Sample records for temperature sulfidation behavior

  1. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing

    2016-08-01

    The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.

  2. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700 °C and the role of Se in platinum-group elements fractionation in sulfide melts

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Fonseca, Raúl O. C.

    2017-11-01

    The behavior of Pt, Pd, Ni and Cu in Se-sulfide system and the role of Se in platinum-group elements (PGE) fractionation have been experimentally investigated at temperatures between 1050 and 700 °C in evacuated silica tubes. At 1050 °C, Se partially partitions into a vapor phase. At 980 °C, monosulfide solid solution (mss) and sulfide melt are the only stable phases. No Pt or Pd-bearing discrete selenide phases form down to 700 °C. Instead cooperite (PtS) forms at 900 °C. Both mss and sulfide melt can accommodate wt.% levels of Se over the whole temperature range covered by the experiments. The addition of Se in the sulfide system leads to an increase in the activity coefficients of Ni and Pd in sulfide melt. This is reflected by an increase in the partition coefficients of Ni and Pd between mss and sulfide melt. The Pt-Se activity coefficient in sulfide melt is lower than that of Pt-S. Owing to selenium's high solubility in sulfides, there never become oversaturated in Se to the extent that discrete selenides form. As such, base metal sulfides are expected to control the geochemical behavior of Se in natural systems. Interestingly, partition coefficients for the platinum-group elements (Os, Ir, Ru, Pt, Rh, Pd) between mss and sulfide melt are undistinguishable regardless of whether Se is present or not. These results imply that Se plays little role in the fractionation of PGE as sulfide melt cools down and crystallize. Furthermore, our experimental results provide evidence that Se is volatile at magmatic temperature and is likely to be degassed like sulfur.

  3. Study on the surface sulfidization behavior of smithsonite at high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  4. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Zhang, Tianfu; Xue, Kai; Li, Wenhua; Jiao, Fen; Qin, Wenqing

    2017-02-01

    The mechanism of ZnO sulfidation with sulfur and iron oxide at high temperatures was studied. The thermodynamic analysis, sulfidation behavior of zinc, phase transformations, morphology changes, and surface properties were investigated by HSC 5.0 combined with FactSage 7.0, ICP, XRD, optical microscopy coupled with SEM-EDS, and XPS. The results indicate that increasing temperature and adding iron oxide can not only improve the sulfidation of ZnO but also promote the formation and growth of ZnS crystals. Fe2O3 captured the sulfur in the initial sulfidation process as iron sulfides, which then acted as the sulfurizing agent in the late period, thus reducing sulfur escape at high temperatures. The addition of carbon can not only enhance the sulfidation but increase sulfur utilization rate and eliminate the generation of SO2. The surfaces of marmatite and synthetic zinc sulfides contain high oxygen due to oxidation and oxygen adsorption. Hydroxyl easily absorbs on the surface of iron-bearing zinc sulfide (Zn1-xFexS). The oxidation of synthetic Zn1-xFexS is easier than marmatite in air.

  5. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature

    PubMed Central

    Han, Junwei; Liu, Wei; Zhang, Tianfu; Xue, Kai; Li, Wenhua; Jiao, Fen; Qin, Wenqing

    2017-01-01

    The mechanism of ZnO sulfidation with sulfur and iron oxide at high temperatures was studied. The thermodynamic analysis, sulfidation behavior of zinc, phase transformations, morphology changes, and surface properties were investigated by HSC 5.0 combined with FactSage 7.0, ICP, XRD, optical microscopy coupled with SEM-EDS, and XPS. The results indicate that increasing temperature and adding iron oxide can not only improve the sulfidation of ZnO but also promote the formation and growth of ZnS crystals. Fe2O3 captured the sulfur in the initial sulfidation process as iron sulfides, which then acted as the sulfurizing agent in the late period, thus reducing sulfur escape at high temperatures. The addition of carbon can not only enhance the sulfidation but increase sulfur utilization rate and eliminate the generation of SO2. The surfaces of marmatite and synthetic zinc sulfides contain high oxygen due to oxidation and oxygen adsorption. Hydroxyl easily absorbs on the surface of iron-bearing zinc sulfide (Zn1−xFexS). The oxidation of synthetic Zn1−xFexS is easier than marmatite in air. PMID:28186156

  6. Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.

  7. Thermal behavior of an experimental 2.5-kWh lithium/iron sulfide battery

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Olszanski, T. W.; Gibbard, H. F.

    1981-10-01

    The thermal energy generation and the gross thermal energy balance in the battery systems was studied. High temperature lithium/iron sulfide batteries for electric vehicle applications were developed. The preferred battery temperature range during operation and idle periods is 400 to 500 C. Thermal management is an essential part of battery design, the battery requires a thermal insulation vessel to minimize heat loss and heating and cooling systems to control temperature. Results of temperature measurements performed on a 2.5-kWh battery module, which was built to gain information for the design of larger systems are reported.

  8. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Sulfidation behavior and mechanism of zinc silicate roasted with pyrite

    NASA Astrophysics Data System (ADS)

    Ke, Yong; Peng, Ning; Xue, Ke; Min, Xiaobo; Chai, Liyuan; Pan, Qinglin; Liang, Yanjie; Xiao, Ruiyang; Wang, Yunyan; Tang, Chongjian; Liu, Hui

    2018-03-01

    Sulfidation roasting followed by flotation is widely known as a possible generic technology for enriching valuable metals in low-grade Zn-Pb oxide ores. Zn2SiO4 is the primary Zn phase in willemite. Zn4Si2O7(OH)2(H2O), the main Zn phase in hemimorphite, transforms into Zn2SiO4 at temperatures above 600 °C. To enrich the Zn in willemite and hemimorphite, the Zn species should first be converted to ZnS. Therefore, a thorough understanding of the sulfidation reaction of Zn2SiO4 during roasting with pyrite is of vital important. In this study, the sulfidation behavior and reaction mechanisms of a Zn2SiO4-pyrite roasting system were determined using HSC 5.0 software, TG-FTIR spectroscopy, XRD, XPS and SEM-EDS. The results indicate that the sulfidation process can be divided into three steps: the decomposition of pyrite and formation of a sulfur-rich environment, the sulfur-induced migration of O2- and transformation of sulfur vapor, and the sulfidation reaction via oxygen-sulfur exchange. During the sulfidation roasting process, pyrite was converted to loose and porous Fe3O4, whereas Zn2SiO4 was transformed into ZnS and SiO2 in situ. These findings provide theoretical support for controlling the sulfidation roasting process of willemite and hemimorphite.

  10. Sulfide Stress Cracking Behavior of a Martensitic Steel Controlled by Tempering Temperature

    PubMed Central

    Sun, Yu; Wang, Qian; Gu, Shunjie; He, Zaoneng; Wang, Qingfeng; Zhang, Fucheng

    2018-01-01

    A medium-carbon Cr–Mo–V martensitic steel was thermally processed by quenching (Q) at 890 °C and tempering (T) at increasing temperatures from 650 °C to 720 °C and the effect of tempering temperature, Tt, on sulfide stress cracking (SSC) behaviors was estimated mainly via double cantilever beam (DCB) and electrochemical hydrogen permeation (EHP) tests and microstructure characterization. The results indicate that the threshold stress intensity factor for SSC, KISSC, increased with increasing Tt. The overall and local H concentration around the inclusions decreased with increasing Tt, due to reductions in the amounts of solute atoms, grain boundaries and dislocations, which effectively prevented SSC initiation. Also, increasing Tt caused an increased fraction of high-angle boundaries, which evidently lowered the SSC propagation rate by more frequently diverting the propagating direction and accordingly restricted SSC propagation. The overall SSC resistance of this Q&T–treated steel was therefore significantly enhanced. PMID:29522494

  11. A study of low-dimensional quaternary mixed-transition metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Oledzka, Magdalena Agata

    New quaternary alkali metal mixed-transition metal sulfides: ACuMSsb2 (A = K, Rb, Cs; M = Mn, Fe, Co) and KCosb{2-x}Cusb{x}Ssb2 (0.5 ≤ x ≤ 1.5) were prepared by CSsb2/Nsb2 sulfurization of a mixture of oxide or sulfide and carbonate precursors of the corresponding metals. All of the phases form in the tetragonal ThCrsb2Sisb2-type structure in space group I4/mmm. The ACoCuSsb2 phases are semiconducting, with room temperature resistivities rhosbRT˜ 10sp{-2}Omega {*}cm;\\ KCosb{0.5}CUsb{1.5}Ssb2 is metallic with a metal-to-nonmetal transition at ˜120 K. Seebeck measurements indicate that the majority of charge carriers are holes. The temperature dependence of magnetic susceptibility shows an anomalous transition to the ferromagnetic state in the ACoCuSsb2 phases. The electrical and magnetic properties of the new quaternary phases are compared to those of ternary ACosb2Ssb2 (A = K, Rb, Cs). The quaternary sulfides ACuFeSsb2 show semiconducting behavior. Magnetic susceptibility data indicate the presence of localized magnetic moment arising from the di- and trivalent iron ions. The semiconducting properties observed in this system are in contrast to the metallic behavior predicted by theoretical calculations. Investigations of the electrical properties of the sulfides ACuMnSsb2 revealed semiconducting behavior with a broad anomaly at ≈70 K. In the temperature range 100-300 K, the molar magnetic susceptibility of all the samples shows a weak maximum consistent with localized antiferromagnetic exchange of isolated two-dimensional manganese cluster nets. The divergence of the FC and ZFC molar susceptibilities at low temperatures, for all the samples, suggests spin-glass-type behavior with a well defined freezing temperature of ≈35 K. Single phase polycrystalline quaternary selenides ACuMnSesb2 (A = K, Rb, Cs) were prepared for the first time by the reduction of the mixture containing corresponding alkali metal carbonates, copper oxide, manganese and selenium powders. p-Type semiconducting behavior was observed for the samples with rhosbRT of {˜}10sp{-1}Omega{*}cm, and Esba˜ 0.1 eV. The relatively high values of magnetic susceptibility and the weak maximum in the temperature dependence of the magnetic susceptibility above 100 K was attributed to short-range antiferromagnetic interactions. New quaternary layered sulfides: NaCuMSsb2 (M = Mn, Fe, Co, Zn) crystallize in the trigonal CaAlsb2Sisb2-type structure in space group P{bar 3}m1. All the new phases are semiconducting, with rhosb{RT} varying from 6.2× 10sp{-1} to 5× 10sp{-2}Omega{*}cm, depending upon the transition metal M. Magnetic susceptibility measurements indicate the presence of localized Mnsp{2+} ions in NaCuMnSsb2. The NaCuMSsb2 (M = Fe, Co) phases display temperature independent paramagnetism whereas the NaCuZnSsb2 phase is diamagnetic, as expected. In addition, detailed low-temperature magnetic studies of the NaCuFeSsb2 phase revealed spin-glass-type behavior with the freezing temperature Tsbf˜ 50 K.

  12. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  13. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2

    PubMed Central

    Shi, Shih-Chen

    2016-01-01

    Biopolymers reinforced with nanoparticle (NP) additives are widely used in tribological applications. In this study, the effect of NP additives on the tribological properties of a green lubricant hydroxypropyl methylcellulose (HPMC) composite was investigated. The IF-MoS2 NPs were prepared using the newly developed gas phase sulfidation method to form a multilayered, polyhedral structure. The number of layers and crystallinity of IF-MoS2 increased with sulfidation time and temperature. The dispersity of NPs in the HPMC was investigated using Raman and EDS mapping and showed great uniformity. The use of NPs with HPMC enhanced the tribological performance of the composites as expected. The analysis of the worn surface shows that the friction behavior of the HPMC composite with added NPs is very sensitive to the NP structure. The wear mechanisms vary with NP structure and depend on their lubricating behaviors. PMID:28773976

  14. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  15. Temperature and cell-type dependency of sulfide effects on mitochondrial respiration.

    PubMed

    Groeger, Michael; Matallo, Jose; McCook, Oscar; Wagner, Florian; Wachter, Ulrich; Bastian, Olga; Gierer, Saskia; Reich, Vera; Stahl, Bettina; Huber-Lang, Markus; Szabó, Csaba; Georgieff, Michael; Radermacher, Peter; Calzia, Enrico; Wagner, Katja

    2012-10-01

    Previous studies suggest that sulfide-induced inhibition of cytochrome c oxidase (cCox) and, consequently, the metabolic and toxic effects of sulfide are less pronounced at low body temperature. Because the temperature-dependent effects of sulfide on the inflammatory response are still a matter of debate, we investigated the impact of varying temperature on the cCox excess capacity and the mitochondrial sulfide oxidation by the sulfide-ubiquinone oxidoreductase in macrophage-derived cell lines (AMJ2-C11 and RAW 264.7). Using an oxygraph chamber, the inhibition of mitochondrial respiration was measured by stepwise titrations with sulfide and the nonmetabolizable cCox inhibitor sodium azide at 25°C and 37°C. Using the latter of the two inhibitors, the excess capacity of the cCox was obtained. Furthermore, we quantified the capacity of these cells to withstand sulfide inhibition by measuring the amount required to inhibit respiration by 50% and 90% and the viability of the cells after 24-h exposure to 100 ppm of hydrogen sulfide. At low titration rates, the AMJ2-C11 cells, but not the RAW 264.7 cells, increased their capacity to withstand exogenously added sulfide. This effect was even greater at 25°C than at 37°C. Furthermore, only the AMJ2-C11 cells remained viable after sulfide exposure for 24 h. In contrast, only in the RAW 264.7 cells that an increase in cCox excess capacity was found at low temperatures. In macrophage-derived cell lines, both the excess capacity of cCox and the efficiency of sulfide elimination may increase at low temperatures. These properties may modify the effects of sulfide in immune cells and, potentially, the inflammatory response during sulfide exposure at different body temperatures.

  16. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei

    2017-12-01

    In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.

  17. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.

  18. Investigation of weldable iron-aluminum alloys for corrosion protection in high temperature oxidizing-sulfidizing environments

    NASA Astrophysics Data System (ADS)

    Banovic, Stephen William

    The objective of the present study was to investigate the corrosion behavior of weldable Fe-Al alloys in environments representative of low NOx gas compositions, i.e., high partial pressures of sulfur [p(S2)] and low partial pressures of oxygen [p(O2)]. Through an integrated experimental approach involving thermogravimetric techniques, post-exposure metallographic examination of the corroded samples, and detailed chemical microanalyses of the reaction scales, the effects of aluminum content, temperature, and gas composition on the corrosion behavior were observed. The corrosion behavior of Fe-Al alloys was found to be directly related to the type and morphology of corrosion product that formed during high temperature exposure in the oxidizing/sulfidizing environment. The inhibition stage was characterized by growth of a thin, gamma alumina scale that suppressed excessive degradation of the substrate at all temperatures. Localized mechanical failure of the initial passive scale, in combination with the inability to re-establish itself, was found to result in nodular growth of non-protective sulfide phases across the sample face due to short circuit diffusion through the gamma alumina layer. With the remnants of the initial gamma scale found between the outer and inner scale, it was concluded that these layers grew by iron diffusion outward and sulfur diffusion inward, respectively. The corrosion rate observed during development of these morphologies was directly related to the density of the nodules on the surface and the exposure temperature. The final period observed was the steady-state stage. This behavior was encountered from the onset of exposure for all Fe-5 wt% Al alloys tested, or upon coalescence of the nodular growths. After initially high corrosion rates, the weight gains were found to increase at a steady rate as subsequent growth occurred via diffusion through the continuous scale. Determination of the corrosion product growth mechanism could not be directly obtained from the thermogravimetric data. For samples with relatively high weight gains, enhanced scale growth at the comers and edges of the sample, as well as the morphology of the multi-layered, multi-phase corrosion products, violated the assumptions necessary for data manipulation by this means. The results from this study indicate that weldable compositions of Fe-Al alloys (10 wt% Al) show excellent corrosion resistance to aggressive low NO x gas compositions in the service temperature range (below 600°C). With the potential promise for applications requiring a combination of weldability and corrosion resistance in moderately reducing environments, these alloys are viable candidates for further evaluation for use as sulfidation resistant weld overlay coatings. (Abstract shortened by UMI.)

  19. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies

    USGS Publications Warehouse

    Sato, M.

    1992-01-01

    At temperatures prevailing near the Earth's surface, metastable co-existence of chemical substances is common because chemical reactions that would directly lead to the attainment of thermody-namically most stable equilibria are often blocked by high activation energy barriers. The persistency of a metastable assemblage is then governed by alternative reaction paths that provide lower activation energy barriers. Comparison of observed mineral assemblages in the supergene oxidized and enriched sulfide ores with corresponding stability Eh-pH diagrams reveals that the supergene assemblages are mostly metastable due primarily to the persistency of sulfide minerals beyond stability boundaries. A new set of diagrams called persistency-field Eh-pH diagrams has been constructed for binary metal sulfides on the basis of electrochemical and other experimental data. Each diagram delineates the persistency field, which is a combined field of thermodynamic stability and reaction path-controlled metastability, for a specific sulfide mineral. When applied to the supergene assemblages, these new diagrams show much better correspondence to the field observations. Although there may still be room for further refinement, the new diagrams appear to provide a strong visual aid to the understanding of the behavior of sulfide minerals in the supergene conditions. ?? 1992.

  20. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center.

    PubMed

    Chu, Terry; Boyko, Yaroslav; Korobkov, Ilia; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2016-09-06

    The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution.

  1. Sulfide scaling in low enthalpy geothermal environments; A survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criaud, A.; Fouillac, C.

    1989-01-01

    A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are farmore » less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.« less

  2. Influence of temperature and the role of chromium on the kinetics of sulfidation of 310 stainless steel

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Nelson, H. G.

    1977-01-01

    The sulfidation of 310 stainless steel was studied over the temperature range from 910 K to 1285 K. By adjusting the ratio of hydrogen sulfide, variations in sulfur potential were obtained. The effect of temperature on sulfidation was determined at three different sulfur potentials: 39/sqNm, 0.014/sqNm, and 0.00015/sqNm. All sulfide scales contained one or two surface layers in addition to a subscale. The second outer layer (OL-II), furthest from the alloy, contained primarily Fe-Ni-S. The first outer layer (OL-I), nearest the subscale, contained FE-Cr-S. The subscale consisted of sulfide inclusions in the metal matrix. At a given temperature and sulfur potential, the weight gain data obeyed the parabolic rate law after an initial transient period. The parabolic rate constants obtained at the sulfur potential of 39/sqNm did not show a break when the logarithm of the rate constant was plotted as a function of the inverse of absolute temperature. Sulfidation carried out at sulfur potentials below 0.02/sqNm, however, did show a break at 1145 K, which is termed as the transition temperature. This break was found to be associated with the changes which had occurred in the Fe:Cr ratio of OL-I. Below the transition temperature the activation energy was found to be approximately 125 kj/mole. Above the transition temperature the rate of sulfidation decreased with temperature but dependent on the Fe:Cr ratio in the iron-chromium-sulfide layers of the OL-I. A reaction mechanism consistent with the experimental results has been proposed.

  3. Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, Shannon C.; Koegel, Alexandra A.; Meng, Xiangbo

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure r-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase, consisting of both r- and a-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS) allow the derivation of a self-consistent reaction mechanism. Lastly, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cyclemore » stability and near-theoretical capacity.« less

  4. Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Meng, Xiangbo; ...

    2016-01-19

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure r-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase, consisting of both r- and a-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS) allow the derivation of a self-consistent reaction mechanism. Lastly, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cyclemore » stability and near-theoretical capacity.« less

  5. Sulfide Melts and Chalcophile Element Behavior in High Temperature Systems

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Kiseeva, K.

    2016-12-01

    We recently found that partition coefficients (Di) of many weakly and moderately chalcophile elements (e.g., Cd, Zn, Co, Cr, Pb, Sb, In) between sulfide and silicate melts are simple functions of the FeO content of the silicate liquid: logDi A-Blog[FeO] where [FeO] is the FeO concentration in the silicate, A and B are constants and the latter is related to the valency of the element of interest. In contrast, some strongly chalcophile (e.g Cu, Ni, Ag) and lithophile elements (e.g Mn) show marked deviations from linearity on a plot of logDi vs log[FeO]. More recent experiments show that linear behavior is confined to elements whose affinities for S and O are similar to those of Fe. In the case of elements more strongly lithophile than Fe (Ti, U, REE, Zr, Nb, Ta, Mn) a plot of logDi versus log[FeO] describes a U-shape with the element partitioning strongly into the sulfide at very low FeO and again at very high FeO content of the silicate melt. In contrast, strongly chalcophile elements (Cu, Ni, Ag) describe an n-shape on the plot of logD vs log[FeO]. The result is that lithophile elements such as Nb become more "chalcophile" than Cu at very low and very high FeO contents of the silicate melt. The reasons for this surprising behavior are firstly that, at very low FeO contents the silicate melt dissolves substantial amounts of sulfur, which drives down the activity of FeO and, from mass-action "pulls" the lihophile element into the sulfide. At high FeO contents of the silicate the sulfide itself starts to dissolve substantial amounts of oxygen and lithophile elements follow the oxygen into the sulfide. Given the principles which we have established, we are able to describe the patterns of chalcophile element behavior during partial melting and fractional crystallisation on Earth and also on bodies such as Mercury and Mars which are, respectively, strongly reduced relative to Earth and more oxidised than Earth.

  6. Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines.

    PubMed

    Silva Ferreira, António César; Rodrigues, Paula; Hogg, Timothy; Guedes De Pinho, Paula

    2003-01-29

    Volatile sulfur compounds of 15 young port wines and 12 old port wines were determined. As there is a great difference in the pool of sulfur compounds between the two groups of wines, an experimental protocol was performed to determine which technological parameter (dissolved O(2), free SO(2) levels, pH, and time/temperature) was related with the formation/consumption of these compounds. Four sulfur compounds were selected for this purpose: dimethyl sulfide, 2-mercaptoethanol, dimethyl sulfone, and methionol. The synergistic effects of increasing temperature and O(2) at lower pH had the largest impact. Dimethyl sulfide was formed during the experimental period in the presence of O(2). Dimethyl sulfone had the same behavior. Methionol decreased significantly in the presence of O(2), but no methional was formed. 2-Mercaptoethanol, considered to be an important "off-flavor" in dry wines, also decreased during the experimental period (54 days) in the presence of O(2), and the respective disulfide was formed. These results corroborate the fact that old port wine (barrel aged) never develops "off-flavors" associated with the presence of methionol (cauliflower), 2-mercaptoethanol (rubber/burnt), or methional (cooked potato). In fact, temperature and oxygen are the major factors in the consumption of these molecules. However, some notes of "quince" and "metallic" can appear during port wine aging, and these can be associated with the presence of dimethyl sulfide.

  7. Phase relations in iron-rich systems and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    Recent experimental data concerning the properties of iron, iron sulfide, and iron oxide at high pressures are combined with theoretical arguments to constrain the probable behavior of the Fe-rich portions of the Fe-O and Fe-S phase diagrams. Phase diagrams are constructed for the Fe-S-O system at core pressures and temperatures. These properties are used to evaluate the current temperature distribution and composition of the core.

  8. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  9. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (X_{{{Ni}}}^{{{sulfide}}} 0.4-0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6-0.7) at depths near 80-120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (X_{{{Ni}}}^{{{sulfide}}} 0.28) > 140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.

  10. Selective Sulfidation of Lead Smelter Slag with Sulfur

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  11. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou

    2018-01-01

    Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.

  12. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.

  13. Microclimatic conditions and their effects on sheep behavior during a live export shipment from Australia to the Middle East.

    PubMed

    Pines, M K; Phillips, C J C

    2013-09-01

    The microclimate can potentially impact the health and welfare of livestock exported by ship. Within-pen microclimatic conditions were recorded and the effects of ammonia on sheep behavior investigated on a voyage from Australia to the Middle East. Ammonia, carbon dioxide, and hydrogen sulfide as well as wet-bulb, dry-bulb, and dew-point temperature and air speed were mapped in 20 open-deck focal pens, with the focus on the behavior and location of a marked sheep in each pen. Air speed was highly variable in most pens, with pockets of high but transient concentrations of ammonia (30.7 to 44.2 mg/m(3)) in 20% of pens that had no or minimal air flow. Carbon dioxide concentrations varied in some pens, but overall concentrations of carbon dioxide and hydrogen sulfide were low. Sheep in pens previously identified to have high ammonia concentrations, high wet-bulb temperatures, and low wind speed stood longer (P = 0.003) and spent less time feeding (P = 0.01) and ruminating (P = 0.004) than those in pens previously identified with low ammonia, low wet-bulb temperature, and high wind speed. Moreover, sheep exposed to increased ammonia concentrations held their head higher (P = 0.004) to avoid the greater ammonia concentrations at lower heights, and these sheep had more conjunctivitis (P < 0.001). Sheep movement around the pen was limited. Increased time spent lying down (P = 0.04) and more rhythmical behavior in the second half of the voyage indicated that the sheep adjusted to shipboard conditions over time. It is concluded that high, transient concentrations of ammonia existed in some pens, which adversely affected the behavior of sheep.

  14. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder both, the nucleation of newly formed sulfide droplets and the interconnectivity of separate droplets. The interfacial energies between sulfide melt and silicate or oxide crystals is even higher than for silicate melt, consequently in experiments with chromite, sulfide segregation is even more hindered. Partition coefficients of 50 elements between a sulfide and a silicate melt are determined as a function of differing temperature between 1250 - 1380 °C. As a proxy to investigate the bond strength of network modifier cations, the relation between the partition coefficients and ionic potentials of different groups of elements has been determined.

  15. Effect of Temperature on the Corrosion Behavior of API X120 Pipeline Steel in H2S Environment

    NASA Astrophysics Data System (ADS)

    Okonkwo, Paul C.; Sliem, Mostafa H.; Shakoor, R. A.; Mohamed, A. M. A.; Abdullah, Aboubakr M.

    2017-08-01

    The corrosion behavior of newly developed API X120 C-steel that is commenced to be used for oil pipelines was studied in a H2S saturated 3.5 wt.% NaCl solution between 20 and 60 °C using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The corrosion products formed on the surface of the alloy were characterized using x-ray diffraction and scanning electron microscopy. It has been noticed that the formation of corrosion product layer takes place at both lower and higher temperatures which is mainly comprised of iron oxides and sulfides. The electrochemical results confirmed that the corrosion rate decreases with increasing temperature up to 60 °C. This decrease in corrosion rate with increasing temperature can be attributed to the formation of a protective layer of mackinawite layer. However, cracking in the formed mackinawite layer may not be responsible for the increase in the corrosion rate. More specifically, developed pourbaix diagrams at different temperatures showed that the formed protective layer belongs to mackinawite (FeS), a group of classified polymorphous iron sulfide, which is in good agreement with the experimental results. It is also noticed that the thickness of corrosion products layer increases significantly with decrease in the corrosion rate of API X120 steel exposed to H2S environment. These findings indicate that API X120 C-steel is susceptible to sour corrosion under the above stated experimental conditions.

