Sample records for temperature structural applications

  1. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  2. Nonlinear Constitutive Relations for High Temperature Application, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.

  3. Sodars and their application for investigation of the turbulent structure of the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Shamanaeva, L. G.

    2016-11-01

    Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.

  4. Fiber optic strain and temperature sensor for power plant applications

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Weiss, Joseph M.

    1996-01-01

    The applicability of fiber-optic strain and temperature sensors to monitor power plant structures was evaluated on a super-heated steam pipe operating at 1000 degree(s)F at the Tennessee Valley Authority power plant in Kingston, Tennessee. The potential applications of these fiber-optic sensors include health monitoring of high-temperature structures such as boilers, tube headers, and steam pipes, as well as many other power plant structures exposed to less severe environments. The sensor selected for this application is based on a white-light interferometric technique. The key features of this sensor include its ability for absolute measurements that are not affected by light loss along the fiber cable due to, for example, microbending effects and coupler loss, its compatibility with off-the-shelf fiber-optic components, and its low cost. The glass fiber-optic strain sensors were packaged in a rugged metal housing and were spot welded to the high-temperature steam pipe. Another set of gages was placed inside a thermowell for steam temperature measurement. Data collected during a routine start-up is very encouraging and the details are presented in this manuscript.

  5. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  6. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Sreenivas, K.; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.

  7. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  8. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  9. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-05-11

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  10. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-03-31

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  11. Unified constitutive models for high-temperature structural applications

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.

    1988-01-01

    Unified constitutive models are characterized by the use of a single inelastic strain rate term for treating all aspects of inelastic deformation, including plasticity, creep, and stress relaxation under monotonic or cyclic loading. The structure of this class of constitutive theory pertinent for high temperature structural applications is first outlined and discussed. The effectiveness of the unified approach for representing high temperature deformation of Ni-base alloys is then evaluated by extensive comparison of experimental data and predictions of the Bodner-Partom and the Walker models. The use of the unified approach for hot section structural component analyses is demonstrated by applying the Walker model in finite element analyses of a benchmark notch problem and a turbine blade problem.

  12. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    PubMed

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge 2 Sb 2 Te 5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge 2 Sb 2 Te 5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge 2 Sb 2 Te 5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge 2 Sb 2 Te 5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  13. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  14. A continuum deformation theory for metal-matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1987-01-01

    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.

  15. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T.

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  16. Mo-Si-B alloys for ultrahigh-temperature structural applications.

    PubMed

    Lemberg, J A; Ritchie, R O

    2012-07-10

    A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in these engines. Nickel-base superalloys, particularly as single crystals, represent a crowning achievement here as they can operate in the combustors at ~1100 °C, with hot spots of ~1200 °C. As this represents ~90% of their melting temperature, if higher-temperature engines are ever to be a reality, alternative materials must be utilized. One such class of materials is Mo-Si-B alloys; they have higher density but could operate several hundred degrees hotter. Here we describe the processing and structure versus mechanical properties of Mo-Si-B alloys and further document ways to optimize their nano/microstructures to achieve an appropriate balance of properties to realistically compete with Ni-alloys for elevated-temperature structural applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  18. High temperature braided rope seals for static sealing applications

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.

    1996-01-01

    Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.

  19. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  20. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  1. Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Saafi, M.; Piukovics, G.; Ye, J.

    2016-10-01

    In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.

  2. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    PubMed

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  3. Structural damage detection for in-service highway bridge under operational and environmental variability

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard

    2015-03-01

    Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.

  4. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  5. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  6. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  7. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  8. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

    PubMed Central

    Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.

    2017-01-01

    Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084

  9. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.

    PubMed

    Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z

    2018-04-30

    Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

  10. A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data

    PubMed Central

    Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver

    2007-01-01

    We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619

  11. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  12. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications.

    PubMed

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; Del Prado, Álvaro; Mártil, Ignacio

    2016-12-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  13. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio

    2016-07-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  14. 3D thermography for improving temperature measurements in thermal vacuum testing

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.

    2017-09-01

    The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.

  15. Structure formation in pH-sensitive hydrogels composed of sodium caseinate and N,O-carboxymethyl chitosan.

    PubMed

    Wei, Yanxia; Xie, Rui; Lin, Yanbin; Xu, Yunfei; Wang, Fengxia; Liang, Wanfu; Zhang, Ji

    2016-08-01

    The pH-sensitive hydrogels composed of sodium caseinate (SC) and N,O-carboxymethyl chitosan (NOCC) were prepared and a new method to characterize the gelation process was presented in this work. Reological tests suggested that RSC/NOCC=3/7 (the weight ratio of SC and NOCC) was the best ratio of hydrogel. The well-developed three-dimensional network structures in the hydrogel were confirmed by AFM. Two structural parameters, tIS and tCS, denoted as the initial and critical structure formation time, respectively, were used to provide an exact determination of the start of structure formation and description of gelation process. The gelation process strongly depended on temperature changes, a high temperature resulted in an early start of gelation. The non-kinetic model suggested the higher activation energy in the higher temperatures was disadvantageous to structure formation, and vice versa. Due to the smart gel reported here was very stable at room temperature, we believed that the gel is required for applications in drug delivery or could be exploited in the development of potential application as molecular switches in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High-Temperature Storage Testing of ACF Attached Sensor Structures

    PubMed Central

    Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura

    2015-01-01

    Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735

  17. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  18. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  19. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    NASA Astrophysics Data System (ADS)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  20. The development of Nb-based advanced intermetallic alloys for structural applications

    NASA Astrophysics Data System (ADS)

    Subramanian, P. R.; Mendiratta, M. G.; Dimiduk, D. M.

    1996-01-01

    A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.

  1. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  2. Synthesis and design of silicide intermetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has amore » number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.« less

  3. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  4. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  5. Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures

    DTIC Science & Technology

    1997-12-15

    TITLE AND SUBTITLE Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures 6. AUTHOR(S) Kristen J. Law...project has developed a low temperature polymer ceramic composite consisting of boron carbide layers bonded by cement, laminated with polymer...composite have been shown to compare favorably to those of partially sintered boron carbide. Applications for this material have been identified in

  6. A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions

    NASA Technical Reports Server (NTRS)

    Heldenfels, Richard R

    1951-01-01

    A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

  7. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  8. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  9. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  10. Magnetically Controlled Shape Memory Behaviour—Materials and Applications

    NASA Astrophysics Data System (ADS)

    Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.

    2008-06-01

    For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based on the ferromagnetic prototype Ni2MnGa have been discovered which offer the possibility of controlling the structural phase transition by a magnetic field, hence opening up new possible applications particularly in the field of medicine. The properties of these new materials will be presented and their suitability for applications discussed.

  11. Experimental Study of a Hot Structure for a Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Pride, Richard A.; Royster, Dick M.; Helms, Bobbie F.

    1960-01-01

    A large structural model of a reentry vehicle has been built incorporating design concepts applicable to a radiation-cooled vehicle. Thermal-stress alleviating features of the model are discussed. Environmental tests on the model include approximately 100 cycles of loading at room temperature and 33 cycles of combined loading and-heating up to temperatures of 1,6000 F. Measured temperatures are shown for typical parts of the model. Comparisons are made between experimental and calculated deflections and strains. The structure successfully survived the heating and loading environments.

  12. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  13. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  14. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  15. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    PubMed Central

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  16. Development of magnetostrictive active members for control of space structures

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  17. Development of magnetostrictive active members for control of space structures

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  18. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring.

    PubMed

    Ong, Keat G; Grimes, Craig A

    2002-09-30

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  19. Control of magnetism in Co by an electric field

    NASA Astrophysics Data System (ADS)

    Chiba, D.; Ono, T.

    2013-05-01

    In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed.

  20. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    NASA Technical Reports Server (NTRS)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  1. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application of level sensing. Other applications were cross correlation velocimetry to determine bulk sodium flow rate and the characterization of coherent vortical structures in sodium with temperature frequency data. The data harvested, instrumentation developed and techniques refined in this work will help in the design of more robust reactors as well as validate computational models for licensing sodium fast reactors.

  2. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  3. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy.

    PubMed

    Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng

    2016-04-29

    In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.

  4. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  5. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  6. High-Temperature Graphite/Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  7. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1985-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.

  8. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Harry P.; Byers, Jeff M.; Crump, Nicholas A.

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of themore » solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.« less

  9. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  10. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  11. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  12. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  13. Correlations between properties and applications of the CVD amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Kleps, Irina; Angelescu, Anca

    2001-12-01

    The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.

  14. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance.

    PubMed

    Chen, Yingquan; Zhang, Xiong; Chen, Wei; Yang, Haiping; Chen, Hanping

    2017-12-01

    Biochar is carbon-rich, porous and with a great potential in gas pollutant controlling. The physical-chemical structure of biochar is important for the application. This paper firstly reviewed the evolution behavior of physical-chemical structure for biochar during pyrolysis. At lower temperature (<500°C), biomass firstly transformed to "3D network of benzene rings" with abundant functional groups. With temperature increasing (500-700°C), it converted to "2D structure of fused rings" with abundant porosity. As temperature increasing further (>700°C), it may transit into a "graphite microcrystalline structure", the porosity and functional groups were diminished correspondingly. The modification of biochar and its application as sorbent for gas pollutant were also reviewed. Activation and doping can significantly increase the porosity and special functional groups in biochar, which is favorable for gas pollutant adsorption. With a higher porosity, the adsorption capacity of gas pollutant is bigger, however, the functional groups determined the sorption stability of gas pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  16. LARC-TPI and new thermoplastic polyimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.; Ohta, M.

    1987-02-01

    The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.

  17. Gas Source MBE Growth and Characterization of TlInGaAs/InP DH Structures for Temperature-independent Wavelength LD Application

    DTIC Science & Technology

    2002-01-01

    Structures for Temperature-independent Wavelength LD Application Hajime Asahi, Hwe-Jae Lee, Akiko Mizobata, Kenta Konishi, Osamu Maeda and Kumiko Asami The... Yamamoto , K. Iwata, S. Gonda and K. Oe, Jpn. J. Appl. Phys. 35, L876 (1996). 3. H. Asahi, Compound Semicond. 2, 34 (1996). 4. W.S. Pelouch and L.A. Schlie...Appl. Phys. Lett. 68, 1389 (1996). 5. M. Fushida, H. Asahi, K. Yamamoto , H. Koh, K. Asami, S. Gonda and K.Oe, Jpn. J. Appl. Phys. 36, L665 (1997). 6

  18. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)

    NASA Technical Reports Server (NTRS)

    Ellis, Rod

    2000-01-01

    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  19. Passive temperature control based on a phase change metasurface.

    PubMed

    Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming

    2018-05-16

    In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.

  20. Sealing Materials for Use in Vacuum at High Temperatures

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  1. Future Nanotube Commercialization Opportunities at the NASA Marshall Space Flight Center and the US Army Aviation and Missile Command

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Shah, Sandeep; Kaul, Raj; Zhu, Shen; Vandiver, Terry; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Nanotube technology has broad applicability to programs at both the NASA Marshall Space Flight Center (MSFC) and the US Army Aviation and Missile Command (AMCOM). MSFC has interest in applications of nanotubes as sensors and high strength lightweight materials for propulsion system components, avionic systems, and scientific instruments. MSFC is currently pursuing internal programs to develop nanotube temperature sensors, heat pipes, and metal matrix composites. In support of these application areas MSFC is interested in growth of long nanotubes, growth of nanotubes in the microgravity environment, and nanotubes fabricated from high temperature materials such as Boron Nitride or Silicon Carbide. AMCOM is similarly interested in nanotube applications which take advantage of the nanotube thermal conductance properties, high strength, and lightweight. Applications of interest to AMCOM include rocket motor casing structures, rocket nozzles, and lightweight structure and aeronautic skins.

  2. Processing-Structure-Property Relationships for Lignin-Based Carbonaceous Materials Used in Energy-Storage Applications

    DOE PAGES

    García-Negrón, Valerie; Phillip, Nathan D.; Li, Jianlin; ...

    2016-11-18

    Lignin, an abundant organic polymer and a byproduct of pulp and biofuel production, has potential applications owing to its high carbon content and aromatic structure. Processing structure relationships are difficult to predict because of the heterogeneity of lignin. Here, this work discusses the roles of unit operations in the carbonization process of softwood lignin, and their resulting impacts on the material structure and electrochemical properties in application as the anode in lithium-ion cells. The processing variables include the lignin source, temperature, and duration of thermal stabilization, pyrolysis, and reduction. Materials are characterized at the atomic and microscales. High-temperature carbonization, atmore » 2000 °C, produces larger graphitic domains than at 1050 °C, but results in a reduced capacity. Coulombic efficiencies over 98 % are achieved for extended galvanostatic cycling. Consequently, a properly designed carbonization process for lignin is well suited for the generation of low-cost, high-efficiency electrodes.« less

  3. Integrated thick-film nanostructures based on spinel ceramics

    PubMed Central

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  4. Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications

    NASA Astrophysics Data System (ADS)

    Rao, Kavitha V.; Ananthapadmanabha, G. S.; Dayananda, G. N.

    2016-12-01

    Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature ( T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.

  5. Magneto-optical Kerr effect of a Ni2.00Mn1.16Ga0.84 single crystal across austenite and intermartensite transitions

    NASA Astrophysics Data System (ADS)

    Fikáček, Jan; Heczko, Oleg; Kopecký, Vít; Kaštil, Jiří; Honolka, Jan

    2018-04-01

    We carried out magneto-optical Kerr effect (MOKE) and magnetization measurements on a single crystal of Ni2.00Mn1.16Ga0.84, which is a magnetic shape memory material with application potential for actuator devices or for energy recuperation. Up to the time of our study, there had been reports of MOKE measurements in polar geometry. Against earlier predictions, we show that surface magnetic states of the martensite and the austenite can be also probed efficiently via longitudinal MOKE. A single-variant magnetic state prepared at room temperature is characterized by square-shaped ferromagnetic hysteresis loops yielding coercive fields, which are key material properties for future applications. Temperature dependencies of Kerr rotation were found to be linearly proportional to magnetization for martensitic phases. After passing through an inter-martensitic structural transition below room temperature in zero magnetic field, the coercive fields are more than doubled in comparison with the room temperature values. Above room temperature where an austenite structure is formed, MOKE signals are dominated by quadratic contributions and the magnitude of Kerr rotation drops due to changes in the electronic and magnetic domains structure.

  6. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  7. Structure and magnetic properties of Co2FeSi film deposited on Si/SiO2 substrate with Cr buffer layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Payel; Basumatary, Himalay; Raja, M. Manivel

    2018-05-01

    Co2FeSi thin films of 25 nm thickness with 50 nm thick Cr buffer layer was deposited on thermally oxidized Si substrates. Structural and magnetic properties of the films were studied as a function of annealing temperature and substrate temperatures. While the coercivity increases with increase in annealing temperature, it is found to decrease with increase in substrate temperature. A minimum coercivity of 18 Oe has been obtained for the film deposited at 550°C substrate temperature. This was attributed to the formation of L12 phase as observed from the GIXRD studies. The films with a good combination of soft magnetic properties and L21 crystal structure are suitable for spintronic applications.

  8. Recent Niobium Developments for High Strength Steel Energy Applications

    NASA Astrophysics Data System (ADS)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  9. Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter

    2005-09-01

    Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.

  10. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    NASA Astrophysics Data System (ADS)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  11. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  12. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber

    NASA Astrophysics Data System (ADS)

    Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan

    2016-11-01

    Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.

  13. Application of fuzzy logic to the control of wind tunnel settling chamber temperature

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Humphreys, Gregory L.

    1994-01-01

    The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control.

  14. Temperature control in continuous furnace by structural diagram method

    NASA Technical Reports Server (NTRS)

    Lei, Xia; Hartley, Tom T.

    1991-01-01

    The fundamentals of the structural diagram method for distributed parameter systems (DPSs) are presented and reviewed. An example is given to illustrate the application of this method for control design.

  15. Evaluation of high temperature dielectric films for high voltage power electronic applications

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  16. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  17. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  18. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  19. Recent developments in polyimide and bismaleimide adhesives

    NASA Technical Reports Server (NTRS)

    Politi, R. E.

    1985-01-01

    Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.

  20. Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.

    PubMed

    Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan

    2018-03-29

    Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.

  1. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  2. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawamore » potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.« less

  3. Experimental and FDTD study of silicon surface morphology induced by femtosecond laser irradiation at a high substrate temperature.

    PubMed

    Deng, Guoliang; Feng, Guoying; Zhou, Shouhuan

    2017-04-03

    Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.

  4. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f

  5. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  6. Glass transition temperature and topological constraints of sodium borophosphate glass-forming liquids.

    PubMed

    Jiang, Qi; Zeng, Huidan; Liu, Zhao; Ren, Jing; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Zhao, Donghui

    2013-09-28

    Sodium borophosphate glasses exhibit intriguing mixed network former effect, with the nonlinear compositional dependence of their glass transition temperature as one of the most typical examples. In this paper, we establish the widely applicable topological constraint model of sodium borophosphate mixed network former glasses to explain the relationship between the internal structure and nonlinear changes of glass transition temperature. The application of glass topology network was discussed in detail in terms of the unified methodology for the quantitative distribution of each coordinated boron and phosphorus units and glass transition temperature dependence of atomic constraints. An accurate prediction of composition scaling of the glass transition temperature was obtained based on topological constraint model.

  7. Fabrication of metallic glass structures

    DOEpatents

    Cline, Carl F.

    1986-01-01

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.

  8. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  9. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    PubMed Central

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  10. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  11. Relationship between structural and dynamic properties of Al-rich Al-Cu melts: Beyond the Stokes-Einstein relation

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-12-01

    We perform ab initio molecular dynamics simulations to study structural and transport properties in liquid A l1 -xC ux alloys, with copper composition x ≤0.4 , in relation to the applicability of the Stokes-Einstein (SE) equation in these melts. To begin, we find that self-diffusion coefficients and viscosity are composition dependent, while their temperature dependence follows an Arrhenius-type behavior, except for x =0.4 at low temperature. Then, we find that the applicability of the SE equation is also composition dependent, and its breakdown in the liquid regime above the liquidus temperature can be related to different local ordering around each species. In this case, we emphasize the difficulty of extracting effective atomic radii from interatomic distances found in liquid phases, but we see a clear correlation between transport properties and local ordering described through the structural entropy approximated by the two-body contribution. We use these findings to reformulate the SE equation within the framework of Rosenfeld's scaling law in terms of partial structural entropies, and we demonstrate that the breakdown of the SE relation can be related to their temperature dependence. Finally, we also use this framework to derive a simple relation between the ratio of the self-diffusivities of the components and the ratio of their partial structural entropies.

  12. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  13. Invited article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures.

    PubMed

    Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E

    2014-03-01

    Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

  14. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; ...

    2015-11-05

    We report that supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only alongmore » isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.« less

  15. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  16. Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load

    PubMed Central

    Chen, W. J.; Zheng, Yue; Wang, Biao

    2012-01-01

    Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769

  17. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  18. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  19. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Flom, Yury (Editor)

    1990-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference will focus on understanding high-temperature superconductivity with special emphases on materials issues and applications. AMSAHTS '90, will highlight the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC will be discussed by NASA and Navy specialists.

