide temperature range (480–700°C) are determined. The growth processes of InAs quantum dots (QDs) on GaAs with different surface misorientations are examined. The conditions are found in which InAs QDs are formed with a small number of defects and at a high density on a GaAs “sublayer” grown at a high rate. An epitaxial technique ismore » developed for the synthesis of InAs QDs with multimodal size distribution and an extended photoluminescence spectrum, which can be effectively used in designing solar cells with QDs in the active region.« less

  20. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

Top