  16. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru

    2017-01-15

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less

  17. Nickel sulfide formation at low temperature: initial precipitates, solubility and transformation products

    EPA Science Inventory

    The formation of nickel sulfides has been examined experimentally over the temperature range from 25 to 60°C. At all conditions studied, hexagonal (α-NiS) was the initial precipitate from solution containing Ni2+ and dissolved sulfide. The formation of millerite (β- NiS, rhombo...

  18. ATMOSPHERIC CHEMISTRY OF SELECTED SULFUR-CONTAINING COMPOUNDS OUTDOOR SMOG CHAMBER STUDY - PHASE 1

    EPA Science Inventory

    The chemical behavior of hydrogen sulfide, carbonyl sulfide, carbon sulfide, methanethiol, ethanethiol, methyl sulfide, ethylsulfide, methyl-disulfide, ethyldisulfide, methylethylsulfide, thiophene, 2-methylthiophene, 3-methylthiophene, 2,5-dimethyl-thiophene and propene (used as...

  19. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  20. The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry

    ERIC Educational Resources Information Center

    Trujillo, Carlos Alexander

    2007-01-01

    An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)

  1. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    PubMed

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  3. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  4. Experimental Investigation on the Topotaxy of Sulfide and Silicate Melts in Peridotite: Implications for the Origin of PGE-depleted Cu-Ni Sulfide Deposit

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, J.; Jin, Z.

    2016-12-01

    Cu-Ni sulfide deposit is generally considered partial melt originated from the mantle which is usually PGE-enriched. However, the largest Cu-Ni sulfide deposits of China (the Jinchuan Cu-Ni deposit) is PGE-depleted. Comparing to silicate melt, the nature and topotaxy of sulfide melt have remained poorly understood. Here we report experimental investigation on the topotaxy of sulfide and silicate melts in peridotite using a piston-cylinder press and a 5GPa Griggs-type deformation apparatus. The starting material consists of polycrystalline olivine or pyrolite and 1 wt% Fe-Ni-Cu sulfide. Hydrostatic and deformation experiments were conducted at a pressure of 1.5 GPa and a temperature of 1250°. Under hydrostatic conditions, our results reveal that the apparent dihedral angle of sulfide melt in an olivine matrix( 96°) is much larger than that of silicate + sulfide melt in pyrolite(<60°) under hydrostatic conditions. The sulfide melt pockets appear mostly as blobs in triple junctions with an immiscible Ni-poor center surrounded by a Ni-rich layer. Under deformation conditions, olivine develops pronounced fabrics with the pole of the (010) forming high concentrations approximately normal to the foliation plane and the [100] axes forming a girdle in the foliation plane. EBSD phase mapping analyses reveal strong shape preferred orientations (SPO) of sulfide +silicate melt in the 45, 90, 135 degree directions for deformation experiments indicating complete wetting of grain boundaries and forming a favorable source for ore deposits. Deformation also causes mixing of the Ni-rich and the Ni-poor sulfide melts. As the platinum-group elements(PGE) prefer to concentrate in the Ni-rich sulfide melt at high temperatures, our results suggest that the metallogenetic source of the PGE-depleted Cu-Ni deposits may have formed under relatively intense deformation and low temperatures with a small fraction of mixed sulfide and silicate melts.

  5. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  6. Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud

    NASA Astrophysics Data System (ADS)

    Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei

    2017-12-01

    The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.

  7. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  8. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  9. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  10. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  11. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  12. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2012-07-01

    Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.

  13. The importance of sulfur for the behavior of highly-siderophile elements during Earth's differentiation

    NASA Astrophysics Data System (ADS)

    Laurenz, Vera; Rubie, David C.; Frost, Daniel J.; Vogel, Antje K.

    2016-12-01

    The highly siderophile elements (HSEs) are widely used as geochemical tracers for Earth's accretion and core formation history. It is generally considered that core formation strongly depleted the Earth's mantle in HSEs, which were subsequently replenished by a chondritic late veneer. However, open questions remain regarding the origin of suprachondritic Ru/Ir and Pd/Ir ratios that are thought to be characteristic for the primitive upper mantle. In most core-formation models that address the behavior of the HSEs, light elements such as S entering the core have not been taken into account and high P-T experimental data for S-bearing compositions are scarce. Here we present a comprehensive experimental study to investigate the effect of increasing S concentration in the metal on HSE metal-silicate partitioning at 2473 K and 11 GPa. We show that the HSEs become less siderophile with increasing S concentrations in the metal, rendering core-forming metal less efficient in removing the HSEs from the mantle if S is present. Furthermore, we investigated the FeS sulfide-silicate partitioning of the HSEs as a function of pressure (7-21 GPa) and temperature (2373-2673 K). The sulfide-silicate partition coefficient for Pt increases strongly with P, whereas those for Pd, Ru and Ir all decrease. The combined effect is such that above ∼20 GPa Ru becomes less chalcophile than Pt, which is opposite to their behavior in the metal-silicate system where Ru is always more siderophile than Pt. The newly determined experimental results are used in a simple 2-stage core formation model that takes into account the effect of S on the behavior of the HSEs during core formation. Results of this model show that segregation of a sulfide liquid to the core from a mantle with substantial HSE concentrations plays a key role in reproducing Earth's mantle HSE abundances. As Ru and Pd are less chalcophile than Pt and Ir at high P-T, some Ru and Pd remain in the mantle after sulfide segregation. Addition of the late veneer then raised the concentrations of all HSE to their current levels. Suprachondritic Ru/Ir and Pd/Ir ratios of the mantle can thus be explained by a combination of sulfide segregation together with the addition of a late veneer without the need to invoke unknown chondritic material.

  14. Sulfidation behavior of ZnFe2O4 roasted with pyrite: Sulfur inducing and sulfur-oxygen interface exchange mechanism

    NASA Astrophysics Data System (ADS)

    Min, Xiaobo; Zhou, Bosheng; Ke, Yong; Chai, Liyuan; Xue, Ke; Zhang, Chun; Zhao, Zongwen; Shen, Chen

    2016-05-01

    The sulfidation roasting behavior was analyzed in detail to reveal the reaction mechanism. Information about the sulfidation reaction, including phase transformation, ionic migration behavior and morphological change, were obtained by XRD, 57Fe Mossbauer spectroscopy, XPS and SEM analysis. The results showed that the sulfidation of zinc ferrite is a process of sulfur inducing and sulfur-oxygen interface exchange. This process can be divided into six stages: decomposition of FeS2, formation of the oxygen-deficient environment, migration of O2- induced by S2(g), formation of ZnFe2O4-δ, migration of Fe2+ accompanied by the precipitation of ZnO, and the sulfur-oxygen interface exchange reaction. The sulfidation products were zinc blende, wurtzite, magnetite and a fraction of zinc-bearing magnetite. These findings can provide theoretical support for controlling the process during which the recovery of Zn and Fe is achieved through the combined flotation-magnetic separation process.

  15. Magnetic hard gap due to bound magnetic polarons in the localized regime.

    PubMed

    Rimal, Gaurab; Tang, Jinke

    2017-02-08

    We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.

  16. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, F.C.; Battles, J.E.

    1981-05-22

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  17. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia)

    USGS Publications Warehouse

    Duran, C.J.; Barnes, S-J.; Pleše, P.; Prašek, M. Kudrna; Zientek, Michael L.; Pagé, P.

    2017-01-01

    The distribution of platinum-group elements (PGE) within zoned magmatic ore bodies has been extensively studied and appears to be controlled by the partitioning behavior of the PGE during fractional crystallization of magmatic sulfide liquids. However, other chalcophile elements, especially TABS (Te, As, Bi, Sb, and Sn) have been neglected despite their critical role in forming platinum-group minerals (PGM). TABS are volatile trace elements that are considered to be mobile so investigating their primary distribution may be challenging in magmatic ore bodies that have been somewhat altered. Magmatic sulfide ore bodies from the Noril’sk-Talnakh mining district (polar Siberia, Russia) offer an exceptional opportunity to investigate the behavior of TABS during fractional crystallization of sulfide liquids and PGM formation as the primary features of the ore bodies have been relatively well preserved. In this study, new petrographic (2D and 3D) and whole-rock geochemical data from Cu-poor to Cu-rich sulfide ores of the Noril’sk-Talnakh mining district are integrated with published data to consider the role of fractional crystallization in generating mineralogical and geochemical variations across the different ore types (disseminated to massive). Despite textural variations in Cu-rich massive sulfides (lenses, veins, and breccias), these sulfides have similar chemical compositions, which suggests that Cu-rich veins and breccias formed from fractionated sulfide liquids that were injected into the surrounding rocks. Numerical modeling using the median disseminated sulfide composition as the initial sulfide liquid composition and recent DMSS/liq and DISS/liq predicts the compositional variations observed in the massive sulfides, especially in terms of Pt, Pd, and TABS. Therefore, distribution of these elements in the massive sulfides was likely controlled by their partitioning behavior during sulfide liquid fractional crystallization, prior to PGM formation. Our observations indicate that in the Cu-poor massive sulfides the PGM formed as the result of exsolution from sulfide minerals whereas in the Cu-rich massive sulfides the PGM formed by crystallization from late-stage fractionated sulfide liquids. We suggest that the significant amount of Sn-bearing PGM may be related to crustal contamination from granodiorite, whereas As, Bi, Te, and Sb were likely added to the magma along with S from sedimentary rocks. Large PGM that are scarce and randomly distributed may account for most of the whole-rock Pt budget. Based on our results, we propose a holistic genetic model for the formation of the magmatic sulfide ore bodies of the Noril’sk-Talnakh mining district.

  18. The effects of sulfide composition on the solubility of sulfur in coexisting silicate melts

    NASA Astrophysics Data System (ADS)

    Smythe, Duane; Wood, Bernard; Kiseeva, Ekaterina

    2016-04-01

    The extent to which sulfur dissolves in silicate melts saturated in an immiscible sulfide phase is a fundamental question in igneous petrology and plays a primary role in the generation of magmatic ore deposits, volcanic degassing and planetary differentiation. Terrestrial sulfide melts often contain over 20 weight percent Ni + Cu, however, most experimental studies investigating sulfur solubility in silicate melt have been primarily concerned with the effects of silicate melt composition, and pure FeS has been use as the immiscible sulfide melt (O'Neill and Mavrogenes, 2002; Li and Ripley, 2005). To investigation of the effects of sulfide composition, in addition to those of temperature, pressure and silicate melt composition, on sulfur solubility in silicate melts, we have carried out a series of experiments done at pressures between 1.5 and 3 GPa and temperatures from 1400 to 1800C over a range of compositions of both the silicate and sulfide melt. We find that the solubility of sulfur in silicate melts drops significantly with the substitution of Ni and Cu for Fe in the immiscible sulfide melt, decreasing by approximately 40% at mole fractions of NiS + Cu2S of 0.4. Combining our results with those from the previous studies investigating sulfur solubility in silicate melts we have also found that solubility increases with increasing temperature and decreases pressure. These results show that without considering the composition of the immiscible sulfide phase the sulfur content of silicate melts can be significantly overestimated. This may serve to explain the relatively low sulfur concentrations in MORB melts, which previous models predict to be undersaturated in a sulfide phase despite showing chemical and textural evidence for sulfide saturation. Li, C. & Ripley, E. M. (2005). Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita 40, 218-230. O'Neill, H. S. C. & Mavrogenes, J. A. (2002). The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400°C and 1 bar. Journal of Petrology 43, 1049-1087.

  19. Effect of temperature on anoxic sulfide oxidation and denitrification in the bulk wastewater phase of sewer networks.

    PubMed

    Mathioudakis, V L; Aivasidis, A

    2009-01-01

    Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.

  20. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  1. Influence of Oxygen on Cu Distribution Behavior Between Molten Iron and FeS-Based Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Shin, Kil-Sun; Morita, Kazuki

    2018-06-01

    Cu distribution behavior between molten iron and a sulfide flux was investigated under different oxygen contents in the sulfide flux to clarify the effect of oxygen content in FeS-based flux on Cu removal. The activity coefficient of CuS0.5 could be experimentally estimated according to the oxygen content. Based on the present result, the possibility of Cu removal by sulfide flux containing a certain amount of oxide was discussed.

  2. Metal sulfide thin films by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Krunks, Malle; Mellikov, Enn

    2001-04-01

    CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.

  3. IRON SULFIDES IN THE ENVIRONMENT: FORMATION, FATE, AND SIGNIFICANCE TO CONTAMINANT BEHAVIOR

    EPA Science Inventory

    This seminar will cover aspects of the geochemistry of iron sulfides, their formation in sedimentary and aquifer environments, and their roles in sequestering and releasing contaminants. A special emphasis will be placed on the interactions between iron sulfides and arsenic.

  4. Compositions and microstructures of CB sulfides: Implications for the thermal history of the CB chondrite parent body

    NASA Astrophysics Data System (ADS)

    Srinivasan, Poorna; Jones, Rhian H.; Brearley, Adrian J.

    2017-10-01

    We studied textures and compositions of sulfide inclusions in unzoned Fe,Ni metal particles within CBa Gujba, CBa Weatherford, CBb HH 237, and CBb QUE 94411 in order to constrain formation conditions and secondary thermal histories on the CB parent body. Unzoned metal particles in all four chondrites have very similar metal and sulfide compositions. Metal particles contain different types of sulfides, which we categorize as: homogeneous low-Cr sulfides composed of troilite, troilite-containing exsolved daubreelite lamellae, arcuate sulfides that occur along metal grain boundaries, and shock-melted sulfides composed of a mixture of troilite and Fe, Ni metal. Our model for formation proposes that the unzoned metal particles were initially metal droplets that formed from splashing by a partially molten impacting body. Sulfide inclusions later formed as a result of precipitation of excess S from solid metal at low temperatures, either during single stage cooling or during a reheating event by impacts. Sulfides containing exsolution lamellae record temperatures of ≪600 °C, and irregular Fe-FeS intergrowth textures suggest localized shock melting, both of which are indicative of heterogeneous heating by impact processes on the CB parent body. Our study shows that CBa and CBb chondrites formed in a similar environment, and also experienced similar secondary impact processing.

  5. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  6. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  7. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  8. A MS, SEM-EDX and XRD study of Ti or Cu-doped zinc ferrites as regenerable sorbents for hot coal gas desulfurization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; García, E.; Alonso, L.; Palacios, J. M.

    2000-02-01

    Kinetic studies in thermobalance carried out by several authors previously have shown that small concentrations of TiO 2 or CuO can increase substantially the overall sulfidation rate of zinc ferrites, as regenerable sorbents for hot coal gas desulfurization. These oxides modify the textural properties of both the fresh or regenerated and the sulfided sorbent, modifying consequently the sulfidation rate because it is a partially diffusion-controlled process. However, by using grain models it is shown that most of the observed changes are due to changes in the intrinsic reactivity of the sorbent. Detailed studies of characterization in previous papers using different techniques have failed in revealing differential chemical changes that could be associated with a different behavior. In fact, the only significant changes observed in these studies were an apparent disappearance in fresh sorbents calcined at very high temperatures of the Raman effect, and a slight shift of the XPS binding energy of Fe levels, indicating a probable site migration and/or a change of the oxidation state. These characterization results, however, were not completely conclusive and additional efforts should be undertaken. In this paper more sensitive techniques such as Mössbauer spectroscopy (MS), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDX), have been used for the characterization of fresh, regenerated and sulfided sorbents. The study shows that the addition of TiO 2 or CuO induce substantial structural changes in zinc ferrites that can explain their apparent enhancing effect on the overall sulfidation reactivity. Additionally, this effect is decreased as the number of sulfidation-regeneration cycles increases, probably explaining the performance decay exhibited by these sorbents in multicycle tests in a fixed bed reactor.

  9. Influence of strain rate and temperature on the mechanical behavior of iron aluminide-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T.

    Iron aluminides are receiving increasing attention as potential high temperature structural materials due to their excellent oxidation and sulfidation resistance. Although the influence of strain rate on the microstructure/property relationships of pure iron and a variety of iron alloys and steels has been extensively studied, the effect of strain rate on the stress-strain and deformation response of iron aluminides remains poorly understood. In this paper the influence of strain rate, varied between 0.001 and 10{sup 4} s{sup {minus}1}, and temperature, between 77 & 1073{degree}K, on the mechanical behavior of Fe-40Al-0.1B and Fe-16.12Al-5.44Cr-0.11Zr-0.13C-1.07Mo-006Y, called FAP-Y, (both in at.%) is presented. Themore » rate sensitivity and work hardening of Fe-40Al and the disordered alloy based on Fe-16% Al are discussed as a function of strain rate and temperature.« less

  10. A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Chen, Feifei; Li, Rong; Xu, Jun

    2014-07-01

    In this experiment, flake graphite (<30 μm) was prepared as raw materials. Graphite oxide is prepared with Hummers method by low temperature, middle temperature and high temperature, and further treated with super-sonic oscillation to get graphene oxide. Graphene-zinc sulfide composites were synthesized through a simple solvothermal method using thiourea or sodium sulfide as sulfur source in the ethylene glycol or ethylenediamine, respectively. The products were characterized by X-ray and SEM, and analyzed by the transient photocurrent response and electrochemical impedance spectra. The results indicate that the properties of graphene-zinc sulfide composites prepared with thiourea in ethylene glycol are superior to those of blank-ZnS and composites prepared with sodium sulfide and ethylenediamine, which is attributed to electron capture and transfer ability of graphene resulting in a more efficient separation of the photoexcited charge carriers from ZnS-graphene composites.

  11. Numerical modelling of erosion and assimilation of sulfur-rich substrate by martian lava flows: Implications for the genesis of massive sulfide mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael J.; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco L.

    2017-11-01

    Mantle-derived volcanic rocks on Mars display physical and chemical commonalities with mafic-ultramafic ferropicrite and komatiite volcanism on the Earth. Terrestrial komatiites are common hosts of massive sulfide mineralization enriched in siderophile-chalcophile precious metals (i.e., Ni, Cu, and the platinum-group elements). These deposits correspond to the batch segregation and accumulation of immiscible sulfide liquids as a consequence of mechanical/thermo-mechanical erosion and assimilation of sulfur-rich bedrock during the turbulent flow of high-temperature and low-viscosity komatiite lava flows. This study adopts this mineralization model and presents numerical simulations of erosion and assimilation of sulfide- and sulfate-rich sedimentary substrates during the dynamic emplacement of (channelled) mafic-ultramafic lava flows on Mars. For sedimentary substrates containing adequate sulfide proportions (e.g., 1 wt% S), our simulations suggest that sulfide supersaturation in low-temperature (< 1350 °C) flows could be attained at < 200 km distance, but may be postponed in high-temperature lavas flows (> 1400 °C). The precious-metals tenor in the derived immiscible sulfide liquids may be significantly upgraded as a result of their prolonged equilibration with large volumes of silicate melts along flow conduits. The influence of sulfate assimilation on sulfide supersaturation in martian lava flows is addressed by simulations of melt-gas equilibration in the Csbnd Hsbnd Osbnd S fluid system. However, prolonged sulfide segregation and deposit genesis by means of sulfate assimilation appears to be limited by lava oxidation and the release of sulfur-rich gas. The identification of massive sulfide endowments on Mars is not possible from remote sensing data. Yet the results of this study aid to define regions for the potential occurrence of such mineral systems, which may be the large canyon systems Noctis Labyrinthus and Valles Marineris, or the Hesperian channel systems of Mars' highlands (e.g., Kasei Valles), most of which have been periodically draped by mafic-ultramafic lavas.

  12. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  13. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  14. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt crystallization. The model results are compared with the chalcophile element abundance in oceanic basalts. We will discuss the implications of our new partitioning data and model results on sulfur and chalcophile element geochemistry of mantle source regions of ocean floor basalts and the fate of sulfides during mantle melting.

  15. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit

    NASA Astrophysics Data System (ADS)

    Fouquet, Yves; Cambon, Pierre; Etoubleau, Joël; Charlou, Jean Luc; Ondréas, Hélène; Barriga, Fernando J. A. S.; Cherkashov, Georgy; Semkova, Tatiana; Poroshina, Irina; Bohn, M.; Donval, Jean Pierre; Henry, Katell; Murphy, Pamela; Rouxel, Olivier

    Several hydrothermal deposits associated with ultramafic rocks have recently been found along slow spreading ridges with a low magmatic budget. Three preferential settings are identified: (1) rift valley walls near the amagmatic ends of ridge segments; (2) nontransform offsets; and (3) ultramafic domes at inside corners of ridge transform-fault intersections. The exposed mantle at these sites is often interpreted to be a detachment fault. Hydrothermal cells in ultramafic rocks may be driven by regional heat flow, cooling gabbroic intrusions, and exothermic heat produced during serpentinization. Along the Mid-Atlantic Ridge (MAR), hydrothermal deposits in ultramafic rocks include the following: (1) sulfide mounds related to high-temperature low-pH fluids (Logatchev, Rainbow, and Ashadze); (2) carbonate chimneys related to low-temperature, high-pH fluids (Lost City); (3) low-temperature diffuse venting and high-methane discharge associated with silica, minor sulfides, manganese oxides, and pervasive alteration (Saldanha); and (4) stockwork quartz veins with sulfides at the base of detachment faults (15°05'N). These settings are closely linked to preferential circulation of fluid along permeable detachment faults. Compared to mineralization in basaltic environments, sulfide deposits associated with ultramafic rocks are enriched in Cu, Zn, Co, Au, and Ni. Gold has a bimodal distribution in low-temperature Zn-rich and in high-temperature Cu-rich mineral assemblages. The Cu-Zn-Co-Au deposits along the MAR seem to be more abundant than in ophiolites on land. This may be because ultramafic-hosted volcanogenic massive sulfide deposits on slow spreading ridges are usually not accreted to continental margins during obduction and may constitute a specific marine type of mineralization.

  16. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Datta, Pranayee

    2018-07-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  17. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  18. Effect of temperature and initial dibutyl sulfide concentration in chloroform on its oxidation rate by ozone.

    PubMed

    Popiel, Stanisław; Nalepa, Tomasz; Dzierzak, Dorota; Stankiewicz, Romuald; Witkiewicz, Zygfryd

    2008-09-15

    A scheme of dibutyl sulfide (DBS) oxidation with ozone and generation of transitional products was determined in this study. The main identified intermediate product was dibutyl sulfoxide (DBSO), and the main end product of DBS oxidation was dibutyl sulfone (DBSO2). It was determined that for three temperatures: 0, 10 and 20 degrees C there was certain initial DBS concentration for which half-times observed in experimental conditions were equal and independent from temperature. Generation of phosgene and water as by-products was confirmed for the reaction of DBS with ozone in chloroform. Results of the described study allowed to present generalized mechanism of sulfide oxidation with ozone.

  19. Spectroscopy of sulfides in the simulated environment of Mercury and their detection from the orbit

    NASA Astrophysics Data System (ADS)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-09-01

    In order to detect the mineral diversity on the planet's surface, it is essential to study the spectral variations along broad wavelength range in their respective simulated laboratory conditions. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) mission to Mercury discovered that irrespective of its formation closest to the sun, Mercury in rich in volatiles than previously expected especially S (4 wt%). S in the Mercury interior can be brought to the surface through volcanic activity as slag deposits in Mercury hollows and pyroclasts. However, the complete spectral library of sulfide minerals in vacuum conditions at Mercury's daytime temperature in the wide spectral range (0.2-100 µm) is still missing. This affects our detectability and understanding of distribution, abundance, and type of sulfides on Mercury using spectral datasets in the past missions to Mercury. In the case of Mercury, the effect of thermal weathering in the spectral behavior of these sulfides must be studied carefully for their effective detection. In the study, we thermally processed the fresh synthetic sulfides by heating them slowly upto 500 ºC in vacuum and during the process, we measured the thermal radiance/emissivity of these sulfides in the thermal infrared spectral region (TIR: 7-14 µm) at the interval of every 100 ºC. After this, we collectively measured the spectral reflectance of fresh and heated synthetic sulfides at wide spectral range (0.2-100 µm) at four different phase angles, 26º, 40º, 60º, 80º. Therefore, this study facilitates the detection of sulfides by past and future missions to Mercury by any spectrometer of any spectral range. The synthetic sulfides used in the study includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Thus, the emissivity measurements in the study will support the The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA BepiColombo mission to Mercury which will study the surface mineralogy at wavelength range of 7-14 μm at spatial resolution of 500 m/pixel. The measured reflectance of these sulfides in 0.2-100 µm at various phase angles will support the measurements from past (MDIS, MASCS on MESSENGER) and future missions (SIMBIO-SYS/VIHI on BepiColombo) to Mercury.

  20. Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Cao, Hong; Sun, Zhilei; Zhai, Shikui; Cao, Zhimin; Jiang, Xuejun; Huang, Wei; Wang, Libo; Zhang, Xilin; He, Yongjun

    2018-04-01

    The Edmond hydrothermal field, located on the Central Indian Ridge (CIR), has a distinct mineralization history owing to its unique magmatic, tectonic, and alteration processes. Here, we report the detailed mineralogical and geochemical characteristics of hydrothermal metal sulfides recovered from this area. Based on the mineralogical investigations, the Edmond hydrothermal deposits comprise of high-temperature Fe-rich massive sulfides, medium-temperature Zn-rich sulfide chimney and low-temperature Ca-rich sulfate mineral assemblages. According to these compositions, three distinctive mineralization stages have been identified: (1) low-temperature consisting largely of anhydrite and pyrite/marcasite; (2) medium-high temperature distinguished by the mineral assemblage of pyrite, sphalerite and chalcopyrite; and (3) low-temperature stage characterized by the mineral assemblage of colloidal pyrite/marcasite, barite, quartz, anglesite. Several lines of evidence suggest that the sulfides were influenced by pervasive low-temperature diffuse flows in this area. The hydrothermal deposits are relatively enriched in Fe (5.99-18.93 wt%), Zn (2.10-10.00 wt%) and Ca (0.02-19.15 wt%), but display low Cu (0.28-0.81 wt%). The mineralogical varieties and low metal content of sulfides in the Edmond hydrothermal field both indicate that extensive water circulation is prevalent below the Edmond hydrothermal field. With regard to trace elements, the contents of Pb, Ba, Sr, As, Au, Ag, and Cd are significantly higher than those in other sediment-starved mid-ocean ridges, which is indicative of contribution from felsic rock sources. Furthermore, the multiphase hydrothermal activity and the pervasive water circulation underneath are speculated to play important roles in element remobilization and enrichment. Our findings deepen our understanding about the complex mineralization process in slow- to intermediate-spreading ridges globally.