  20. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  1. An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Kirak, M.

    2018-05-01

    In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.

  2. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.

    PubMed

    Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C

    2014-01-10

    The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

  3. Synthesis and thermal conductivity of type II silicon clathrates

    NASA Astrophysics Data System (ADS)

    Beekman, M.; Nolas, G. S.

    2006-08-01

    We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.

  4. Thermal transfer in extracted incisors during thermal pulp sensitivity testing.

    PubMed

    Linsuwanont, P; Palamara, J E; Messer, H H

    2008-03-01

    To measure the temperature distribution within tooth structure during and after application of thermal stimuli used during pulp sensitivity testing. Extracted intact human maxillary anterior teeth were investigated for temperature changes at the labial enamel, the dentino-enamel junction (DEJ) and pulpal surface during and after a 5-s application of six different thermal stimuli: hot water (80 degrees C), heated gutta-percha (140 degrees C), carbon dioxide dry ice (-72 degrees C), refrigerant spray (-50 degrees C), ice stick (0 degrees C) and cold water (2 degrees C). J-type thermocouples and heat conduction paste were used to detect temperature changes, together with a data acquisition system (Labview). Data were analysed using analysis of variance, with a confidence level of P < 0.05. Temperature change was detected more quickly at the DEJ and pulpal surface with the application of hot water, heated gutta-percha and refrigerant spray than with carbon dioxide dry ice and ice (P < 0.05). Cold water and refrigerant spray were in the same range in terms of time to detect temperature change at both the DEJ and pulpal surface. Thermal stimuli with greater temperature difference from tooth temperature created a greater thermal gradient initially, followed by a greater temperature change at the DEJ and the pulpal surface. In this regard, ice and cold water were weaker stimuli than others (P < 0.05). Thermal stimuli used in pulp testing are highly variable in terms of temperature of the stimulus, rate of thermal transfer to the tooth and extent of temperature change within tooth structure. Overall, dry ice and refrigerant spray provide the most consistent stimuli, whereas heated gutta-percha and hot water were highly variable. Ice was a weak stimulus.

  5. Nanocharacterization of the adhesion effect and bending stiffness in optical MEMS

    NASA Astrophysics Data System (ADS)

    Pustan, Marius; Birleanu, Corina; Dudescu, Cristian

    2017-11-01

    The scope of this paper is the reliability design and testing of flexible MEMS components as clamp-clamp beams for the out-of-plane displacement. The field of implementation of such structures is in optical relevant applications such as the optical microsensors or optical microswitches. Moreover these structures can be successfully implemented in RF switches or in the other MEMS applications. The research studies presented in this paper consider the analytical and numerical analysis follow by the experimental validation. The mechanical and tribological characteristics such as the sample static response under an applied force and the adhesion effect between the flexible structure and substrate are investigated. The samples under test are fabricated from a reflective material - gold. Experimental investigations are performed by atomic force microscopy in order to determine the response of the gold microbridges under an applied force. Moreover, to identify the proper geometry that is less sensitive to a thermal gradient, different geometrical configurations of microbridges are tested under different temperatures. An etalon structure is considered as a reference beam and it is compared with the other samples fabricated in the same geometrical dimensions but with some additional rectangular holes performed on the flexible plate. The scope of holes is to reduce the temperature influence on the mechanical behaviour of clamp-clamp beam from application where a thermal gradient occurs. During numerical analysis and experimental investigations, the temperature of samples is increased from 20 °C to 100 °C and the sample response is monitored. A comparison between numerical and experimental results is provided at the end of paper. The research results are useful for designers to predict the behaviour of material and structure from optical or thermal applications in order to improve the reliability and the MEMS lifetime.

  6. Fabrication and electrical characterization of Al/diazo compound containing polyoxy chain/p-Si device structure

    NASA Astrophysics Data System (ADS)

    Birel, Ozgul; Kavasoglu, Nese; Kavasoglu, A. Sertap; Dincalp, Haluk; Metin, Bengul

    2013-03-01

    Diazo-compounds are important class of chemical compounds in terms of optical and electronic properties which make them potentially attractive for device applications. Diazo compound containing polyoxy chain has been deposited on p-Si. Current-voltage characteristics of Al/diazo compound containing polyoxy chain/p-Si structure present rectifying behaviour. The Schottky barrier height (SBH), diode factor (n), reverse saturation current (Io), interface state density (Nss) of Al/diazo compound containing polyoxy chain/p-Si structure have been calculated from experimental forward bias current-voltage data measured in the temperature range 100-320 K and capacitance-voltage data measured at room temperature and 1 MHz. The calculated values of SBH have ranged from 0.041 and 0.151 eV for the high and low temperature regions. Diode factor values fluctuate between the values 14 and 18 with temperature. Such a high diode factors stem from disordered interface layer in a junction structure as stated by Brötzmann et al. [M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106 (2009) 063704]. The calculated values of saturation current have ranged from 3×10-11 A to 2.79×10-7 A and interface state density have ranged from 5×1011 eV-1 cm-2 and 4×1013 eV-1 cm-2 as temperature increases. Results show that Al/diazo compound containing polyoxy chain/p-Si structure is a valuable candidate for device applications in terms of low reverse saturation current and low interface state density.

  7. Development of high temperature acoustic emission sensing system using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang

    2018-03-01

    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  8. Thermal structures and materials for high-speed flight; Collection of Papers of the 1st Thermal Structures Conference, University of Virginia, Charlottesville, Nov. 13-15, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, E.A.

    1992-01-01

    The present conference discusses aerobrake-maneuver vehicle aerothermodynamics, aerothermal issues in the structural design of high speed vehicles, laser surface-alloying of superlight metals with ceramic surfaces, high-temperature Al alloys for supersonic and hypersonic vehicles, advanced metallics for high temperature airframes, novel materials for engine applications, and the development status of computational methods for high temperature structural design. Also discussed are a transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement, the FEM thermoviscoplastic analysis of aerospace structures, hot-structures testing techniques, a thermal-structural analysis of a carbon-carbon/refractory metal heat pipe-cooled leading edge, dynamic effects in thermoviscoplastic structures, microlevel thermal effects inmore » metal-matrix composites (MMCs), thermomechanical effects in the plasma spray manufacture of MMC monotapes, and intelligent HIP processing. Most of the presentations at this conference were abstracted previously (see A91-16027 to A91-16047).« less

  9. Flame-Resistant Composite Materials For Structural Members

    NASA Technical Reports Server (NTRS)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  10. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  11. Stirling engine - Approach for long-term durability assessment

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    1992-01-01

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  12. Stress Analyzer

    NASA Technical Reports Server (NTRS)

    1990-01-01

    SPATE 900 Dynamic Stress Analyzer is an acronym for Stress Pattern Analysis by Thermal Emission. It detects stress-induced temperature changes in a structure and indicates the degree of stress. Ometron, Inc.'s SPATE 9000 consists of a scan unit and a data display. The scan unit contains an infrared channel focused on the test structure to collect thermal radiation, and a visual channel used to set up the scan area and interrogate the stress display. Stress data is produced by detecting minute temperature changes, down to one-thousandth of a degree Centigrade, resulting from the application to the structure of dynamic loading. The electronic data processing system correlates the temperature changes with a reference signal to determine stress level.

  13. The role of temperature in forming sol-gel biocomposites containing polydopamine.

    PubMed

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-11-28

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites.

  14. The role of temperature in forming sol-gel biocomposites containing polydopamine

    PubMed Central

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-01-01

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  15. Engineering helimagnetism in MnSi thin films

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  16. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  17. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications.

    PubMed

    Gabrielyan, Nare; Saranti, Konstantina; Manjunatha, Krishna Nama; Paul, Shashi

    2013-02-15

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid-solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used.The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices.

  18. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications

    PubMed Central

    2013-01-01

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid–solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used. The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices. PMID:23413969

  19. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  20. Structure of the cell wall of mango after application of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M. M.

    2012-11-01

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.

  1. Hygrothermal behavior of polybenzimidazole

    DOE PAGES

    Liu, Peng; Mullins, Michael; Bremner, Tim; ...

    2016-04-11

    Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (PBI) is used in extremely high temperature harsh environment applications. It is a unique engineering material that is formed into parts by powder-sintering at temperatures as high as 500 °C. Recently, ever increasing demands for high temperature polymers have led to significant interest in PBI such that engineering guidelines could be established for its application in high temperature and highly humid environments. The goal of this work was to understand the material science of PBI in hot-wet environments at temperatures up to 288 °C. Thermal gravimetric analysis and mass spectrometry were employed to identify the degraded volatile products. Themore » molecular scale damping behavior of PBI was probed using dynamic mechanical analysis. The changes in tensile properties and fracture toughness due to environmental exposure were also characterized. Upon heating above 250 °C, moisture-containing PBI exhibits obvious molecular structure change. Evidence of crosslinking and degradation is observed. With 288 °C hot water treatment severe degradation of PBI is observed. As a result, fundamental structure-property relationships of PBI affected by these higher temperature, high moisture content environments are discussed.« less

  2. Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986

    NASA Technical Reports Server (NTRS)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1987-01-01

    The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.

  3. Effect of bath temperature on structure, morphology and thermoelectric properties of CoSb{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet

    2016-05-23

    CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.

  4. New Technologies for Enhanced Environmental Testing on Spacecraft Structures

    NASA Astrophysics Data System (ADS)

    Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio

    2014-06-01

    This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.

  5. Mechanical properties of shape memory polymers for morphing aircraft applications

    NASA Astrophysics Data System (ADS)

    Keihl, Michelle M.; Bortolin, Robert S.; Sanders, Brian; Joshi, Shiv; Tidwell, Zeb

    2005-05-01

    This investigation addresses basic characterization of a shape memory polymer (SMP) as a suitable structural material for morphing aircraft applications. Tests were performed for monotonic loading in high shear at constant temperature, well below, or just above the glass transition temperature. The SMP properties were time-and temperature-dependent. Recovery by the SMP to its original shape needed to be unfettered. Based on the testing SMPs appear to be an attractive and promising component in the solution for a skin material of a morphing aircraft. Their multiple state abilities allow them to easily change shape and, once cooled, resist large loads.

  6. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  7. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  8. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    PubMed

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  9. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  10. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE PAGES

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng; ...

    2018-01-11

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  11. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  12. Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering

    NASA Astrophysics Data System (ADS)

    Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej

    2017-06-01

    The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.

  13. Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow

    2016-11-01

    Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.

  14. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.

  15. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure - Application to solar cell interconnect welding

    NASA Astrophysics Data System (ADS)

    Oh, J. E.; Ianno, N. J.; Ahmed, A. U.

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO2 laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained.

  16. Thermal tuning on band gaps of 2D phononic crystals considering adhesive layers

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Chen, Jialin; Li, Yuhang; Sun, Yuxin; Xing, Yufeng

    2018-02-01

    Phononic crystals are very attractive in many applications, such as noise reduction, filters and vibration isolation, due to their special forbidden band gap structures. In the present paper, the investigation of tunable band gaps of 2D phononic crystals with adhesive layers based on thermal changing is conducted. Based on the lumped-mass method, an analytical model of 2D phononic crystals with relatively thin adhesive layers is established, in which the in-plane and out-of-plane modes are both in consideration. The adhesive material is sensitive to temperature so that the band structure can be tuned and controlled by temperature variation. As temperature increases from 20 °C-80 °C, the first band gap shifts to the frequency zone around 10 kHz, which is included by the audible frequency range. The results propose an important guideline for applications, such as noise suppression using the 2D phononic crystals.

  17. Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings.

    PubMed

    Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing

    2018-01-23

    Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.

  18. Room temperature ferroelectricity in continuous croconic acid thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan

    2016-09-01

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  19. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    NASA Astrophysics Data System (ADS)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  20. Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation.

    PubMed

    Ahsan, Saad M; Rao, Ch Mohan

    2017-02-01

    Gelatin as a polymer has found extensive application in the pharmaceutical industry. It is also being used, as a matrix molecule, for nanoparticle based drug delivery applications. Gelatin nanoparticles synthesised, keeping the native structure intact, show interesting properties. Synthesizing such nanoparticles requires an understanding of the structural features of gelatin under conditions of nanoparticle synthesis and preserving them during the process. To address this we have carried out an extensive characterization of gelatin using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) under various reaction conditions that are utilized in the desolvation method for gelatin nanoparticle synthesis. We investigated the gel-sol transition, hysteresis and gelatin fibre morphology under different pH and temperature conditions. We also investigated the temperature and pH dependence of triple-helix to random-coil transition in gelatin. We finally demonstrate the synthesis of gelatin nanoparticles with native gelatin. These nanoparticles show shrinkage in size (∼90nm) with increase in temperature from 30°C (369.4 ±19.8) to 40°C (282.3±9.8). Our results suggest that by carefully selecting the reaction conditions, it is possible to synthesise nanoparticles having partially folded structures and with a varying degree of sensitivity towards temperature and pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  2. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  3. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less

  4. METCAN simulation of candidate metal matrix composites for high temperature applications

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1990-01-01

    The METCAN (Metal Matrix Composite Analyzer) computer code is used to simulate the nonlinear behavior of select metal matrix composites in order to assess their potential for high temperature structural applications. Material properties for seven composites are generated at a fiber volume ratio of 0.33 for two bonding conditions (a perfect bond and a weak interphase case) at various temperatures. A comparison of the two bonding conditions studied shows a general reduction in value of all properties (except CTE) for the weak interphase case from the perfect bond case. However, in the weak interphase case, the residual stresses that develop are considerably less than those that form in the perfect bond case. Results of the computational simulation indicate that among the metal matrix composites examined, SiC/NiAl is the best candidate for high temperature applications at the given fiber volume ratio.

  5. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  6. Relationships Between Molecular Structure and Chemical Reactivity in Hypergolic Ionic Liquids: Progress Toward Designing Green Fuels for Bipropellant Applications

    DTIC Science & Technology

    2012-05-01

    molten salts can be employed over a wide range of applications, which include solvents, 7 electrolytes , 8 pharmaceuticals and therapeutics,9 and...waxy, hygroscopic solid at room temperature, where the additional products in the HP series exist as liquids at room 9 temperature. In general...compressed aluminum pans. Melting and decomposition points for solids were measured by DSC from 40 to 400 oC at a scan rate of 5 ºC/min. IR spectra

  7. Biotechnology Opens New Routes to High-Performance Materials for Improved Photovoltaics, Batteries, Uncooled IR Detectors, Ferroelectrics and Optical Applications

    DTIC Science & Technology

    2006-11-01

    for High Power-Density, Safe Batteries and Solar Energy applications Cloning reveals: Protein template is an enzyme catalyst: γ- Ga2O3 Enzyme that...catalyzes & templates synthesis of silica at low temperature also makes semiconductors from molecular precursors: TiO2 , Ga2O3 , ZnO...CoO, RuOx (311) γ- Ga2O3 Low-temperature catalysis & templating of semiconductor synthesis The catalyst IS the template! Catalytic & Structure

  8. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-21

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.

  9. Comparison Testings between Two High-temperature Strain Measurement Systems

    NASA Technical Reports Server (NTRS)

    Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.

    1996-01-01

    An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.

  10. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  11. PMR polyimide composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.

  12. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  13. Material and structural studies of metal and polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Serafini, T. T.; Johns, R. H.

    1972-01-01

    The application of fiber composites to aeronautical and space vehicle systems indicates the following: It appears quite probable that resin/fiber composites can be developed for service at 315 C for several thousand hours and at 370 C for a few hundred hours. The retention of resin/fiber strength at these high temperatures can be achieved by modifying the polymer molecular structure or by developing new processing techniques, or both. Carbon monofilament with attractive strength values has been produced and fabrication studies to reinforce aluminum with such monofilaments have been initiated. Refractory wire-superalloy composites have demonstrated sufficiently high strength and impact values to suggest that they have potential for application to turbine blades at temperatures to 1200 C and above.

  14. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  15. High-resolution studies of the structure of the solar atmosphere using a new imaging algorithm

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, Shadia Rifai

    1991-01-01

    The results of the application of a new image restoration algorithm developed by Ayers and Dainty (1988) to the multiwavelength EUV/Skylab observations of the solar atmosphere are presented. The application of the algorithm makes it possible to reach a resolution better than 5 arcsec, and thus study the structure of the quiet sun on that spatial scale. The results show evidence for discrete looplike structures in the network boundary, 5-10 arcsec in size, at temperatures of 100,000 K.

  16. Superalloy Foams for Aeroshell Applications

    NASA Technical Reports Server (NTRS)

    Gayda, John; Padula, Santo, II

    2001-01-01

    Current thermal protection systems for reentry from space, such as that employed on the space shuttle, rely on ceramic tiles with ultra-low conductivity. These materials provide excellent thermal protection but are extremely fragile, easily degraded by environmental attack, and carry no structural loads. Future thermal protection systems being proposed in NASAs MITAS Program will attempt to combine thermal protection with improved durability and structural capability without significant increases in vehicle weight. This may be accomplished by combining several materials in a layered structure to obtain the desired function for aeroshell applications. One class of materials being considered for inclusion in this concept are high temperature metal foam. The objective of this paper was to fabricate low density, superalloy foams and conduct limited testing to evaluate their thermal and structural capabilities. Superalloys were chosen for evaluation as they possesses good strength and excellent environmental endurance over a wide range of temperatures. Utilizing superalloys as low density foams, with porosity contents greater than 90%, minimizes weight and thermal conductivity.

  17. Polymer Structure and Water States in Salt-Containing Polyampholyte Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Xinda; Elliott, Janet A. W.; Lee, Byeongdu; Chung, Hyun-Joong

    The phase behavior of water in hydrogels has broad impact on various applications, such as lubrication, adhesion, and electrical conductivity, as well as the hydrogel's low temperature properties. The status of the water molecules is correlated to the structure of the polymer chains in the hydrogel. In this study, the structure and water status of a model charge-balanced polyampholyte poly(4-vinylbenzenesulfonate-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), were investigated by using differential scanning calorimetry (DSC) and small-angle x-ray scattering (SAXS). A globular network structure suggested by SAXS results dictated the depression of the freezing point of water in the hydrogel, as supported by the DSC results. The polyampholyte chains undergo an irreversible collapse during dialysis in deionized water. Such collapsed hydrogels are not able to prevent freezing of water molecules. The results of both synthesis condition and post-synthesis treatments for polyampholyte hydrogels provide us insights to design optimal polyampholyte hydrogels for low temperature applications.

  18. Structural analysis of bioceramic materials for denture application

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  19. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    PubMed

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  20. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  1. Feasibility of Kevlar 49/PMR-15 Polyimide for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.

  2. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  3. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  4. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  5. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  6. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  7. Significant increase of Curie temperature in nano-scale BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yueliang; Liao, Zhenyu; Fang, Fang

    2014-11-03

    The low Curie temperature (T{sub c} = 130 °C) of bulk BaTiO{sub 3} greatly limits its applications. In this work, the phase structures of BaTiO{sub 3} nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO{sub 3} nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO{sub 3} nanoparticles remained at 600 °C, suggesting a significant increase of T{sub c}. Based on the in-situ TEM resultsmore » and the data reported by others, temperature-size phase diagrams for BaTiO{sub 3} particles and ceramics were proposed, showing that the phase transition became diffused and the T{sub c} obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.« less

  8. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  9. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window.