  1. Molten salt corrosion of heat resisting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong-Moreno, A.; Salgado, R.I.M.; Martinez, L.

    1995-09-01

    This paper is devoted to the study of the corrosion behavior of eight high chromium alloys exposed to three different oil ash deposits with V/(Na+S) atomic ratios 0.58, 2.05 and 13.43, respectively. The alloys were exposed to ash deposits at 750 and 900 C; in this temperature range some deposit constituents have reached their melting point developing a molten salt corrosion process. The group of alloys tested included four Fe-Cr-Ni steels UNS specifications S304000, S31000, N08810 and N08330; two Fe-Cr alloys, UNS S44600 and alloy MA 956; and two Ni-base alloys, UNS N06333 and UNS N06601. The deposits and themore » exposed surfaces were characterized by chemical analysis, XRD, DTA, SEM and x-ray microanalysis. The oil-ash corrosion resistance of alloys is discussed in terms of the characteristics of corrosion product scales, which are determined by interaction between the alloy and the corrosive environment. All the alloys containing nickel exhibited sulfidation when were exposed at 750 C, but at 900 C only those without aluminum presented sulfidation or sulfidation and oxidation, while the alloys containing aluminum only exhibited internal oxidation. In spite of good resistance to corrosion by oil-ash deposits, 446-type alloy might not be suitable for temperatures higher than 750 C because of embrittlement caused by excessive sigma-phase precipitation. Alloy MA956 showed highest corrosion resistance at 900 C to oil-ash deposits with high vanadium content.« less

  2. Sulfide and whole rock Re-Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Creaser, Robert A.; Pearson, Norm J.; Simonetti, Stefanie S.; Heaman, Larry M.; Griffin, William L.; Stachel, Thomas

    2009-06-01

    We characterized single sulfides in eclogite and pyroxenite xenoliths from the Diavik kimberlites (central Slave Craton, Canada) with regard to their petrography, major-element composition and Re-Os isotope systematics. Together with trace-element and Re-Os isotope compositions of whole rocks, these data allow identification of the major Re-Os host phases and provide constraints on the origin(s) of sulfides in these samples. The majority of sulfide minerals contain 8 to 28 at.% Ni, with intragranular sulfides having on average significantly lower contents (~ 6 at.%) than intergranular sulfides (~ 12 at.%). These high Ni-sulfides are not in equilibrium with an eclogitic assemblage and were likely introduced from a peridotitic source subsequent to eclogite formation. In contrast, their Re-Os abundances and Re/Os ratios (average ~ 825 ppb, 190 ppb and 10, respectively) overlap those of primary eclogitic sulfides. These conflicting compositional characteristics may document open-system disequilibrium processes accompanying the introduction of sulfides into eclogites. The general association of high 187Os/ 188Os with high 187Re/ 188Os of sulfides in three low-temperature eclogite xenoliths suggests that the addition is not young. In contrast, sulfides in a high-temperature eclogite plot on a ~ 90 Ma errorchron with radiogenic initial 187Os/ 188Os, perhaps indicative of young introduction of sulfides from a deep enriched source. Sulfides in a single pyroxenite xenolith have Ni, Re and Os contents intermediate between pristine eclogitic and peridotitic sulfides, and correlated Re-Os isotope systematics defining an age of 1.84 ± 0.14 Ga with a radiogenic 187Os/ 188Os i (0.16 ± 0.01). The age and 187Os/ 188Os i are identical to those obtained for eclogitic sulfide inclusions in diamonds from Diavik, thus supporting a link between eclogite and pyroxenite formation. Several eclogite and pyroxenite whole rocks show evidence for addition of secondary sulfides, but many plot on Paleoproterozoic Re-Os age arrays - particularly so at low Re/Os - coincident with previously determined ages using Lu-Hf and Pb-Pb techniques. They may represent sulfide-poor varieties that did not suffer secondary sulfide addition and that may be best suited to yielding meaningful Re-Os ages.

  3. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  4. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.

    PubMed

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-10-23

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  5. Sulfidation of Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts studied by Moessbauer emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craje, M.W.J.; Kraan, A.M. van der; Beer, V.H.J. de

    1993-10-01

    The structure of hydrodesulfurization catalysts is relevant to many industries. The sulfidation of uncalcined and calcined alumina-supported cobalt and cobalt-molybdenum catalysts was systematically studied by means of in situ Moessbauer emission spectroscopy (MES) at room temperature. The spectra obtained during the stepwise sulfidation of the uncalcined catalysts clearly resemble those observed for carbon-supported ones. Hence, the interpretation of the spectra of the alumina-supported catalysts is based on the conclusions drawn from the MES studies of the carbon-supported catalysts, which are less complex because Co ions do not diffuse into the support. It is demonstrated that not only in sulfided CoMo/Al[submore » 2]O[sub 3], but also in sulfided Co/Al[sub 2]O[sub 3], catalysts Co-sulfide species with a [open quotes]Co-Mo-S[close quotes]-type quadrupole splitting can be formed. It is concluded that the Co-sulfide species formed in sulfided Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts are essentially the same, only the particle size and ordering of the Co-sulfide species may differ, as in the case of Co/C and CoMo/C catalysts. The function of the Mo, which is present as MoS[sub 2], is merely to stabilize very small Co-sulfide particles, which in the limit contain only one single Co atom. Furthermore, it turns out that the value of the electric quadrupole splitting (Q.S. value) of the Co-sulfide phase in the sulfided catalysts depends on the sulfiding temperature and Co content. This observation leads to the conclusion that large Q.S. values point to the presence of very small Co-sulfide entities or particles (the lower limit being [open quotes]particles[close quotes] containing only one Co atom, such as proposed in the [open quotes]Co-Mo-S[close quotes] model), whereas small Q.S. values point to the presence of large Co-sulfide particles (the upper limit being crystalline Co[sub 9]S[sub 8]). 28 refs., 7 figs., 6 tabs.« less

  6. Sulfur geochemistry and microbial sulfate reduction during low-temperature alteration of uplifted lower oceanic crust: Insights from ODP Hole 735B

    USGS Publications Warehouse

    Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.

    2011-01-01

    Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.

  7. The reactions of cobalt, iron and nickel in SO2 atmospheres Similarities and differences

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1985-01-01

    The reactions of cobalt, iron and nickel in SO2 atmospheres are reviewed and compared. A mixed oxide-sulfide product layer is observed in all cases. Cobalt and nickel exhibit similar behavior. The observed rates are near the sulfidation rates, and the reaction rate is strongly influenced by the outward diffusion of metal through an interconnected sulfide network. A continuous interconnected sulfide is not observed in the oxide-sulfide scales formed on iron, and the reaction rates are more difficult to summarize. The differences and similarities among the three metals are explained in terms of the absence of scale-gas equilibrium and the ratio of the metal diffusivity in the corresponding oxide and sulfide.

  8. The reactions of cobalt, iron and nickel in SO-2 atmospheres: Similarities and differences

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1984-01-01

    The reactions of cobalt, iron and nickel in SO2 atmospheres are reviewed and compared. A mixed oxide-sulfide product layer is observed in all cases. Cobalt and nickel exhibits similar behavior. The observed rates are near the sulfidation rates, and the reaction rate is strongly influenced by the outward diffusion of metal through an interconnected sulfide network. A continuous interconnected sulfide is not observed in the oxide-sulfide scales formed on iron, and the reaction rates are more difficult to summarize. The differences and similarities among the three metals are explained in terms of the absence of scale-gas equilibrium and the ratio of the metal diffusivity in the corresponding oxide and sulfide.

  9. Measurement of H2S in vivo and in vitro by the monobromobimane method

    PubMed Central

    Shen, Xinggui; Kolluru, Gopi K.; Yuan, Shuai; Kevil, Christopher

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with RP-HPLC. The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide-dibimane. The resultant fluorescent sulfide-dibimane (SDB) is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. PMID:25725514

  10. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01.

    PubMed

    Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna

    2008-12-01

    In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.

  11. Subsurface heaters with low sulfidation rates

    DOEpatents

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  12. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  13. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  14. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed consideringmore » high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.« less

  15. Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.

    An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperaturemore » were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.« less

  16. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    PubMed Central

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-01-01

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions. PMID:26512669

  17. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S < -30 ‰, around hydrothermal vents or beneath the sea-floor is speculated to be the products of sulfate reducers. But laboratory experiments using sulfate reducers fail to produce such light sulfur, and many models were proposed to explain the discrepancy. Canfield et al. (2006) proposed so-called "standard model" based on previous studies. The standard model explained the reason for the large fractionation by temperature dependence of sulfur isotopic fractionation factor and rate of sulfate reduction, which indicated the growth conditions of microbes. However, they failed to prove their model by their other experiments (Canfield et al., 2006). In this study, I performed laboratory culture experiment of sulfate reducing bacteria (SRB) to explain the 34S-depleted sulfide sulfur. [Experiments] To compare the result with Canfield et al. (2006), I used Desulfovibrio desulfuricans for my laboratory culture experiment. D. desulfuricans was inoculated into glass vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase, metabolic activity of SRB is high and sulfate reduction rate is fast. In contrast at the stationary phase, SRB stop growing and sulfate reduction rate get slower. My result suggested that the sulfur isotopic fractionation is controlled by growth phase of SRB and lighter sulfide would be produced by the stationary phase or half-dormant SRB in natural environment.

  18. Chemical Bonding in Sulfide Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, David J.; Rosso, Kevin M.

    An understanding of chemical bonding and electronic structure in sulfide minerals is central to any attempt at understanding their crystal structures, stabilities and physical properties. It is also an essential precursor to understanding reactivity through modeling surface structure at the molecular scale. In recent decades, there have been remarkable advances in first principles (ab initio) methods for the quantitative calculation of electronic structure. These advances have been made possible by the very rapid development of high performance computers. Several review volumes that chart the applications of these developments in mineralogy and geochemistry are available (Tossell and Vaughan, 1992; Cygan andmore » Kubicki, 2001). An important feature of the sulfide minerals is the diversity of their electronic structures, as evidenced by their electrical and magnetic properties (see Pearce et al. 2006, this volume). Thus, sulfide minerals range from insulators through semiconductors to metals, and exhibit every type of magnetic behavior. This has presented problems for those attempting to develop bonding models for sulfides, and also led to certain misconceptions regarding the kinds of models that may be appropriate. In this chapter, chemical bonding and electronic structure models for sulfides are reviewed with emphasis on more recent developments. Although the fully ab initio quantitative methods are now capable of a remarkable degree of sophistication in terms of agreement with experiment and potential to interpret and predict behavior with varying conditions, both qualitative and more simplistic quantitative approaches will also be briefly discussed. This is because we believe that the insights which they provide are still helpful to those studying sulfide minerals. In addition to the application of electronic structure models and calculations to solid sulfides, work on sulfide mineral surfaces (Rosso and Vaughan 2006a,b) and solution complexes and clusters (Rickard and Luther, 2006) are discussed in detail later in this volume.« less

  19. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    PubMed

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO2, CaO, TiO2, and Al2O3 containing materials function as condensed phase solids in the temperature range of 800-1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  1. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor.

    PubMed

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2011-02-01

    The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  3. Electrochemistry and the Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.

    2001-12-01

    The Earth's core-mantle boundary consists of a highly heterogeneous metal-oxide interface subjected to high temperatures, pressures, and additionally, to the presence of a temporally- and spatially-varying electrical field generated by the outer core dynamo. An understanding of the core-mantle boundary should include the nature of its electrical behavior, its electrically induced chemical partitioning, and any resultant core-mantle dynamic coupling. To this end, we have developed a method to measure the electrical behavior of metal-silicate interfaces at high pressures (15-25 kbar) and temperatures (1300-1400° C) in a piston-cylinder apparatus. Platinum electrical leads are placed at each end of the sample, which consists of a layer of iron and/or iron alloy below a layer of silicate. The sample is enclosed in a sintered MgO chamber which is then surrounded by a metal Faraday cage, allowing the sample to be electrically insulated from the AC field of the graphite heater. The platinum electric leads are threaded through the thermocouple tube and connected with an HP4284A LCR meter to measure AC impedance, or to a DC power supply to apply a field such that either the silicate or the metal end is the anode (+). AC impedance measurements performed in-situ on samples consisting of Fe, Fe-Ni-S, and a basalt-olivine mixture in series show that conductivity is strongly dependent on the electrical polarization of the silicate relative to the sulfide. When the silicate is positively charged (silicate is the anode) and when there is no applied charge, the probe-to-probe resistance displays semiconductor behavior, with conductivity ( ~10-2 S/cm) strongly thermally activated. However, when the electrical polarity is reversed, and the sulfide is the anode, the electrical conductivity between the two probes increases dramatically (to ~1 S/cm) over timescales of minutes. If the polarity is removed or reversed, the conductivity returns to its original values over similar timescales. A second set of experiments examined the behavior of iron-silicate interfaces subjected to electric fields of 1-10 V, applied for times ranging from several minutes to several days. The samples were quenched from high temperatures, mounted, and examined using both light and electron microscopy. When the iron/iron-sulfide end is charged positively (+1-2 V) with respect to the silicate, oxides form around the platinum electrode embedded within the iron metal, suggesting the reaction Fe->Fe+2+2e- occurs in the metal. When the electric field is reversed, the silicate and MgO surrounding the + electrode turns red, implying the reaction Fe+2\\rightarrowFe^{+3}+e^{-}$ occurs at the silicate (anode end) of the sample. The richness of electrical and electrically activated chemical behavior observed at metal-silicate interfaces may be relevant to the Earth's core mantle boundary.

  4. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA

    USGS Publications Warehouse

    Peter, J.M.; Shanks, Wayne C.

    1992-01-01

    Sulfur, carbon, and oxygen isotope values were measured in sulfide, sulfate, and carbonate from hydrothermal chimney, spire, and mound samples in the southern trough of Guaymas Basin, Gulf of California, USA. ??34S values of sulfides range from -3.7 to 4.5%. and indicate that sulfur originated from several sources: 1. (1) dissolution of 0??? sulfide contained within basaltic rocks, 2. (2) thermal reduction of seawater sulfate during sediment alteration reactions in feeder zones to give sulfide with positive ??34S, and 3. (3) entrainment or leaching of isotopically light (negative-??34S) bacteriogenic sulfide from sediments underlying the deposits. ??34S of barite and anhydrite indicate sulfur derivation mainly from unfractionated seawater sulfate, although some samples show evidence of sulfate reduction and sulfide oxidation reactions during mixing within chimneys. Oxygen isotope temperatures calculated for chimney calcites are in reasonable agreement with measured vent fluid temperatures and fluid inclusion trapping temperatures. Hydrothermal fluids that formed calcite-rich chimneys in the southern trough of Guaymas Basin were enriched in 18O with respect to seawater by about 2.4??? due to isotopic exchange with sedimentary and/or basaltic rocks. Carbon isotope values of calcite range from -9.6 to -14.0??? ??34CpDB, indicating that carbon was derived in approximately equal quantities from the dissolution of marine carbonate minerals and the oxidation of organic matter during migration of hydrothermal fluid through the underlying sediment column. Statistically significant positive, linear correlations of ??34S, ??34C, and ??18O of sulfides and calcites with geographic location within the southern trough of Guaymas Basin are best explained by variations in water/rock ( w r) ratios or sediment reactivity within subsurface alteration zones. Low w r ratios and the leaching of detrital carbonates and bacteriogenic sulfides at the southern vent sites result in relatively high ??13C and low ??34S in chimney carbonates and sulfides, respectively. In the north, where the depletion of alkalis in vent fluids indicates higher w r ratios, positive ??34S and more negative ??13c are due to increased contributions from organic matter oxidation and sulfate reduction reactions. ?? 1992.

  5. Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S.

    PubMed

    Balichard, Kevin; Nyikeine, Camille; Bezverkhyy, Igor

    2014-01-15

    The reactivity of a nanocrystalline ZnCO3 toward H2S (0.2vol% in N2/H2 mixture) at 140-180°C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO-ZnS transformation the molar volume increases (from 14.5 to 23.8cm(3)/mol), a continuous protective ZnS layer is formed hampering the access of H2S to the non reacted ZnO core. By contrast, in ZnCO3-ZnS transformation the molar volume decreases (from 27.9 to 23.8cm(3)/mol), which produces a discontinuous non-protective ZnS layer enabling a complete transformation of ZnCO3 even at 140°C. The higher reactivity of ZnCO3 results in a considerable increase of the breakthrough sulfur capacity of the carbonate in comparison with oxide. The material has therefore a good potential for being used as a disposable sorbent for H2S capture at low temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Non-hydrolytic Sol-gel Synthesis of Tin Sulfides

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder

    The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A systematic study was carried out to understand the influence of all reaction variables, which include tin halides, thioethers, solvents, time, temperature, stoichiometry and concentration. Fine tuning of all reaction variables was carried out. The crystallization and phase stability of the as-recovered products was further studied by heat treatments of the samples. A detailed investigation of synthetic variables during NHSG reactions resulted in controlled synthesis of two crystalline tin sulfide polymorphs, SnS and SnS2. A third polymorph, Sn2S3, could be obtained after heat treatments in the temperature range of 400 to 500 °C. Conditions for the targeted synthesis of particles with various sizes and morphologies were established. Samples were characterized by powder X-ray diffraction, electron microscopy in combination with EDS, CHNS analysis and thermo gravimetric/differential thermal analysis.

  7. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  8. Measurement of H2S in vivo and in vitro by the monobromobimane method.

    PubMed

    Shen, Xinggui; Kolluru, Gopi K; Yuan, Shuai; Kevil, Christopher G

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. © 2015 Elsevier Inc. All rights reserved.

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  10. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  11. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  12. Sulfate Reduction and Sulfide Biomineralization By Deep-Sea Hydrothermal Vent Microorganisms

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.

    2014-12-01

    Deep-sea hydrothermal vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea hydrothermal environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.

  13. An Experimental Study of Low-Temperature Sulfurization of Carbohydrates Using Various Sulfides Reveals Insights into Structural Characteristics and Sulfur Isotope Compositions of Macromolecular Organic Matter in the Environment

    NASA Astrophysics Data System (ADS)

    OBeirne, M. D.; Werne, J. P.; Van Dongen, B.; Gilhooly, W., III

    2017-12-01

    Sulfurization of carbohydrates has been suggested as an important mechanism for the preservation of organic matter in anoxic/euxinic depositional environments. In this study, glucose was sulfurized under laboratory conditions at room temperature (24°C) using three commercially available sulfides - ammonium sulfide ([NH4]2S), sodium sulfide (Na2S), and sodium hydrosulfide (NaHS), each mixed with elemental sulfur to produce polysulfide solutions. The reaction products were analyzed using Fourier transform infrared spectroscopy (FTIR), which revealed structural differences among the products formed via the three sulfide reactants. Additionally, analysis of the bulk sulfur isotope compositions of reactants and products was used to determine the fractionation(s) associated with abiotic sulfur incorporation into organic matter. Samples from both modern (Mahoney Lake, British Colombia, Canada) and ancient (Jurassic aged Blackstone Band from the Kimmeridge Clay Formation, Dorset, United Kingdom) euxinic systems were also analyzed for comparison to laboratory samples. Results from this study provide experimental evidence for the structural and sulfur isotopic relationships of sulfurized organic matter in the geosphere.

  14. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH

    1997-09-15

    Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles ofmore » sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent induration temperature. Sorbent also showed 30 to 53% loss of its strength over four cycles of sulfidation and regeneration. The former being sorbent indurated at 1115 o C and the prior being sorbent indurated at 1100 o C. A mathematical model was developed to describe the reaction of H 2 S with the mixed metal oxide in a fixed-bed reactor, where the individual pellets react according to the shrinking core model. The effective diffusivity within a single pellet was estimated by adjusting its value until a good match between the experimental and model H 2 S breakthrough curves was obtained. Predicted sorbent conversion at the conclusion of test FB3A compared well with experimental sulfur analysis.« less

  15. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  16. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  17. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  18. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  19. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  20. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  1. Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting-Water Leaching

    NASA Astrophysics Data System (ADS)

    Li, Guangshi; Cheng, Hongwei; Chen, Sha; Lu, Xionggang; Xu, Qian; Lu, Changyuan

    2018-04-01

    As a more environmentally friendly and energy-efficient route, the sulfation roasting-water leaching technique has been developed for highly effective extraction of non-ferrous metals from nickel sulfide concentrate in the presence of a Na2SO4 additive. The effects of several important roasting parameters—the roasting temperature, the addition of Na2SO4, the holding time, and the heating rate in particular—have been investigated. The results suggest that about 90 pct Ni, 92 pct Co, 95 pct Cu, and < 1 pct Fe can be leached from the calcine roasted under the optimum conditions. Furthermore, the behavior and mechanism of the Na2SO4 additive in the roasting process have been well addressed by detailed characterization of the roasted product and leaching residue using quantitative phase analysis (QPA) and energy dispersive spectroscopy (EDS) mapping. The Na2SO4 additive was observed to play a noticeable role in promoting the sulfation degree of valuable metals by forming liquid phases [Na2Me(SO4)2] at the outermost layer, which can create a suitable dynamic environment for sulfation. Thus, addition of Na2SO4 might be conducive to an alternative metallurgical process involving complex sulfide ores.

  2. Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting-Water Leaching

    NASA Astrophysics Data System (ADS)

    Li, Guangshi; Cheng, Hongwei; Chen, Sha; Lu, Xionggang; Xu, Qian; Lu, Changyuan

    2018-06-01

    As a more environmentally friendly and energy-efficient route, the sulfation roasting-water leaching technique has been developed for highly effective extraction of non-ferrous metals from nickel sulfide concentrate in the presence of a Na2SO4 additive. The effects of several important roasting parameters—the roasting temperature, the addition of Na2SO4, the holding time, and the heating rate in particular—have been investigated. The results suggest that about 90 pct Ni, 92 pct Co, 95 pct Cu, and < 1 pct Fe can be leached from the calcine roasted under the optimum conditions. Furthermore, the behavior and mechanism of the Na2SO4 additive in the roasting process have been well addressed by detailed characterization of the roasted product and leaching residue using quantitative phase analysis (QPA) and energy dispersive spectroscopy (EDS) mapping. The Na2SO4 additive was observed to play a noticeable role in promoting the sulfation degree of valuable metals by forming liquid phases [Na2Me(SO4)2] at the outermost layer, which can create a suitable dynamic environment for sulfation. Thus, addition of Na2SO4 might be conducive to an alternative metallurgical process involving complex sulfide ores.

  3. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst.

    PubMed

    Nandan, R; Nanda, K K

    2017-08-31

    Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.

  4. Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Harries, Dennis; Zolensky, Michael E.

    2016-06-01

    The polymict Kaidun microbreccia contains lithologies of C-type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB-TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe-rich pyrrhotite with nonintegral vacancy superstructures (NC-pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe-Ni-S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100-300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S-enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe-poor, monoclinic 4C-pyrrhotite and NC-pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe-poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.

  5. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    USGS Publications Warehouse

    Picard, Aude A.; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  6. Lead recovery from waste CRT funnel glass by high-temperature melting process.

    PubMed

    Hu, Biao; Hui, Wenlong

    2018-02-05

    In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Method of processing aluminous ores

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.

  8. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  9. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    PubMed

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.

    2002-12-01

    High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.

  11. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.

  12. 40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.

    2004-01-01

    The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to completely recrystallized. The 40Ar/39Ar age spectra and inverse isochron plots of the multicomponent whole-rock sandstone samples are more complex than those of single minerals. However, different minerals have different Ca/K and Cl/K ratios and closure temperatures, and these properties were used to identify portions of spectra dominated by argon release from specific minerals. 40Ar/39Ar laser step-heating analyses of Late Devonian sandstone whole rocks produced spectra that record a two-stage resetting history: a Carboniferous hydrothermal event first and later Mesozoic to Tertiary events, which are in agreement with geologic constraints. The 40Ar/39Ar ages and the similar mineralogy, lead isotope composition, and relative stratigraphic positions support the interpretation that the shale-hosted massive sulfide deposits and most vein-breccia occurrences are temporally and genetically related, and that they are different expressions of Carboniferous basinal dewatering.

  13. Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Yashima, Yuta; Suzuki, Ryosuke O.; Rezan, Sheikh Abdul

    2018-05-01

    Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+x S4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.

  14. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    NASA Astrophysics Data System (ADS)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from <49% up to 83%) and silver (e.g., from <18% up to 90%) to subsequent cyanide leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  15. Intrasexual competition enhances reproductive isolation between locally adapted populations

    PubMed Central

    Arias-Rodriguez, Lenin; Plath, Martin

    2018-01-01

    Abstract During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation. PMID:29492045

  16. Sulfide semiconductor materials prepared by high-speed electrodeposition and discussion of electrochemical reaction mechanism

    NASA Astrophysics Data System (ADS)

    Okamoto, Naoki; Kataoka, Kentaro; Saito, Takeyasu

    2017-07-01

    A manufacturing method for SnS using a one-step electrochemical technique was developed. The sulfide semiconductor was formed by electrodeposition using an aqueous bath at low temperatures. The sulfide semiconductor particles produced were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The highest current density at which SnS was formed was 1800 mA/cm2 at a bath temperature of 293 K, which is 36 times larger than that in a previous deposition process. Analysis of the chronoamperometric current-time transients indicated that in the potential range from -1100 to -2000 mV vs saturated calomel electrode (SCE), the electrodeposition of SnS can be explained by an instantaneous nucleation model.

  17. Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor.

    PubMed

    Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H

    2010-11-01

    Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Thermal Constraints from Siderophile Trace Elements in Acapulcoite-Lodranite Metals

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.; Humayun, M.

    2006-01-01

    A fundamental process in the formation of differentiated bodies is the segregation of metal-sulfide and silicate phases, leading to the formation of a metallic core. The only known direct record of this process is preserved in some primitive achondrites, such as the acapulcoite-lodranites. Meteorites of this clan are the products of thermal metamorphism of a chondritic parent. Most acapulcoites have experienced significant partial melting of the metal-sulfide system but not of silicates, while lodranites have experienced partial melting and melt extraction of both. The clan has experienced a continuum of temperatures relevant to the onset of metal mobility in asteroidal bodies and thus could yield insight into the earliest stages of core formation. Acapulcoite GRA 98028 contains relict chondrules, high modal sulfide/metal, has the lowest 2-pyroxene closure temperature, and represents the least metamorphosed state of the parent body among the samples examined. Comparison of the metal-sulfide component of other clan members to GRA 98028 can give an idea of the effects of metamorphism.

  19. Fundamental interfacial studies of advanced solid lubricants and their operating environments

    NASA Astrophysics Data System (ADS)

    Gilley, Kevin

    Solid lubricants are a class of materials that are utilized in applications and environments where traditional lubrication schemes cannot be implemented. A variety of materials display solid lubrication, and in this study a number of solid lubricants were investigated. Firstly, electrolessly deposited nickel boride alloys were annealed at different temperatures under a flow of oxygen. The surface chemistry, friction, and wear behavior of the coating were then investigated. It was found that when annealed above 550°C the coatings had a dramatic change in surface chemistry, where the Ni 3B had formed a thick layer of B2O3 on the surface. This oxide then reacted at ambient temperatures with moist air to form the lubricious compound H3BO3. This led to a coefficient of friction below 0.1 and a slight increase of the wear rate from 10 -8 mm3/Nm to 10-7 mm3/Nm. Secondly, the surface chemistry of advanced MoS2 based coatings that had been exposed to low earth orbit was investigated. It was found that this exposure produced the complete oxidation of the coatings. Also, exposure to the unique space environments resulted in the deposition of large amounts of contaminant SiO2 on the surface. Lastly the tribological properties of single crystal cadmium sulfide were investigated. There is nearly no knowledge of the tribological activity of cadmium sulfide in the literature, so the study was performed as an initial investigation into the material. It was discovered that cadmium sulfide did not show low friction, with a coefficient of friction of approximately 0.25, but did show low wear, with a wear rate of approximately 3x10-7 mm3/Nm.

  20. Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China

    NASA Astrophysics Data System (ADS)

    Wu, Shenghua; Mao, Jingwen; Yuan, Shunda; Dai, Pan; Wang, Xudong

    2018-01-01

    The Shizhuyuan polymetallic deposit is located in the central part of the Nanling region, southeastern China, and consists of proximal W-Sn-Mo-Bi skarns and greisens and distal Pb-Zn-Ag veins. The sulfides and sulfosalts in the distal veins formed in three distinct stages: (1) an early stage of pyrite and arsenopyrite, (2) a middle stage of sphalerite and chalcopyrite, and (3) a late stage of galena, Ag-, Sn-, and Bi-bearing sulfides and sulfosalts, and pyrrhotite. Combined sulfide and sulfosalt geothermometry and fluid inclusion analyses indicate that the early stage of mineralization occurred at a temperature of 400 °C and involved boiling under hydrostatic pressure ( 200 bar), with the temperature of the system dropping during the late stage to 200 °C. Laser Raman analysis indicates that the fluid inclusions within the studied minerals are dominated by H2O, although some contain carbonate solids and CH4 gas. Vein-hosted sulfides have δ34S values of 3.8-6.3‰ that are interpreted as indicative of a magmatic source of sulfur. The mineralization process can be summarized as follows: an aqueous fluid exsolved on final crystallization of the Qianlishan pluton, ascended along fracture zones, cooled to <400 °C, and boiled under hydrostatic conditions, and with decreasing temperature and sulfur fugacity, sulfide and sulfosalt minerals precipitated successively from the Ag-Cu-Zn-Fe-Pb-Sb-As-S-bearing fluid system.

  1. A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.

    2017-03-01

    The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.

  2. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases

    NASA Astrophysics Data System (ADS)

    Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel

    2017-03-01

    Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.

  3. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite

    NASA Astrophysics Data System (ADS)

    Picard, Aude; Gartman, Amy; Clarke, David R.; Girguis, Peter R.

    2018-01-01

    Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth's atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite formation under strict anoxic conditions. Pyrite formation was not observed in any experiments. While SRM provide nearly all the sulfide to the Fe-S system at low temperatures, we also posit that SRM play an additional formative role in the size, morphology and potentially the mineralogy of iron sulfide minerals in sedimentary environments, therefore potentially influencing their reactivity. Attempting to reconstruct modern and ancient biogeochemical cycles based on the geochemistry of iron sulfide minerals formed under purely abiotic conditions should be therefore done with caution.

  4. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  5. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  6. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  7. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... specifications as determined by methods titled “Oxygen Flask Combustion-Gravimetric Method for Determination of... thermally cured at temperatures of 700 °F and above. (d) Polyphenylene sulfide resin coatings may be used in...

  8. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

    PubMed Central

    2014-01-01

    Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater. PMID:25183951

  9. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    NASA Astrophysics Data System (ADS)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  10. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  11. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  12. Hydrogen Production from Liquid Hydrocarbons Demonstration Program.

    DTIC Science & Technology

    1986-09-01

    The results of a 17 hour run indicate that the DP can produce hydrogen-containing product gas with less than 1 ppmv hydrogen sulfide . (4) Product...promotes the hydrolysis of carbonyl sulfide (COS) by the reaction: COS + H20 = H2 S + CO2 (2) Feed inlet temperature is 550*F. The water gas reaction is...feed stream to less than 10 ppmw. This is achieved by contacting the product gas stream with a zinc oxide bed where the hydrogen sulfide will react with

  13. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  14. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  15. Formation of zinc sulfide species during roasting of ZnO with pyrite and its contribution on flotation.

    PubMed

    Zheng, Yong-Xing; Lv, Jin-Fang; Wang, Hua; Wen, Shu-Ming; Pang, Jie

    2018-05-18

    In this paper, formation of zinc sulfide species during roasting of ZnO with FeS 2 was investigated and its contribution on flotation was illustrated. The evolution process, phase and crystal growth were investigated by thermogravimetry (TG), X-Ray diffraction (XRD) along with thermodynamic calculation and scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), respectively, to interpret the formation mechanism of ZnS species. It was found that ZnS was initially generated at about 450 °C and then the reaction prevailed at about 600 °C. The generated Fe x S would dissolve into ZnS and then form (Zn, Fe)S compound in form of Fe 2 Zn 3 S 5 when temperature increased to about 750 °C. This obviously accelerated ZnS phase formation and growth. In addition, it was known that increasing of ZnO dosage had few effects on the decomposition behavior of FeS 2 . Then, flotation tests of different zinc oxide materials before and after treatment were performed to further confirm that the flotation performances of the treated materials could be obviously improved. Finally, a scheme diagram was proposed to regular its application to mineral processing. It was systematically illustrated that different types of ZnS species needed to be synthetized when sulfidization roasting-flotation process was carried out to treat zinc oxide materials.

  16. Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1994-01-01

    Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.

  17. MTDATA and the Prediction of Phase Equilibria in Oxide Systems: 30 Years of Industrial Collaboration

    NASA Astrophysics Data System (ADS)

    Gisby, John; Taskinen, Pekka; Pihlasalo, Jouni; Li, Zushu; Tyrer, Mark; Pearce, Jonathan; Avarmaa, Katri; Björklund, Peter; Davies, Hugh; Korpi, Mikko; Martin, Susan; Pesonen, Lauri; Robinson, Jim

    2017-02-01

    This paper gives an introduction to MTDATA, Phase Equilibrium Software from the National Physical Laboratory (NPL), and describes the latest advances in the development of a comprehensive database of thermodynamic parameters to underpin calculations of phase equilibria in large oxide, sulfide, and fluoride systems of industrial interest. The database, MTOX, has been developed over a period of thirty years based upon modeling work at NPL and funded by industrial partners in a project co-ordinated by Mineral Industry Research Organisation. Applications drawn from the fields of modern copper scrap smelting, high-temperature behavior of basic oxygen steelmaking slags, flash smelting of nickel, electric furnace smelting of ilmenite, and production of pure TiO2 via a low-temperature molten salt route are discussed along with calculations to assess the impact of impurities on the uncertainty of fixed points used to realize the SI unit of temperature, the kelvin.

  18. Sulfidation Roasting of Hemimorphite with Pyrite for the Enrichment of Zn and Pb

    NASA Astrophysics Data System (ADS)

    Min, Xiao-Bo; Xue, Ke; Ke, Yong; Zhou, Bo-Sheng; Li, Yang-Wen-Jun; Wang, Qing-Wei

    2016-09-01

    With the increasing consumption of zinc and the depletion of zinc sulfide ores, the exploitation of low-grade zinc oxide ores may be important for the sustainability of the zinc industry. Hemimorphite, a zinc hydroxyl silicate hydrate, is a significant source of Zn and Pb. It is difficult to obtain Zn and Pb from the hemimorphite using traditional technology. In this work, for the first time, sulfidation roasting of hemimorphite with pyrite was studied for the enrichment of Zn and Pb by a flotation process. Four stages of sulfidation roasting were determined based on x-ray diffraction and thermogravimetry analysis. Then, the effects of sulfidation temperature, pyrite dosage and reaction time on the sulfidation percentages were investigated at the laboratory scale. The experimental results showed that the sulfidation percentages of Pb and Zn were as high as 98.08% and 90.55% under optimum conditions, respectively. Finally, a flotation test was performed to enrich Zn and Pb in the sulfidation product. A flotation concentrate with 8.78% Zn and 9.25% Pb was obtained, and the recovery of Zn and Pb reached 56.14% and 75.94%, respectively.

  19. Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.

    PubMed

    An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon

    2015-07-01

    Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proposed model for bistability in nanowire nonvolatile memory

    NASA Astrophysics Data System (ADS)

    Pokalyakin, V.; Tereshin, S.; Varfolomeev, A.; Zaretsky, D.; Baranov, A.; Banerjee, A.; Wang, Y.; Ramanathan, S.; Bandyopadhyay, S.

    2005-06-01

    Cadmium sulfide nanowires of 10-nm diameter, electrodeposited in porous anodic alumina films, exhibit an electronic bistability that can be harnessed for nonvolatile memory. The current-voltage characteristics of the wires show two stable conductance states that are well separated (conductances differ by more than four orders of magnitude) and long lived (longevity>1yr at room temperature). These two states can encode binary bits 0 and 1. It is possible to switch between them by varying the voltage across the wires, thus "writing" data. Transport behavior of this system has been investigated at different temperatures in an effort to understand the origin of bistability, and a model is presented to explain the observed features. Based on this model, we estimate that about 40 trapped electrons per nanowire are responsible for the bistability.

  1. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  2. Evolution of the Active Phase of CoMo/Al2O3 Catalysts under Industrial Conditions: a High-Pressure MES Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugulan, A.I.; Overweg, A.R.; Craje, M.W.J.

    2005-04-26

    The behavior of CoMo/Al2O3 catalysts sulfided in H2S/H2 gas mixture, under industrial conditions, was investigated using Moessbauer emission spectroscopy (MES). An intermediate Co-Mo phase is formed after increasing the sulfidation pressure to 4 MPa, favoring the Co-Mo-S phase formation. An increase in the quadrupole splitting value of the Co-sulfide species after treatment at 573 K is proposed as a prerequisite for the formation of ideal Co-Mo-S structures.

  3. Recurrence of Seagrass Mortality in Florida Bay: The Role of Climate Change and Implications for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Yarbro, L.; Carlson, P. R., Jr.

    2016-02-01

    Catastrophic mortality of seagrass in Florida Bay (USA) from 1987 to 1991 resulted in the complete loss of thousands of hectares of dense Thalassia testudinum beds. At that time, acutely toxic levels of dissolved sulfide in sediments were determined to be the proximal cause of seagrass mortality, but the mechanisms responsible for sulfide accumulation in sediments were not demonstrated. With the recurrence of seagrass mortality in Florida Bay in summer 2015, we show that several processes create the conditions that lead to sulfide toxicity and catastrophic mortality of Thalassia. Regional drought and elevated water temperature lead to hypersalinity, particularly in the northern Bay. In addition, evaporation of seawater on mudbanks and microtidal flow patterns create stratified brine layers in basins adjacent to mudbanks. Because of very high seagrass shoot densities and limited tidal exchange, brine layers limit oxygen diffusion and prevent oxidation of sulfide in sediments and bottom water, exposing roots, rhizomes and lateral meristems of Thalassia to acutely toxic levels of sulfide, causing extensive mortality. Dead belowground tissues provide labile carbon sources to sulfate-reducing bacteria enhancing sulfide production and creating a positive feedback loop of increasing sulfide toxicity leading to further seagrass death. The carbon sequestration capacity of these dense seagrass communities is diminished three ways: 1) export of dead seagrass shoots and leaves as floating wrack, 2) in situ decomposition of roots, rhizomes, and some leaf material, and 3) reduced areal productivity of surviving seagrasses. Climate analyses show that, in the short term ( 50 years), higher water temperatures and evaporation rates might result in recurring seagrass mortality events. However, in the long term, sea level rise will increase tidal exchange and flushing in Florida Bay reducing the likelihood of seagrass mortality.

  4. Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal

    DOE PAGES

    Gainsforth, Z; Lauretta, DS; Tamura, N; ...

    2017-09-01

    © 2017 by Walter de Gruyter Berlin/Boston. Lauretta (2005) produced sulfide in the laboratory by exposing canonical nebular metal analogs to H 2 S gas under temperatures and pressures relevant to the formation of the Solar System. The resulting reactions produced a suite of sulfides and nanophase materials not visible at the microprobe scale, but which we have now analyzed by TEM for comparison with interplanetary dust samples and comet Wild 2 samples returned by the Stardust mission. We find the unexpected result that disequilibrium formation favors pyrrhotite over troilite and also produces minority schreibersite, daubréelite, barringerite, taenite, oldhamite, andmore » perryite at the metal-sulfide interface. TEM identification of nanophases and analysis of pyrrhotite superlattice reflections illuminate the formation pathway of disequilibrium sulfide. We discuss the conditions under which such disequilibrium can occur, and implications for formation of sulfide found in extraterrestrial materials.« less

  5. Experimental investigations of influence of pressure on the solubility of sulfur in silicate melts.

    NASA Astrophysics Data System (ADS)

    Kostyuk, Anastasia; Gorbachev, Nikolay

    2010-05-01

    Sulfide-silicate demixing of silicate melts on immiscible silicate and sulfide liquids occurs at magma sulfur saturation. This type of liquation plays an important role in geochemistry of mantle magmas, in processes of magmatic differentiation, and in ore deposit formation. The major parameter defining sulfide-silicate stratification of silicate melts is solubility of sulfur in magmas. It is considered that «solubility of sulfur» is concentration of sulfur in silicate melts. The previous researches have established positive dependence of solubility of sulphur on temperature [1, 2], melt composition [3, 4], oxidation-reduction conditions [5, 6] and our experimental data confirm it. However, available data does not give a simple answer about dependence of solubility of sulfur from pressure in modelling and natural "dry" sulfide-saturated silicate melts. The reason of difference in experiments remains not clear and further work is needed on this topic. In this paper, we report our findings on the influence of pressure on the solubility of sulfur in hydrous magnesian melts. This melts are represent by olivine basalt - picrite, coexisting with Fe-Cu-Ni sulfide melt and harzburgite (Ol+Opx) and it was investigated in a temperature range from 1200 to 1350°С and a pressure range from 0.2 to 2.5 GPa. Experiments were carried out on the piston-cylinder at Р=1-2.5GPa and in an internal-heated pressure vessels at P=0.2-0.6 GPa by a quenching technique. Our findings disagree with all previous studies demonstrating the positive [7] or negative [8, 9] influence of pressure on the solubility of sulfur in silicate melts. Our researches have shown complicated influence of pressure. Concentration of sulfur in glasses increases with increase in pressure from 0.2 to 0.6 GPa in experiments where andesite was used as a starting material. The sulfur concentration increases from 0.09 wt.% at 0.2 GPa to 0.4 wt.% at 0.6 GPa and Т=1200°С. In hydrous magnesian basalts (12-18 % MgO), we observe an extremum around 1.5 GPa. Solubility of sulfur increases from 0.31 wt.% to 1.01 wt.% at P=1-1.5 GPa, T=1300°С and decreases till 0.19 wt.% at P=2.5 GPa, T=1350°С. At ultrahigh (>4GPa) pressure concentration of sulfur in magmas will change slightly, considering increase of magnesian basalt liquidus in temperature and positive influence of temperature on the solubility of sulfur. Extreme character of the pressure dependences plays an important role in transportation of sulfide-silicate melts from the deep magmatic centers into the modern magmatic chambers where most of open deposits of hypabyssal ore-bearing magmas are localized. Possible explanation of an extremum in the field of 1.5-2.0 GPa is character of dissolution of water in silicate melts. Supported by grant RFBR 09-05-01131, 10-05-00928. References: 1.Luhr, J. F. Experimental phase relations of water- and sulphur-saturated arc magmas and the 1982 eruptions of El Chichòn Volcano. Journal of Petrology 31, 1990, p. 1071-1114. 2.Carroll, M. R. & Rutherford, M. J. The stability of igneous anhydrite: experimental results and implications for sulphur behavior in the 1982 El Chichòn trachyandesite and other evolved magmas. Journal of Petrology 28, 1987. p. 781-801. 3.Haughton, D. R., Roeder, P. L. & Skinner, B. J. Solubility of sulphur in mafic magmas. Economic Geology 69, 1974. p. 451-466 4.Wallace P., and Carmachael L.S.E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1992. p. 1863-1874. 5.Fincham, C. J. B. & Richardson, F. D. Behaviour of sulphur in silicate and aluminate melts. Proceedings of the Royal Society of London 223, 1954. p. 40-62. 6.Carroll M.R. and Webster J.D. Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. In Volatiles in Magmas (1994); pp. 231-279. Rev. mineral. 30, Mineralogical Society of America. 7.Mysen B.O., Popp R.N. Amer.J.Sci. V. 280. № 2. 1980 P.788-792. 8.Wendlandt R.F. Sulfide saturation of basalt and andesite melts at high pressure and temperature. Amer. Mineral. V. 67. № 7. 1982 P. 877-885. 9.Mavrogenes J.A., O'Neill H.S. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas // Geochim. Cosmochim. Acta. 1999. V.63. № 7/8. P.1173-1180.

  6. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  7. A Tale of Two Melt Rocks: Equilibration and Metal/Sulfide-Silicate Segregation in the L7 Chondrites PAT 91501 and LEW 88663

    NASA Astrophysics Data System (ADS)

    Harvey, R. P.

    1993-07-01

    Type 7 ordinary chondrites have experienced temperatures near or beyond those necessary for partial melting. Two recently collected Antarctic specimens, PAT91501 (PAT) and LEW88663 (LEW), have been tentatively identified as L7 chondrites based on mineral and oxygen isotope compositions [1,2]. The petrology and mineralogy of these meteorites suggests that they have undergone significant metal/sulfide-silicate segregation, with implications for meteorite parent bodies. PAT consists of an equigranular contact-framework of nearly euhedral olivine grains, with interstitial spaces filled by plagioclase, pyroxenes, and several minor phases. Ortho- and clinopyroxene occur in an exsolution relationship. Olivine and pyroxene are highly equilibrated, varying <<1% in Fe-endmember content. Pyroxene equilibration temperatures calculated for PAT using the methods of [3] are self-consistent at about 1180 degrees C. In thin section, PAT contains only traces of metal, as tiny isolated blebs in sulfide grains; large (>1 cm) globular sulfide inclusions are seen in hand-sample [1], but are not present in the section examined. LEW was originally classified as an achondrite with olivine and pyroxene compositions similar to those in L chondrites [2]. Metal is absent in LEW, although the specimen is small and heavily rusted, making it impossible to gauge the original metal content. Olivine grains are commonly rounded in shape and seldom in contact with more than a few other grains. LEW olivine and pyroxene are also highly equilibrated. Veins of Ni-bearing metal oxides and sulfides are common. Both low- and high-Ca pyroxene occur as discrete grains, orthopyroxene often poikilitically enclosing olivine. Pyroxene equilibration temperatures for LEW are more variable than those for PAT and consistently lower, with an average around 900 degrees C. The various textural and compositional characteristics of PAT and LEW suggest they have experienced partial melting to varying degrees. Both visually resemble charges from experimental melting of ordinary chondrites [4-6]. The cumulate-like framework of olivine crystals in PAT suggests a high degree of partial melting, at peak temperatures sufficient to melt all other phases (above 1400 degrees C) [6]. The spheroidal sulfide nodules in PAT and the occurrence of metal (when present) only in association with sulfide strongly suggest gravitational segregation of a metal/sulfide liquid from a partial melt of the original chondritic assemblage. LEW features suggest less partial melting. Veins and grain coatings of sulfides and Fe-Ni oxides (that were probably metal before weathering) infer exposure to temperatures of 900-1000 degrees C [5]. The non-uniform olivine grain size and presence of remnant clinopyroxene grains in LEW imply that peak temperatures reached by this meteorite were not higher than 1200 degrees C [6]. The partial melting observed in PAT and LEW is probably a result of shock heating during impacts, as proposed in studies of Shaw (L7) and other similar lithologies [7]. If significant metal/sulfide-silicate segregation can occur in the relatively small volumes and short heating times associated with impact melting, even small planetesimals might be differentiated. This implies that the timescale necessary for planetary differentiation might have been significantly shortened by the assembly of already differentiated planetesimals to form meteorite parent bodies [8]. References: [1] Mason B. et al. (1992) Ant. Met. News., 15(2), 30. [2] Mason B. and Marlow R. (1992) Ant. Met. News., 15(1), 16. [3] Fonarev V. I. and Graphchikov A. A. (1991) In Progress in Metamorphic and Magmatic Petrology (L. L. Perchuk, ed.), 65-92, Cambridge University. [4] Smith B. A. and Goldstein J. I. (1977) GCA, 41, 1061-1072. [5] McSween H. Y. Jr. et al. (1978) LPS IX, 1437-1447. [6] Takahashi E. (1983) NIPR Spec. Is., 30, 168-180. [7] Taylor G. J. et al. (1979) GCA, 43, 323-337. [8] Taylor G. J. JGR, 97, 14717-14726.

  8. Formation of unequilibrated R chondrite chondrules and opaque phases

    NASA Astrophysics Data System (ADS)

    Miller, K. E.; Lauretta, D. S.; Connolly, H. C.; Berger, E. L.; Nagashima, K.; Domanik, K.

    2017-07-01

    Sulfide assemblages are commonly found in chondritic meteorites as small inclusions in the matrix or in association with chondrules. These assemblages are widely hypothesized to form through pre-accretionary corrosion of metal by H2S gas or through parent body processes. We report here on two unequilibrated R chondrite samples that contain large, chondrule-sized sulfide nodules in the matrix. Both samples are from Mount Prestrud (PRE) 95404. Chemical maps and spot and broad-beam electron microprobe analyses (EMPA) were used to assess the distribution, stoichiometry, and bulk composition of sulfide nodules and silicate chondrules in the clasts. Oxygen isotope data were collected via secondary ion mass spectrometry (SIMS) to assess the relationship of chondrules to other chondrite groups. Scanning electron microscopy (SEM), focused ion beam (FIB), and transmission electron microscopy (TEM) analyses were used to assess fine-scale features and identify crystal structures in sulfide assemblages. Thermodynamic models were used to assess the temperature, sulfur fugacity (fS2), total pressure, dust-to-gas ratio, and oxygen fugacity (fO2) conditions during sulfide nodule and chondrule formation. The unequilibrated clasts include a mixture of type I and type II chondrules, as well as non-porphyritic chondrules. Chondrule oxygen isotopes overlap with ordinary-chondrite chondrules. Sulfide nodules average 200 μm in diameter, have rounded shapes, and are primarily composed of pyrrhotite, pentlandite, and magnetite. Some are deformed around chondrules in a petrologic relationship similar in appearance to compound chondrules. Both nodules and sulfides in chondrules include phosphate inclusions and Cu-rich lamellae, which suggests a genetic relationship between sulfides in chondrules and in the matrix. Ni/Co ratios for matrix and chondrule sulfides are solar, while Fe and Ni are non-solar and inversely related. We hypothesize that sulfide nodules formed via pre-accretionary melt processes. During chondrule formation, precursors composed of a mixture of silicate and sulfide material were heated to form immiscible melt droplets, which separated and cooled to form Si-rich chondrules and S-rich nodules. Sulfide melt was stabilized by a high total pressure (∼1 atm) in a dust- or ice-enriched environment. Heating of this material contributed to a high fS2 (2 × 10-3 atm at 1138 °C), and high fO2 (IW - 1 to IW - 4), in an environment with peak temperatures between 1539 °C and 1750 °C. Oxygen isotopic compositions in this region were similar to those recorded by the LL-chondrite chondrules.

  9. Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313--413 K at pressures up to 5 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranov, G.; Smirnova, N.A.; Rumpf, B.

    1996-06-01

    Experimental results for the solubility of the single gases carbon dioxide and hydrogen sulfide in aqueous solutions of 2,2{prime}-methyliminodiethanol (N-methyldiethanolamine (MDEA)) at temperatures between 313 and 413 K and total pressures up to 5 MPa are reported. A model taking into account chemical reactions as well as physical interactions is used to correlate the new data. The correlation is also used to compare the new experimental data with literature data.

  10. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  11. Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior

    NASA Astrophysics Data System (ADS)

    Wang, Huanhuan; Chao, DongLiang; Liu, Jilei; Lin, Jianyi; Shen, Ze Xiang

    2018-07-01

    Nanoscale engineering plays an important role in designing novel electrode architecture and boosting energy storage in supercapacitors. Herein, we demonstrate the fabrication of freestanding tin sulfide based supercapacitor electrode using facile nucleation substrate control, i.e. polyaniline network. This is the first time that tin sulfide based material is fabricated as a binder-free electrode for supercapacitors. The first combination of tin sulfide and polyaniline also evokes synergistic effect to enhance the performance as the polyaniline nanofibers facilitate the growth of tin sulfide flakes in nanosize which is further proved helpful for improving the capacity and stability of the electrode. The as-obtained electrode of tin sulfide nanoflake arrays incorporated on polyaniline nanofibers (365 F g‑1 at 10 mV s‑1) exhibits superior electrochemical performance compared with micro-scaled tin sulfide (32 F g‑1 at 10 mV s‑1). The significantly improved pseudocapacitive and diffusive contributions of polyaniline nanofibers incorporated electrode are identified by quantitative kinetics analysis due to greatly decreased particle size and introduced mesopores, nanoclusters, and exposed edges. Profited from effective nanostructure engineering, a Na+ intercalation mechanism is also pointed out in boosting the electrochemical performance.

  12. Velocity changes, long runs, and reversals in the Chromatium minus swimming response.

    PubMed Central

    Mitchell, J G; Martinez-Alonso, M; Lalucat, J; Esteve, I; Brown, S

    1991-01-01

    The velocity, run time, path curvature, and reorientation angle of Chromatium minus were measured as a function of light intensity, temperature, viscosity, osmotic pressure, and hydrogen sulfide concentration. C. minus changed both velocity and run time. Velocity decreased with increasing light intensity in sulfide-depleted cultures and increased in sulfide-replete cultures. The addition of sulfide to cultures grown at low light intensity (10 microeinsteins m-2 s-1) caused mean run times to increase from 10.5 to 20.6 s. The addition of sulfide to cultures grown at high light intensity (100 microeinsteins m-2 s-1) caused mean run times to decrease from 15.3 to 7.7 s. These changes were maintained for up to an hour and indicate that at least some members of the family Chromatiaceae simultaneously modulate velocity and turning frequency for extended periods as part of normal taxis. Images PMID:1991736

  13. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  14. Characterization of the reactive and dissociative behavior of transition metal oxide cluster ions in the gas phase.