    PubMed

    Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng

    2016-03-16

    The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.

  10. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    NASA Astrophysics Data System (ADS)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is observed. Therefore, another technique was adopted to address this issue. A texturing process was also explored to optimize the NaxCo 2O4 structure. It was found that a highly textured structure can be obtained using a combined process of combustion synthesis, chemical demixing, and a flux method.

  11. An Annotated Bibliography on Silicon Nitride for Structural Applications

    DTIC Science & Technology

    1977-03-01

    a sea of interconnected flakes. Nitriding at temp- eratures above the melting point of Si leads to the growth of largely /3-Si3N4 with only small...partly to oxidation and partly to microplasticity at the crack tip. High temperature modulus of elasticity decreased with increasing temperature but the

  12. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  13. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  14. Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.

  15. Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications.

    PubMed

    Shi, Yingge; Xu, Dazhuang; Liu, Meiying; Fu, Lihua; Wan, Qing; Mao, Liucheng; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-01-01

    Fluorescent organic nanoparticles (FONs) have been regarded as the promising candidates for biomedical applications owing to their well adjustment of chemical structure and optical properties and good biological properties. However, the preparation of FONs from the natural derived polymers has been rarely reported thus far. In current work, we reported a novel strategy for preparation of FONs based on the self-polymerization of starch-dopamine conjugates and polyethyleneimine in rather mild experimental conditions, including air atmosphere, aqueous solution, absent catalysts and at room temperature. The morphology, chemical structure and optical properties of the resultant starch-based FONs were investigated by different characterization techniques. Biological evaluation results demonstrated that these starch-based FONs possess good biocompatibility and fluorescent imaging performance. More importantly, the novel strategy might also be extended for the preparation of many other carbohydrate polymers based FONs with different structure and functions. Therefore, this work opens a new avenue for the preparation and biomedical applications of luminescent carbohydrate polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Affordable Manufacturing Technologies Being Developed for Actively Cooled Ceramic Components

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1999-01-01

    Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.

  17. Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature

    NASA Astrophysics Data System (ADS)

    Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.

  18. Rutile titanium dioxide films deposited with a vacuum arc at different temperatures

    NASA Astrophysics Data System (ADS)

    Arias, L. Franco; Kleiman, A.; Heredia, E.; Márquez, A.

    2012-06-01

    Rutile crystalline phase of TiO2 has been one of the most investigated materials for medical applications. Its implementation as a surface layer on biomedical implants has shown to improve hemocompatibility and biocompatibility. In this work, titanium dioxide coatings were deposited on glass and steel 316L substrates using cathodic arc deposition. The coatings were obtained at different substrate temperatures; varying from room temperature to 600°C. The crystalline structure of the films was identified by glancing angle X-ray diffraction. Depending on the substrate material and on its temperature during the deposition process, anatase, anatse+rutile and rutile structures were observed. It was determined that rutile films can be obtained below 600 °C with this deposition method.

  19. Influence of vacuum annealing on the properties of Cu2SnS3 thin films using low cost ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab

    2018-05-01

    Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.

  20. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin.

    PubMed

    Jo, Yoon Nam; Park, Byung-Dae; Um, In Chul

    2015-11-01

    Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis, characterization and ellipsometric study of ultrasonically sprayed Co3O4 films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Taşköprü, T.; Atay, F.; Akyüz, İ.

    2015-10-01

    In the present study, cobalt oxide (Co3O4) films were produced using ultrasonic spray pyrolysis technique onto the glass substrate at different temperatures (200-250-300-350 °C). The effect of substrate temperature on the structural, optical, surface and electrical properties of Co3O4 films was reported. Thickness, refractive index and extinction coefficient of the films were determined by spectroscopic ellipsometry, and X-ray diffraction analyses revealed that Co3O4 films were polycrystalline fcc structure and the substrate temperature significantly improved the crystal structure of Co3O4 films. The films deposited at 350 °C substrate temperature showed the best structural quality. Transmittance, absorbance and reflectance spectra were taken by means of UV-Vis spectrophotometer, and optical band gap values were calculated using optical method. Surface images and roughness values of the films were taken by atomic force microscopy to see the effect of deposition temperature on surface properties. The resistivity of the films slightly decreases with increase in the substrate temperature from 1.08 × 104 to 1.46 × 102 Ω cm. Finally, ultrasonic spray pyrolysis technique allowed production of Co3O4 films, which are alternative metal oxide film for technological applications, at low substrate temperature.

  2. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  3. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    NASA Astrophysics Data System (ADS)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  4. Asymmetric structured microfiber-based temperature sensor

    NASA Astrophysics Data System (ADS)

    Xian, Pei; Feng, Guoying; Dai, Shenyu; Zhou, Shouhuan

    2017-04-01

    A temperature sensor formed by a cascaded sphere and an abrupt taper, together in a standard single-mode fiber, was developed. The dip of the measured spectrum signal shifted obviously when the surrounding temperature changed. Measurement sensitivity to 18.36 pm/°C was shown with the surrounding temperature ranging from 35°C to 395°C. Due to its compact size and all-fiber configuration, the proposed sensor has the advantages of simplicity and low-cost fabrication, thus the device would find potential applications in sensing fields.

  5. Misoriented grain boundaries vicinal to the (1 1 1) <1 1¯0> twin in nickel Part I: Thermodynamics & temperature-dependent structure

    DOE PAGES

    O’Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.

    2016-03-30

    Here, grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within ±30°) to the Σ3(1 1 1) <1 1¯0> (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus,more » the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries (|θ| ≲ 16°) show distinct ±1/3(1 1 1) disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing low-temperature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately ±16°, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.« less

  6. Thermo-plasmonics: playing with temperature at the nanoscale (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alabastri, Alessandro; Malerba, Mario; Calandrini, Eugenio; Toma, Andrea; Proietti Zaccaria, Remo

    2017-02-01

    The electro-magnetic field generated within and around dissipative nano-structures upon light radiation is intimately associated to the formation of localized heat sources. In turn, this phenomenon determines localized temperature variations, effect which can be exploited for applications such as photocatalysis [1], nanochemistry [2] or sensor devices [3]. Here we show how the geometrical characteristics of plasmonic nano-structures can indeed be used to modulate the temperature response. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature variation modifies the optical response of the structure [4,5] and thus its heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to the thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting the role of temperature, but it would be not even possible to know, a priori, if the error is towards higher or lower absorption values. Our model can be utilized to study opto-thermal phenomena when high temperature or high intensity sources are employed. [1] M. Honda et al., Appl. Phys. Lett. 104, 061108 (2014) [2] G. Baffou et al., Chem. Soc. Rev. 43, 3898 (2014) [3] S. Ozdemir et al., J. Lightwave Tech. 21, 805 (2003) [4] A. Alabastri et al., ACS Photonics 2, 115 (2015) [5] A. Alabastri et al., Materials 6, 4879 (2013)

  7. The effects of different heat treatment annealing on structural properties of LaFe11.5Si1.5 compound

    NASA Astrophysics Data System (ADS)

    Norizan, Yang Nurhidayah Asnida; Din, Muhammad Faiz Md; Zamri, Wan Fathul Hakim W.; Hashim, Fakroul Ridzuan; Jusoh, Mohd Taufik; Rahman, Mohd Rashid Abdul

    2018-02-01

    The cubic NaZn13-type LaFe13-xSix based compounds have been studied systematically and has become one of the most interesting systems for exploring large MCE. Its magnetic properties are strongly doping dependent and provides many of advantage compare to other as magnetic materials for magnetic refrigerator application. In other to produce high quality of cubic NaZn13-type structure, the structural properties of LaFe11.5Si1.5 compounds annealed at different temperature have been investigated. The LaFe11.5Si1.5 compounds was prepared by arc melting and annealed at two different heat treatment which are 1323 K for 14 days and 1523 K for 4 hour. The powder X-ray diffraction (XRD) shows that a short time and high temperature annealing process has benefits for the formation of the NaZn13-type phase compared to a long time and low temperature annealing process. This is shown by the weight fraction of cubic NaZn13- type structure increases from 80% for low temperature annealing to 83% for high temperature annealing. At the same time, high temperature annealing increase the main structure and decrease the impurity (α-Fe and LaFeSi). Furthermore, it can be clearly seen in the Rietveld refinement results that the lattice parameter is increase at the high temperature annealing because of more cubic NaZn13 is formed at higher temperature.

  8. Lightweight, Self-Deployable Wheels

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur; Sokolowski, Witold; Rand, Peter

    2003-01-01

    Ultra-lightweight, self-deployable wheels made of polymer foams have been demonstrated. These wheels are an addition to the roster of cold hibernated elastic memory (CHEM) structural applications. Intended originally for use on nanorovers (very small planetary-exploration robotic vehicles), CHEM wheels could also be used for many commercial applications, such as in toys. The CHEM concept was reported in "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 56. To recapitulate: A CHEM structure is fabricated from a shape-memory polymer (SMP) foam. The structure is compressed to a very small volume while in its rubbery state above its glass-transition temperature (Tg). Once compressed, the structure can be cooled below Tg to its glassy state. As long as the temperature remains

  9. Thermal and structural alternations in CuAlMnNi shape memory alloy by the effect of different pressure applications

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu; Polat, Tercan

    2017-09-01

    In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.

  10. Miniature optical fiber temperature sensor based on FMF-SCF structure

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Li, Jing; Pei, Li; Wen, Xiaodong

    2018-03-01

    We proposed and experimentally demonstrated a miniature optical fiber temperature sensor consisting of a seven core fiber (SCF) and a few mode fiber (FMF). The device is fabricated by splicing a section of FMF with a segment of SCF to form a FMF-SCF based sensing structure, and during the FMF region, few modes can be excited and will propagate within the SCF. In experiment, the proposed device has good quality interferometric spectra, and the highest extinction ratio of 27 dB was achieved. When the temperature increases from room temperature to 110 °C, the temperature response properties of the sensor have been investigated, the wavelength sensitivity of about 91.8 pm/°C and the amplitude sensitivity of about 1.57 × 10-2 a.u./°C are obtained, respectively. Due to its easy and controllable fabrication, the sensor can be a suitable candidate in temperature sensing applications.

  11. Design and application of an array extended blackbody

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-zhou; Fan, Xiao-li; Lei, Hao; Zhou, Zhi-yuan

    2018-02-01

    An array extended blackbody is designed to quantitatively measure and evaluate the performance of infrared imaging systems. The theory, structure, control software and application of blackbody are introduced. The parameters of infrared imaging systems such as the maximum detectable range, detection sensitivity, spatial resolution and temperature resolution can be measured.

  12. Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, P. J.; Bending, S. J.; Kim, J.

    2015-12-28

    We demonstrate that the magnetic state of a superconducting spin valve, that is normally controlled with an external magnetic field, can also be manipulated by varying the temperature which increases the functionality and flexibility of such structures as switching elements. In this case, switching is driven by changes in the magnetostatic energy due to spontaneous Meissner screening currents forming in the superconductor below the critical temperature. Our scanning Hall probe measurements also reveal vortex-mediated pinning of the ferromagnetic domain structure due to the pinning of quantized stray fields in the adjacent superconductor. The ability to use temperature as well asmore » magnetic field to control the local magnetisation structure raises the prospect of potential applications in magnetic memory devices.« less

  13. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  14. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.

    PubMed

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-10-13

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  15. Thermal response to firefighting activities in residential structure fires: impact of job assignment and suppression tactic.

    PubMed

    Horn, Gavin P; Kesler, Richard M; Kerber, Steve; Fent, Kenneth W; Schroeder, Tad J; Scott, William S; Fehling, Patricia C; Fernhall, Bo; Smith, Denise L

    2018-03-01

    Firefighters' thermal burden is generally attributed to high heat loads from the fire and metabolic heat generation, which may vary between job assignments and suppression tactic employed. Utilising a full-sized residential structure, firefighters were deployed in six job assignments utilising two attack tactics (1. Water applied from the interior, or 2. Exterior water application before transitioning to the interior). Environmental temperatures decreased after water application, but more rapidly with transitional attack. Local ambient temperatures for inside operation firefighters were higher than other positions (average ~10-30 °C). Rapid elevations in skin temperature were found for all job assignments other than outside command. Neck skin temperatures for inside attack firefighters were ~0.5 °C lower when the transitional tactic was employed. Significantly higher core temperatures were measured for the outside ventilation and overhaul positions than the inside positions (~0.6-0.9 °C). Firefighters working at all fireground positions must be monitored and relieved based on intensity and duration. Practitioner Summary: Testing was done to characterise the thermal burden experienced by firefighters in different job assignments who responded to controlled residential fires (with typical furnishings) using two tactics. Ambient, skin and core temperatures varied based on job assignment and tactic employed, with rapid elevations in core temperature in many roles.

  16. Thermally Sprayed High Temperature Sandwich Structures: Physical Properties and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Salavati, Saeid

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituents' mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.

  17. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    NASA Astrophysics Data System (ADS)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  18. Supercapacitor Operating At 200 Degrees Celsius

    PubMed Central

    Borges, Raquel S.; Reddy, Arava Leela Mohana; Rodrigues, Marco-Tulio F.; Gullapalli, Hemtej; Balakrishnan, Kaushik; Silva, Glaura G.; Ajayan, Pulickel M.

    2013-01-01

    The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications. PMID:23999206

  19. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  20. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  1. Generalization of soft phonon modes

    NASA Astrophysics Data System (ADS)

    Rudin, Sven P.

    2018-04-01

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. Here, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system with N atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, PVM0, represents the 3 N -dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, PVM0 serves as a generalization of soft phonon modes. At low temperatures, PVM0 reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case PVM0 culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, PVM0 can be equally well calculated on either side of the structural phase transition. Two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the β phase of uranium, the higher-symmetry structure of which stabilizes with temperature.

  2. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  3. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  4. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed based on the strain-energy consideration, and the measured temperature could be utilized as an index for fatigue-life prediction.

  5. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    PubMed

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2002-01-01

    Aluminum-Lithium (AL-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional aluminum alloys. For example, the application of an Al-Li alloy to the space shuttle external cryogenic fuel tank contributed to the weight savings that enabled successful deployment of International Space Station components. The composition and heat treatment of this alloy were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. As most aerospace structural hardware is weight sensitive, a reusable cryotank will be designed to the limits of the materials mechanical properties. Therefore, this effort was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of one relatively production mature alloy and two developmental alloys C458 and L277. Tensile and fracture toughness behavior was evaluated after exposure to temperatures as high as 3oooF for up to IO00 hrs. Microstructural changes were also evaluated to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Characterizing the effect of thermal exposure on the properties of Al-Li alloys is important to defining a service limiting temperature, exposure time, and end-of-life properties.

  7. Design and calculation of low infrared transmittance and low emissivity coatings for heat radiative applications

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng

    2012-02-01

    The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  9. Health monitoring with optical fiber sensors: from human body to civil structures

    NASA Astrophysics Data System (ADS)

    Pinet, Éric; Hamel, Caroline; Glišić, Branko; Inaudi, Daniele; Miron, Nicolae

    2007-04-01

    Although structural health monitoring and patient monitoring may benefit from the unique advantages of optical fiber sensors (OFS) such as electromagnetic interferences (EMI) immunity, sensor small size and long term reliability, both applications are facing different realities. This paper presents, with practical examples, several OFS technologies ranging from single-point to distributed sensors used to address the health monitoring challenges in medical and in civil engineering fields. OFS for medical applications are single-point, measuring mainly vital parameters such as pressure or temperature. In the intra-aortic balloon pumping (IABP) therapy, a miniature OFS can monitor in situ aortic blood pressure to trigger catheter balloon inflation/deflation in counter-pulsation with heartbeats. Similar sensors reliably monitor the intracranial pressure (ICP) of critical care patients, even during surgical interventions or examinations under medical resonance imaging (MRI). Temperature OFS are also the ideal monitoring solution for such harsh environments. Most of OFS for structural health monitoring are distributed or have long gage length, although quasi-distributed short gage sensors are also used. Those sensors measure mainly strain/load, temperature, pressure and elongation. SOFO type deformation sensors were used to monitor and secure the Bolshoi Moskvoretskiy Bridge in Moscow. Safety of Plavinu dam built on clay and sand in Latvia was increased by monitoring bitumen joints displacement and temperature changes using SMARTape and Temperature Sensitive Cable read with DiTeSt unit. A similar solution was used for monitoring a pipeline built in an unstable area near Rimini in Italy.

  10. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  11. LaRC(TM)-IA Copolyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.

    1995-01-01

    Copolyimides modified versions of LaRC(TM)-IA thermoplastic polyimide formulated by incorporating moieties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and, alternatively, isophthaloyldiphthalic anhydride (IDPA) into LaRC(TM)-IA polymer backbones. Exhibit higher glass-transition temperatures and retain greater fractions of lower-temperature shear moduli at higher temperatures. Copolyimides spun into fibers or used as adhesives, molding powders, or matrix resins in many applications, especially in fabrication of strong, lightweight structural components of aircraft.

  12. High-performance single nanowire tunnel diodes.

    PubMed

    Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T

    2010-03-10

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.

  13. Radiative sky cooling: fundamental physics, materials, structures, and applications

    NASA Astrophysics Data System (ADS)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  14. Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results.

    PubMed

    Naghshine, Babak B; Kiani, Amirkianoosh

    2017-01-01

    In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).

  15. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lu

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and onmore » potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.« less

  17. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-04-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  18. Photonic crystal fiber long-period gratings for structural monitoring and chemical sensing

    NASA Astrophysics Data System (ADS)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2008-03-01

    We present a simple, low-cost, temperature- and strain-insensitive long-period gratings (LPGs) written in photonic crystal fibers (PCFs) that can be used as sensitive chemical solution sensors or bend sensors for a variety of industrial applications, including civil engineering, aircraft, chemistry, food industry, and biosensing. Three different configurations of PCFs have been used for this study, including a polarization maintaining PCF, a large mode area PCF and an endlessly single mode PCF. These LPGs have been characterized for their sensitivity to temperature, strain, bending, and surrounding refractive index. Transmission spectra of the LPGs were found to exhibit negligible temperature and strain sensitivities, whereas possessing usable sensitivity to refractive index and bending. This type of PCF sensor could in principle be designed for optimum sensitivity to desired measurand(s), while minimizing or removing undesirable cross-sensitivities. The unique sensing features of PCFs are particularly suited for a wide variety of applications in smart structures, embedded materials, telecommunications and sensor systems.

  19. Lightweight Ceramics for Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.

    1997-01-01

    The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.

  20. Zinc nitride thin films: basic properties and applications

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.

    2017-02-01

    Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.

  1. In-plane dielectric properties of epitaxial Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown on GaAs for tunable device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Zhibin; Hao Jianhua

    2012-09-01

    We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less

  2. Application of low temperature plasmas for restoration/conservation of archaeological objects

    NASA Astrophysics Data System (ADS)

    Krčma, F.; Blahová, L.; Fojtíková, P.; Graham, W. G.; Grossmannová, H.; Hlochová, L.; Horák, J.; Janová, D.; Kelsey, C. P.; Kozáková, Z.; Mazánková, V.; Procházka, M.; Přikryl, R.; Řádková, L.; Sázavská, V.; Vašíček, M.; Veverková, R.; Zmrzlý, M.