    PubMed

    Maleknia, S; Brodbelt, J; Pope, K

    1991-05-01

    The reactive and dissociative behavior of molybdenum and tungsten oxide cluster ions has been studied in the gas phase using a triple quadrupole mass spectrometer. Cluster ions (MO3) n (-) were formed via a simple thermal desorption/electron capture negative ionization method, and their structures were characterized by collision-activated dissociation (CAD). Typically, the clusters fragment by losses of neutral (MO3) units. Reactions of the oxide cluster ions with ethylene oxide, cyclohexene oxide, ethylene sulfide cyclohexene sulfide, 2,3-butanedione, and 2,4-pentanedione were examined, and product ions were characterized by CAD. The clusters react with ethylene oxide by addition of ethylene oxide or net addition of oxygen, whereas the clusters react with ethylene sulfide via net addition of one or two sulfur atoms. Reactions of the clusters with the diones result in addition of one or two dione units, in some cases with dehydration.

  15. Method of preparing an electrochemical cell in uncharged state

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  16. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  17. Measurement of plasma hydrogen sulfide in vivo and in vitro

    PubMed Central

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6×250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media. PMID:21276849

  18. Porous, S-bearing silica in metal-sulfide nodules and in the interchondrule clastic matrix in two EH3 chondrites

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Németh, P.; Petaev, M. I.; Buseck, P. R.

    2017-11-01

    Two new occurrences of porous, S-bearing, amorphous silica are described within metal-sulfide nodules (MSN) and as interchondrule patches in EH3 chondrites SAH 97072 and ALH 84170. This porous amorphous material, which was first reported from sulfide-bearing chondrules, consists of sinewy SiO2-rich areas containing S with minor Na or Ca as well as Fe, Mg, and Al. Some pores contain minerals including pyrite, pyrrhotite, and anhydrite. Most pores appear vacant or contain unidentified material that is unstable under analytical conditions. Niningerite, olivine, enstatite, albite, and kumdykolite occur enclosed within porous silica patches. Porous silica is commonly interfingered with cristobalite suggesting its amorphous structure resulted from high-temperature quenching. We interpret the S-bearing porous silica to be a product of silicate sulfidation, and the Na, Ca, Fe, Mg, and Al detectable within this material are chemical residues of sulfidized silicates and metal. The occurrence of porous silica in the cores of MSN, which are considered to be pre-accretionary objects, suggests the sulfidizing conditions occurred prior to final parent-body solidification. Ubiquitous S-bearing porous silica among sulfide-bearing chondrules, MSN, and in the interchondrule clastic matrix, suggests that similar sulfidizing conditions affected all the constituents of these EH3 chondrites.

  19. Constraints on the origin of Os-isotope disequilibrium in included and interstitial sulfides in mantle peridotites: Implications for the interpretation of Os-isotope signatures in MORB and Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2016-12-01

    The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain-scale Os-isotope disequilibrium in mantle peridotites likely reflects recent sulfide metasomatism linked to interaction with eclogite- or pyroxenite-derived melts. Interstitial sulfides with radiogenic Os-isotopes provide further evidence for a role of eclogite melting in MORB genesis.

  20. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    PubMed

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  1. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  2. Thermoelectric properties of rare earth chalcogenides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Raag, V.; Wood, C.

    1985-01-01

    The rare earth chalcogenides are important thermoelectric materials due to their high melting points, self-doping capabilities, and low thermal conductivities. Lanthanum sulfides and lanthanum tellurides have been synthesized in quartz ampules, hot-pressed into samples, and measured. The n-type Seebeck coefficients, electrical resistivities, and power factors generally all increased as the temperature increased from 200 to 1000 C. The figure-of-merit for nonstoichiometric lanthanum telluride was 0.001/deg C at 1000 C, considerably higher than for silicon-germanium. Thermoelectric measurements were made for LaTe(2) and YbS(1.4), and p-type behavior was observed for these compounds from 300 to 1100 C.

  3. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park.

    PubMed

    Macur, R E; Jay, Z J; Taylor, W P; Kozubal, M A; Kocar, B D; Inskeep, W P

    2013-01-01

    Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments. © 2012 Blackwell Publishing Ltd.

  4. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  5. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    USGS Publications Warehouse

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of <1 Ma peridotites at Hess Deep occurred at high temperatures (200??-400??C) and low water/rock ratios. Oxidation of ferrous iron to magnetite maintained low fO2and produced a reduced, low-sulfur assemblage including NiFe alloy. Small amounts of sulfate reduction by thermophilic microbes occurred as the system cooled, producing low-??34S sulfide (1.5??? to -23.7???). In contrast, serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  6. Sulfide-associated mineral assemblages in the Bushveld Complex, South Africa: platinum-group element enrichment by vapor refining by chloride-carbonate fluids

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Boudreau, A. E.

    2013-02-01

    The petrology of base metal sulfides and associated accessory minerals in rocks away from economically significant ore zones such as the Merensky Reef of the Bushveld Complex has previously received only scant attention, yet this information is critical in the evaluation of models for the formation of Bushveld-type platinum-group element (PGE) deposits. Trace sulfide minerals, primarily pyrite, pyrrhotite, pentlandite, and chalcopyrite are generally less than 100 microns in size, and occur as disseminated interstitial individual grains, as polyphase assemblages, and less commonly as inclusions in pyroxene, plagioclase, and olivine. Pyrite after pyrrhotite is commonly associated with low temperature greenschist alteration haloes around sulfide grains. Pyrrhotite hosted by Cr- and Ti-poor magnetite (Fe3O4) occurs in several samples from the Marginal to Lower Critical Zones below the platiniferous Merensky Reef. These grains occur with calcite that is in textural equilibrium with the igneous silicate minerals, occur with Cl-rich apatite, and are interpreted as resulting from high temperature sulfur loss during degassing of interstitial liquid. A quantitative model demonstrates how many of the first-order features of the Bushveld ore metal distribution could have developed by vapor refining of the crystal pile by chloride-carbonate-rich fluids during which sulfur and sulfide are continuously recycled, with sulfur moving from the interior of the crystal pile to the top during vapor degassing.

  7. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  8. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE PAGES

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle; ...

    2015-12-20

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  9. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  10. Original behavior of pore water radiolysis in cement-based materials containing sulfide: Coupling between experiments and simulations

    NASA Astrophysics Data System (ADS)

    Bouniol, P.; Guillot, W.; Dauvois, V.; Dridi, W.; Le Caër, S.

    2018-09-01

    Blended cements with high content of blast furnace slag (CEM III/C) can be used for nuclear waste conditioning because of their low hydration heat as compared to ordinary Portland cements (CEM I). They however contain some sulfide, an impurity whose role needs to be investigated. Indeed, they can have an effect on the radiolytic H2 production under irradiation. To study the impact of sulfide species on H2 production, gamma irradiation, at a dose rate of 356 Gy h-1, was performed during 6 months in a closed system without O2 on a cement paste made with CEM III/C. At short time, the radiolytic H2 production rate is higher than that measured using CEM I. On the basis of reaction data collected in the literature on sulfur species, radiolysis simulations performed for both systems confirm this behavior. Moreover, they suggest that the sulfide concentration, initially imposed in pore solution by the slag is of the order of 180 mM, and is responsible for this H2 production. For the first two irradiation months, the following phenomena are then evidenced in CEM III/C: 1) conversion of sulfide into polysulfide anions; 2) pH increase; 3) production of H2 due to the H•+ H2S reaction having a very high rate constant. Nevertheless, in the medium term, the residual sulfide concentration is not sufficient any more for this mechanism to occur. It imposes a reducing environment, leading to a very efficient recombination of H2 in pore solution. The resulting equilibrium state is reinforced by the high liquid saturation level in the cement paste porosity. Therefore, even if the presence of sulfide species in blended cements momentarily increases the H2 production rate, it strongly reduces it at long times.

  11. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    PubMed

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  12. Metagenomic and Biochemical Characterizations of Sulfur Oxidation Metabolism in Uncultured Large Sausage-Shaped Bacterium in Hot Spring Microbial Mats

    PubMed Central

    Tamaki, Hideyuki; Kamagata, Yoichi; Hanada, Satoshi

    2012-01-01

    So-called “sulfur-turf” microbial mats in sulfide containing hot springs (55–70°C, pH 7.3–8.3) in Japan were dominated by a large sausage-shaped bacterium (LSSB) that is closely related to the genus Sulfurihydrogenibium. Several previous reports proposed that the LSSB would be involved in sulfide oxidation in hot spring. However, the LSSB has not been isolated yet, thus there has been no clear evidence showing whether it possesses any genes and enzymes responsible for sulfide oxidation. To verify this, we investigated sulfide oxidation potential in the LSSB using a metagenomic approach and subsequent biochemical analysis. Genome fragments of the LSSB (a total of 3.7 Mb sequence including overlapping fragments) were obtained from the metagenomic fosmid library constructed from genomic DNA of the sulfur-turf mats. The sequence annotation clearly revealed that the LSSB possesses sulfur oxidation-related genes coding sulfide dehydrogenase (SD), sulfide-quinone reductase and sulfite dehydrogenase. The gene encoding SD, the key enzyme for sulfide oxidation, was successfully cloned and heterologously expressed in Escherichia coli. The purified recombinant enzyme clearly showed SD activity with optimum temperature and pH of 60°C and 8.0, respectively, which were consistent with the environmental conditions in the hot spring where the sulfur-turf thrives. Furthermore, the affinity of SD to sulfide was relatively high, which also reflected the environment where the sulfide could be continuously supplied. This is the first report showing that the LSSB harbors sulfide oxidizing metabolism adapted to the hot spring environment and can be involved in sulfide oxidation in the sulfur-turf microbial mats. PMID:23185438

  13. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  14. Particle Geochemistry of Hydrothermal Systems and Implications for Mining Seafloor Massive Sulfides

    NASA Astrophysics Data System (ADS)

    Gartman, A.; Hein, J. R.

    2016-12-01

    Seafloor massive sulfide deposits form due to high-temperature hydrothermal venting that occurs globally, in every ocean basin, along plate boundaries and intra-plate hotspots. At these sites, the rapid mixing of hot, metal- and sulfur-rich reduced fluids into cold, oxygenated ocean water results in abundant mineral precipitation. The mining of seafloor massive sulfides is likely to occur in the near future and will generate a new class of mainly inorganic particulates, different from those formed in hydrothermal `black smoke.' While the major components of both black smoke & SMS tailings are Cu, Fe and Zn sulfides, many other minerals, including those containing technology critical elements, especially tellurium, are present. A comparison of these two classes of particulates will be presented, including chemical composition and reactivity to oxidative dissolution.

  15. Microbial communities and microprofiles of sulfide and oxygen of alum rock sulfur springs

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    The microbial community of Alum Rock sulfur spring Site 3 was studied along one branch of the main stream and between the two branches, 150 cm distant from the source. The community at the source was dominated by green sulfur photosynthetic bacteria of the genus Chlorobium. At 15 cm to 35 cm from the source dominance in the community shifted to the genus Flexibacter at the surface of the mat and purple bacteria of the genus Chromatium underneath. At 50 cm to 80 cm colorless sulfur oxidizing bacteria of the genus Thiothrix began to appear. At 100 cm to 150 cm, the surface of the mat was still dominated by Flexibacter, but underneath dominance shifted to purple sulfur bacteria as above, as well as cyanobacteria of the genus Oscillatoria and Pseudonabaena. The measurements of temperature along the stream showed no significant gradient. Community variations appear to be controlled more by sulfide than temperature. Ten ml of the overlying water were taken and fixed immediately to determine the sulfide concentration by the methylene blue method. A sulfide concentration of 106 micro-m was calculated for the overlying water.

  16. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  17. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  18. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Brett, R.; Evans, H.T.; Gibson, E.K.; Hedenquist, J.W.; Wandless, M.-V.; Sommer, M.A.

    1987-01-01

    Specifically considers unusual minerals and geothermometric relations not previously covered. Equilibrium, if attained at all, during deposition of most sulfides was a transient event over a few tens of micrometers at most and was perturbed by rapid temperature and compositional changes of the circulating fluid. Two new minerals were found: one, a hydrated Zn, Fe hydroxy-chlorosulfate, and the other, a (Mn, Mg, Fe) hydroxide or hydroxy-hydrate. Both were formed at relatively low temperatures. Lizardite, starkeyite, and anatase were found for the first time in such an environment.-from Authors

  19. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  20. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  1. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of significant quantities of (non)-stoichiometric sulfides during fractional crystallization would result in far larger depletions of Ni, Co and Cu than observed, whereas trends in their abundances are more likely explained by olivine fractionation. The sulfide exhaustion of the lunar magma source regions agrees with previously proposed low S abundances in the lunar core and mantle, and by extension with relatively minor degassing of S during the Moon-forming event. Our results support the hypothesis that refractory chalcophile and highly siderophile element systematics of low-Ti basalts and pyroclastic glasses reflect the geochemical characteristics of their source regions, instead of indicating the presence of residual sulfides in the lunar interior.

  2. Pyrite oxidation under simulated acid rain weathering conditions.

    PubMed

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  3. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  4. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, C.; Gandubert, A. D.; Legens, C.

    2007-02-02

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to producemore » the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.« less

  5. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  6. Sulfides of Bottom Sediments in the Northeastern Part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Rozanov, A. G.

    2018-03-01

    A study of bottom sediments conducted on the 100th cruise of R/V Professor Shtokman in the northeastern part of the Black Sea along the section from the Kerch Strait to the deep-sea depression allowed estimation of Holocene sulfide sedimentation and consideration of the accompanying diagenetic processes, which involve reactions with C, N, and P. The behavior of dissolved forms of Mn and Fe is considered from the viewpoint of their different solubility and formation of sulfides. The redox system of the Black Sea sediments can significantly be expanded at the expense of the migration methane and hydrogen, which accompanies its anaerobic oxidation.

  7. Crystallinity of Fe-Ni Sulfides in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Ohsumi, Kazumasa; Mikouchi, Takashi; Hagiya, Kenji; Le, Loan

    2008-01-01

    The main long-term goal of this research is to understand the physical conditions in the early solar nebula through the detailed characterization of a key class of mineral present in all primitive materials: Fe-Ni sulfides [1&2]. Fe-Ni sulfides can take dozens of structures, depending on the temperature of formation, as well as other physico-chemical factors which are imperfectly understood. Add to this the additional varying factor of Ni content, and we have a potentially sensitive cosmothermometer [3]. Unfortunately, this tool requires exact knowledge of the crystal structure of each grain being considered, and there have been few (none?) studies of the detailed structures of sulfides in chondritic materials. We report here on coordinated compositional and crystallographic investigation of Fe-Ni sulfides in diverse carbonaceous chondrites, initially Acfer 094 (the most primitive CM2 [4]) Tagish Lake (a unique type C2 [5]), a C1 lithology in Kaidun [6], Bali (oxidized CV3 [7]), and Efremovka (reduced CV3 [7]).

  8. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Hui Li; Keh Perng Shen

    1993-01-01

    Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57more » kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.« less

  9. One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames

    NASA Astrophysics Data System (ADS)

    Athanassiou, E. K.; Grass, R. N.; Stark, W. J.

    2010-05-01

    Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.

  10. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  11. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  12. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  13. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    DOEpatents

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  14. GEOLOGY, SULFUR ISOTOPES AND THE ORIGIN OF THE HEATH STEELE ORE DEPOSITS, NEWCASTLE, N.B., CANADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechow, E.

    The Heath Steele mine is located 35 miles northwest of Newcastle, New Brunswick, Canada. Middle Ordovician Tetagouche Group rocks, consisting of siliceous and basic volcanic rocks, and fine-grained quartz sericite schists and porphyry, have been folded into a steeply plunging recumbent anticline. The ore deposits of zinc, lead, and copper are associated with minor folding and/or sheared dilatent zones at or near the contact between porphyry and fine-grained senicitic schist. Mineralogically the sulfide bodies consist of early, euhedral arsenopyrite, magnetite, and pyrite, followed by interstitial pyrrhotite, sphalerite, chalcopyrite and galena. Minor minerals are ternantite-tetrahedrite, bismuthinite, marcasite, hematite, and some graphite.more » Supergene minerals consist of chalcocite, covellite, and marcasite with a little native silver. Little hypogene replacement has taken place between the minerals, which show a "porphyritic" texture. Sulfur isotope ratios were determined for over 150 sulfide and sulfate specimens from five of the seven ore bodies, and from granite, acid and basic volcanics, porphyry, and sediments. The results indicate that there is no detectable fractionation either during hypogene mineralization or supergene enrichment. The spread (21.82 to 22.02) covered by the ratios is narrow, and suggestive of a well homogenized source of mineral solutions. The enrichment of S/sup 34/ in the ore sulfides and the presence of graphite, evident from mineralographic studies and mass spectrometric analysis, suggests reduction of original sulfates (known to be enriched in S/sup 34/) by organic carbon at temperatures in excess of 500 deg C. A calculation based on the isotopic exchange reaction between sulfide and sulfate under equilibrium conditions and the spread of the ratios indicates a temperature of 700 to 800 deg C for the source. Finally the ratios determined for sulfides in a gneissic granite close to Heath Steele have the same ratio as the ore. These factors are considered to be diagnostic of a magmatic hydrothermal origin for the orp deposits. It is believed that an original source bed has been buried until suitable temperatures were reached to cause granitization, reduction of sulfates, and mobilization of the resulting sulfides to form ore deposits at favorable loci. (auth)« less

  15. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing-yong, E-mail: www053991@126.com; Huang, Shu-jie; Sun, Shui-yu

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning ofmore » Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration.« less

  16. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Kim, SeongYeon; Rana, Tanka R.; Kim, JunHo; Yun, JaeHo

    2017-12-01

    We report on physical vapor deposition of indium sulfide (In2S3) buffer layers and its application to Cu(In,Ga)Se2 (CIGSe) thin film solar cell. The Indium sulfide buffer layers were evaporated onto CIGSe at various substrate temperatures from room temperature (RT) to 350 °C. The effect of deposition temperature of buffer layers on the solar cell device performance were investigated by analyzing temperature dependent current-voltage ( J- V- T), external quantum efficiency (EQE) and Raman spectroscopy. The fabricated device showed the highest power conversion efficiency of 6.56% at substrate temperature of 250 °C, which is due to the decreased interface recombination. However, the roll-over in J- V curves was observed for solar cell device having buffer deposited at substrate temperature larger than 250 °C. From the measurement results, the interface defect and roll-over related degradation were found to have limitation on the performance of solar cell device.

  17. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  18. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zincmore » sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.« less

  20. Conversion of alkali metal sulfate to the carbonate

    DOEpatents

    Sheth, Atul C.

    1982-01-01

    A process for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700.degree. C. and about 800.degree. C. with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. The sulfur-containing compounds are further treated.

  1. Dynamics of Block Copolymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We alsomore » carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.« less

  2. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    NASA Astrophysics Data System (ADS)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  3. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    PubMed Central

    Lind, Cora; Gates, Stacy D.; Pedoussaut, Nathalie M.; Baiz, Tamam I.

    2010-01-01

    Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG) processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  4. Precipitation of gold by the reaction of aqueous gold(III)-chloride with cyanobacteria at 25-80{degrees}C, studied by x-ray absorption spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lengke, M. F.; Ravel, B.; Fleet, M. E.

    2007-10-01

    The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 {micro}m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental goldmore » by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures.« less

  5. The arsenic removal from arsenopyrite in sulfide mineral by physicochemical extraction

    NASA Astrophysics Data System (ADS)

    Jo, Jiyu; Cho, Kanghee; Choi, Nagchoul; Park*, Cheonyoung

    2015-04-01

    The most abundant As ore mineral is arsenopyrite (FeAsS). Arsenopyrite is present in sulfide ores associated with sediment-hosted Au deposits, it tends to be the earliest-formed mineral, derived from hydrothermal solutions and formed at temperatures typically of 100(degree Celsius) or more. The aim of this study was to investigate the mineralogical phase change and arsenic removal from arsenopyrite as a penalty element in sulfide mineral contained Au by physical extraction (high frequency) and chemical leaching (thiocyanate). Arsenic removal experiments for were performed under various conditions of high frequency exposure(1~35 min), thiocyanate concentration (0.1~1.0M), HCl concentration (0.1~2.0M), copper(2) sulfate concentration (0.1~1.0M), temperature (30~60 degree Celsius). Increasing the high frequency exposure produced a positive effect on arsenic removal in arsenopyrite. The highest percentage arsenic removal of 96.67% was obtained under the following conditions by thiocyanate leaching: thiocyanate concentration = 1.0M ; HCl concentration = 2.0M ; copper(2) sulfate concentration = 1.0M ; temperature = 60(degree Celsius) This study demonstrates the adequate performance of physical extraction (high frequency) and chemical leaching (thiocyanate) for the arsenic removal from arsenopyrite as a penalty element.

  6. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni

    2018-02-01

    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  7. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  8. Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.

    PubMed

    Vazquez-Landaverde, P A; Qian, M C; Torres, J A

    2007-09-01

    Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.

  9. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  10. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  11. Mössbauer spectra of iron (III) sulfide particles

    NASA Astrophysics Data System (ADS)

    Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.

  12. Experimental study on ignition mechanisms of wet granulation sulfur caused by friction.

    PubMed

    Dai, Haoyuan; Fan, Jianchun; Wu, Shengnan; Yu, Yanqiu; Liu, Di; Hu, Zhibin

    2018-02-15

    It is common to see fire accidents caused by friction during the storage and transportation of wet granulation sulfur. To study the sulfur ignition mechanism under friction conditions, a new rotating test apparatus is developed to reproduce friction scenes at lab scale. A series of experiments are performed under different normal loads. The SEM-EDS and the XRD were utilized to examine the morphologies and compositions of the tested specimens and the friction products. Experimental results show that these two methods are mostly in agreement with each other. The iron-sulfide compounds are produced and the proportion of iron-sulfide compounds is reduced with normal loads increasing, compared to the total number of the friction products. The facts implied by the integration analysis of friction products with the temperature changes of the near friction surface unveil an underlying mechanism that may explain sulfur ignition by friction in real scenarios. The sulfur ignition may be mainly caused by the spontaneous combustion of iron sulfide compounds produced by friction under low normal load with 200N. With the increase of normal loads, the resulting iron-sulfide compounds are decreasing and the high temperature from friction heat begins to play a major role in causing fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    USGS Publications Warehouse

    Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles. ?? 2006 Elsevier Inc. All rights reserved.

  14. Correlating Cu-sulfide and Au mineralization in the Ertsberg-Grasberg District using LA-ICP-MS and HRXCT

    NASA Astrophysics Data System (ADS)

    Wright, K. A.; Miller, N. R.; Ketcham, R. A.; Kyle, R.

    2016-12-01

    The Ertsberg-Grasberg district in Papua, Indonesia, hosts to two of the largest intrusion-related Cu-Au deposits in the world: the Ertsberg East Skarn system and the Grasberg Intrusive Complex. Cu mineralization within the Grasberg porphyry and Ertsberg skarn systems primarily consists of bornite and chalcopyrite, with minor digenite and idiate. Native Au is commonly found in association with Cu mineralization where Au occurs as inclusions within or immediately proximal to primary Cu-sulfide minerals. At hydrothermal-ore forming temperatures, approximately 400° to 700° C, bornite and chalcopyrite can host up to 1800 ppm Au within the Cu-sulfide lattice. Upon retrograde cooling of the hydrothermal system, the ability of bornite and chalcopyrite to host Au decreases significantly to about 10 ppm, indicating that the Au could be expulsed from the sulfide lattice. Given the close association of native Au and Cu-sulfide concentrations, it is possible that native gold grains form as the Au emerges from the Cu-sulfides. Constraining the genetic and spatio-temporal relationship between Cu-sulfide and Au mineralization within these deposits is of significant interest with regard to the geometallurgical processing of the ore, and to future exploration. This study seeks to evaluate this relationship using High Resolution X-ray Computed Tomography (HRXCT) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Previous HRXCT studies on Ertsberg-Grasberg ore samples have identified numerous occurrences of native Au grains at the edges of Cu-sulfide masses. HRXCT data are used here to construct 3D Voronoi regions of potential Au "diffusional drainage" from within the Cu-sulfides, where the expectation is a positive correlation between Au grain size and modified Voronoi polyhedron volume, defined as the volume of sulfide closer to that grain than any other via a connected path through sulfide. LA-ICP-MS data are used to determine variations in Au contents of Cu-sulfide minerals using 2D transects away from Au inclusions in 3D contact with Cu-sulfide minerals.

  15. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.

    PubMed

    Zhang, Cheng-Pan; Vicic, David A

    2012-01-11

    Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society

  16. Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq; Rafiq, M. A.; Hasan, M. M.

    2013-10-01

    We report here the synthesis of ˜20 nm sized cadmium sulfide (CdS) nanoparticles via conventional solid state reaction at low temperature ˜200 °C and ambient pressure. X-ray diffraction and high resolution transmission electron microscopy analysis confirmed the synthesis of hexagonal phased nanoparticles. Impedance and electrical modulus investigations were carried out in the frequency range 20 Hz to 2 MHz and at temperature from 300 K to 400 K, which show the presence of bulk, grain boundary, and sub-grain boundary phases in CdS nanoparticles. Overlapped large polaron tunneling was the observed mechanism of charge carriers in used temperature range. The presence of colossal dielectric constant in the system is attributed to the Maxwell-Wagner type polarization. High and temperature dependent dielectric constants make the CdS nanoparticles efficient material to be used in capacitive energy storage devices.

  17. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    DOEpatents

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  18. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments

    USGS Publications Warehouse

    Lee, B.-G.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  19. Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Yang, Yaomin; Yu, Hongjun; Zhao, Yuexia; Ding, Qingfeng; Yang, Jichao; Tang, Xin

    2017-06-01

    Active hydrothermal chimneys, as the product of submarine hydrothermal activity, can be used to determine the fluid evolution and formation process of potential volcanic-hosted massive sulfide deposits. A hard-won specimen from an active hydrothermal chimney was collected in the 49.6°E ultraslow-spreading Southwest Indian Ridge (SWIR) field through a television-guided grab. A geochemical study of prominent sulfide (e.g., pyrite and chalcopyrite) included in this sample was performed using laser ablation inductively coupled plasma mass spectroscopy. The early sulfides produced at low temperature are of disseminated fine-grained anhedral morphology, whereas the late ones with massive, coarse euhedral features precipitated in a high-temperature setting. The systematic variations in the contents of minor and trace elements are apparently related to the crystallization sequence, as well as to texture. Micro-disseminated anhedral sulfides rich in Pb, As, Ni, Ba, Mn, Mo, U, and V were formed during the initial chimney wall growth, whereas those rich in Sn, Se, and Co with massive, coarse euhedral morphology were formed within the late metallogenic stage. The hydrothermal fluid composition has experienced a great change during the chimney growth. Such a conclusion is consistent with that indicated by using principal component analysis, which is a powerful statistical analysis method widely used to project multidimensional datasets (e.g., element contents in different mineral phases) into a few directions. This distribution pattern points to crystallographic controls on minor and trace element uptake during chimney growth, occurring with concomitant variations in the fluid composition evolutionary history. In this pyrite-chalcopyrite-bearing active hydrothermal chimney at the SWIR, the metal concentration and precipitation of sulfides largely occurred at the seafloor as a result of mixing between the upwelling hot hydrothermal fluid and cold seawater. Over the course of mixing, significant variations in metal solubility were caused by changes in temperature, pH, and redox conditions in the parental fluid phase.