    2014-12-01

    The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.

  3. Thin Film Ceramic Strain Sensor Development for Harsh Environments: Interim Report on Identification of Candidate Thin Film Ceramics to Test for Viability for Static Strain Sensor Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.

    2006-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.

  4. Thin Film Ceramic Strain Sensor Development for Harsh Environments: Identification of Candidate Thin Film Ceramics to Test for Viability for Static Strain Sensor Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.

    2006-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.

  5. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: II. Experimental validation under varying temperature

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Ren, W. X.; Fang, S. E.

    2011-11-01

    Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.

  6. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  7. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 2: Programming manual

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.

  8. Integrated photonics for fiber optic based temperature sensing

    NASA Astrophysics Data System (ADS)

    Evenblij, R. S.; van Leest, T.; Haverdings, M. B.

    2017-09-01

    One of the promising space applications areas for fibre sensing is high reliable thermal mapping of metrology structures for effects as thermal deformation, focal plane distortion, etc. Subsequently, multi-point temperature sensing capability for payload panels and instrumentation instead of, or in addition to conventional thermo-couple technology will drastically reduce electrical wiring and sensor materials to minimize weight and costs. Current fiber sensing technologies based on solid state ASPIC (Application Specific Photonic Integrated Circuits) technology, allow significant miniaturization of instrumentation and improved reliability. These imperative aspects make the technology candidate for applications in harsh environments such as space. One of the major aspects in order to mature ASPIC technology for space is assessment on radiation hardness. This paper describes the results of radiation hardness experiments on ASPIC including typical multipoint temperature sensing and thermal mapping capabilities.

  9. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  10. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  11. Gallium Oxide Nanostructures for High Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintalapalle, Ramana V.

    Gallium oxide (Ga 2O 3) thin films were produced by sputter deposition by varying the substrate temperature (T s) in a wide range (T s=25-800 °C). The structural characteristics and electronic properties of Ga 2O 3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga 2O 3 films. XRD and SEM analyses indicate that the Ga 2O 3 films grown at lower temperatures were amorphous while those grown at T s≥500more » oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga 2O 3 films at T s=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga 2O 3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga 2O 3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga 2O 3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga 2O 3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga 2O 3 films compared to intrinsic Ga 2O 3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.« less

  12. The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications.

    PubMed

    Sun, Xu; Guo, Yuqiao; Wu, Changzheng; Xie, Yi

    2015-07-08

    Protons, as one of the world's smallest ions, are able to trigger the charge effect without obvious lattice expansion inside inorganic materials, offering a unique and important test-bed for controlling their diverse functionalities. Arising from the high chemical reactivity of hydrogen (easily losing an electron) with various main group anions (easily accepting a proton), the hydric effect provides a convenient and environmentally benign route to bring about fascinating new physicochemical properties, as well as to create new inorganic structures based on the "old lattice" without dramatically destroying the pristine structure, covering most inorganic materials. Moreover, hydrogen atoms tend to bond with anions or to produce intrinsic defects, both of which are expected to inject extra electrons into lattice framework, promising advances in control of bandgap, spin behavior, and carrier concentration, which determine functionality for wide applications. In this review article, recently developed effective hydric strategies are highlighted, which include the conventional hydric reaction under high temperature or room temperature, proton irradiation or hydrogen plasma treatment, and gate-electrolyte-driven adsorption or doping. The diverse physicochemical properties brought by the hydric effect via modulation of the intrinsic electronic structure are also summarized, finding wide applications in nanoelectronics, energy applications, and catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  14. Structural and semiconductor-to-metal transitions of double-perovskite cobalt oxide Sr2-xLaxCoTiO6-δ with enhanced thermoelectric capability

    NASA Astrophysics Data System (ADS)

    Sugahara, Tohru; Ohtaki, Michitaka

    2011-08-01

    The thermoelectric properties of double-perovskite oxide Sr2-xLaxCoTiO6-δ were revealed to vary anomalously with the La concentration, plausibly due to a structural transition found in this study. Although the temperature dependence of the resistivity and thermopower of the present oxide showed a semiconductor-to-metal transition similar to those observed for other perovskite-related Co oxides such as Sr1-xYxCoO3-δ, the transition temperature was more than 350 K higher, implying considerable stabilization of the low-spin state of Co ions in the double-perovskite oxide. Consequently, the operating temperature range of the oxide for potential thermoelectric applications was significantly expanded toward higher temperatures.

  15. Remote Performance Monitoring of a Thermoplastic Composite Bridge at Camp Mackall, NC

    DTIC Science & Technology

    2011-11-01

    level, flow, creep, and force for slope stability, subsidence, seismicity studies, structural restoration, or site assessment applications. • Mining ...monitors mine ventilation, slope stability, convergence, and equipment performance. • Machinery testing- provides temperature, pressure, RPM, veloci...Contact an Applications Engineer for help in deter- mining the best antenna for your application. • 21831 0 dBd, ’l.t Wave Dipole Whip Antenna

  16. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun'Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  17. Optical and structural studies of films grown thermally on zirconium surfaces

    NASA Astrophysics Data System (ADS)

    Morgan, J. M.; McNatt, J. S.; Shepard, M. J.; Farkas, N.; Ramsier, R. D.

    2002-06-01

    Variable angle IR reflection spectroscopy and atomic force microscopy are used to determine the thickness and morphology of films grown thermally on Zr surfaces in air. The density and homogeneity of these films increases with temperature in the range studied (773-873 K) and growth at the highest temperature follows cubic rate law kinetics. We demonstrate a structure-property relationship for these thermally grown films and suggest the application of IR reflectivity as an inspection method during the growth of environmentally passive films on industrial Zr components.

  18. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  19. Spatially resolved speckle-correlometry of sol-gel transition

    NASA Astrophysics Data System (ADS)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  20. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  1. Temperature and heat flux measurements: Challenges for high temperature aerospace application

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.

    1992-01-01

    The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.

  2. Radio Frequency Plasma Synthesis of Boron Nitride Nanotubes (BNNTs) for Structural Applications: Part I

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Alexa, Joel A.; Jensen, Brian J.; Thomsen, Donald L.

    2016-01-01

    It is evident that nanotubes, such as carbon, boron nitride and even silicon, offer great potential for many aerospace applications. The opportunity exists to harness the extremely high strength and stiffness exhibited by high-purity, low-defect nanotubes in structural materials. Even though the technology associated with carbon nanotube (CNT) development is mature, the mechanical property benefits have yet to be fully realized. Boron nitride nanotubes (BNNTs) offer similar structural benefits, but exhibit superior chemical and thermal stability. A broader range of potential structural applications results, particularly as reinforcing agents for metal- and ceramic- based composites. However, synthesis of BNNTs is more challenging than CNTs mainly because of the higher processing temperatures required, and mass production techniques have yet to emerge. A promising technique is radio frequency plasma spray (RFPS), which is an inductively coupled, very high temperature process. The lack of electrodes and the self- contained, inert gas environment lend themselves to an ultraclean product. It is the aim of this White Paper to survey the state of the art with regard to nano-material production by analyzing the pros and cons of existing methods. The intention is to combine the best concepts and apply the NASA Langley Research Center (LaRC) RFPS facility to reliably synthesize large quantities of consistent, high-purity BNNTs.

  3. Retention of data in heat-damaged SIM cards and potential recovery methods.

    PubMed

    Jones, B J; Kenyon, A J

    2008-05-02

    Examination of various SIM cards and smart card devices indicates that data may be retained in SIM card memory structures even after heating to temperatures up to 450 degrees C, which the National Institute of Standards and Technology (NIST) has determined to be approximately the maximum average sustained temperature at desk height in a house fire. However, in many cases, and certainly for temperatures greater than 450 degrees C, the SIM card chip has suffered structural or mechanical damage that renders simple probing or rewiring ineffective. Nevertheless, this has not necessarily affected the data, which is stored as charge in floating gates, and alternative methods for directly accessing the stored charge may be applicable.

  4. Radiative transfer in multilayered random medium with laminar structure - Green's function approach

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.

  5. ITER structural design criteria and their extension to advanced reactor blankets*1

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Kalinin, G.

    2000-12-01

    Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.

  6. Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Jih-Fen, Lei; Zeller, Mary V.

    1994-01-01

    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy.

  7. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  8. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  9. Time dependent changes of material properties of FRC due to intensive heating

    NASA Astrophysics Data System (ADS)

    Prochazka, Petr P.

    2014-02-01

    Studies on porous media, particularly on fiber-reinforced concrete (FRC), which is exposed to various temperature conditions, are of great concern for engineers and researchers in wide scale of civil and underground construction. The problem consists in a relatively very complicated description of processes which the concrete undergoes during the change of loading conditions, such as change of temperature (fire), wetting, moistening, attack by chemical substances, etc. There are too many variables which should be observed and their mutual effect should be taken into consideration. If a structure is loaded by a change of temperature on one boundary surface, a texture of the concrete varies and the phases inside the concrete adopt the temperature conditions. In this paper, a numerical study based on 3D finite elements, and an experimental one based on the effect of various conditions of temperature, degree of saturation of gaseous and water parts in pores and vapor are carried out. The parameters in the numerical study are tuned according to the results from the experiments. The theory is established based on thermodynamic laws, Fourier's law, Fick's law, balance conditions, etc. An immediate application of the results from this paper is in underground structures, mainly in concrete (FRC) linings of tunnels. More general applications are much wider.

  10. Effect of Fe substitution on the structural, magnetic and electron-transport properties of half-metallic Co 2TiSi

    DOE PAGES

    Jin, Y.; Waybright, J.; Kharel, P.; ...

    2017-01-11

    The structural, magnetic and electron-transport properties of Co 2Ti 1-xFe xSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investigated. The rapidly quenched Co 2Ti 0.5Fe 0.5Si crystallized in the cubic L2 1 structure whereas Co 2Ti 0.75Fe 0.25Si and Co 2TiFe 0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie temperature increased from 360 K for Co 2TiSi to about 800 K for Co 2Ti 0.5Fe 0.5Si. The measured magnetization also increased due to partial substitution of Fe for Ti atoms. The ribbons are moderately conductingmore » and show positive temperature coefficient of resistivity with the room temperature resistivity being between 360 μΩcm and 440 μΩcm. The experimentally observed structural and magnetic properties are consistent with the results of first-principle calculations. Our calculations also indicate that the Co 2Ti 1-xFe xSi compound remains nearly half-metallic for x ≤ 0.5. In conclusion, the predicted large band gaps and high Curie temperatures much above room temperature make these materials promising for room temperature spintronic and magnetic applications.« less

  11. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I{sub 2}, NH{sub 3}) and thermal stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yang; Li, Libo; Yang, Jiangfeng

    Three metal–organic frameworks (MOFs), [Cu(INA){sub 2}], [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}], were synthesized with 3D, 2D, and 0D structures, respectively. Reversible flexible structural changes of these MOFs were reported. Through high temperature (60–100 °C) stimulation of I{sub 2} or ambient temperature stimulation of NH{sub 3}, [Cu(INA){sub 2}] (3D) converted to [Cu(INA){sub 2}I{sub 2}] (2D) and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] (0D); as the temperature increased to 150 °C, the MOFs changed back to their original form. In this way, this 3D MOF has potential application in the capture of I{sub 2} and NH{sub 3}more » from polluted water and air. XRD, TGA, SEM, NH{sub 3}-TPD, and the measurement of gas adsorption were used to describe the changes in processes regarding the structure, morphology, and properties. - Graphical abstract: Through I{sub 2}, NH{sub 3} molecules and thermal stimulation, the three MOFs can achieve reversible flexible structural changes. Different methods were used to prove the flexible reversible changes. - Highlights: • [Cu(INA){sub 2}] can flexible transform to [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] by adsorbing I{sub 2} or NH{sub 3}. • The reversible flexible transformation related to material source, temperature and concentration. • Potential applications for the capture of I{sub 2} and NH{sub 3} from polluted water or air.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Mo, Kun; Zhou, Zhangjian

    Here the high temperature tensile performance of an oxide dispersion-strengthened (ODS) 310 steel is reported upon. The microstructure of the steel was examined through both transmission electron microscopy (TEM) and synchrotron scattering. In situ synchrotron tensile investigation was performed at a variety of temperatures, from room temperature up to 800°C. Pyrochlore structure yttrium titanate and sodium chloride structure titanium nitride phases were identified in the steel along with an austenite matrix and marginal residual α’-martensite. The inclusion phases strengthen the steel by taking extra load through particle-dislocation interaction during plastic deformation or dislocation creep procedures. As temperature rises, the loadmore » partitioning effect of conventional precipitate phases starts to diminish, whereas those ultra-fine oxygen-enriched nanoparticles continue to bear a considerable amount of extra load. Introduction of oxygen-enriched nanoparticles in austenitic steel proves to improve the high temperature performance, making austenitic ODS steels promising for advanced nuclear applications.« less

  13. Structural & oxidation behavior of TiN & AlxTi1-xN coatings deposited by CA-PVD technique

    NASA Astrophysics Data System (ADS)

    Thorat, Nirmala; Mundotia, Rajesh; Varma, Ranjana; Kale, Ashwin; Mhatre, Umesh; Patel, Nainesh

    2018-04-01

    Coatings with thermal stability at elevated temperatures are prerequisite for various high speed machining and high temperature applications. The present work compares the oxidation behavior of the AlxTi1-xN coating prepared with different Al composition. Coated samples were tested at different temperatures in the range of 400 - 800 C to study their oxidation behavior. Percentage weight gain of all the samples were evaluated using high accuracy weighing balance. The depth of oxide layers were studied using Calo-test instrument. The XRD analysis was carried out to specify the phase structure. Higher oxidation rate was observed for TiN coating at all the oxidation temperatures. Oxidation rate was higher for Al13Ti87N and Al70Ti30N coatings compared to Al60Ti40N and Al50Ti50N coatings which exhibits better oxygen diffusion barrier at all the temperature.

  14. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  15. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less

  16. Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1-x(Zr,Pr)O3-δ.

    PubMed

    Antunes, Isabel; Mikhalev, Sergey; Mather, Glenn Christopher; Kharton, Vladislav Vadimovich; Figueiras, Fábio Gabriel; Alves, Adriana; Rodrigues, Joana; Correia, Maria Rosário; Frade, Jorge Ribeiro; Fagg, Duncan Paul

    2016-09-06

    Changes in nominal composition of the perovskite (ABO3) solid solution Ba1-x(Zr,Pr)O3-δ and adjusted firing conditions at very high temperatures were used to induce structural changes involving site redistribution and frozen-in point defects, as revealed by Raman and photoluminescence spectroscopies. Complementary magnetic measurements allowed quantification of the reduced content of Pr. Weak dependence of oxygen stoichiometry with temperature was obtained by coulometric titration at temperatures below 1000 °C, consistent with a somewhat complex partial frozen-in defect chemistry. Electrical conductivity measurements combined with transport number and Seebeck coefficient measurements showed prevailing electronic transport and also indicated trends expected for partial frozen-in conditions. Nominal Ba deficiency and controlled firing at very high temperatures allows adjustment of structure and partial frozen-in defect chemistry, opening the way to engineer relevant properties for high-temperature electrochemical applications.

  17. Effect of rare-earth substitution at La-site on structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds (x = 0, 0.2, 0.3; RE = Eu, Gd, Y)

    NASA Astrophysics Data System (ADS)

    Choudhary, Y. R. S.; Mangavati, Suraj; Patil, Siddanagouda; Rao, Ashok; Nagaraja, B. S.; Thomas, Riya; Okram, G. S.; Kini, Savitha G.

    2018-04-01

    In the present communication, we present results on the effect of rare-earth (RE) substitution at La-site on the structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds. The lattice parameters are observed to decrease with RE-doping which is attributed to the fact that the substituted RE ions (RE = Eu, Gd and Y) are smaller than that of La ion. In high temperature semiconducting regime, small polaron hopping (SPH) model is valid, whereas, variable hopping model is valid in low temperature metallic region. The resistivity in the entire temperature range follows percolation model. All the samples exhibit sign reversal in thermopower, S. From temperature dependent S data, it is seen that SPH model is applicable in high temperature regime.

  18. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  19. Development of Low Alloy Ti-B Steels for High Temperature Service Applications

    DTIC Science & Technology

    1952-04-01

    Ti-B steels . Ordinarily, martensite or a hardened acicular ferrite structure in steel is associated with extremely low creep strength. However, the...12000 F. The ability of the Ti-B sheet steels to suppress the ferrite transformation to the martensite or lower bainite temperature range upon air...APPROVED FOR PUBLIC mEESX_ DISTRIBUTION UNjfljarT, • WJADC TECHNICAL REPORT 52-77 DEVELOPMENT OF LOW ALLOY Ti-B STEELS FOR HIGH TEMPERATURE SERVICE

  20. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    NASA Astrophysics Data System (ADS)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  2. Hostile environments and high temperature measurements; Proceedings of the Conference, Kansas City, MO, Nov. 6-8, 1989

    NASA Astrophysics Data System (ADS)

    Topics presented include the identification of stagnant region in a fluidized bed combustor, high sensitivity objective grating speckle, an X-ray beam method for displacement and strain distributions using the moire method, and high-temperature deformation of a Ti-alloy composite under complex loading. Also addressed are a hybrid procedure for dynamic characterization of ceramics at elevated temperature, thermo-structural measurements in a SiC coated carbon-carbon hypersonic glide vehicle, and recent experience with elevated-temperature foil strain gages with application to thin-gage materials.

  3. Generalization of soft phonon modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, Sven P.

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less

  4. Generalization of soft phonon modes

    DOE PAGES

    Rudin, Sven P.

    2018-04-27

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less

  5. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering.

    PubMed

    Vorberger, J; Chapman, D A

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  6. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering

    NASA Astrophysics Data System (ADS)

    Vorberger, J.; Chapman, D. A.

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  7. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.

  8. Smart hydrogel-functionalized textile system with moisture management property for skin application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  9. Method for fabricating an ignitable heterogeneous stratified metal structure

    DOEpatents

    Barbee, T.W. Jr.; Weihs, T.

    1996-08-20

    A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

  10. Method for fabricating an ignitable heterogeneous stratified metal structure

    DOEpatents

    Barbee, Jr., Troy W.; Weihs, Timothy

    1996-01-01

    A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.

  11. Tunable multiband plasmonic response of indium antimonide touching microrings in the terahertz range.

    PubMed

    Moridsadat, Maryam; Golmohammadi, Saeed; Baghban, Hamed

    2018-06-01

    In this paper, we propose a terahertz (THz) plasmonic structure that supports three resonance modes, including the charge transfer plasmon (CTP), the bonding dipole-dipole plasmon, and the antibonding dipole-dipole plasmon, which can be strongly tuned by geometrical parameters, passively, and the temperature, actively. The structure exhibits a considerable thermal sensitivity of more than 0.01 THz/K. The introduced multiband and tunable THz plasmonic structures offer important applications in thermal switches, thermo-optical modulators, broadband filters, design of multifunctional molecules originating from the multiband specification of the proposed structure, and improvement in plasmonic sensor applications stemming from a detailed study of the CTP mode.