  20. Mechanisms of Corrosion of Copper-Nickel Alloys in Sulfide-Polluted Seawater

    DTIC Science & Technology

    1981-02-01

    anaerobic bacteria, which convert the natural sulfate content of the seawater into sulfides. Also, the putrefaction of organic compounds containing...corrosion rate bozause the Cu2 0 growth3 292 probably follows a parabolic rate law. The corrosion behavior at high oxygen concentrations (> 7.0 g/m ) is...determined using the rotating ring disk electrode method or SRI’s recently developed rotating cylinder- collector electrode.3 In these methods, the

  1. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring.

    PubMed

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-29

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring's outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59-0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring's pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  2. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    PubMed Central

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-01-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs. PMID:27126380

  3. Late-stage sulfides and sulfarsenides in Lower Cambrian black shale (stone coal) from the Huangjiawan mine, Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Belkin, H.E.; Luo, K.

    2008-01-01

    The Ni-Mo Huangjiawan mine, Guizhou Province, People's Republic of China, occurs in Lower Cambrian black shale (stone coal) in an area where other mines have recently extracted ore from the same horizon. Detailed electron microprobe (EMPA) and scanning electron microscope (SEM) analyses of representative thin sections have revealed a complex assemblage of sulfides and sulfarsenides. Early sulfidic and phosphatic nodules and host matrix have been lithified, somewhat fractured, and then mineralized with later-stage sulfides and sulfarsenides. Gersdorffite, millerite, polydymite, pyrite, sphalerite, chalcopyrite, galena, and clausthalite have been recognized. EMPA data are given for the major phases. Pyrite trace-element distributions and coeval Ni-, As-sulfides indicate that in the main ore layer, the last sulfide deposition was Ni-As-Co-rich. Mo and V deposition were early in the petrogenesis of these rocks. The assemblages gersdorffite-millerite-polydymite (pyrite) and millerite-gersdorffite (pyrite) and the composition of gersdorffite indicate a formation temperature of between 200?? and 300??C suggesting that the last solutions to infiltrate and mineralize the samples were related to hydrothermal processes. Environmentally sensitive elements such as As, Cd, and Se are hosted by sulfides and sulfarsenides and are the main source of these elements to residual soil. Crops grown on them are enriched in these elements, and they may be hazardous for animal and human consumption. ?? Springer-Verlag 2007.

  4. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  5. Development of a detection sensor for lethal H2S gas.

    PubMed

    Park, Young-Ho; Kim, Yong-Jae; Lee, Chang-Seop

    2012-07-01

    The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of knownmore » amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.« less

  7. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin

    2017-06-01

    Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.

  8. Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.).

    PubMed

    Mastrandrea, Leonarda; Amodio, Maria Luisa; Pati, Sandra; Colelli, Giancarlo

    2017-07-01

    The effect of storage conditions on flavor-related volatile composition of wild rocket ( Diplotaxis tenuifolia ) was investigated on Modified Atmosphere packed (MAP) leaves stored under isothermal and non-isothermal conditions. In a first experiment the effect of MAP was compared to the storage in air at 5 °C; a second experiment aimed to study the effect of non isothermal conditions, with two temperature abuses (at 13 °C for 24 h) during a 5 °C. Twenty-four volatiles were detected, including C6, C5, isothiocyanate, lipid-derived and sulfur compounds. In the first experiment, MAP-stored rocket showed a slower loss of typical flavour volatiles (thiocyanates and isothiocyanates) and a slower production of off-flavors until 6 days of storage, compared to leaves stored in air. After this time, dimethyl sulfide and acetaldehyde dramatically increased in MAP-stored rocket samples. In the second experiment, samples stored under non-isothermal conditions showed lower O 2 and higher CO 2 concentrations than samples stored under isothermal conditions. Rocket leaves stored under non-isothermal conditions showed an increased production of volatiles responsible of off-flavors (acetaldehyde and dimethyl sulfide) following temperature abuse comparing to storage in isothermal condition. Thus, dimethyl sulfide and acetaldehyde could be effective markers for tracking the effect of temperature fluctuations on rocket during storage.

  9. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    NASA Astrophysics Data System (ADS)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10 -4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22--30°C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones.

  10. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments.

    PubMed

    Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael

    2013-09-01

    We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. OCS, stratospheric aerosols and climate

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P.

    1980-01-01

    The carbonyl sulfide budget in the atmosphere is examined, and the effects of stratospheric sulfate aerosol particles, formed in part from atmospheric carbonyl sulfate, on global climate are considered. From tropospheric measurements of carbon disulfide and the rate constant for the conversion of carbon disulfide to carbonyl sulfide, it is estimated that five Tg of carbonyl sulfide/year could be generated from carbon disulfide in the atmosphere. Direct sources of OCS include the refining and combustion of fossil fuels (1 Tg/year), natural and agricultural fires (0.2 to 0.3 Tg/year), and soils (0.5 Tg/year), yielding a total influx of from 1 to 10 Tg/year, up to 50% of which may be anthropogenic. Considerations of carbonyl sulfide sinks and concentrations indicate an atmospheric lifetime of one year, with OCS the major atmospheric sulfur compound. It is estimated that a ten-fold increase in atmospheric carbonyl sulfide would cause an optical depth perturbation comparable to that of a modest volcanic eruption, leading to an average global surface temperature decrease of 0.1 K, in addition to a possible greenhouse effect.

  12. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Ripley, Edward M.

    2005-03-01

    Empirical equations to predict the sulfur content of a mafic magma at the time of sulfide saturation have been developed based on several sets of published experimental data. The S content at sulfide saturation (SCSS) can be expressed as: ln X_{text S} = 1.229 - 0.74(10^4/T) - 0.021(P) - 0.311 ln X_{{text{FeO}}} - 6.166X_{{text{SiO}}_{text{2}}} - 9.153X_{{text{Na}}_{text{2}} {text{O + K}}_{text{2}} {text{O}}} - 1.914X_{{text{MgO}}} + 6.594X_{{text{FeO}}} where T is in degrees Kelvin, X is mole fraction and P is in kbar. The squared multiple correlation coefficient ( r 2) for the equation is 0.88. Application of the equation to data from sulfide-saturated mid-ocean ridge basalts (MORB) samples show that the SCSS is closely predicted for primitive MORBs, but that accuracy decreases for lower T (<1,130°C) and more evolved MORB samples. This suggests that because the calibrations are based on anhydrous experimental runs done at temperatures of 1,200°C and above, it is not possible to extrapolate them to significantly lower temperatures and hydrous conditions. Because the SCSS of a primitive MORB magma increases with decreasing P, sulfide saturation in MORB appears to be a function of the degree of en route assimilation of S from country rocks as well as the degree of fractional crystallization in shallow staging chambers. Application of the equation to the high- T impact melt sheet that produced the Sudbury Igneous Complex and associated Ni-Cu sulfide ores indicates that sulfide-saturation was reached at 1,500°C, well above the start of orthopyroxene crystallization at 1,190°C. This would permit ample time for the gravitational settling and collection of immiscible sulfide liquid that produced the high-grade ore bodies. The development of a platinum group element (PGE)-enriched layer in the Sonju Lake Intrusion of the Duluth Complex is thought to be due to the attainment of sulfide saturation in the magma after a period of fractional crystallization. Using the composition of the parent magma of the Sonju Lake Intrusion the presented equation indicates that sulfide saturation would have been reached at 60% crystallization, when iron oxide was a liquidus mineral; the prediction is in agreement with field evidence which indicates that PGE-enrichment occurs in the oxide-rich gabbro zone. Contamination and mixing processes that may be related to the attainment of sulfide saturation in mafic magmas can also be evaluated. Mixing of a siliceous melt and a liquid of olivine tholeiite composition, similar to that thought to be a reasonable parental composition for many Duluth Complex intrusions, can induce sulfide saturation at mixing ratios in excess of 0.1. If the contaminant contains low quantities of sulfur the mixing ratio required to promote saturation is reduced. Mixing of mafic magmas at various stages of fractionation is evaluated using magma compositions that are thought to be appropriate for the generation of the Merensky Reef in the Bushveld Complex. Magma mixing is shown to be an effective process for the attainment of sulfide saturation, depending strongly on the sulfur concentrations of the end-member magmas.

  13. Acanthite–argentite transformation in nanocrystalline silver sulfide and the Ag{sub 2}S/Ag nanoheterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, A. I., E-mail: gusev@ihim.uran.ru; Sadovnikov, S. I.

    Nanocrystalline acanthite-structured silver sulfide of the monoclinic structure and a Ag{sub 2}S/Ag nanoheterostructure are produced. The high-temperature X-ray diffraction technique is applied to the in situ study of the (acanthite α-Ag{sub 2}S)–(argentite β-Ag{sub 2}S) phase transformation in nanocrystalline silver sulfide. The crystal structure of argentite is refined, and it is found that the content of vacant sites in the metal sublattice of argentite exceeds 92%. A model of a resistive switch, whose operation is based on the reversible acanthite–argentite transformation in a Ag{sub 2}S/Ag heterostructure, is considered.

  14. High Temperature Oxidation and Electrochemical Studies Related to Hot Corrosion

    DTIC Science & Technology

    1992-05-01

    sulfidation. In sulfidation, NaCI reacts with sulfur found in the fuel to form Na2SO4. The sodium sulfate reacts with the protective oxide scale resulting...fluxing or acid -base reaction model. In sufidation, 4 Bornstein explains that the oxide scales are insoluble in stoichiometric sodium sulfate , but due to...oxygen partial pressures an electron hopping mechanism dominates. Reduced cerium ions and Ce3+- oxygen vacancy associates generate these conducting

  15. Sulfides in the Garnet Pyroxenite xenoliths from Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Sen, I. S.; Sen, G.; Bizimis, M.

    2007-12-01

    Oahu is known for its garnet bearing xenoliths that occur in the Honolulu Volcanics. Clinopyroxene is the dominant minerals of these rocks, and modes of other silicate minerals - orthopyroxene, olivine, garnet, amphibole, and phlogopite vary considerably. Ilmenite and Spinels of diverse variety also occur (Keshav et al. 2007, J. Petrol.). In this report we present new electron microprobe and LA-ICPMS data on the sulfides that are always present in these xenoliths although they make up only trace amounts. In terms of morphology and mode of occurrence the sulfides can be divided fundamentally into two types - Type I occurs as poikilitic inclusions in the silicate phases mostly in clinopyroxene and Type II occurs in the interstitial spaces between the silicates, along grain boundaries and along cracks within individual silicate grains. Sizes of both types vary considerably. Type I sulfides are generally globular and appear to have formed from immiscible sulfide melts that got enclosed by the silicate minerals that grew from the main body of silicate melt. Keshav et al. (2007) estimate the average solidus temperatures of garnet pyroxenites from Oahu to range from 1215 to 1600°C (average 1325°C) at 3-5 GPa. Therefore, the Type I sulfides are high temperature sulfides that formed above the silicate solidus. Type II sulfides take various forms - from vein-like to dendritic. Compositionally, both types include Ni rich pyrrhotites (Ni content varies from 3-5 wt%) and monosulfide solid solutions(MSS). The MSS are divided into Ni rich MSS containing as much as 20 wt% of Ni, the average is 15 wt% while the Ni poor MSS has 5-9 wt% of Ni in it. We have limited data on PGE so far but the Type II sulfides have a very low PGE content. Two recent papers have noted that Hawaiian plume-derived shield tholeiites are too rich in Ni for a given SiO2% to be produced by partial melting of a peridotite and called for an unusual Ni-rich pyroxenite source in which the large Ni content is locked in clinopyroxene. The many experiments that have been conducted on pyroxenites have not been able to generate such high Ni clinopyroxenes. We propose that the Ni actually comes from the high Ni monosulfide solid solutions similar to those in the pyroxenites studied. However, we do not think that these pyroxenites are the source of Hawaiian shield lavas because their isotopic composition is distinct from shield lavas.

  16. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Luguet, Ambre; Lorand, Jean-Pierre; Seyler, Monique

    2003-04-01

    Nineteen samples from the Kane Fracture Zone have been studied for sulfide mineralogy and analyzed for S, Se, platinum-group elements (PGE), and Au to assess the effect of refertilization processes on the PGE systematics of abyssal peridotites. The lherzolites show broadly chondritic PGE ratios and sulfide modal abundances (0.01 to 0.03 wt%) consistent with partial melting models, although the few pyroxene-hosted sulfide inclusions and in situ LAM-ICPMS analyses provide evidence for in situ mobilization of a Cu-Ni-rich sulfide partial melt. The most refractory harzburgites (spinel Cr# > 29) are almost devoid of magmatic sulfides and show uniformly low Pd N/Ir N (<0.5) for variable Pt N/Ir N (0.8 to 1.2). The compatible behavior of Os, Ir, Ru, Rh, and Pt reflects the presence of primary Os-Ru alloys. Some harzburgites displaying petrographic evidence for refertilization by incremental melts en route to the surface are enriched in sulfides (up to 0.1 wt%). Some of these sulfides are concentrated in small veinlets of clinopyroxene and spinel crystallized from these melts. These S-rich harzburgites display superchondritic Pd N/Ir N (up to 2.04) positively correlated with sulfide modal contents. It is concluded that refertilization processes resulting in precipitation of metasomatic sulfides may significantly enhance Pd concentrations of abyssal peridotites while marginally affecting Pt (Pt N/Ir N ≤ 1.24) and Rh (Rh N/Ir N ≤ 1.23) as well. When the effects of such processes are screened out, our database suggests PGE relative abundances in the DMM (Depleted MORB Mantle; MORB: Mid-Ocean Ridge) within the uncertainty range of chondritic meteorites, without evidence of superchondritic Pt/Ir and/or Rh/Ir ratios.

  17. An initial examination of tungsten geochemistry along groundwater flow paths

    NASA Astrophysics Data System (ADS)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the elevated W in sulfidic waters of the Carrizo aquifer. We propose that the substantially lower W concentrations in Aquia groundwaters reflect the fact that these waters are suboxic and have not undergone sulfate reduction. Hence, the evolution of W concentrations in the Aquia aquifer is consistent with conservative behavior in these generally oxic to suboxic groundwaters. In summary, our data indicate that pH related adsorption/desorption reactions are the key factors controlling W concentrations in oxic and sub-oxic waters, whereas formation of thiotungstate complexes may be important in sulfidic/anoxic waters.

  18. The Fate of Sulfur during Decompression Melting of Peridotite and Crystallization of Basalts - Implications for Sulfur Geochemistry of MORB and the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.

    2014-12-01

    Magmatism in mid-ocean ridges is the main pathway of sulfur (S) from the Earth's mantle to the surficial reservoir. MORB is generally considered sulfide saturated due to the positive correlation between S and FeOT concentration (e.g., [1]). However, most MORBs are differentiated, and both S content and sulfur concentration at sulfide saturation (SCSS) change with P, T, and magma composition (e.g., [2]). Therefore, it remains uncertain, from the MORB chemistry alone, whether mantle melts parental to MORB are sulfide saturated. In this study, we modeled the behavior of S during isentropic partial melting of a fertile peridotite using pMELTS [3] and an SCSS parameterization [4]. Our results show that during decompression melting, at a fixed mantle potential temperature, TP (e.g., 1300 °C), SCSS of aggregate melt first slightly increases then decreases at shallower depth with total variation <200 ppm. However, an increase of TP results in a significant increase of SCSS of primitive melts. Our model shows that at 15% melting (F), sulfide in the residue is exhausted for a mantle with <200 ppm S. The resulted sulfide-undersaturated partial melts contain <1000 ppm S and are 4-6 times enriched in Cu compared to the source. In order to compare our modeled results directly to the differentiated basalts, isobaric crystallization calculation was performed on 5, 10, and 15% aggregate melts. SCSS changes along liquid line of descent with a decrease in T and increase in FeOT. Comparison of S contents between the model results and MORB glasses [5] reveals that many MORBs derive from sulfide undersaturated melts. Further, for a TP of 1300-1350 °C and F of 10-15 wt.%, reproduction of self-consistent S, and Cu budget of many MORB glasses requires that S of their mantle source be ~25-200 ppm. We will discuss the interplay of TP, average F, and the conditions of differentiation to bracket the S geochemistry of MORB and MORB source mantle and develop similar systematics for OIBs and OIB source. References: [1] Le Roux et al. (2006) EPSL, 251, 209-231. [2] Baker and Moritti (2011) Rev. in Mineral. Geochem, 73, 167-213. [3] Ghiorso et al. (2002) Geochem. Geophy. Geosy. 3, 5. [4] Li and Ripley (2009) Econ. Geol. 104, 405-412. [5] Jenner and O'Neill (2012) Geochem. Geophy. Geosy. 13, 1.

  19. Conversion of alkali metal sulfate to the carbonate

    DOEpatents

    Sheth, A.C.

    1979-10-01

    A process is described for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700/sup 0/C and about 800/sup 0/C with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. the sulfur-containing compounds are further treated. This process was developed for desulfurization and reprocessing of spent seed from open-cycle coal-fired MHD generators for reuse.

  20. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  1. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    PubMed

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  2. Sulfur isotopic disequilibrium and fluid-rock interaction during metamorphism of sulfidic black shales from the Waterville-Augusta area, Maine, USA

    USGS Publications Warehouse

    Oliver, N.H.S.; Hoering, T.C.; Johnson, T.W.; Rumble, D.; Shanks, Wayne C.

    1992-01-01

    Sulfur isotope ratios of pyrite (py) and pyrrhotite (po) from regionally metamorphosed graphitic sulfidic schists and related rocks from south-central Maine, USA, were analysed using SO2 and SF6 techniques. There is a broad range in ??34S values for both pyrite and pyrrhotite at most outcrops, up to 8%. and overall the values are isotopically light, averaging ~ -27??? for the entire data set, suggesting that the rocks have not been grossly isotopically disturbed by regional metamorphism from their inferred organic-rich sedimentary origins. At all temperatures from chlorite to sillimanite grades, sulfide analysed from veins and blebs within the schists show predominantly disequilibrium fractionations ranging from ??34Spy-po -3.0 to +3.5???, as do matrix sulfides from rocks that attained temperatures 500??C do matrix pyrite-pyrrhotite pairs with polygonal or aligned granoblastic microstructures approach isotopic equilibrium at millimeter to centimeter scales, suggesting that the process that favoured equilibration was recrystallization accompanying metamorphism and deformation. This disequilibrium may be a function of preferential interaction of one of the phases with an infiltrating fluid, but the lack of any systematic trends in the data, particularly with both negative and positive ??34Spy-po at some outcrops, does not permit ready identification of fluid sources, fluxes, or compositions. By combining published fluid fluxes for the area and a knowledge of the mass of sulfur contained in the rocks and the inferred infiltrating fluid, it appears that sulfur should have been homogenized over at least 10's to 1000's of meters, if equilibrium had been attained between rock sulfides and an infiltrating fluid of constant composition. That this did not occur was probably due to lack of equilibration between sulfides and the fluid but may also have arisen because of channelling of fluid flow along rather than across layers, or a lack of fluid infiltration through this unit. ?? 1992.

  3. Native gold and gold-rich sulfide deposits in a submarine basaltic caldera, Higashi-Aogashima hydrothermal field, Izu-Ogasawara frontal arc, Japan

    NASA Astrophysics Data System (ADS)

    Iizasa, Kokichi; Asada, Akira; Mizuno, Katsunori; Katase, Fuyuki; Lee, Sangkyun; Kojima, Mitsuhiro; Ogawa, Nobuhiro

    2018-04-01

    Sulfide deposits with extremely high Au concentrations (up to 275 ppm; avg. 102 ppm, n = 15), high Au/Ag ratios (0.24, n = 15), and low Cu/(Cu + Zn) ratios (0.03, n = 15) were discovered in 2015 in active hydrothermal fields at a water depth of 760 m in a basalt-dominated submarine caldera in the Izu-Ogasawara frontal arc, Japan. Native gold grains occur in massive sulfide fragments, concretions, and metalliferous sediments from a sulfide mound (40 m across and 20 m high) with up to 30-m-high black smoker chimneys. Tiny native gold grains up to 14 μm in diameter are mainly present in sulfide fallouts from chimney orifices and plumes. Larger native gold grains up to 150 μm long occur mostly as discrete particles and/or with amorphous silica and sulfides. The larger gold grains are interpreted to represent direct precipitation from Au-bearing hydrothermal fluids circulating in and/or beneath the unconsolidated sulfide mound deposits. Sulfur isotope compositions from a limited number of sulfide separates (n = 4) range from 4.3 to 5.8‰ δ34S, similar to the quaternary volcanic rocks of the arc. Barite separates have values of 22.2 and 23.1‰, close to modern seawater values, and indicate probable seawater sulfate origin. The Cu, Zn, and Pb concentrations in bulk samples of sulfide-rich rocks are similar to those of volcanogenic massive sulfides formed in continental crustal environments. The gold is interpreted to have formed by low-temperature hydrothermal activity, perhaps genetically different from systems with documented magmatic contributions or from seafloor hydrothermal systems in other island arc settings. Its presence suggests that basalt-dominated submarine calderas situated on relatively thick continental crust in an intraoceanic arc setting such as the Higashi-Aogashima knoll caldera may be perspective for gold mineralization.

  4. High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.

    DTIC Science & Technology

    SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .

  5. Atomic Layer Deposition of Aluminum Sulfide: Growth Mechanism and Electrochemical Evaluation in Lithium-Ion Batteries

    DOE PAGES

    Meng, Xiangbo; Cao, Yanqiang; Libera, Joseph A.; ...

    2017-10-01

    This work describes the synthesis of aluminum sulfide (AlS x) thin films by atomic layer deposition (ALD) using tris(dimethylamido)aluminum and hydrogen sulfide. We employed a suite of in situ measurement techniques to explore the ALD AlS x growth mechanism, including quartz crystal microbalance, quadrupole mass spectrometry, and Fourier transform infrared spectroscopy. A variety of ex situ characterization techniques were used to determine the growth characteristics, morphology, elemental composition, and crystallinity of the resultant AlS x films. This study revealed that the AlS x growth was self-limiting in the temperature range 100–250 °C, and the growth per cycle decreased linearly withmore » increasing temperature from ~0.45 Å/cycle at 100 °C to ~0.1 Å/cycle at 250 °C. The AlSx films were amorphous in this temperature range. We conducted electrochemical testing to evaluate the ALD AlS x as a potential anode material for lithium-ion batteries (LIBs). Finally, the ALD AlS x exhibited reliable cyclability over 60 discharge–charge cycles with a sustainable discharge capacity of 640 mAh/g at a current density of 100 mA/g in the voltage window of 0.6–3.5 V.« less

  6. Atomic Layer Deposition of Aluminum Sulfide: Growth Mechanism and Electrochemical Evaluation in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangbo; Cao, Yanqiang; Libera, Joseph A.

    This work describes the synthesis of aluminum sulfide (AlS x) thin films by atomic layer deposition (ALD) using tris(dimethylamido)aluminum and hydrogen sulfide. We employed a suite of in situ measurement techniques to explore the ALD AlS x growth mechanism, including quartz crystal microbalance, quadrupole mass spectrometry, and Fourier transform infrared spectroscopy. A variety of ex situ characterization techniques were used to determine the growth characteristics, morphology, elemental composition, and crystallinity of the resultant AlS x films. This study revealed that the AlS x growth was self-limiting in the temperature range 100–250 °C, and the growth per cycle decreased linearly withmore » increasing temperature from ~0.45 Å/cycle at 100 °C to ~0.1 Å/cycle at 250 °C. The AlSx films were amorphous in this temperature range. We conducted electrochemical testing to evaluate the ALD AlS x as a potential anode material for lithium-ion batteries (LIBs). Finally, the ALD AlS x exhibited reliable cyclability over 60 discharge–charge cycles with a sustainable discharge capacity of 640 mAh/g at a current density of 100 mA/g in the voltage window of 0.6–3.5 V.« less

  7. Modeling the formation of iron sulfide scales using thermodynamic simulation software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderko, A.; Shuler, P.J.

    1998-12-31

    A program has been developed for generating stability diagrams that concisely represent the thermodynamic state of multicomponent, multiphase aqueous systems in wide ranges of temperature and component concentrations. The diagrams are based on a thermodynamic model that combines the Helgeson-Kirkham-Flowers equation of state for standard-state properties with a solutions nonideality model based on the activity coefficient expressions developed by Bromley and Pitzer. The diagrams offer a flexible choice of independent variables, which include component concentrations in addition to the potential and pH. The stability diagrams are used to predict the conditions that favor the formation of stable and metastable ironmore » sulfide species, which are commonly deposited under oil field-related conditions. First, the diagrams have been applied to establish a sequence of transformations that iron sulfides undergo as they age. The predicted transformation sequences take into account environmental variables (e.g., hydrogen sulfide concentration, oxygen availability, etc.). The predictions are in agreement with experimental data on iron sulfide formation at the iron/solution interface and in bulk solution. The understanding of iron sulfide transformation sequences makes it possible to simulate experimental studies of H{sub 2}S/CO{sub 2} corrosion in the presence or absence of oxygen. A comparison with laboratory corrosion rate data under gas pipeline conditions indicates that the magnitude of corrosion rates can be correlated with the predicted stability of metastable iron sulfide phases.« less

  8. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation during late fractional crystallization. These results show that shergottite HSE contents are controlled by silicates, oxides, and sulfides. In addition, the mantle producing the most primitive shergottites did not contain near chondritic relative ratios of the HSEs like the terrestrial mantle, and did not experience a late chondritic veneer.

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  10. Significant long-term reduction in n-channel MESFET subthreshold leakage using ammonium-sulfide surface treated gates

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Carpenter, M. S.; Melloch, Michael R.; Cooper, James A., Jr.