  12. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  13. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  14. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

    DOE PAGES

    Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...

    2017-03-10

    Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less

  15. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  16. Bioprospecting for microbial products that affect ice crystal formation and growth.

    PubMed

    Christner, Brent C

    2010-01-01

    At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth's cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

  17. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  18. Anomalous luminescence phenomena of indium-doped ZnO nanostructures grown on Si substrates by the hydrothermal method

    PubMed Central

    2012-01-01

    In recent years, zinc oxide (ZnO) has become one of the most popular research materials due to its unique properties and various applications. ZnO is an intrinsic semiconductor, with a wide bandgap (3.37 eV) and large exciton binding energy (60 meV) making it suitable for many optical applications. In this experiment, the simple hydrothermal method is used to grow indium-doped ZnO nanostructures on a silicon wafer, which are then annealed at different temperatures (400°C to 1,000°C) in an abundant oxygen atmosphere. This study discusses the surface structure and optical characteristic of ZnO nanomaterials. The structure of the ZnO nanostructures is analyzed by X-ray diffraction, the superficial state by scanning electron microscopy, and the optical measurements which are carried out using the temperature-dependent photoluminescence (PL) spectra. In this study, we discuss the broad peak energy of the yellow-orange emission which shows tendency towards a blueshift with the temperature increase in the PL spectra. This differs from other common semiconductors which have an increase in their peak energy of deep-level emission along with measurement temperature. PMID:22647253

  19. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.

    PubMed

    Du, Xuan; Zhao, Wei; Wang, Yi; Wang, Chengyang; Chen, Mingming; Qi, Tao; Hua, Chao; Ma, Mingguo

    2013-12-01

    Activated carbon hollow fibers (ACHFs) with high surface area were prepared from inexpensive, renewable ramie fibers (RFs) by a single-step activation method under lower temperature than that of other reports. The effects of activation conditions on the pore structure and turbostratic structure of ACHFs were investigated systematically. The results show that ACHFs surface area decreased but micropore volume and conductivity increased as the increase of activation temperature and activation time. The electrochemical measurements of supercapacitors fabricated from these ACHFs electrodes reveal that the electrochemical properties improved with the enhancing of activation degree. However, too high activation temperature can make the ion diffusion resistance increase. It suggests that pore structure and conductivity are as important as surface area to decide the electrochemical performances of ACHFs electrode materials. A maximum capacity of 287 F g(-1) at 50 mA g(-1) was obtained for the ACHFs electrode prepared under suitable conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  1. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  2. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    PubMed Central

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-01-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779

  3. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)

    2001-01-01

    An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.

  4. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    NASA Astrophysics Data System (ADS)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion, both intergranular and grain boundary, was identified as the most pertinent mechanism. Variations in chemistry between alloys created different amounts of gamma/gamma' misfit strain, which affected precipitate size and morphology. Next the question of how a disc alloy with differing microstructures would respond to constant or cyclic stresses as a function of time was addressed. To this end, mechanical testing at elevated temperatures was conducted, including tensile, hardness, creep deformation, creep crack growth and fatigue crack growth. Overall, mechanical properties were primarily related to the cooling rate during processing with hold temperatures being secondary. Whether the impact was positive or negative depended on the behavior under consideration. Fast cooling rates improved yield strength and creep resistance, but were detrimental to creep crack growth rates. The ability of precipitate particles to impede dislocation motion was the most frequently cited mechanism behind structure-property interaction. Neural network models were successfully generated for processing-structure predictions, as well as for structure-property predictions. Training data was limited, none-the-less models were able to predict outputs with minimal relative errors. This was achieved through careful balance between the number of inputs and amount of training data. Despite the demonstrated correlation between microstructure and yield strength, microstructural quantities did not need to be directly inputted. Neural networks were sufficiently sensitive as to infer these effects from processing and chemistry inputs. This result improves the efficiency of this technique, while also demonstrating the capability of neural network techniques. A full program of heat-treatment, microstructure quantification, mechanical testing, and neural network modeling was successfully applied to next generation Ni-base disc alloys. From this work the mechanisms of processing-structure and structure-property relationships were studied. Further, testing results were used to demonstrate the applicability of machine-learning techniques to the development and optimization of this family of superalloys.

  5. Covalent adaptable networks: smart, reconfigurable and responsive network systems.

    PubMed

    Kloxin, Christopher J; Bowman, Christopher N

    2013-09-07

    Covalently crosslinked materials, classically referred to as thermosets, represent a broad class of elastic materials that readily retain their shape and molecular architecture through covalent bonds that are ubiquitous throughout the network structure. These materials, in particular in their swollen gel state, have been widely used as stimuli responsive materials with their ability to change volume in response to changes in temperature, pH, or other solvent conditions and have also been used in shape memory applications. However, the existence of a permanent, unalterable shape and structure dictated by the covalently crosslinked structure has dramatically limited their abilities in this and many other areas. These materials are not generally reconfigurable, recyclable, reprocessable, and have limited ability to alter permanently their stress state, topography, topology, or structure. Recently, a new paradigm has been explored in crosslinked polymers - that of covalent adaptable networks (CANs) in which covalently crosslinked networks are formed such that triggerable, reversible chemical structures persist throughout the network. These reversible covalent bonds can be triggered through molecular triggers, light or other incident radiation, or temperature changes. Upon application of this stimulus, rather than causing a temporary shape change, the CAN structure responds by permanently adjusting its structure through either reversible addition/condensation or through reversible bond exchange mechanisms, either of which allow the material to essentially reequilibrate to its new state and condition. Here, we provide a tutorial review on these materials and their responsiveness to applied stimuli. In particular, we review the broad classification of these materials, the nature of the chemical bonds that enable the adaptable structure, how the properties of these materials depend on the reversible structure, and how the application of a stimulus causes these materials to alter their shape, topography, and properties.

  6. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  7. Effects of Thermal Exposure on Properties of Al-Li Alloys

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Douglas; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David; hide

    2002-01-01

    Aluminum-Lithium (Al-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional Al alloys. For example, the application of Al-Li alloy 2195 to the space shuffle external cryogenic fuel tank resulted in weight savings of over 7,000 lb, enabling successful deployment of International Space Station components. The composition and heat treatment of 2195 were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time-dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. Literature surveys have indicated that there is limited thermal exposure data on Al-Li alloys. The effort reported here was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of Al-Li alloys C458, L277, and 2195 in plate gages. Tensile, fracture toughness, and corrosion resistance were evaluated for both parent metal and friction stir welds (FSW) after exposure to temperatures as high as 300 F for up to 1000 hrs. Microstructural changes were evaluated with thermal exposure in order to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Friction stir welds of all alloys showed a drop in elongation with increased length of exposure. Understanding the effect of thermal exposure on the properties and microstructure of Al-Li alloys must be considered in defining service limiting temperatures and exposure times for a reusable cryotank structure.

  8. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    PubMed

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  10. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-04-18

    We explore the stability of the ambient pressure zinc-blende polymorph (B3) structure of silicon carbide (SiC) at high pressures and temperatures where it transforms to the rocksalt (B1) structure. We find that the transition occurs ~40 GPa lower than previously measured when heated to moderately high temperatures. A lower transition pressure is consistent with the transition pressures predicted in numerous ab initio computations. We find a large volume decrease across the transition of ~17%, with the volume drop increasing at higher formation pressures, suggesting this transition is volume driven yielding a nearly pressure-independent Clapeyron slope. Such a dramatic density increasemore » occurring at pressure is important to consider in applications where SiC is exposed to extreme conditions, such as in industrial applications or planetary interiors.« less

  11. Radiative sky cooling: fundamental physics, materials, structures, and applications

    DOE PAGES

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; ...

    2017-07-29

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, suchmore » as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.« less

  12. Radiative sky cooling: fundamental physics, materials, structures, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, suchmore » as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.« less

  13. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  14. Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches.

    PubMed

    Mohamad Ali, Mohd Shukuri; Mohd Fuzi, Siti Farhanie; Ganasen, Menega; Abdul Rahman, Raja Noor Zaliha Raja; Basri, Mahiran; Salleh, Abu Bakar

    2013-01-01

    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.

  15. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    PubMed Central

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  16. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  17. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  18. Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.

    2014-11-01

    Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.

  19. Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.

    2015-09-01

    The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.

  20. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  1. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  2. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after OM application, which was consistent with other studies (Wang et al., 2001). The content of the WSS increased after the OM application indicating that the increase of labile organic carbon. The C/H mole ratio of the HS could reflect the degree of condensation (Dou et al., 1995). Effects on HA chemical and optical properties. The chemical and optical properties of HA were listed. The C/H ratios decreased after OM application, from 0.830 (CKbr) to 0.754 (O2). While △lgK increased, from 0.623 (CKbr) to 0.658 (O2). The HA structure tended to become simpler. The C/H ratio of the HA decreased after OM application. This indicates that OM application decreased the degree of condensation. The △lgK values can be used as the index of HA molecule complexity in the soil. If △lgK increased, the molecular structure becomes simpler. After OM application, △lgK increased indicating that the molecular structure became simpler. Effects on HA thermal properties. It could be seen that HA had exothermic peaks in moderate and high temperature regions. After OM application, heat (H2) of exothermic peak increased in moderate temperature region, while heat (H3) of exothermic peak decreased in high temperature region. The the heat ratio of exothermic peaks in high temperature region to moderate (H3/H2) decreased. From CKbr to O2, H3/H2 decreased from 4.31 to0.86. The HA had moderate and high temperature exothermic peaks. The heat of exothermic peaks in the moderate temperature region might show that aliphatic compounds decomposed and peripheral functional groups decarboxylated. The heat of the exothermic peaks in the high temperature region might show that the HA was oxidized completely and inter-aromatic structures in the molecule decomposed. The heat ratio of the high to moderate temperature exothermic regions (H3/H2) decreased significantly after PM application, indicating that the proportion of aromatic structure decreased and the HA molecular structure simplified. Effects on CP-MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston, 1996), or from newly synthesized products from soil micro-organisms , which are likely to represent the most persistent fraction of stable OM (Baldock et al., 1990; Lichtfouse et al., 1998; Piccolo, 2002). The alkyl C increased after the OM applications, indicated by the increase of hydrophobic components content and aliphatic character. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2, indcating that a simplification trend took place in the aliphatic fraction of HA molecular with cultivation time in the tested soil. Conclusions.We have found that:1) The contents of HAs increased after OM application;2) OM application increased the contents of alkyl C and O-alkyl C, and decreased the C/H ratio, aromaticity, and the H3/H2 ratio of the HA, which indicated that the HA structure tended to become simpler and more aliphatic. 3) The results obtained by CP-MAS- 13C-NMR spectroscopy were mainly corresponding with those obtained by chemical analysis, thermal analysis, optical properties and IR spectroscopy, which indicated that 13C-NMR spectroscopy had a potential in characterizing the structural changes of HA after long-term OM application into soils.

  3. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Determan, Michael Duane

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less

  4. Thermal perturbation correlation of calcium binding Human centrin 3 and its structural changes

    NASA Astrophysics Data System (ADS)

    Pastrana-Rios, Belinda

    2014-07-01

    Perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied for the determination of the individual transition temperatures of different vibrational modes located within structural components of a calcium binding protein known as Human centrin 3. This crucial information served to understand the contribution individual calcium binding sites made towards the stability of the EF-hand and therefore the protein without the use of probes. We are convinced that the general application of PCMW2D correlation spectroscopy can be applied to the study of proteins in general to ascertain the differences in the stability of structural motifs within proteins and its relationship to the actual transition temperature of unfolding.

  5. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    NASA Technical Reports Server (NTRS)

    Walker, K. P.

    1981-01-01

    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.

  6. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  7. Modulation of the magnetic domain size induced by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, F.; Kakizakai, H.; Yamada, K.

    2016-07-11

    The electric field (EF) effect on the magnetic domain structure of a Pt/Co system was studied, where an EF was applied to the top surface of the Co layer. The width of the maze domain was significantly modified by the application of the EF at a temperature slightly below the Curie temperature. After a detailed analysis, a change in the microscopic exchange stiffness induced by the EF application was suggested to dominate the modulation of the domain width observed in the experiment. The accumulation of electrons at the surface of the Co layer resulted in an increase in the microscopicmore » exchange stiffness and the Curie temperature. The result was consistent with the recent theoretical prediction.« less

  8. Silicon Carbide Monofilament Reinforced Titanium Composites For Space Structures: A New Material Option

    NASA Astrophysics Data System (ADS)

    Kyle-Henney, Stephen; Flitcroft, Stephen; Shatwell, Robert; Gibbon, David; Voss, Gary; Harkness, Patrick

    2012-07-01

    Silicon carbide fibre reinforced titanium composite material has been in development since the 1980s initially for high temperature structures on hypersonic vehicles (HOTOL, NASP). Since then development has focused on military and civil aircraft. Development in the European Union has reached a level of maturity where it is again being considered for space applications. Current activities include pressure vessels and studies for launch vehicles and satellite applications. The paper provides background to the technology key performance characteristics current application work and future activities. The renewed interest in hypersonic vehicles has also picked up on the potential for lightweight metallic composites.

  9. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications.

    PubMed

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-02-20

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals.

  10. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications

    PubMed Central

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-01-01

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals. PMID:26907292

  11. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz

    Self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel statemore » to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  12. (Hyper)thermophilic enzymes: production and purification.

    PubMed

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  13. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    PubMed Central

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-01-01

    The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964

  14. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications.

    PubMed

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-03-25

    The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.

  15. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties.

    PubMed

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-12-21

    In this research, the Zn(C₅H₇O₂)₂·xH₂O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N₂/O₂, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  16. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    PubMed Central

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-01-01

    In this research, the Zn(C5H7O2)2·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL. PMID:29267196

  17. Thermal conductivity behavior of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  18. A temperature control design for a tapered element oscillating microbalance sensing surface

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design study is presented which shows that a tapered element oscillating microbalance can be adapted for temperature control under space application by mating with multistage thermoelectric coolers in such a way that an integral structure evolves. The control of the temperature of the sensing surface can be achieved in a number of ways. An indirect method which uses a measurement of the absorbed power is recommended. The design goals can be met if a relaxation of the power requirement can be considered.

  19. Distribution of thermal neutrons in a temperature gradient

    NASA Astrophysics Data System (ADS)

    Molinari, V. G.; Pollachini, L.

    A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.

  20. Breath Figure Method for Construction of Honeycomb Films

    PubMed Central

    Dou, Yingying; Jin, Mingliang; Zhou, Guofu; Shui, Lingling

    2015-01-01

    Honeycomb films with various building units, showing potential applications in biological, medical, physicochemical, photoelectric, and many other areas, could be prepared by the breath figure method. The ordered hexagonal structures formed by the breath figure process are related to the building units, solvents, substrates, temperature, humidity, air flow, and other factors. Therefore, by adjusting these factors, the honeycomb structures could be tuned properly. In this review, we summarized the development of the breath figure method of fabricating honeycomb films and the factors of adjusting honeycomb structures. The organic-inorganic hybrid was taken as the example building unit to discuss the preparation, mechanism, properties, and applications of the honeycomb films. PMID:26343734

  1. GaS multi-walled nanotubes from the lamellar precursor

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.

    2005-04-01

    Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

  2. Phase competition in the growth of SrCoOx/LaAlO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Meng, Dechao; Huang, Haoliang; Cai, Honglei; Huang, Qiuping; Wang, Jianlin; Yang, Yuanjun; Zhai, Xiaofang; Fu, Zhengping; Lu, Yalin

    2018-02-01

    The reversible topotactic phase transformation between brownmillerite SrCoO2.5 to perovskite SrCoO3 has attracted more and more attention for potential applications as solid oxide fuels and electrolysis cells. However, the relatively easy transformation result from small thermal stable energy barriers between the two phases leads to unstable the structures. In the paper, amounts of SrCoO3-δ films have been prepared by pulsed laser deposition at optimized growth conditions with the temperature range of 590-720°C. The X-ray diffraction (XRD) results demonstrated that a phase competition emerged around 650°C. The Gibbs free energies of two phases at high temperature revealed the difference of stability of these two phases under different growth temperature. The optical spectroscopies and X-ray photoelectron spectroscopies were used to verify the electronic structure and chemical state differences between the two phases with distinct crystal structures.

  3. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  4. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles

    PubMed Central

    Schouten, Stefan; Hopmans, Ellen C.; Pancost, Richard D.; Damsté, Jaap S. Sinninghe

    2000-01-01

    Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) and branched glycerol dialkyl diethers are main membrane constituents of cultured hyperthermophilic archaea and eubacteria, respectively, and are found in environments with temperatures >60°C. Recently, we developed a new technique for the analysis of intact core tetraether lipids in cell material and sediments. The application of this technique to recent sediments shows that known and newly identified isoprenoid and branched GDGTs are widespread in low-temperature environments (<20°C) and are structurally far more diverse than previously thought. Their distribution indicates the ubiquitous environmental presence of as yet uncultivated, nonthermophilic organisms that may have independently evolved from hyperthermophilic archaea and eubacteria. The structures of some of the new GDGTs point to the hybridization of both typical archaeal and eubacterial biosynthetic pathways in single organisms. PMID:11121044

  5. Reversal of spontaneous magnetization and spontaneous exchange bias for Sm1-xYxCrO3: The effect of Y doping

    NASA Astrophysics Data System (ADS)

    Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao

    2017-11-01

    We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.

  6. Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties.

    PubMed

    Lu, Tao; Zhu, Shenmin; Ma, Jun; Lin, Jinyou; Wang, Wanlin; Pan, Hui; Tian, Feng; Zhang, Wang; Zhang, Di

    2015-10-01

    Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM. The corresponding reflection peaks red-shift with increase in temperature-an opposite phenomenon to previous studies, demonstrating a thermoresponsive photonic property. This unique phenomenon is caused by the refractive index change due to the volume change of PNIPAM during the temperature rising. This work sets up an efficient strategy for the fabrication of stimuli-responsive photonic materials with hierarchical structures toward extensive applications in science and technology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  8. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  9. Pest resistant MoSi.sub.2 materials and method of making

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    1995-01-01

    A pest resistant molybdenum disilicide composition is provided for use in high temperature structural applications. The composition includes molybdenum disilicide and silicon nitride and can be used to prepare improved reinforced composites.

  10. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    NASA Astrophysics Data System (ADS)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  11. Advanced ordered intermetallic alloy deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositionsmore » and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.« less

  12. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  13. Sol-gel optics for biomeasurements

    NASA Astrophysics Data System (ADS)

    Lechna-Marczynska, Monika I.; Podbielska, Halina; Ulatowska-Jarza, Agnieszka; Holowacz, Iwona; Andrzejewski, Damian

    2001-10-01

    Sol-gel technique is a method for producing of glass-like materials without involving a melting process. Organic compounds such as alcoholates of silicon, sodium or calcium can be used. The irregular non-crystalline network forms a gel structure where the metallic atoms are bonded to oxygen atoms. Low-temperature treatment turns this gel into an inorganic glass-like structure. There are numbers of applications of these materials that can be produced in various forms and shapes. Here, silica based sol-gel bulks and thin films optodes for biomedical applications will be presented.