    1991-01-01

    Ammonium-sulfide (NH4)2S treated gates have been employed in the fabrication of GaAs MESFETs that exhibit a remarkable reduction in subthreshold leakage current. A greater than 100-fold reduction in drain current minimum is observed due to a decrease in Schottky gate leakage. The electrical characteristics have remained stable for over a year during undesiccated storage at room temperature, despite the absence of passivation layers.

  11. Sulfur and oxygen isotopic study of Paleozoic sediment-hosted Zn-Pb(-Ag-Au-Ba-F) deposits and associated hydrothermal alteration zones in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Shanks, W.C. Pat; Slack, John F.; Till, Alison B.; Thurston, Roland; Gemery-Hill, Pamela

    2014-01-01

    The stratabound Nelson deposit, and the deformed veins at the Galena and Quarry deposits, may be older than the Aurora Creek-Christophosen and Wheeler North deposits. The Nelson deposit has a lower and narrower range of δ34S values (1.9 to 10.4‰), averaging about 8‰. The Galena and Quarry veins display δ34S values that are similar to those of the stratabound Nelson deposit. Barite samples from the Aurora Creek-Christophosen, Wheeler North, and Quarry deposits have 34S-enriched δ34S values between 25 and 30‰ that are consistent with derivation of the sulfur from coeval (Paleozoic) seawater sulfate. Given their δ34S values, it is likely that the Aurora Creek-Christophosen and Wheeler North deposits formed in closed sub-basins with euxinic conditions that led to extreme Rayleigh distillation to produce the very large range and very high δ34S values. The Nelson deposit probably formed within an anoxic but not euxinic sub-basin. At Nelson, sulfide was likely derived by a subsurface thermochemical sulfate reduction (TSR) reaction, similar to reactions that are inferred to have produced the sulfides in the Galena and Quarry deposits, which are interpreted as feeder veins for the stratabound deposits. Calculations of oxygen isotope temperatures are based on the assumption that evolved seawater with δ18O of 3‰ was the mineralizing and altering fluid related to the formation of the sulfide deposits. Temperatures of aluminous alteration and sulfide mineralization were between 109 and 209 °C, determined on the basis of oxygen isotope fractionations between the mineralizing fluid and proportionate amounts of quartz and muscovite in the rocks. These temperature estimates agree well with known temperatures of SEDEX mineralization worldwide. Sulfur isotope values also are generally consistent with the known ranges in SEDEX deposits worldwide (δ34S ≈ -5 to 25‰).

  12. A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime

    NASA Astrophysics Data System (ADS)

    Khan, A.; Ahmed, M. I.; Adam, A.; Azad, A.-M.; Qamar, M.

    2017-02-01

    Incorporation of foreign moiety in the lattice of semiconductors significantly alters their optoelectronic behavior and opens a plethora of new applications. In this paper, we report the synthesis of sulfur-doped zinc oxide (S-doped ZnO) nanorods by reacting ZnO nanorods with diammonium sulfide in vapor phase. Microscopic investigation revealed that the morphological features, such as, the length (2-4 μm) and width (100-250 nm) of the original hexagonal ZnO nanorods remained intact post-sulfidation. X-ray photoelectron spectroscopy analysis of the sulfide sample confirmed the incorporation of sulfur into ZnO lattice. The optical measurements suggested the extension of absorption threshold into visible region upon sulfidation. Photoelectrochemical (PEC) activities of pure and S-doped ZnO nanorods were compared for water oxidation in visible light (λ > 420 nm), which showed several-fold increment in the performance of S-doped ZnO sample; the observed amelioration in the PEC activity was rationalized in terms of preferred visible light absorption and low resistance of sulfide sample, as evidenced by optical and electrochemical impedance spectroscopy.

  13. Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln.

    PubMed

    Huang, Yuyan; Li, Haoxin; Jiang, Zhengwu; Yang, Xiaojie; Chen, Qing

    2018-05-07

    The aim of this work was to investigate the migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln, and better understand the emission of the sulfur related pollutants in this process. In consideration of the temperature conditions in the practical operation, municipal sewage sludge was pre-dried at 105 °C, and then dried at 210, 260 and 310 °C, co-combusted with cement raw mill at 800, 900 and 1000 °C, and 1350, 1400 and 1450 °C respectively in the laboratory. X-ray photoelectron spectroscopy (XPS) was used to determine the S2p spectral lines of the municipal sewage sludge treated in the different process. Besides, The Thermal Analysis-Thermogravimetry (DTA-TG), Back Scattered Electron (BSE) and Energy Dispersive Spectrometer (EDS) were also employed to explore the mechanism of sulfur subsistence at 1450 °C. The results indicate that sulfide, thiophene, sulfone and sulfate are mainly sulfur compound in the municipal sewage sludge dried at 105 °C. Sulfoxide, a new sulfur compound, appears after it is further dried at 210 °C. The relative contents of sulfide and thiophene are continuously declined as the drying temperature increases due to their evaporation, decomposition and transformation in this process. The transformation of sulfide and thiophene makes the relative contents of sulfoxide and sulfate accordingly increased. However, the relative content of sulfone experiences an elevating-lowering process while the dry temperature elevated from 210 to 310 °C. This case is related to its evaporation and decomposition, as well as its production for the transformation of sulfide and thiophene. In the co-combustion process, sulfide, thiophene and sulfone are entirely vanished for their evaporation, decomposition and transformation. Sulfone is still contained at 800 °C, but when the temperature unceasingly rises, it is completely decomposed or evaporated and sulfate is the only sulfur compound. The microstructures left by the gas release are also observed in the mixtures sintered at 1450 °C, however sulfate still exists even at 1450 °C. The BSE and EDS results show that the melt phase is the important contribution to the appearance of sulfate at the high temperature. These results will sever as a theoretically reference for the pollution control of the sulfur related pollutants in the disposal process of the municipal sewage sludge in cement kiln. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Catalyst for the methanation of carbon monoxide in sour gas

    DOEpatents

    Kustes, William A.; Hausberger, Arthur L.

    1985-01-01

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  15. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C

    USGS Publications Warehouse

    Shanks, Wayne C.; Bischoff, James L.; Rosenbauer, Robert J.

    1981-01-01

    Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.

  16. Properties of Hydrogen Sulfide Sensors Based on Thin Films of Tin Dioxide and Tungsten Trioxide

    NASA Astrophysics Data System (ADS)

    Sevastianov, E. Yu.; Maksimova, N. K.; Chernikov, E. V.; Sergeichenko, N. V.; Rudov, F. V.

    2016-12-01

    The effect of hydrogen sulfide in the concentration range of 0-100 ppm on the characteristics of thin films of tin dioxide and tungsten trioxide obtained by the methods of magnetron deposition and modified with gold in the bulk and on the surface is studied. The impurities of antimony and nickel have been additionally introduced into the SnO2 bulk. An optimal operating temperature of sensors 350°C was determined, at which there is a satisfactory correlation between the values of the response to H2S and the response time. Degradation of the sensor characteristics is investigated in the long-term ( 0.5-1.5 years) tests at operating temperature and periodic exposure to hydrogen sulfide, as well as after conservation of samples in the laboratory air. It is shown that for the fabrication of H2S sensors, the most promising are thin nanocrystalline Au/WO3:Au films characterized by a linear concentration dependence of the response and high stability of parameters during exploitation.

  17. Sulfur Isotropic Studies of Archean Slate and Graywacke from Northern Minnesota: Evidence for the Existence of Sulfate Reducing Bacteria

    NASA Technical Reports Server (NTRS)

    Ripley, E. M.; Nicol, D. L.

    1979-01-01

    Sulfur isotopic studies of pyrite from metasediments in the 2.6 b.y. old Deer Lake greenstone sequence, Minnesota, were conducted in order to evaluate the possible importance of sulfate reducing bacteria in sulfide formation. Pyrite occurs as ovules up to 2 cm in diameter within graphitic slates, and as fine disseminations in metagraywacke units. SEM studies indicate the pyrite is framboidal in morphology. Delta notation values of pyrite from the Deer Lake sediments range from -2.3 to 11.1 0/00, with a peak at approximately +2 o/oo. Isotopic data is consistent with either high temperature inorganic reduction of circulating seawater sulfate, or low temperature bacterial reduction. However, the lack of sulfide bands or massive occurrences in the sediments, the restriction of pyrite mineralization to the sediments, and the absence of evidence for hot spring activity suggest that a diagenetic origin of pyrite is more feasible. Sulfide in such an environment would be produced principally by the action of sulfate reducing bacteria.

  18. Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura-Agucha massive sulfide deposit, northwestern India

    NASA Astrophysics Data System (ADS)

    Mishra, Biswajit; Bernhardt, Heinz-Jurgen

    2009-02-01

    Located adjacent to the Banded Gneissic Complex, Rampura-Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn-(Pb) sulfide orebody occurs within graphite-biotite-sillimanite schist along with garnet-biotite-sillimanite gneiss, calc-silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase-hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720-780°C, whereas temperatures obtained from Fe-Mg exchange between garnet and biotite (580-610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise P- T- t path with peak P- T of ˜6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f( S 2)] range of 352°C (-8.2) to 490°C (-4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb-Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc-silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn-jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb-Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena-sphalerite interfacial angles, (2) presence of multiphase sulfide-sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS-Fe0.96S-ZnS-(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura-Agucha deposit.

  19. Iron Sulfide Minerals Record Microbe-Mineral Interactions in Anoxic Environments

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Cosmidis, J.; Clarke, D. R.; Girguis, P. R.

    2017-12-01

    The precipitation of most minerals in low-temperature environments on Earth is directly or indirectly influenced by the presence of organic substances and/or microbial biomass. Notably, the influence of microorganisms on the formation of Mn and Fe oxides/oxyhydroxides at the surface of the Earth has been well characterized (Chan et al., 2011; Estes et al., 2017). However, an oxygenated atmosphere is a unique feature of planet Earth. It is therefore critical for the search of life on other planetary bodies to characterize microbe-mineral interactions that form in anoxic conditions. Here we explore the role of microorganisms on the formation of iron sulfide minerals, which form under anoxic conditions. On modern Earth, sulfate-reducing microorganisms (SRM) are the major source of dissolved sulfide in low-temperature sedimentary environments. We experimentally demonstrate that SRM play a role in the nucleation and growth of iron sulfide minerals by acting as organic templates. The physical characteristics of the resulting minerals are different from those formed under abiotic conditions. Moreover, upon forming, iron sulfide minerals become associated with organic carbon, producing a potential organo-mineral signature. We also evaluate how the presence of various organic substances affect the formation of abiotic minerals and how this could produce false biosignatures that could be mistaken as biogenic minerals. Chan, C.S., Fakra, S.C., Emerson, D., Fleming, E.J. and Edwards, K.J. (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. Isme Journal 5, 717-727. Estes, E.R., Andeer, P.F., Nordlund, D., Wankel, S.D. and Hansel, C.M. (2017) Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiology 15, 158-172.

  20. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Garrido, Carlos J.; Harvey, Jason; González-Jiménez, José María; Hidas, Károly; Lorand, Jean-Pierre; Gervilla, Fernando

    2013-11-01

    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20'N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.

  1. Iron-Nickel Sulfide Compositional Ranges in CM Chondrites: No Simple Plan

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Le, Loan

    2003-01-01

    Iron-nickel sulfides are found in most or all solar system environments, and are probably the only minerals found in all extraterrestrial materials on hand. Despite this ubiquity, they have only just begun the attention they deserve. The most common Fe-Ni sulfides in chondrites are troilite (FeS), pyrrhotite (Fe(1-x)S) and pentlandite (Fe,Ni)9S8. Troilite is believed to have resulted from sulfidation of metal (Fe-Ni) grains in an H2S-containing environment. Pyrrhotite is produced when friable troilite grains, which are exfoliated from the metal nucleus, are submitted to continued sulfidation. Some asteroids are known to have experienced aqueous alteration, forming products including new generations of sulfides (pyrrhotite and pentlandite). Pentlandite in particular is known to form during such alteration. However, experimental work by Lauretta has indicated that pentlandite may also have been formed during the initial sulfidation process, due to the faster diffusion rate of nickel into the forming sulfide, as compared to iron. Finally, there is considerable evidence for a family of phases intermediate between pyrrhotite and pentlandite, following the trend of the high temperature monosulfide solid solution, something not encountered in terrestrial rocks. Each sulfide has its own particular stability conditions, which have been determined for most phases. The long-term objective of our research is to characterize sulfides in chondritic materials in order to better establish the conditions under which they formed, and the subsequent processes they experienced. Ultimately, it will be possible to infer whether the sulfides in the chondrites were formed in the solar nebula or on asteroids, and if formed on the asteroids, deduce how much alteration has occurred there. Here we explore the relationships between the finest grain size portions of carbonaceous chondrites, these being matrix and chondrule rims; fine-grained materials are the most sensitive to their environment. This abstract is one of a series reporting results for chondrites, earlier work reported results for a much more limited set of CMs, as well as for CVs and CIs.

  2. The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres

    NASA Technical Reports Server (NTRS)

    Gully, A. J.; Graham, R. R.; Halligan, J. E.; Bentsen, P. C.

    1973-01-01

    Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior.

  3. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  4. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  5. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  6. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge

    USGS Publications Warehouse

    Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.

    2004-01-01

    The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.

  7. High temperature desulfurization of synthesis gas

    DOEpatents

    Najjar, Mitri S.; Robin, Allen M.

    1989-01-01

    The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.

  8. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework via Atomic Layer Deposition

    DOE PAGES

    Peters, Aaron W.; Li, Zhanyong; Farha, Omar K.; ...

    2015-08-04

    Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscopy indicates that the crystalline phase of these films has the composition Co 9S 8. The nodes of the metal–organic framework (MOF) NU-1000 were then selectively functionalized with cobalt sulfide via ALD in MOFs (AIM). Spectroscopic techniques confirm uniform deposition of cobalt sulfide throughout themore » crystallites, with no loss in crystallinity or porosity. The resulting material, CoS-AIM, is catalytically active for selective hydrogenation of m-nitrophenol to m-aminophenol, and outperforms the analogous oxide AIM material (CoO-AIM) as well as an amorphous CoS x reference material. Here, these results reveal AIM to be an effective method of incorporating high surface area and catalytically active cobalt sulfide in metal–organic frameworks.« less

  9. Multiphase formation of the Obří důl polymetallic skarn deposit, West Sudetes, Bohemian Massif: geochemistry and Re-Os dating of sulfide mineralization

    NASA Astrophysics Data System (ADS)

    Veselovský, František; Ackerman, Lukáš; Pašava, Jan; Žák, Karel; Haluzová, Eva; Creaser, Robert A.; Dobeš, Petr; Erban, Vojtěch; Tásler, Radko

    2017-10-01

    The Obří důl Fe-Cu-As polymetallic sulfide skarn deposit is developed in a metamorphic series in the West Sudetes, Bohemian Massif. It consists of lenses of marble, calc-silicate rocks, and skarns. We studied the Gustav orebody, which is located few hundred meters away from the contact with a large, late-orogenic Variscan Krkonoše-Jizera Plutonic Complex (KJPC) emplaced into shallow crust. Mineralogical and fluid inclusion study evidence indicates that the main sulfide stage, dominated by pyrrhotite, arsenopyrite, and chalcopyrite originated from aqueous hydrothermal fluids with salinity up to 8 wt% NaCl eq. with minimum homogenization temperatures ranging from 324 to 358 °C. These fluids mainly replaced carbonate-rich lithologies. Carbon, oxygen, and strontium isotope data in Ca-rich rocks imply total overprinting by channelized metasomatic fluid flow, which is most probably related to the intrusion of the KJPC, whereas δ34S values of sulfides argue for a magmatic source of sulfur. The Re-Os age of arsenopyrite overlaps published age data for the KJPC and suggests synchronous formation of the main sulfide mineralization and pluton emplacement.

  10. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  11. Multiphase formation of the Obří důl polymetallic skarn deposit, West Sudetes, Bohemian Massif: geochemistry and Re-Os dating of sulfide mineralization

    NASA Astrophysics Data System (ADS)

    Veselovský, František; Ackerman, Lukáš; Pašava, Jan; Žák, Karel; Haluzová, Eva; Creaser, Robert A.; Dobeš, Petr; Erban, Vojtěch; Tásler, Radko

    2018-06-01

    The Obří důl Fe-Cu-As polymetallic sulfide skarn deposit is developed in a metamorphic series in the West Sudetes, Bohemian Massif. It consists of lenses of marble, calc-silicate rocks, and skarns. We studied the Gustav orebody, which is located few hundred meters away from the contact with a large, late-orogenic Variscan Krkonoše-Jizera Plutonic Complex (KJPC) emplaced into shallow crust. Mineralogical and fluid inclusion study evidence indicates that the main sulfide stage, dominated by pyrrhotite, arsenopyrite, and chalcopyrite originated from aqueous hydrothermal fluids with salinity up to 8 wt% NaCl eq. with minimum homogenization temperatures ranging from 324 to 358 °C. These fluids mainly replaced carbonate-rich lithologies. Carbon, oxygen, and strontium isotope data in Ca-rich rocks imply total overprinting by channelized metasomatic fluid flow, which is most probably related to the intrusion of the KJPC, whereas δ34S values of sulfides argue for a magmatic source of sulfur. The Re-Os age of arsenopyrite overlaps published age data for the KJPC and suggests synchronous formation of the main sulfide mineralization and pluton emplacement.

  12. Genesis of copper-lead mineralization in the regionally zoned Agnigundala Sulfide Belt, Cuddapah Basin, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, H. N.; Bandyopadhyay, Sandip

    2018-03-01

    Shallow marine sandstone-shale-carbonate sedimentary rocks of the Paleoproterozoic northern Cuddapah basin host copper (Nallakonda deposit), copper-lead (Dhukonda deposit), and lead mineralization (Bandalamottu deposit) which together constitute the Agnigundala Sulfide Belt. The Cu sulfide mineralization in sandstone is both stratabound and disseminated, and Pb sulfide mineralization occurs as stratabound fracture filling veins and/or replacement veins within dolomite. Systematic mineralogical and sulfur, carbon, and oxygen isotope studies of the three deposits indicate a common ore-fluid that deposited copper at Nallakonda, copper-lead at Dhukonda, and lead at Bandalamottu under progressive cooling during migration through sediments. The ore-fluid was of low temperature (< 200 °C) and oxidized. Thermochemical reduction of basinal water sulfate produced sulfide for ore deposition. It is envisaged that basal red-bed and evaporite-bearing rift-related continental to shallow marine sediments might have acted as the source for the metals. Rift-related faults developed during sedimentation in the basin might have punctured the ore-fluid pool in the lower sedimentary succession and also acted as conduits for their upward migration. The ore-bearing horizons have participated in deformations during basin inversion without any recognizable remobilization.

  13. Removal of hydrogen sulfide from hot fuel gas using an electrochemical membrane system

    NASA Astrophysics Data System (ADS)

    Burke, Adrian Alan

    Sulfur is a natural contaminant in nearly all fossil fuel supplies. When a fuel stream is gasified or reformed, the sulfur manifests itself in the form of hydrogen sulfide, H2S. Extraordinary effort is put forth to remove H2S to at least ppm levels before the fuel can be used for power generation. To compete with current methods, an electrochemical membrane system (EMS) is now being studied to remove H2S in one step at high temperature. This process offers continuous H2S removal at an estimated operating cost of $0.32/kg H2S removed and a capital cost that is roughly half that of a Claus plant with tail-gas clean-up. Other advantages are the considerable savings in energy and space compared to current methods. A bench scale set-up was constructed to test the cell performance at 600-700°C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO2, 35% H2, 8% H2O, and 450-2000 ppm H2S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H 2S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H2S removal. Also, membrane thickness was found to be a critical parameter in cell design. A thinner membrane decreases the distance that sulfide ions must travel to be oxidized at the anode. These results identify sulfide diffusion across the membrane as the rate-limiting step in H2S removal. The maximum H2S removal flux of 1.1 x 10-6 gmol H2S min-1 cm-2 (or 3.5 mA cm-2) was obtained at 650°C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e cobalt sulfides and Y0.9Ca 0.1FeO3) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd2TiMoO7 and La0.7Sr0.3VO 3 were the compounds that retained their structure best even when exposed to high H2S, CO2, and H2O concentrations. They also showed no sign of melting at operating temperatures. But Gd 2TiMoO7 was seen to have better stability with electrolyte present, whereas La0.7Sr0.3VO3 was seen to have better stability in the pure sour gas stream without electrolyte present. A layered electrode that could help preserve a stable environment for each of these compounds should be explored in future research.

  14. Simulated space environment tests on cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Clarke, D. R.; Oman, H.

    1971-01-01

    Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.

  15. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  16. Distribution of Alkalis (Na, Cs, Rb) Between Silicate and Sulfide: Implications for Planetary Volatile Depletion

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Fei, Y.; Righter, K.; Du, Z.; Bullock, E.

    2018-01-01

    The abundances of volatile elements in the Earth's mantle are correlated with their temperatures of condensation. This depletion can be due to either incomplete condensation of the elements during the nebula condensation or evaporation processes during planetary growth. Elements that have affinities with metals (siderophile) and sulfides (chalcophile) are additionally depleted due to their segregation into the core. Therefore, study of lithophile elements could be useful to isolate processes of volatilization and their effect on the abundance of the elements in the Earth's mantle. However, the correlation of these lithophile elements including alkali elements, with their temperatures of condensation shows a significant scatter, which is difficult to reconcile with a depletion by vaporization or incomplete condensation alone.

  17. The Lepanto Cu–Au deposit, Philippines: A fossil hyperacidic volcanic lake complex

    USGS Publications Warehouse

    Berger, Byron R.; Henley, Richard W.; Lowers, Heather; Pribil, Michael

    2014-01-01

    Hyperacidic lakes and associated solfatara in active volcanoes are the expression of magmatic gas expansion from source to surface. Here we show for the first time, that the vein system that comprises the ~ 2 Ma high-sulfidation, Lepanto copper–gold deposit in the Mankayan district (Philippines) was associated with a contemporary hyperacidic volcanic lake complex—possibly the first such lake recognized in the geological record. A 15–20‰ difference in sulfur isotopic composition between barite and sulfides and sulfosalts in the vent fumarole encrustations supports the interpretation that SO2-rich volcanic gas vented into the base of the lake and marginal to it and ties the mineralization directly to magmatic gas expansion, fracture propagation, and mineralization that occurred through a series of decompression steps within the feeder fracture network. These data confirm that crater lake environments such as Kawah Ijen (Java, Indonesia) provide modern day analogs of the Lepanto and other high sulfidation Cu–Au depositing environments.We also provide extensive analysis of sulfosalt–sulfide reactions during vein formation within the hyperacidic lake complex. Pyrite ±  silica deposited first at high temperature followed by enargite that preserves the vapor–solid diffusion of, for example, antimony, tin, and tellurium into the vapor from the crystallizing solid. Subsolidus, intra-crystalline diffusion continued as temperature declined. Pyrite and enargite are replaced by Fe-tennantite in the lodes which initially has low Sb/(Sb + As) atomic ratios around 13.5% close to the ideal tennantite formula, but evolves to higher ratios as crystallization proceeds. Fumarole encrustation clasts and sulfosalts in the lake sediment are more highly evolved with a larger range of trace element substitutions, including antimony. Substitution of especially Zn, Te, Ag, and Sn into tennantite records metal and semi-metal fractionation between the expanding magmatic gas and deposited sulfide sublimates provides a rare insight into the fate of metals and semi-metals in the shallower parts of fracture arrays that feed modern hyperacidic lakes.These data support a growing understanding of the formation of high-sulfidation gold deposits as the consequence of single-phase expansion of gas from magmatic-gas reservoirs beneath the surface of active volcanoes without the intervention of a later aqueous fluid including groundwater. Aggressive sulfide–sulfosalt reactions, including pitting and the almost complete dissolution of earlier minerals, are persistent characteristics of the vein assemblages and precious metals typically occur late in pits or along brittle fractures. These characteristics support a hypothesis of mineral deposition at temperatures of the order of 600 °C in contrast to available fluid inclusion data from enargite that record temperatures following phase transitions in the sulfosalt during the retrograde devolution of the deposit in the presence of groundwater.

  18. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility. Environments having different ionic concentrations of inorganic salts, i.e. sodium hydroxide, sodium sulfide, and sodium chloride, were used to understand the effect of liquor alkalinity, percent sulfidity, and chloride content on the corrosion and SCC behavior. Hydrogen embrittlement of S32205 was studied to understand the electrochemical conditions and fracture features associated with this failure mode. The results showed that there is an appreciable increase in the susceptibility of DSS to SCC in the presence of sulfide and chloride in hot alkaline environments. Sulfide and chloride adsorption at active sites on the metal surface caused unstable passivity and defective film formation. Chloride and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films had an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in hot alkaline environments. The onset of SCC was related to the extent of selective dissolution and was consistent with a slip-step dissolution mechanism. Selective corrosion of the austenite phase depended on percent sulfidity and liquor alkalinity. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite boundaries. Crack initiation and transgranular growth strongly depended on the phase distribution in the banded microstructure of DSS. These findings will augment understanding of SCC in this alloy-environment combination and facilitate materials selection in hot alkaline-sulfide environments, particularly in the petrochemical, nuclear, chemical processing, and pulp and paper industries.

  19. Photo- and electroluminescence of sulfide and silicate phosphors embedded in synthetic opal

    NASA Astrophysics Data System (ADS)

    Kaplan, S. F.; Kartenko, N. F.; Kurdyukov, D. A.; Medvedev, A. V.; Badalyan, A. G.; Golubev, V. G.

    2007-02-01

    The sulfide (ZnS:Mn, Zn xCd 1 -xS:Mn, Zn xCd 1- xS:Ag) and silicate (Zn 2SiO 4:Mn) phosphors were synthesized directly inside the pores of synthetic opal by chemical bath deposition. These composites are perfect three-dimensional photonic crystals, which produce effective photo- and electroluminescence at room temperature. The emission spectra are considerably modified by the photonic crystal structure to become anisotropic in accordance with the photonic band gap angular dispersion.

  20. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Tustison, Randal W.

    2013-04-22

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  1. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otero, T.F.; Achucarro, C.

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  2. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOEpatents

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  3. Self-Protective Measures to Enhance Airlift Operations in Hostile Environments

    DTIC Science & Technology

    1989-09-01

    developed theater may be so disorganized that category 2 threats may be less precisely defined and maybe found throughout the area. It is ironic that in...microns, a heat-seeker 80 TABLE 13 Infrared Sensitive Photoconductors 52 Photoconductor Wavelength Sensitivity Lead Sulfide , -60°F 1 to 3.5 microns Lead... Sulfide , Room Temperature 1 to 2.8 microns Telluride, -320°F i to 5 microns Indium Antimonide, -320°F 1 to 6 microns Germanium, Doped, Room

  4. METHOD OF REMOVING IODINE FROM GASES AND FILTER MEDIUM THEREFOR

    DOEpatents

    Silverman, L.