  14. Low temperature dielectric relaxation of poly (L-lactic acid) (PLLA) by Thermally Stimulated Depolarization Current

    NASA Astrophysics Data System (ADS)

    Mishra Patidar, Manju; Jain, Deepti; Nath, R.; Ganesan, V.

    2016-10-01

    Poly (L-lactic acid) (PLLA) is a biodegradable and biocompatible polyester that can be produced by renewable resources, like corn. Being non-toxic to human body, PLLA is used in biomedical applications, like surgical sutures, bone fixation devices, or controlled drug delivery. Besides its application studies, very few experiments have been done to study its dielectric relaxation in the low temperature region. Keeping this in mind we have performed a low temperature thermally stimulated depolarization current (TSDC) studies over the temperature range of 80K-400K to understand the relaxation phenomena of PLLA. We could observe a multi modal broad relaxation of small but significant intensity at low temperatures while a sharp and high intense peak around glass transition temperature, Tg∼ 333K, of PLLA has appeared. The fine structure of the low temperature TSDC peak may be attributed to the spherulites formation of crystallite regions inter twinned with the polymer as seen in AFM and appear to be produced due to an isothermal crystallization process. XRD analysis also confirms the semicrystalline nature of the PLLA film.

  15. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  16. Temperature dependence of fluorescence for EuCl3 in LiCl-KCl eutectic melt.

    PubMed

    Im, Hee-Jung; Kim, Tack-Jin; Song, Kyuseok

    2010-08-15

    The fluorescence of EuCl(3) in LiCl-KCl eutectic melt according to temperature changes was investigated, and the spontaneous partial reduction of Eu(3+) to Eu(2+) at high temperature was confirmed by the fluorescence results. The fluorescence decreases when the temperature increases, and this was examined in detail. The studies of fluorescence provided information regarding the chemical and physical behavior of europium ions in the molten salt according to the temperature changes. It is applicable for monitoring species and concentrations and estimating the approximate chemical structure of the ions in molten salts. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.

    2012-06-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  18. Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury

    2011-01-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  19. Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja

    We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.

  20. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  1. Creep and Fracture Characteristics of Materials and Structures at Elevated Temperatures

    DTIC Science & Technology

    1988-05-01

    evident until the crack velocity and length have grown appreciably. At the larger da/dt values, many of the assumptions required for the application of the...to difficulties in the practical application of the energy balance concept, new approaches had to be found to characterize the material behavior...fracture mechanics (LEFM). Irwin [8] broadened the applicability of LEFM by introducing a modified stress intensity factor KI. At the same time Wells [9

  2. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  3. Temperature dependent droplet impact dynamics on flat and textured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at variousmore » temperatures.« less

  4. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  5. Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream

    PubMed Central

    Li, Dongwei; Zhu, Ye; Wang, Hui; Ding, Yi

    2013-01-01

    Preferential CO oxidation (PROX) was investigated by using dealloyed nanoporous gold (NPG) catalyst under ambient conditions. Systematic investigations were carried out to characterize its catalytic performance by varying reaction parameters such as temperature and co-existence of CO2 and H2O, which revealed that NPG was a highly active and selective catalyst for PROX, especially at low temperature. At 20°C, the exit CO concentration could be reduced to less than 2 ppm with a turnover frequency of 4.1 × 10−2 s−1 at a space velocity of 120,000 mL h−1 g−1cat. and its high activity could retain for more than 24 hours. The presence of residual Ag species in the structure did not seem to improve the intrinsic activity of NPG for PROX; however, they contributed to the stabilization of the NPG structure and apparent catalytic activity. These results indicated that NPG might be readily applicable for hydrogen purification in fuel cell applications. PMID:24145317

  6. Third Generation RLV Structural Seal Development Programs at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2002-01-01

    NASA GRC's work on high temperature structural seal development began in the late 1980's and early 1990's under the NASP (National Aero-Space Plane) project. Bruce Steinetz led the in-house propulsion system seal development program and oversaw industry efforts for propulsion system and airframe seal development for this vehicle. a propulsion system seal location in the NASP engine is shown. The seals were located along the edge of a movable panel in the engine to seal the gap between the panel and adjacent engine sidewalls. More recently, we worked with Rocketdyne on high temperature seals for the linear aerospike engine ramps. In applications such as the former X-33 program, multiple aerospike engine modules would be installed side by side on the vehicle. Seals are required in between adjacent engine modules along the edges and base of the engines. The seals have to withstand the extreme temperatures produced byt he thrusters at the top of the ramps while accommodating large deflections between adjacent ramps. We came up with several promising seal concepts for this application and shared them with Rocketdyne.

  7. Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution

    NASA Astrophysics Data System (ADS)

    Franciska, P. L.; Erryani, A.; Annur, D.; Kartika, I.

    2017-05-01

    Metal foam is a new class of materials with promising applications and a unique combination of physical, chemical, and mechanical properties. The purpose of biodegradable implants is to support tissue regeneration and healing in a particular application by material degradation and implant replacement through the surrounding tissue. Magnesium alloys are expected to be degraded in the body and its corrosion products not deleterious to the surrounding tissue. In the present study, the foam metal was manufactured via powder metallurgy with a different variation of sintering temperature and TiH2 used as a foaming agent which are added to Mg-1Ca-3Zn alloy as much 3% wt TiH2. The sintering temperatures were 500, 550 and 600 °C with a constant holding time of 5 hours. It’s critical that the sintering temperature is carefully selected in consideration of their corrosion behavior. This paper reports the study of the behavior of the Mg-Ca-Zn alloy metal foam which evaluated by SEM, EDX, and electrochemical corrosion test in Hank’s solutions. After exposure, the SEM result of Mg-Ca-Zn-3TiH2 to Hank’s solution, a volcano-like structure is formed. The streams of H2 bubbles form at local sites on the Mg alloy surface where electrochemical reactions are taking place, leading to the particular structure with around shape and often with a hole in the center. The corresponding EDS result maps reveal enrichment of O, Ca, P and Mg as corrosion product. Potentiodynamic polarization experiments conducted at 37 °C and pH 7.4 indicated the increased biodegradation rates resulted from porous structure of foam samples. Corrosion rate in 500oC sintering temperature were 1.99 millimiles per year (mmpy) with corrosion current density (I corr ) 87.3.10-6 A/cm2, corrosion rate in 550 °C sintering temperature were 2,16 mmpy with I corr 94.4.10-6 A/cm2 and rate in 600 °C sintering temperature were 2.41 mmpy with I corr 105.10-6 A/cm2. The results showed that the increasing of sintering temperature could influence the corrosion resistance of Mg alloy.

  8. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several hundred degrees Centigrade. Hence the material has excellent potential for various types of applications. The analytical predictions from both models provide reasonably accurate results. Glass, AR-glass, carbon and Nicalon tows and carbon fabrics could be successfully used as skin reinforcements increasing the flexural stiffness and strength of the core. No occurrence of fiber delamination was observed.

  9. MOVPE growth of (GaIn)As/Ga(AsSb)/(GaIn)As type-II heterostructures on GaAs substrate for near infrared laser applications

    NASA Astrophysics Data System (ADS)

    Fuchs, C.; Beyer, A.; Volz, K.; Stolz, W.

    2017-04-01

    The growth of high quality (GaIn)As/Ga(AsSb)/(GaIn)As "W"-quantum well heterostructures is discussed with respect to their application in 1300 nm laser devices. The structures are grown using metal organic vapor phase epitaxy and characterized using high-resolution X-ray diffraction, scanning transmission electron microscopy and photoluminescence measurements. The agreement between experimental high-resolution X-ray diffraction patterns and full dynamical simulations is verified for these structurally challenging heterostructures. Scanning transmission electron microscopy is used to demonstrate that the structure consists of well-defined quantum wells and forms the basis for future improvements of the optoelectronic quality of this materials system. By altering the group-V gas phase ratio, it is possible to cover a large spectral range between 1200 nm and 1470 nm using a growth temperature of 550 °C and a V/III ratio of 7.5. A comparison of a sample with a photoluminescence emission wavelength at 1360 nm with single quantum well material reference samples proves the type-II character of the emission. A further optimization of these structures for application in 1300 nm lasers by applying different V/III ratios yields a stable behavior of the photoluminescence intensity using a growth temperature of 550 °C.

  10. Lightweight Thermal Protection System for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Stewart, David; Leiser, Daniel

    2007-01-01

    TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation-resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal-conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle. The lightweight system comprises a treated carbonaceous cap composed of ROCCI (Refractory Oxidation-resistant Ceramic Carbon Insulation), which provides dimensional stability to the outer mold line, while the fibrous base material provides maximum thermal insulation for the vehicle structure.

  11. Understanding temperature tuning of the all polymer co-extruded laser

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, Jim; Aviles, Michael; Dawson, Nathan; Petrus, Joshua; Mazzocco, Anthony; Singer, Ken; Baer, Eric; Song, Hyunmin

    2012-10-01

    We investigate the effects of elevated temperatures on a few types of all-polymer multilayer films that were fabricated using a co-extrusion melt-process technique. We report on the anisotropic thermal expansion of the multilayer films, which affects the photonic crystal structure via constituent wise induced anisotropic strains and a change in the relative refractive indices. In addition to the characterization of these films in the temperature range of approximately 20-95 degrees C, we show the application to non-contact temperature sensing and wavelength tuning of all polymer Distributed FeedBack (DFB) lasers and Distributed Bragg Reflector (DBR) lasers.

  12. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Ochi, Yutaka; Matsui, Takahiro; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

    2018-07-01

    Slope-assisted Brillouin optical correlation-domain reflectometry (SA-BOCDR) is a recently developed structural health monitoring technique for measurements of strain, temperature, and loss distributions along optical fibers. Although the basic operational principle of this method has been clarified, no measurements using optical fibers embedded in actual structures have been reported. As a first step towards such practical applications, in this study, we present an example of an SA-BOCDR-based diagnosis using a composite structure with carbon fiber-reinforced plastics. The system’s output agrees well with the actual strain distributions. We were also able to detect the breakage of the embedded fiber, thus demonstrating the promise of SA-BOCDR for practical applications.

  13. Electronic and transport properties of fluorite structure of La2Ce2O7

    NASA Astrophysics Data System (ADS)

    Mahida, H. R.; Singh, Deobrat; Gupta, Sanjeev K.; Sonvane, Yogesh; Thakor, P. B.

    2017-05-01

    In this paper, we have symmetrically investigated the structural, electronic and transport properties of fluorite structure of lanthanum cerate oxide (La2Ce2O7) using density functional theory (DFT). The electronic band structure of La2Ce2O7 show semiconducting in nature with band gap of 1.54 eV (indirect at R-X points) and 1.71 eV (direct at R points). We have also calculated the susceptibility, hall resistance, electrical, and thermal conductivity by using Boltztrap equation. The electrical conductivity decreases where as thermal conductivity increases with increase in the temperature. Our result shows that La2Ce2O7 has application in Proton exchange membrane (PEM) fuel cells applications.

  14. Effect of carbonization temperatures on biochar formation of bamboo leaves

    NASA Astrophysics Data System (ADS)

    Pattnaik, D.; Kumar, S.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Bamboo is a typical plant native in Asia, been used in many sectors, which also produces a large volume of leaves which goes waste and not find its application for any useful purposes; is often considered as a bio-waste and normally incinerated or dumped; as its applications are not yet fully explored. However, some research work done on bamboo fibers for use as a reinforcement in making polymer matrix composite. In the present piece of research work, the influence of burning/carbonization of bamboo leaves (at different temperatures) have been studied and characterized. Proximate analysis gave the fixed carbon content (of ~nearly21%). X-Ray diffraction results revealed the presence of various phases viz. cristobalite (SiO2), Calcite (Ca2O3) etc. accompanied with changes in crystal structures. Fourier transform infrared spectroscopy results showed various modes of vibrations viz. O-H stretching bending of other bonds; (for aromatic benzene derivatives) etc. Scanning Electron Microscopic observation (of morphology) showed irregular stacking arrangements between the randomly spaced lamellae structure, with variation in carbonizing temperature. Results revealed the advantages of pyrolysis process in biochar production/formation. It appears that, the bamboo biochar can have suitable properties for its use as an alternative energy source and also for agricultural applications. Its high porosity and carbon content suggest its application as activated carbon also; after physical or chemical treatments. The present research focuses on extending the frontiers of use of bamboo leaves from being an unutilized biowaste to its conversion into a value added product, which can be compassed in terms of sustainable applications.

  15. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  16. Images of turbulent, absorbing-emitting atmospheres and their application to windshear detection

    NASA Astrophysics Data System (ADS)

    Watt, David W.; Philbrick, Daniel A.

    1991-03-01

    The simulation of images generated by thermally-radiating, optically- thick turbulent media are discussed and the time-dependent evolution of these images is modeled. This characteristics of these images are particularly applicable to the atmosphere in the 13-15 mm band and their behavior may have application in detecting aviation hazards. The image is generated by volumetric thermal emission by atmospheric constituents within the field-of-view of the detector. The structure of the turbulent temperature field and the attenuating properties of the atmosphere interact with the field-of-view's geometry to produce a localized region which dominates the optical flow of the image. The simulations discussed in this paper model the time-dependent behavior of images generated by atmospheric flows viewed from an airborne platform. The images ar modelled by (1) generating a random field of temperature fluctuations have the proper spatial structure, (2) adding these fluctuation to the baseline temperature field of the atmospheric event, (3) accumulating the image on the detector from radiation emitted in the imaging volume, (4) allowing the individual radiating points within the imaging volume to move with the local velocity, (5) recalculating the thermal field and generating a new image. This approach was used to simulate the images generated by the temperature and velocity fields of a windshear. The simulation generated pais of images separated by a small time interval. These image paris were analyzed by image cross-correlation. The displacement of the cross-correlation peak was used to infer the velocity at the localized region. The localized region was found to depend weakly on the shape of the velocity profile. Prediction of the localized region, the effects of imaging from a moving platform, alternative image analysis schemes, and possible application to aviation hazards are discussed.

  17. Low resistivity W{sub x}V{sub 1−x}O{sub 2}-based multilayer structure with high temperature coefficient of resistance for microbolometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Émond, Nicolas; Hendaoui, Ali; Chaker, Mohamed, E-mail: chaker@emt.inrs.ca

    2015-10-05

    Materials that exhibit semiconductor-to-metal phase transition (SMT) are commonly used as sensing layers for the fabrication of uncooled microbolometers. The development of highly responsive microbolometers would benefit from using a sensing material that possesses a large thermal coefficient of resistance (TCR) close to room temperature and a resistivity low enough to compromise between noise reduction and high TCR, while it should also satisfies the requirements of current CMOS technology. Moreover, a TCR that remains constant when the IR camera surrounding temperature varies would contribute to achieve reliable temperature measurements without additional corrections steps for TCR temperature dependence. In this paper,more » the characteristics of the SMT occurring in undoped and tungsten-doped vanadium dioxide thin films deposited on LaAlO{sub 3} (100) substrates are investigated. They are further exploited to fabricate a W{sub x}V{sub 1−x}O{sub 2} (0 ≤ x ≤ 2.5) multilayer structure exhibiting a bottom-up gradient of tungsten content. This MLS displays a combination of properties that is promising for application to uncooled microbolometer, such as a large TCR of −10.4%/ °C and low resistivity values ranging from 0.012 to 0.10 Ω-cm over the temperature range 22 °C–42 °C.« less

  18. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.

  19. High-temperature solution growth and characterization of (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 piezo-/ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2018-03-01

    Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.

  20. Program For Analysis Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Mital, S. K.

    1994-01-01

    METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.

  1. [Investigation on Mobile Phone Based Thermal Imaging System and Its Preliminary Application].

    PubMed

    Li, Fufeng; Chen, Feng; Liu, Jing

    2015-03-01

    The technical structure of a low-cost thermal imaging system (TIM) lunched on a mobile phone was investigated, which consists of a thermal infrared module and mobile phone and application software. The designing strategies and technical factors toward realizing various TIM array performances are interpreted, including sensor cost and Noise Equivalent Temperature Difference (NETD). In the software algorithm, a mechanism for scene-change detection was implemented to optimize the efficiency of non-uniformity correction (NUC). The performance experiments and analysis indicate that the NETD of the system can be smaller than 150 mK when the integration time is larger than 16 frames. Furthermore, a practical application for human temperature monitoring during physical exercise is proposed and interpreted. The measurement results support the feasibility and facility of the system in the medical application.

  2. Principles and Experience of the On-Condition Application of Oils and Working Fluids to Aeronautical Engineering

    DTIC Science & Technology

    1996-04-01

    structural factors; I is the temperature, p is the pressure; P, is the vibration parameter; Q, is the supply amount (volume); R, is the supply rate; If is...Bueiu6, Aires, Argentina, p. 4, 1994. 3. B.Bedrik, M.Yampolsky "Study and procedure of oils application in aeroengines according to the condition. Joint

  3. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  4. Thermoelectric clathrates of type I.

    PubMed

    Christensen, Mogens; Johnsen, Simon; Iversen, Bo Brummerstedt

    2010-01-28

    Thermoelectric clathrates hold significant promise for high temperature applications with zT values exceeding 1.3. The inorganic clathrates have been shown to be both chemically and thermally stable at high temperatures, and high performance can be obtained from both single crystals and processed powders. The clathrates also show excellent compatibility factors in segmented module applications. For a materials chemist it is furthermore of great importance that the clathrates exhibit a very rich chemistry with the ability for substitution of many different elements. This allows delicate tuning of both the crystal structure as well as the physical properties. With all these assets, it is not surprising that clathrates have been intensely investigated in the thermoelectric community during the past decade. The present perspective provides a review of the many studies concerned with the synthesis, crystal structure and thermoelectric properties of clathrates with emphasis on the type I clathrate.

  5. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  6. Temperature dependence of Ni3S2 nanostructures with high electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Wei, X. Q.; Li, M. B.; Hou, P. Y.; Xu, X. J.

    2018-04-01

    Different Ni3S2 nanostructures have been successfully synthesized at different temperatures by a facile and efficient solvothermal method. The Ni3S2 nanostructures with three-dimensional (3D) nanosheets array and silkworm eggs-like morphologies were obtained by adjusting the reaction temperature. A large number of 3D nanosheets are interconnected to form an open network structure with porous of Ni3S2 at 180 °C, and electrochemical tests showed that the special structure exhibited the outstanding specific capacitance (1357 F g -1 at 1 A g-1) and excellent cycling stability (maintained 91% after 3000 cycles). In comparison, the performance of Ni3S2 silkworm eggs-like structure is not very perfect. This may be due to the fact that the 3D nanosheets with porous structure can improve the electrochemical performance by shortening effectively the diffusion path of electrolyte ions and increasing the active sites during charging and discharging. Among them, the reaction temperature is the main factor to control the formation of the 3D nanosheets array. These results indicated the Ni3S2 nanosheets promising applications as high-performance supercapacitor electrode materials.

  7. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene-like nanoparticles with core-shell structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; Yang Haibin; Fu Wuyou

    W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less

  8. Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc

    2004-01-01

    Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.

  9. Tungsten as a Chemically-Stable Electrode Material on Ga-Containing Piezoelectric Substrates Langasite and Catangasite for High-Temperature SAW Devices

    PubMed Central

    Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen

    2016-01-01

    Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated. PMID:28787898

  10. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    PubMed Central

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  11. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    DOE PAGES

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less

  12. Electro optical system to measure strains at high temperature

    NASA Technical Reports Server (NTRS)

    Sciammarella, Cesar A.

    1991-01-01

    The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.

  13. Electro optical system to measure strains at high temperature

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1991-12-01

    The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.

  14. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  15. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.

  16. Performance of nickel-based oxygen carrier produced using renewable fuel aloe vera

    NASA Astrophysics Data System (ADS)

    Afandi, NF; Devaraj, D.; Manap, A.; Ibrahim, N.

    2017-04-01

    Consuming and burning of fuel mainly fossil fuel has gradually increased in this upcoming era due to high-energy demand and causes the global warming. One of the most effective ways to reduce the greenhouse gases is by capturing carbon dioxide (CO2) during the combustion process. Chemical looping combustion (CLC) is one of the most effective methods to capture the CO2 without the need of an energy intensive air separation unit. This method uses oxygen carrier to provide O2 that can react with fuel to form CO2 and H2O. This research focuses on synthesizing NiO/NiAl2O4 as an oxygen carrier due to its properties that can withstand high temperature during CLC application. The NiO/NiAl2O4 powder was synthesized using solution combustion method with plant extract renewable fuel, aloe vera as the fuel. In order to optimize the performance of the particles that can be used in CLC application, various calcination temperatures were varied at 600°C, 800°C, 1050°C and 1300°C. The phase and morphology of obtained powders were characterized using X-ray diffraction (XRD) and Field Emission Microscopy (FESEM) respectively together with the powder elements. In CLC application, high reactivity can be achieved by using smaller particle size of oxygen carrier. This research succeeded in producing nano-structured powder with high crystalline structure at temperature 1050°C which is suitable to be used in CLC application.

  17. Surface coating of ceria nanostructures for high-temperature oxidation protection

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Bhanuchandar, S.; Babu, K. Suresh

    2018-04-01

    Stainless steels are used in high-temperature structural applications but suffer from degradation at an elevated temperature of operation due to thermal stress which leads to spallation. Ceria coating over chromium containing alloys induces protective chromia layer formation at alloy/ceria interface thereby preventing oxidative degradation. In the present work, three metals of differing elemental composition, namely, AISI 304, AISI 410, and Inconel 600 were tested for high-temperature stability in the presence and absence of ceria coating. Nanoceria was used as the target to deposit the coating through electron beam physical vapor deposition method. After isothermal oxidation at 1243 K for 24 h, Ceria coated AISI 304 and Inconel 600 exhibited a reduced rate of oxidation by 4 and 1 orders, respectively, in comparison with the base alloy. The formation of spinel structure was found to be lowered in the presence of ceria due to the reduced migration of cations from the alloy.

  18. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.

    PubMed

    Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas

    2015-01-21

    The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.

  19. Data-driven discovery of energy materials: efficient BaM2Si3O10 : Eu2+ (M = Sc, Lu) phosphors for application in solid state white lighting.

    PubMed

    Brgoch, Jakoah; Hasz, Kathryn; Denault, Kristin A; Borg, Christopher K H; Mikhailovsky, Alexander A; Seshadri, Ram

    2014-01-01

    In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

  20. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Hervol, David; Waters, Deborah

    2017-01-01

    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  1. A First Step Toward Understanding Nucleation Processes: in situ High-Temperature X-ray Diffraction and Absorption Investigations

    NASA Astrophysics Data System (ADS)

    Strukelj, E.; Neuville, D. R.; Cochain, B.; Hennet, L.; Thiaudière, D.; Guillot, B.; Roskosz, M.; Comte, M.; Richet, P.

    2009-05-01

    Nucleation is the first step of the transition between the amorphous and crystalline states and thus plays a key role in Earth and Materials sciences whenever crystallization takes place. In spite of its considerable importance in igneous petrology and industrial applications (ceramics, glass-ceramics, etc.), nucleation remains known poorly because of the difficulties of investigating the structural rearrangements that take place at a nm scale when an ordered atomic packing begins to develop in a melt. In addition, the structure of amorphous phases is not only difficult to determine, but the wealth of information available for glasses is not necessarily applicable to nucleation because of the existence of temperature-induced structural changes in melts. In view of the basic geological and industrial importance of the SiO2-Al2O3-CaO system, we have investigated a calcium aluminosilicate whose crystallization has already been studied. And because elements such as Ti or Zr can promote rapid nucleation, information can be gained about the structural changes they induce by probing specifically their own environment. In this work we have thus performed a high-temperature study of the very first steps of crystallization in a calcium aluminosilicate with 7 mol percent ZrO2 by X-ray absorption measurements at the Zr K-edge et 1873 K on the homogenous melt and 1173 K on a nucleating supercooled liquid. To complement these results with information on medium range order (MRO) X-Ray diffraction experiments have also been performed under the same conditions. As a reference, the glass has been investigated by both techniques at room temperature.

  2. Creep resistance. [of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Malu, M.; Purushothaman, S.

    1976-01-01

    High-temperature structural applications usually require creep resistance because some average stress is maintained for prolonged periods. Alloy and microstructural design guidelines for creep resistance are presented through established knowledge on creep behavior and its functional dependences on alloy microstructure. Important considerations related to creep resistance of alloys as well as those that are harmful to high-temperature properties are examined. Although most of the creep models do not predict observed creep behavior quantitatively, they are sophisticated enough to provide alloy or microstructural design guidelines. It is shown that creep-resistant microstructures are usually in conflict with microstructures that improve such other properties as stress rupture ductility. Greater understanding of the effects of environments on creep and stress rupture behavior of materials is necessary before one can optimally design alloys for applications in different environments.

  3. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    NASA Astrophysics Data System (ADS)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  4. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.

    PubMed

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-09-15

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.

  5. Synthesis of CoOOH nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells.

    PubMed

    Hu, W K; Gao, X P; Geng, M M; Gong, Z X; Noréus, D

    2005-03-31

    Studies on nanoscale materials have received great interest in both fundamental and applied aspects in recent years. In this letter, we report the synthesis of CoOOH nanorods and their possible applications as coating materials on nickel hydroxide for high-temperature nickel-metal hydride (Ni-MH) cells. The morphology and structure of CoOOH nanorods and coated nickel hydroxide particles are investigated by transmission electron microscopy, X-ray diffraction, and scanning electron microscopy, respectively. The electrochemical properties in the cylindrical AA size Ni-MH cells are evaluated. Our results show that the Ni-MH cells, where the positive electrodes are composed of such nanometer sized CoOOH coatings, have a higher capacity available and good performance at elevated temperatures of >50 degrees C.

  6. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  7. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures.

    PubMed

    Oberg, T

    2007-01-01

    The vapour pressure is the most important property of an anthropogenic organic compound in determining its partitioning between the atmosphere and the other environmental media. The enthalpy of vaporisation quantifies the temperature dependence of the vapour pressure and its value around 298 K is needed for environmental modelling. The enthalpy of vaporisation can be determined by different experimental methods, but estimation methods are needed to extend the current database and several approaches are available from the literature. However, these methods have limitations, such as a need for other experimental results as input data, a limited applicability domain, a lack of domain definition, and a lack of predictive validation. Here we have attempted to develop a quantitative structure-property relationship (QSPR) that has general applicability and is thoroughly validated. Enthalpies of vaporisation at 298 K were collected from the literature for 1835 pure compounds. The three-dimensional (3D) structures were optimised and each compound was described by a set of computationally derived descriptors. The compounds were randomly assigned into a calibration set and a prediction set. Partial least squares regression (PLSR) was used to estimate a low-dimensional QSPR model with 12 latent variables. The predictive performance of this model, within the domain of application, was estimated at n=560, q2Ext=0.968 and s=0.028 (log transformed values). The QSPR model was subsequently applied to a database of 100,000+ structures, after a similar 3D optimisation and descriptor generation. Reliable predictions can be reported for compounds within the previously defined applicability domain.

  8. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    PubMed

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  9. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  10. Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same

    DOEpatents

    Barbee, T.W. Jr.; Weihs, T.

    1996-07-23

    A multilayer structure has a selectable, (1) propagating reaction front velocity V, (2) reaction initiation temperature attained by application of external energy, and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

  11. Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same

    DOEpatents

    Barbee, Jr., Troy W.; Weihs, Timothy

    1996-01-01

    A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)] and n is about 0.8 to 1.2.

  12. Process for making carbon foam

    DOEpatents

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  13. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.

  14. Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates

    NASA Astrophysics Data System (ADS)

    Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.

    2014-07-01

    Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.

  15. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less

  16. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications

    PubMed Central

    Zaiats, Gary; Yanover, Diana; Vaxenburg, Roman; Tilchin, Jenya; Sashchiuk, Aldona; Lifshitz, Efrat

    2014-01-01

    Lead-based (IV–VI) colloidal quantum dots (QDs) are of widespread scientific and technological interest owing to their size-tunable band-gap energy in the near-infrared optical region. This article reviews the synthesis of PbSe-based heterostructures and their structural and optical investigations at various temperatures. The review focuses on the structures consisting of a PbSe core coated with a PbSexS1–x (0 ≤ x ≤ 1) or CdSe shell. The former-type shells were epitaxially grown on the PbSe core, while the latter-type shells were synthesized using partial cation-exchange. The influence of the QD composition and the ambient conditions, i.e., exposure to oxygen, on the QD optical properties, such as radiative lifetime, Stokes shift, and other temperature-dependent characteristics, was investigated. The study revealed unique properties of core/shell heterostructures of various compositions, which offer the opportunity of fine-tuning the QD electronic structure by changing their architecture. A theoretical model of the QD electronic band structure was developed and correlated with the results of the optical studies. The review also outlines the challenges related to potential applications of colloidal PbSe-based heterostructures. PMID:28788244

  17. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  18. Temperature Variation of the Resistivity and Magnetoresistance in Cobalt-Enhanced Spin-Valve Structures

    NASA Astrophysics Data System (ADS)

    Lottis, D. K.; Szucs, J.; O'Brien, T.; Gangopadhyay, S.; Mao, S.

    1996-03-01

    Several FeMn exchange-biased spin-valve structures have been prepared in an ion-beam sputtering system. The magnitude of the MR in these permalloy-based structures has been enhanced by the inclusion of Co at the interfaces with the Cu spacer layer (S.S.P. Parkin, PRL 71), 1641 (1993). Typical values for the MR in our spin-valves are 3% at room temperature and 7% at 8K. Both R and MR have been measured over the entire range from 8K to 325K, and exhibit an anomaly at a temperature near 250K. The resistance exhibits a local minimum, similar to what has been observed in Cr-based alloys (E. Fawcett et al, Rev. Mod. Phys. 66), 25 (1994) and multilayers (E. Fullerton et al, PRL 75), 330 (1995) at the Néel temperature. This anomaly is also visible in both the MR vs. T and the Δ R vs. T curves. These results, which suggest the presence of another Mn-based antiferromagnetic alloy in our samples, are particularly relevant for the development of applications where the nature of the temperature variation of the MR is crucial.

  19. A new cryostat for precise temperature control

    NASA Astrophysics Data System (ADS)

    Dong, B.; Zhou, G.; Liu, L. Q.; Zhang, X.; Xiong, L. Y.; Li, Q.

    2013-09-01

    Gifford-McMahon (GM) cryocoolers are often used in cryostat as cold sources. It has advantages of simple structure and low operating cost as well as disadvantages of vibration and temperature oscillation, which are fatal for some applications that are very sensitive to temperature stability at low temperature. To solve the problem, a thermal analysis model which is used to simulate heat transfer in the cryostat is built and discussed. According to the analysis results, a cryostat that can provide variable temperature (4-20 K) for the accurate temperature control experiments is designed and manufactured. In this cryostat, a polytetrafluoroethylene (PTFE) sheet is used as a thermal damper to reduce the temperature oscillation, with which, the temperature oscillation of the sample cooling holder is less than 4 mK at the 20 K region.

  20. Health monitoring for subway station structure by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Yuan-Feng; Han, Bing; Zhou, Zhi

    2008-03-01

    Fiber Bragg grating (FBG) sensors hold a great deal of potential for structural monitoring because of their high sensitivity and exceptional stability for long-term monitoring. FBG sensors have been applied to sense a number of physical measurands including strain, temperature, pressure etc. These applications are based on the same principle, i.e. the measurement of Bragg wavelength shift caused by the measurands. The characters and principle of FBG sensors have been introduced in detail. The relative experiment is done. The results show that FBG sensors have high sensitivity and long-term stability. It is feasible to use the sensors to the structural health monitoring (SHM). Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during the cooling phase. Thus, it is important to be able to calculate and control the heat to be produced by a given concrete at the mixture-proportioning stage. Theory of heat of hydration is also introduced in this paper. FBG sensors have been applied successfully in health monitoring for Guomao subway station structure. Compared with results measured by vibrating wire sensors and computed by finite element method, the monitoring results show temperature and strains can be accurately measured by FBG sensors. It is convenient to study on heat of hydration of massive concrete and guide structural design.

  1. Mechanical Behavior of Tough Hydrogels for Structural Applications

    NASA Astrophysics Data System (ADS)

    Illeperuma, Widusha Ruwangi Kaushalya

    Hydrogels are widely used in many commercial products including Jell-O, contact lenses, and superabsorbent diapers. In recent decades, hydrogels have been under intense development for biomedical applications, such as scaffolds in tissue engineering, carriers for drug delivery, and valves in microfluidic systems. But the scope is severely limited as conventional hydrogels are weak and brittle and are not very stretchable. This thesis investigates the approaches that enhance the mechanical properties of hydrogels and their structural applications. We discov¬ered a class of exceptionally stretchable and tough hydrogels made from poly-mers that form networks via ionic and covalent crosslinks. Although such a hydrogel contains ~90% water, it can be stretched beyond 20 times its initial length, and has a fracture energy of ~9000 J/m2. The combination of large stretchability, remarkable toughness, and recoverability of stiffness and toughness, along with easy synthesis makes this material much superior over existing hydrogels. Extreme stretchability and blunted crack tips of these hydrogels question the validity of traditional fracture testing methods. We re-examine a widely used pure shear test method to measure the fracture energy. With the experimental and simulation results, we conclude that the pure shear test method can be used to measure fracture energy of extremely stretchable materials. Even though polyacrylamide-alginate hydrogels have an extremely high toughness, it has a relatively low stiffness and strength. We improved the stiffness and strength by embedding fibers. Most hydrogels are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. But tough hydrogel composites do not fail by the fibers cutting the hydrogel; instead, it undergoes large deforming by fibers sliding through the matrix. Hydrogels were not considered as materials for structural applications. But with enhanced mechanical properties, they have opened up novel applications. This thesis aims to investigate the broader applications, well beyond those investigated so far. We show fiber reinforced tough hydrogels can dissipate a significant amount of energy at a tunable level of stress, making them suitable for energy absorbing applications such as inner layer of helmets. We develop inexpensive fire-retarding materials using tough hydrogels that provide superior protection from burn injuries. We also study hydrogels as actuators that can be used in soft robotics. Hydrogels contain mostly water and they freeze when the temperature drops below 00C and lose its functions. We demonstrate a new class of hydrogels that do not freeze and hydrogels that partially freeze below water freezing temperature. Partially freezing hydrogels are ideal for cooling applications such as gel packs and non-freezing hydrogels are useful in all the structural applications at low temperatures. This thesis will enable the use of inexpensive hydrogels in a new class of non-traditional structural applications where the mechanical behavior of the hydrogel is of prime importance.

  2. Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili

    2017-12-01

    Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.

  3. Design, develop and test high temperature dynamic seals for the space shuttle's aerodynamic control surfaces

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.

  4. Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less

  5. High temperature static strain measurement with an electrical resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  6. Chemical Fracturing of Refractory-Metal Vessels

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Localized reactions cause refractory-metal vessels to break up at predetermined temperatures. Device following concept designed to break up along predetermined lines into smaller pieces at temperature significantly below melting point of metal from which made. Possible applications include fire extinguishers that breakup to release extinguishing gas in enclosed areas, pressure vessels that could otherwise burst dangerously in fire, and self-destroying devices. Technique particularly suitable modification to already existing structures.

  7. Research on the novel FBG detection system for temperature and strain field distribution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  8. Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids

    NASA Astrophysics Data System (ADS)

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-03-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  9. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    PubMed Central

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-01-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245

  10. Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi; Matsuoka, Fumiaki; Suh, Hyo Seon

    Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. Inmore » situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.« less

  11. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, Kartik; Kolekar, Y. D.; Ramana, C. V.

    2017-08-01

    Cobalt (Co) nanoparticles (NPs) were produced by a simple, one step hydrothermal method with the capping of oleic acid. Intrinsic structural, physiochemical and magnetic properties of Co NPs were investigated and demonstrated their applicability in biomedicine. X-ray diffraction, Raman spectroscopy and infrared (IR) spectroscopic studies confirm the single phase Co NPs with a high structural quality. The IR data revealed the capping of oleic acid via monodentate interaction. Small angle scattering studies suggest the existence of sticky hard sphere type of interaction among the Co NPs because of magnetic interaction which is further evidenced by electron microscopy imaging analyses. The Co NPs exhibit a ferromagnetic character over a wide range of temperature (20-300 K). The temperature dependence of magnetic parameters namely, saturation magnetization, remanent magnetization, coercivity and reduced remanent magnetization were determined and correlated with structure of Co NPs. The Cytotoxicity studies demonstrate that these Co NPs exhibit the mild anti-proliferative character against the cancer cells (cisplatin resistant ovarian cancer (A2780/CP70)) and safe nature towards the normal cells. Haemolytic behavior of human red blood cells (RBC) revealed (<5%) haemolysis signifying the compatibility of Co NPs with human RBC which is an essential feature in vivo biomedical applications without creating any harmful effects in the human blood stream.

  12. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  13. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  14. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  15. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  16. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  17. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  18. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less

  19. Irradiation-induced β to α SiC transformation at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Chad M.; Koyanagi, Takaaki; Kondo, Sosuke

    Here, we observed that β-SiC, neutron irradiated to 9 dpa (displacements per atom) at ≈1440 °C, began transforming to α-SiC, with radiation-induced Frank dislocation loops serving as the apparent nucleation sites. 1440 °C is a far lower temperature than usual β → α phase transformations in SiC. SiC is considered for applications in advanced nuclear systems, as well as for electronic or spintronic applications requiring ion irradiation processing. β-SiC, preferred for nuclear applications, is metastable and undergoes a phase transformation at high temperatures (typically 2000 °C and above). Nuclear reactor concepts are not expected to reach the very high temperaturesmore » for thermal transformation. However, our results indicate incipient β → α phase transformation, in the form of small (~5–10 nm) pockets of α-SiC forming in the β matrix. In service transformation could degrade structural stability and fuel integrity for SiC-based materials operated in this regime. However, engineering this transformation deliberately using ion irradiation could enable new electronic applications.« less

  20. Irradiation-induced β to α SiC transformation at low temperature

    DOE PAGES

    Parish, Chad M.; Koyanagi, Takaaki; Kondo, Sosuke; ...

    2017-04-26

    Here, we observed that β-SiC, neutron irradiated to 9 dpa (displacements per atom) at ≈1440 °C, began transforming to α-SiC, with radiation-induced Frank dislocation loops serving as the apparent nucleation sites. 1440 °C is a far lower temperature than usual β → α phase transformations in SiC. SiC is considered for applications in advanced nuclear systems, as well as for electronic or spintronic applications requiring ion irradiation processing. β-SiC, preferred for nuclear applications, is metastable and undergoes a phase transformation at high temperatures (typically 2000 °C and above). Nuclear reactor concepts are not expected to reach the very high temperaturesmore » for thermal transformation. However, our results indicate incipient β → α phase transformation, in the form of small (~5–10 nm) pockets of α-SiC forming in the β matrix. In service transformation could degrade structural stability and fuel integrity for SiC-based materials operated in this regime. However, engineering this transformation deliberately using ion irradiation could enable new electronic applications.« less

  1. Noncontact temperature measurements in the microgravity fluids and transport phenomena discipline

    NASA Technical Reports Server (NTRS)

    Salzman, Jack

    1988-01-01

    The program of activities within the Microgravity Fluids and Transport Phenomena Discipline has been structured to enable the systematic pursuit of an increased understanding of low gravity fluid behavior/phenomena in a way which ensures that the results are appropriate to the widest range of applications. This structure is discussed and an overview of some of the activities which are underway is given. Of significance is the fact that in the majority of the current and planned activities, the measurement and, or control of the fluid temperature is a key experiment requirement. In addition, many of the experiments require that the temperature measurement be nonintrusive. A description of these requirements together with the current techniques which are being employed or under study to make these measurements is also discussed.

  2. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  3. Fluorescence XAS using Ge PAD: Application to High-Temperature Superconducting Thin Film Single Crystals

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.

    2007-02-01

    A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.

  4. Pulsed laser deposition of lithium niobate thin films

    NASA Astrophysics Data System (ADS)

    Canale, L.; Girault-Di Bin, C.; Cosset, F.; Bessaudou, A.; Celerier, A.; Decossas, J.-Louis; Vareille, J.-C.

    2000-12-01

    Pulsed laser deposition of Lithium Niobate thin films onto sapphire (0001) substrates is reported. Thin films composition and structure have been determined using Rutherford Backscattermg Spectroscopy (RBS) and X-ray diffraction ( XRD) experiments. The influe:nce of deposition parameters such as substrate temperature, oxygen pressure and target to substrate distance on the composition and the structure of the films has been studied. Deposition temperature is found to be an important parameter which enables us to grow LiNbO3 films without the Li deficient phase LiNb3O8. Nearly stoichiometric thin fihns have been obtained for an oxygen pressure of 0. 1 Ton and a substrate temperature of 800°C. Under optimized conditions the (001) preferential orientation of growth, suitable for most optical applications, has been obtained.

  5. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  6. Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4

    DOE PAGES

    Mirzaei, S.; Kremer, F.; Feng, R.; ...

    2017-03-14

    SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less

  7. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  8. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  9. Functional geopolymer composites for structural ceramic applications.

    DOT National Transportation Integrated Search

    2006-06-01

    The results of an experimental investigation on the behavior of milled and short-fiber : reinforced composite plates are presented in this paper. The target operating temperature for : the plates was 1300C. The principal variables were the type and...

  10. Interface engineered ferrite@ferroelectric core-shell nanostructures: A facile approach to impart superior magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.

  11. Enabling aspects of fiber optic acoustic sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.

    2013-05-01

    The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.

  12. Procedure for implementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Robinson, James C.

    1990-01-01

    A procedure is presented to allow the use of temperature dependent mechanical properties in the Engineering Analysis Language (EAL) System for solid structural elements. This is accomplished by including a modular runstream in the main EAL runstream. The procedure is applicable for models with multiple materials and with anisotropic properties, and can easily be incorporated into an existing EAL runstream. The procedure (which is applicable for EAL elastic solid elements) is described in detail, followed by a description of the validation of the routine. A listing of the EAL runstream used to validate the procedure is included in the Appendix.

  13. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    PubMed

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  14. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process

    PubMed Central

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-01-01

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188

  15. Nanostructure and strain effects in active thin films for novel electronic device applications

    NASA Astrophysics Data System (ADS)

    Yuan, Zheng

    2007-12-01

    There are many potential applications of ferroelectric thin films that take advantage of their unique dielectric and piezoelectric properties, such as tunable microwave devices and thin-film active sensors for structural health monitoring (SHM). However, many technical issues still restrict practical applications of ferroelectric thin films, including high insertion loss, limited figure of merit, soft mode effect, large temperature coefficients, and others. The main theme of this thesis is the advanced technique developments, and the new ferroelectric thin films syntheses and investigations for novel device applications. A novel method of additional doping has been adopted to (Ba,Sr)TiO 3 (BSTO) thin films on MgO. By introducing 2% Mn into the stoichiometric BSTO, Mn:BSTO thin films have shown a greatly enhanced dielectric tunability and a reduced insertion loss at high frequencies (10-30 GHz). A new record of a large tunability of 80% with a high dielectric constant of 3800 and an extra low dielectric loss of 0.001 at 1 MHz at room-temperature was achieved. Meanwhile, the new highly epitaxial ferroelectric (Pb,Sr)TiO3 (PSTO) thin films have been synthesized on (001) MgO substrates. PSTO films demonstrated excellent high frequency dielectric properties with high dielectric constants above 1420 and large dielectric tunabilities above 34% at room-temperature up to 20 GHz. In addition, a smaller temperature coefficient from 80 K to 300 K was observed in PSTO films compared to BSTO films. These results indicate that the Mn:BSTO and PSTO films are both good candidates for developing room-temperature tunable microwave devices. Furthermore, crystalline ferroelectric BaTiO3 (BTO) thin films have been deposited directly on metal substrate Ni through a unique in-situ substrate pre-oxidation treatment. The highly oriented nanopillar structural BTO films were grown on the buffered layers created by the pre-oxidation treatment. No interdiffusion or reaction was observed at the interface. As-grown BTO films demonstrated good ferroelectric properties and an extremely large piezoelectric response of 130 (x 10-12 C/N). These excellent preliminary results enable the long-term perspective on the unobtrusive ferroelectric thin-film active sensors for SHM applications.

  16. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  17. Microstructure and properties of cryomilled nickel aluminide extruded with chromium or molybdenum

    NASA Technical Reports Server (NTRS)

    Aikin, Beverly J. M.; Dickerson, Robert M.; Dickerson, Patricia O.

    1995-01-01

    Previous results from high energy, attrition milled NiAl in liquid nitrogen (cryomilled) indicate that this process can produce high temperature, creep resistant AlN particulate reinforced materials. However, the low temperature toughness of such materials is below that preferred for structural applications in aerospace engines. In order to improve the toughness of these materials, prealloyed nickel aluminide (Ni-53 atomic percent Al) powder was cryomilled and mixed with chromium or molybdenum powders. The resulting materials were hot extruded and tested for room temperature toughness and 1300 K compressive strength.

  18. Three-dimensional fabric reinforced plastics for cryogenic use

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.; Yasuda, J.; Hirokawa, T.; Noma, K.; Nishijima, S.; Okada, T.

    Three-dimensional fabric reinforced plastics (3DFRPs) have been developed as insulating and/or structural materials in superconducting magnets. Three-dimensional fabrics were designed with practical applications in fibre composites of 3DFRP. The mechanical properties such as Young's modulus, Poisson's ratio, tensile strength and the compressive strength down to liquid helium temperature were measured. Thermal contraction was also measured. The cryogenic characteristics of 3DFRPs were compared with those of conventional laminates. The newly developed 3DFRPs were found to show satisfactory characteristics not only at room temperature but also at low temperatures.

  19. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    NASA Astrophysics Data System (ADS)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  20. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  2. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  3. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  4. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  5. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Woori; Jin, Won-Beom; Choi, Jungwan

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less

  6. Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels

    NASA Astrophysics Data System (ADS)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.

  7. Nickel induced re-structuring of 2D graphene to 1D graphene nanotubes: Role of radical hydrogen in catalyst assisted growth

    NASA Astrophysics Data System (ADS)

    Krishna, Rahul; Titus, Elby

    2017-12-01

    Here, we demonstrate for the first time the structural evolution of 1D graphene nanotubes (GNTs) by the cutting of two dimensional (2D) graphene oxide (GO) sheet in reducing environment at ambient conditions in presence of Ni metal in acidic environment. We observed that in-situ generated radical hydrogen (Hrad) responsible for cutting of graphene sheets and re-structuring of 2D sheet structure to one 1D nanotubes. Structural evolution of GNTs was confirmed by using of transmission electron microscopy (TEM) technique. The current vs. voltage (I-V) characteristics of GNTs displayed room temperature (RT) negative differential resistance (NDR) effect which is typical in nanowires, suggested the applicability of nanomaterial for various kind of electronics applications such as memory devices and transistors fabrication.

  8. Design of Water Temperature Control System Based on Single Chip Microcomputer

    NASA Astrophysics Data System (ADS)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  9. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0

  10. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  11. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  12. Study, selection, and preparation of solid cationic conductors. [characteristics of solid electrolytes for rechargeable high energy and high power density batteries

    NASA Technical Reports Server (NTRS)

    Roth, W. L.; Muller, O.

    1974-01-01

    Crystal chemical principles and transport theory have been used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. Structures with 1-, 2-, and 3-dimensional channels were synthesized and screened by nuclear magnetic resonance, dielectric loss, and conductivity. There is significant conductivity at room temperature in some of the materials but none attain a level that is comparable to beta-alumina. Microwave and fast pulse methods were developed to measure conductivity in powders and in small crystals.

  13. Bismaleimides and related maleimido polymers as matrix resins

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.; Fohlen, G. M.

    1985-01-01

    Significant processing and property improvements can be achieved by copolymerization of state-of-the-art bisimides with various vinyl stilbazole derivatives to give both fire resistance and high-temperature properties from hot-melt compositions. Significant improvement in mechanical properties is achieved through these modifications, which may make these new matrix resins ideal candidates for fireworthy secondary graphite composite structures. Phosphorous modifications of maleimido polymers through phosphonate structure and tricyclophosphazene derivatives provide families of new matrix resins for short-time applications in severe thermo-oxidative environments. With further research these may provide matrix resins for long-term thermo-oxidative stability of advanced composites at temperatures up to 400 to 500 C.

  14. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  15. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  16. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  17. Analysis, compensation, and correction of temperature effects on FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis

    2013-05-01

    One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.

  18. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  19. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE PAGES

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz; ...

    2017-03-25

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  20. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior. Micro-structural, transport, optical and magnetic properties in ZnGa0.002Al 0.02O films grown by pulsed laser deposition under different growth conditions was studied. In ZnO films grown at substrate temperatures of 600°C most interesting features are the concomitant occurrence of high temperature resistivity minima and room temperature ferromagnetism with a high saturation magnetic moment and considerable coercivity. The temperature dependent resistivity data has been interpreted in the light of quantum corrections to conductivity in disordered systems, suggesting that the e-e interactions is the dominant mechanism in the weak-localization (WL) limit in the case of films showing resistivity minima. We propose that formation of oxygen vacancy-Zinc interstitial defect complex (VO-IZn) is responsible for the enhancement in n-type conductivity, and zinc vacancies (VZn) for the observed room temperature ferromagnetism. ZnO nanostructures are gaining importance in various applications, from gas sensing to thin film transistors (TFTs). We have studied the micro-structural, transport, optical and magnetic properties in ZnO nanostructured films grown by pulsed laser deposition under different ambient conditions. We have investigated the nanostructures in detail through x-ray diffraction, SEM and TEM techniques. We have achieved relatively low room temperature resistivity and the occurrence of room temperature ferromagnetism with significant saturation magnetic moment of 1000 A/m with coercivity in the range of 100-150 Oe. Photoluminescence measurements were conducted to get an insight about the types of defects that occur under different growth conditions. Correlations between transport, optical and magnetic properties has been established in terms of these defects and their complexes. These nanostructured oxides with magnetic and optical properties are promising candidates in multifunctional spintronic and photonic devices.

  1. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  2. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature.

    PubMed

    Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook

    2013-09-11

    Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 °C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for ~500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical.

  3. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  4. Novel synthesis approach for stable sodium superoxide (NaO2) nanoparticles for LPG sensing application

    NASA Astrophysics Data System (ADS)

    Nemade, Kailash; Waghuley, Sandeep

    2017-05-01

    The synthesis of stable superoxide is still great challenge for the researchers working in the field of materials science. Through this letter, we report the novel and simple synthesis approach for the preparation of stable sodium superoxide (NaO2) nanoparticles. NaO2 nanoparticles were prepared by a spray pyrolysis technique, under oxygen rich environment for gas sensing application. The texture characterizations show that as-obtained NaO2 nanoparticles have high structural purity. Most importantly, NaO2 nanoparticles exhibits higher sensing response, shorter response time and recovery time, low operating temperature and good stability during sensing of liquefied petroleum gas (LPG). The main accomplishment of present work is that as-fabricated sensor has low operating temperature (423 K), which is below auto-ignition temperature of LPG. The gas sensing mechanism of NaO2 nanoparticles was discussed without the conventional oxygen bridging mechanism. Through this short communication, LPG sensing application of stable sodium superoxide nanoparticle is explored.

  5. Ceramics and composites for rocket engines and space structures

    NASA Astrophysics Data System (ADS)

    Upadhya, Kamleshwar

    1992-05-01

    The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.

  6. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  7. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  8. Structural materials issues for the next generation fission reactors

    NASA Astrophysics Data System (ADS)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  9. Strain-engineering of Janus SiC monolayer functionalized with H and F atoms

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Sadki, K.; Kourra, M.-H.; Bousmina, M.

    2018-05-01

    Based on ab initio density functional theory calculations, the structural, electronic, mechanical, acoustic, thermodynamic, and piezoelectric properties of (F,H) Janus SiC monolayers are studied. The new set of derivatives shows buckled structures and different band gap values. Under strain, the buckling changes and the structures pass from semiconducting to metallic. The elastic limits and the metastable regions are determined. The Young's modulus and Poisson ratio reveal stronger behavior for the modified conformers with respect to graphene. The values of the Debye temperature make the new materials suitable for thermal application. Moreover, all the conformers show in-plane and out-of-plane piezoelectric responses comparable with known two-dimensional materials. If engineered, such piezoelectric Janus structures may be promising materials for various nanoelectromechanical applications.

  10. Nonlinear Reduced-Order Simulation Using Stress-Free and Pre-Stressed Modal Bases

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Stover, Michael A.; Rizzi, Stephen A.

    2009-01-01

    A study is undertaken to determine the advantages and disadvantages associated with application of stress-free and pre-stressed modal bases in a reduced-order finite-element-based nonlinear simulation. A planar beam is chosen as an application example and its response due to combined thermal and random pressure loadings is examined. Combinations of two random pressure levels and two thermal conditions are investigated. The latter consists of an ambient temperature condition and an elevated temperature condition in the post-buckled regime. It is found that stress-free normal modes establish a broadly applicable modal basis yielding accurate results for all the loading regimes considered. In contrast, the range of applicability for a thermally pre-stressed modal basis is found to be limited. The behavior is explained by scrutinizing the coupling found in the linear stiffness and the effect this coupling has on the structural response characteristics under the range of loading conditions considered.

  11. High-Temperature Corrosion Behavior of SiBCN Fibers for Aerospace Applications.

    PubMed

    Ji, Xiaoyu; Wang, Shanshan; Shao, Changwei; Wang, Hao

    2018-06-13

    Amorphous SiBCN fibers possessing superior stability against oxidation have become a desirable candidate for high-temperature aerospace applications. Currently, investigations on the high-temperature corrosion behavior of these fibers for the application in high-heat engines are insufficient. Here, our polymer-derived SiBCN fibers were corroded at 1400 °C in air and simulated combustion environments. The fibers' structural evolution after corrosion in two different conditions and the potential mechanisms are investigated. It shows that the as-prepared SiBCN fibers mainly consist of amorphous networks of SiN 3 C, SiN 4 , B-N hexatomic rings, free carbon clusters, and BN 2 C units. High-resolution transmission electron microscopy cross-section observations combined with energy-dispersive spectrometry/electron energy-loss spectroscopy analysis exhibit a trilayer structure with no detectable cracks for fibers after corrosion, including the outermost SiO 2 layer, the h-BN grain-contained interlayer, and the uncorroded fiber core. A high percentage of water vapor contained in the simulated combustion environment triggers the formation of abundant α-cristobalite nanoparticles dispersing in the amorphous SiO 2 phase, which are absent in fibers corroded in air. The formation of h-BN grains in the interlayer could be ascribed to the sacrificial effects of free carbon clusters, Si-C, and Si-N units reacting with oxygen diffusing inward, which protects h-BN grains formed by networks of B-N hexatomic rings in original SiBCN fibers. These results improve our understanding of the corrosion process of SiBCN fibers in a high-temperature oxygen- and water-rich atmosphere.

  12. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOEpatents

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  13. Thermal annealing and temperature dependences of memory effect in organic memory transistor

    NASA Astrophysics Data System (ADS)

    Ren, X. C.; Wang, S. M.; Leung, C. W.; Yan, F.; Chan, P. K. L.

    2011-07-01

    We investigate the annealing and thermal effects of organic non-volatile memory with floating silver nanoparticles by real-time transfer curve measurements. During annealing, the memory window shows shrinkage of 23% due to structural variation of the nanoparticles. However, by increasing the device operating temperature from 20 to 90 °C after annealing, the memory window demonstrates an enlargement up to 100%. The differences in the thermal responses are explained and confirmed by the co-existence of electron and hole traps. Our findings provide a better understanding of organic memory performances under various operating temperatures and validate their applications for temperature sensing or thermal memories.

  14. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in the ECR and these TFTs also show reasonable device characteristics. TFTs processed using this high-density plasma based approach show great potential for use in applications such as driver circuitry integration on low temperature substrates.

  15. Liquid crystal 'blue phases' with a wide temperature range.

    PubMed

    Coles, Harry J; Pivnenko, Mikhail N

    2005-08-18

    Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  17. Development of a thermal and structural model for a NASTRAN finite-element analysis of a hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Lameris, J.

    1984-01-01

    The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.

  18. Fundamental research in the area of high temperature fuel cells in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyomin, A.K.

    1996-04-01

    Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levelsmore » that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.« less

  19. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  20. Improving Self-Assembly by Varying the Temperature Periodically with Time

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Jarzynski, Christopher

    Self-assembly (SA) is the process by which basic components organize into a larger structure without external guidance. These processes are common in Nature, and also have technological applications, e.g. growing a crystal with a specific structure. So far, artificial SA processes have been designed mostly using diffusive building blocks with high specificity and directionality. The formation of the self-assembled structures is then driven by free-energy minimization into a thermodynamically stable state. In an alternative approach to SA, macroscopic parameters such as temperature, pressure, pH, magnetic field etc., are varied periodically with time. In this case, the SA structures are the stable periodic states of the driven system. Currently there are no design principles for periodically driven SA, other than in the limits of fast or weak driving. We present guiding ideas for self-assembly under periodic driving. As an example, we show a particular case in which self-assembly errors can be dramatically reduced by varying a system's temperature periodically with time. James S. McDonnell Foundation, and the US National Science Foundation: DMR-1506969.

Top