    1961-08-01

    A method for the removal of iodine from large gas volumes is described. The gaseous medium is heated to a temperature not exceeding 400 deg C. Water vapor is then added to the medium in approximate amounts of 1 lb/cu ft of the medium. The medium is then passed through a porous copper fibrous pad having deposited thereon a coating of silver, the silver coating being treated with hydrogen sulfide forming a layer of silver sulfide. (AEC)

  5. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  6. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation.

  7. High-temperature experimental analogs of primitive meteoritic metal-sulfide-oxide assemblages

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Lauretta, Dante S.

    2010-03-01

    We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H 2-H 2O-CO-CO 2-H 2S gas mixtures at 1000 °C. The samples were cooled at rates of ˜3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr 2O 4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ˜15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr) 1-xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.

  8. In house development of (99m)Tc-Rhenium sulfide colloidal nanoparticles for sentinel lymph node detection.

    PubMed

    Dar, Ume-Kalsoom; Khan, Irfanullah; Javed, Muhammad; Ali, Muhammad; Hyder, Syed Waqar; Murad, Sohail; Anwar, Jamil

    2013-03-01

    In this study, rhenium sulfide colloidal nanoparticles were developed as radiopharmaceutical for sentinel lymph node detection. We directly used rhenium sulfide as a starting material for the preparation of colloidal nanoparticles. UV-visible spectrophotometry was used for characterization of in house developed colloidal particles. The size distribution of radioactive particles was studied by using membrane filtration method. The percentage of radiolabeled colloidal nanoparticles was determined by paper chromatography (PC). The study also includes in vitro stability, protein binding in human blood and bioevaluation in a rabbit model. The results indicate that 77.27 ± 3.26 % particles of size less than 20nm (suitable for lymphoscintigraphy) were radiolabeled. (99m)Tc labeled rhenium sulfide labeling efficacy with the radiometal is 98.5 ± 0.5%, which remains considerably stable beyond 5h at room temperature. Furthermore, it was observed that 70.2 ± 1.3% radiolabeled colloid complex showed binding with the blood protein. Bioevaluation results show the remarkable achievement of our radiopharmaceutical. The in house prepared (99m)Tc labeled rhenium sulfide colloidal nanoparticles reached the sentinel node within 15 min of post injection. These results indicate that (99m)Tc labeled rhenium sulfide colloid nanoparticles kit produced by a novel procedure seems of significant potential as a feasible candidate for further development to be used in clinical practice.

  9. A comparative study of the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based solar cells with an indium sulfide buffer layer, partly submitted to wet chemical treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hönes, C., E-mail: christian.hoenes@de.bosch.com; Laboratory for Photovoltaics, University of Luxembourg, 41 rue du Brill, L-4422 Belvaux; Hackenberg, J.

    2015-03-07

    Indium sulfide thin films deposited via thermal evaporation from compound source material have been successfully utilized as a cadmium free buffer layer for Cu(In,Ga)Se{sub 2} based solar cells. However, high efficiencies are only reached after an additional annealing step. In this work, the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based indium sulfide buffered solar cells is compared to the annealing behavior of similar cells, which were submitted to wet chemical treatments partly containing cadmium ions. Upon annealing a significant improvement of the initial solar cell characteristics is observed for the untreated cell and is related to the increase of activation energymore » for the carrier recombination process and a decrease of the ideality factor within the one diode model. It is shown here that this improvement can also be achieved by wet treatments of the absorber prior to buffer layer deposition. Upon annealing these treated cells still gain in collection length but lose open circuit voltage, which is explained here within a model including a highly p-doped absorber surface layer and supported by simulations showing that a decrease in doping density of such a surface layer would lead to the observed effects.« less

  10. High-Pressure Electrical, Raman, and Structural Measurements on Lithium Sulfide

    NASA Astrophysics Data System (ADS)

    Ham, Kathryn; Vohra, Yogesh; Tsoi, Georgiy

    High-Pressure studies have been conducted on Lithium Sulfide (Li2S) to 55 GPa, with electrical, structural, and Raman measurements. Due to the highly reactive nature of the sample in air, the loading was conducted in a glove bag under an inert Argon atmosphere. Four probe electrical measurements using designer diamond anvils showed characteristic semiconducting behavior in Li2S up to 33GPa from ambient temperature to 10 K. Li2S was compressed to 55GPa and angle dispersive X-Ray data was collected at the Advanced Photon Source, Argonne National Lab, which showed a phase transition from a face centered cubic phase to a primitive orthorhombic phase. Raman data was obtained for Li2S at ambient conditions after decompression from 55 GPa. The Raman Spectrum showed the characteristic peak for Li2S at 372.5 wavenumbers, but had an additional uncharacteristic peak at 327.4 wavenumbers. There is a possibility that the additional uncharacteristic Raman peak is due to the decomposition of Li2S at high pressure. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Lab, Contract No. DE-AC02-06CH11357; DOE-NNSA Grant No. DE-NA0002014.

  11. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  12. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh

    PubMed Central

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-01-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium. PMID:25909974

  13. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh.

    PubMed

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-11-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.

  14. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  15. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.

  16. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  17. Hydrogen and its compounds under extreme pressure

    NASA Astrophysics Data System (ADS)

    Utyuzh, A. N.; Mikheyenkov, A. V.

    2017-12-01

    In the last two or three years, significant advances in the study of hydrogen and its compounds under extreme conditions (ultrahigh pressures over a wide temperature range) have notably changed the hydrogen phase diagram, provided a break-through in understanding hydrides’ behavior under pressure (as exemplified by the discovery of high-temperature superconductivity in hydrogen sulfide), and, finally, enabled achieving cold metallization of hydrogen. The situation prior to the 2010s is reviewed in brief and more recent work is examined in detail. While the primary focus is on experimental research, mention is also made of the theoretical and numerical work it stimulates. This review presents an extension of the talk by the authors for the scientific session of the Physical Sciences Division of the Russian Academy of Sciences, “Old and new ideas in phase transition physics,” which was held on December 21, 2016 (see Phys. Usp. 60 948-957 (2017); Usp. Fiz. Nauk 187 1021 (2017)). (Editor’s note.)

  18. Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition

    NASA Astrophysics Data System (ADS)

    Holzheid, A.; Lodders, K.

    2001-06-01

    The solubility of Cu in silicate melts coexisting with liquid Cu(Fe) metal and liquid Cu(Fe) sulfide was determined experimentally at oxygen fugacities ranging from 10 -9.1 to 10 -13.6 bar and sulfur fugacities ranging from 10 -2.5 to 10 -6.3 bar at 1300°C. An iron oxide-free silicate of anorthite-diopside eutectic composition and a synthetic MgO-rich basaltic silicate (FeO-bearing) were used in the partitioning experiments. In S-containing systems, some of the metal reacted to metal sulfide. The silicates in the four systems investigated (Fe-free and S-free; Fe-containing and S-free; Fe-free and S-containing; Fe-containing and S-containing) had different colors depending on the dissolved Cu species and the presence of iron and/or sulfur. Irrespective of the presence of sulfur, the solubility of Cu in the silicate increases with increasing oxygen fugacity and metal/silicate partition coefficients for Cu decrease. Increasing the temperature from 1300°C to 1514°C increases the Cu solubility (decreases the metal/silicate partition coefficient) at an oxygen fugacity 0.5 log units below the iron-wüstite (IW) equilibrium in the Fe-free, S-free and Fe-containing, S-free systems. We infer the presence of monovalent Cu + ("CuO 0.5") in the silicate melt on the basis of the solubility of Cu as function of oxygen fugacity. Experiments containing iron yield a formal valence of ˜0.5 for Cu at very low oxygen fugacities, which is not observed in Fe-free systems. The low formal valence is explained by redox reactions between iron and copper in the silicate melts. There is no evidence for sulfidic dissolution of Cu in the silicates but sulfur has indirect effects on Cu partitioning. Iron metal/silicate partition coefficients depend on oxygen fugacity and on sulfur fugacity. Sulfidic dissolution of iron and oxide-sulfide exchange reactions with Cu cause a small increase in Cu metal/silicate partition coefficients. We derive an activity coefficient (γ CuO 0.5) of 10 ± 1 for liquid CuO 0.5 at 1300°C for the silicate melts used here. A comparison with literature data shows that log γ CuO 0.5 increases in proportion to the mass percentages [CaO +(Al 2O 3)/2] in silicate melts. We recommend the following equations for Cu metal/silicate and sulfide/silicate partitioning for geochemical and cosmochemical modeling if silicate composition and the activity of Cu in the metal or sulfide is known: log D met/sil = -0.48 - 0.25 · log fO 2 - log γ Cu metal + 0.02 · [CaO + (Al 2O 3)/2; wt%] silicate logD sul/sil=+0.76-0.25 · logfO 2+0.25logfS 2-logγ CS 0.5,sulfide +0.02 · [CaO+Al 2O 3/2;wt%] silicate. The derived Cu metal/silicate and metal/sulfide partition coefficients are applied to core formation in the Earth and Mars. The observed Cu abundances in the Earth cannot be easily explained by simple core-mantle equilibrium, but the observed Cu abundances for Mars are consistent with core-mantle equilibrium at low pressure and temperatures.

  19. Sulfur concentration of mare basalts at sulfide saturation at high pressures and temperatures-Implications for S in the lunar mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Hough, T.; Dasgupta, R.

    2016-12-01

    Low estimate of S in the bulk silicate moon (BSM) [e.g., 1] suggests that sulfide in the lunar mantle is likely exhausted during melting. This agrees with estimates of HSE depletion in the BSM [2], but challenges the S-rich core proposed by previous studies [e.g., 3]. A key parameter to constrain the fate of sulfide during mantle melting is the sulfur carrying capacity of the mantle melts (SCSS). However, the SCSS of variably high-Ti lunar basalts at high P-Tare unknown. Basalt-sulfide melt equilibria experiments were run in graphite capsules using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, on high-Ti (Apollo11, 11.1 wt.%; [4]) and intermediate-Ti (Luna16, 5 wt.%; [5]) mare basalts. At 1.5 GPa, SCSS of Apollo11 increases from 3940 ppm S to 5860 ppm, as temperature increases from 1400 °C to 1600 °C. And at 1500 °C, SCSS decreases from 5350 ppm S to 3830 ppm, as pressure increases from 1 to 2.5 GPa. SCSS of Luna16 shows a similar P-T dependence. Previous models [e.g., 6] tend to overestimate the SCSS values determined in our study, with the model overprediction increasing with increasing melt TiO2. Consequently, we derive a new SCSS parameterization for high-FeO* silicate melts of variable TiO2content. At multiple saturation points [e.g., 7], the SCSS of primary lunar melts is 3500-5500 ppm. With these values, 0.02-0.05 wt.% sulfide (70-200 ppm S) in the mantle can be consumed by 2-6% melting. In order to generate primary lunar basalts with S of 800-1000 ppm [1], sulfide in the mantle must be exhausted, and the mode of sulfide cannot exceed 0.025 wt.% (100 ppm S). This estimate corresponds with lower end values in the terrestrial mantle and further agrees with previous calculations of HSE depletion in the BSM [2]. [1] Hauri et al.,2015, EPSL; [2] Day et al.,2007, Science; [3] Jing et al., 2014, EPSL; [4] Synder et al.,1992, GCA; [5] Warren & Taylor, 2014, Treatise on Geochemistry; [6] Li & Ripley, 2009, Econ.Geol ; [7] Krawczynski & Grove, 2012, GCA.

  20. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  1. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  2. Intensive parameters of enstatite chondrite metamorphism

    NASA Technical Reports Server (NTRS)

    Fogel, Robert A.; Hess, Paul C.; Rutherford, Malcolm J.

    1989-01-01

    A geothermometer based on the assemblage kamacite-quartz-enstatite-oldhamite-troilite found in enstatite chondrites is described. Data obtained with the geothermometer reveal that the EL6 meteorites experienced temperatures exceeding 1000 C. These temperatures imply a metal-sulfide melting event that may have fractionated the melt from the source region.

  3. Density measurements of the lithium fluoride/lithium sulfide eutectic at high temperature

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles L.; Gilbert, James B.

    1994-10-01

    A straightforward and reliable method to determine densities of molten salts at high temperatures was de-veloped by Janz and Lorenz several years ago.[1] This method was followed in order to determine the density of the LiF/Li2S eutectic[2] over the temperature range of 1176 to 1355 K in which the eutectic is liquid. The rel-ative lack of data for this eutectic is surprising given its potential usefulness in the study of advanced batteries'31 and electrowinning of metals from molten sulfides.[41] The method is based on the fact that a solid piece of metal of known volume suspended from a pan balance into a molten salt will weigh less than if it were sus-pended in air at the same temperature. This difference in weight measured in grams will be equal to the buoyant force of the liquid at that temperature. The density of the salt bath can then readily be determined by dividing this difference by the volume of the solid piece of metal that is immersed in the bath. The procedure can be re-peated to give density values over a range of temperatures.

  4. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  5. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  6. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  7. Influence of oyster culture on biogeochemistry and bacterial community structure at the sediment-water interface.

    PubMed

    Azandégbé, Afi; Poly, Franck; Andrieux-Loyer, Françoise; Kérouel, Roger; Philippon, Xavier; Nicolas, Jean-Louis

    2012-10-01

    Bacterial community structure and some biogeochemical parameters were studied in the sediment of two Pacific oyster farming sites, Aber Benoît (AB) and Rivière d'Auray (RA) in Brittany (France), to examine the ecological impact of oysters and to evaluate the emission of sulfide and ammonia from sediment. At AB, the organic matter accumulated in the sediment beneath the oyster tables was rapidly mineralized, with strong fluxes of ammonia and sulfide that reached 1014 and 215 μmol m(-2) h(-1), respectively, in June 2007. At RA, the fluxes were about half as strong on average and better distributed through the year. The ammonia and sulfide concentrations in the overlying water never reached levels that would be toxic to oysters in either site, nor did hypoxia occur. Total culturable bacteria (TCB) varied greatly according to the temperature: from 1.6 × 10(4) to 9.4 × 10(7) cell g(-1) sediment. Inversely, the bacterial community structure remained surprising stable through the seasons, marginally influenced by the presence of oysters and by temperature. Bacterial communities appeared to be characteristic of the sites, with only one common phylotype, Vibrio aestuarianus, a potential oyster pathogen. These data refine the hypothesis of seawater toxicity to oysters because of ammonia and sulfide fluxes and show that the measured environmental factors had only a weak influence on bacterial community structure. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  9. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-07-01

    Silver abundances in mantle peridotites and the behavior of Ag during high temperature mantle processes have received little attention and, as a consequence, the abundance of Ag in the bulk silicate Earth (BSE) has been poorly constrained. In order to better understand the processes that fractionate Ag and other chalcophile elements in the mantle, abundances of Ag and Cu in mantle peridotites from different geological settings (n = 68) have been obtained by isotope dilution ICP-MS methods. In peridotite tectonites and in a few suites of peridotite xenoliths which display evidence for variable extents of melt depletion and refertilization by silicate melts, Ag and Cu abundances show positive correlations with moderately incompatible elements such as S, Se, Te and Au. The mean Cu/Ag in fertile peridotites (3500 ± 1200, 1s, n = 38) is indistinguishable from the mean Cu/Ag of mid ocean ridge basalts (MORB, 3600 ± 400, 1s, n = 338) and MORB sulfide droplets. The constant mean Cu/Ag ratios indicate similar behavior of Ag and Cu during partial melting of the mantle, refertilization and magmatic fractionation, and thus should be representative of the Earth's upper mantle. The systematic fractionation of Cu, Ag, Au, S, Se and Te in peridotites and basalts is consistent with sulfide melt-silicate melt partitioning with apparent partition coefficients of platinum group elements (PGE) > Au ⩾ Te > Cu ≈ Ag > Se ⩾ S. Because of the effects of secondary processes, the abundances of chalcophile elements, notably S, Se, but also Cu and the PGE in many peridotite xenoliths are variable and lower than in peridotite massifs. Refertilization of peridotite may change abundances of chalcophile and lithophile elements in peridotite massifs, however, this seems to mostly occur in a systematic way. Correlations with lithophile and chalcophile elements and the overlapping mean Cu/Ag ratios of peridotites and ocean ridge basalts are used to constrain abundances of Ag and Cu in the BSE at 9 ± 3 (1s) ng/g and 30 ± 6 μg/g (1s), respectively. The very different extent of depletion of Ag and Cu in the BSE cannot be explained by low pressure-temperature core formation if currently available metal-silicate partitioning data are applied.

  10. Study on the sulfidation behavior of smithsonite

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-02-01

    Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunc, Vlastimil; Lindahl, John M; Dinwiddie, Ralph Barton

    The autoclave is a crucial piece of equipment for fabricating Tier 1 polymer composite aerospace structural components with very low void content (i.e. < 5 %). The essential component in this composite manufacturing process is the rigid mold that defines the final shape of the fabricated composite component. The Big Area Additive Manufacturing (BAAM) system located at Oak Ridge National Laboratory s (ORNL) Manufacturing Demonstration Facility (MDF) has been used to manufacture a new generation of in-autoclave tools that can be used to fabricate various aerospace composite parts. Different tools made form Polyphenylene sulfide (PPS) with 50 % by weightmore » carbon fiber and Polyphenylsulfone (PPSU) with 25 % carbon fiber are investigated in this study. The behavior of the printed tools under different temperature ramp rates for the autoclave cycles was observed and analyzed.« less

  12. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury's surface by MESSENGER (K, Na, Fe, Ti, Cl, Al, Cr, Mn, U, Th) and other geochemically relevant elements (P, F, H, N, C, Co, Ni, Mo, Ce, Nd, Sm, Eu, Gd, Dy, Yb) are added to the starting composition at trace abundances (approximately 500 ppm) so that they are close enough to infinite dilution to follow Henry's law of trace elements, and their partitioning behavior can be measured between the metal, silicate, and sulfide phases. The results of these experiments will allow us to assess the thermal and magmatic evolution of the planet Mercury from a geochemical standpoint.

  13. Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors

    NASA Astrophysics Data System (ADS)

    Roffey, Anna; Hollingsworth, Nathan; Islam, Husn-Ubayda; Mercy, Maxime; Sankar, Gopinathan; Catlow, C. Richard A.; Hogarth, Graeme; de Leeuw, Nora H.

    2016-05-01

    Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CNiBu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of β-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, (iBu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of (iBu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed.Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CNiBu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of β-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, (iBu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of (iBu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00053c

  14. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation

    NASA Astrophysics Data System (ADS)

    Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander

    2018-02-01

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.

  15. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.

    PubMed

    Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander

    2018-01-11

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.

  16. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  17. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2.

    PubMed

    Li, Min; Zhang, Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-04-01

    Homocysteine, a risk factor for Alzheimer's disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  18. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2

    PubMed Central

    Li, Min; Zhang, Ping; Wei, Hai-jun; Li, Man-Hong; Li, Xiang; Gu, Hong-Feng

    2017-01-01

    Abstract Background: Homocysteine, a risk factor for Alzheimer’s disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. Methods: The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. Results: The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Conclusion: Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. PMID:27988490

  19. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N

    USGS Publications Warehouse

    Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.

    2008-01-01

    In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.

  20. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy Fe isotopes compositions of the sulfides from the SMAR may suggest the equilibrium fractionation process under high temperature conditions. The red Fe oxides are enriched in heavy Fe isotopes, indicating that the oxidative weathering processes result in the occurrence of significant Fe-isotope fractionation and the preferential enrichment of heavy Fe isotopes in the oxidation product.

  1. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.

    PubMed

    Oka, Kaneo; Hayashi, Teruhiko; Matsumoto, Nobuya; Yanase, Hideshi

    2008-09-01

    We observed a rapid decrease in hydrogen sulfide content in the final stage of beer fermentation that was attributed to yeast and not to the purging of carbon dioxide (CO(2)) gas. The well known immature off-flavor in beer due to hydrogen sulfide (H(2)S) behavior during beer fermentation was closely investigated. The H(2)S decrease occurred during the final stage of fermentation when the CO(2)-evolution rate was extremely small and there was a decrease in the availability of fermentable sugars, suggesting that the exhaustion of fermentable sugars triggered the decrease in H(2)S. An H(2)S-balance analysis suggested that the H(2)S decrease might have been caused due to sulfide uptake by yeast. Further investigation showed that the time necessary for H(2)S to decrease below the sensory threshold was related to the number of suspended yeast cells. This supported the hypothesis that yeast cells contributed to the rapid decrease in H(2)S during the final stage of beer fermentation.

  2. Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products.

    PubMed

    Gong, Chao; Liu, Xiaohua; Jiang, Xiuping

    2014-03-01

    Hydrogen sulfide-producing bacteria (SPB) can spoil raw animal materials and release harmful hydrogen sulfide (H2S) gas. The objective of this study was to apply a SPB-specific bacteriophage cocktail to control H2S production by SPB in different raw poultry by-products in the laboratory (20, 30, and 37°C) and greenhouse (average temperature 29 to 31°C, humidity 34.8 to 59.8%, and light intensity 604.8 Wm(2)) by simulating transportation and a rendering facility. The amount of H2S production was determined using either test strips impregnated with lead acetate or a H2S monitor. In the laboratory, phage treatment applied to fresh chicken meat inoculated with SPB, spoiled chicken meat, chicken guts, and chicken feathers reduced H2S production by approximately 25 to 69% at temperatures from 20 to 37°C. In the greenhouse, phage treatment achieved approximately a 30 to 85% reduction of H2S yield in chicken offal and feathers. Among all phage treatments, multiplicity of infection (MOI) of 100 exhibited the highest inhibitory activities against SPB on H2S production. Several factors such as initial SPB level, temperature, and MOI affect lytic activities of bacteriophages. Our study demonstrated that the phage cocktail is effective to reduce the production of H2S by SPB significantly in raw animal materials. This biological control method can control SPB in raw poultry by-products at ambient temperatures, leading to a safer working environment and high quality product with less nutrient degradation for the rendering industry.

  3. Effect of Sulfur and Chlorine on Fireside Corrosion Behavior of Inconel 740 H Superalloy

    NASA Astrophysics Data System (ADS)

    Jin-tao, Lu; Yan, Li; Zhen, Yang; Jin-yang, Huang; Ming, Zhu; Gu, Y.

    2018-03-01

    Fireside corrosion behavior of Inconel 740H superalloy was studied at 750 °C in simulated coal ash/flue gas environments by means of XRD, SEM and EDS. The results indicated that the corrosion behavior was strongly related to the SO2 levels and was significantly affected by NaCl additions. In presence of the atmospheres with 0.1 % SO2, the alloy exhibited the highest corrosion resistance due to formation of a stable and dense Cr2O3 film. In presence of the atmosphere with 1.5 % SO2, however, a non-coherent and porous Cr2O3 film was formed. The thickness of film and internal sulfides were substantially increased. The NaCl additions significantly accelerated the corrosion process. A non-protective outer oxide film was formed, composed by multiple layers with serious inner sulfide and spallation. The depths of internal oxidizing and sulfuration zones were significantly increased. The mechanism of ash corrosion formation was also discussed.

  4. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  6. Vaporization thermodynamics of K2S and K2SO3

    NASA Technical Reports Server (NTRS)

    Bennet, J. E.

    1982-01-01

    The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included.

  7. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  8. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  9. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Durga, Ikkurthi Kanaka; Rao, S. Srinivasa; Reddy, Araveeti Eswar; Gopi, Chandu V. V. M.; Kim, Hee-Je

    2018-03-01

    Copper sulfide is an important multifunctional semiconductor that has attracted considerable attention owing to its outstanding properties and multiple applications, such as energy storage and electrochemical energy conversion. This paper describes a cost-effective and simple low-temperature solution approach to the preparation of copper sulfide for supercapacitors (SCs) and quantum-dot sensitized solar cells (QDSSCs). X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirmed that the nickel foam with a coriander leaf like nanostructure had been coated successfully with copper sulfide. As an electrode material for SCs, the CC-3 h showed excellent specific capacitance (5029.28 at 4 A g-1), energy density (169.73 W h kg-1), and superior cycling durability with 107% retention after 2000 cycles. Interestingly, the QDSSCs equipped with CC-2 h and CC-3 h counter electrodes (CEs) exhibited a maximum power conversion efficiency of 2.52% and 3.48%, respectively. The improved performance of the CC-3 h electrode was attributed mainly to the large surface area (which could contribute sufficient electroactive species), good conductivity, and high electrocatalytic activity. Overall, this work delivers novel insights into the use of copper sulfide and offers an important guidelines for the fabrication of next level energy storage and conversion devices.

  10. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs.

  11. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  13. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  14. The Thermal History of Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Benoit, P. H.; Sears, D. W. G.

    1992-07-01

    In an attempt to decipher the complicated thermal history of the enstatite chondrites, the CaS enstatite (Larimer and Buseck, 1974; Fogel et al., 1989), cubic sulfide (Skinner and Luce, 1971) and sphalerite (Kissin, 1989; El Goresy and Ehlers, 1989) systems have been applied, but the results have not been straightforward. The CaS-En thermometer gives metamorphic temperatures which appear reasonable, but which do not correlate well with petrologic type. The cubic sulfides yield reasonable temperatures for the EH chondrites, but the values for EL chondrites are very low. To some extent, the problem has been the lack of low petrologic type EL chondrites. Here we discuss data for the recently discovered EL3 chondrites (Chang et al., 1992) and we examine the applicability of the Fe-Ni-P system for thermometry. The CaS-En thermometer uses three reactions including equilibria between metal, CaS, SiO2, enstatite and FeS. The method is crucially dependent on the activity coefficients for Si and CaSiO3 which are in solid solutions with metal and enstatite, respectively. The cubic sulfide thermometer uses the solubility of FeS in MgS and MnS, while the ZnS thermometer (which is pressure-dependent) uses the solubility of FeS in ZnS. Current equilibration temperature estimates for enstatite chondrites including the EL3 chondrites are listed in Table 1. Table 1. Estimates of equilibration temperatures (degrees C) for enstatite chondrites.* Petrologic type EH EL System 3 4 5 6 3 4 5 6 En-CaS 1030 950 830 - 830 - - 1025 Cubic sulf 400 680 600 - <<400 - - <400 ZnS 410 (1859)+ - - 500 - - 550 Fe-Ni-P <450 500 550 - <<450 - - <450 *Literature data (see text), present data (bold type). +Heavily shocked. In an attempt to use the Fe-Ni-P system as a thermometer for enstatite chondrites, we used the phase diagram of Doan and Goldstein (1970). Like the other systems, this required extrapolation to lower temperatures (Fig. 1). The temperatures calculated from this system mirror those of the sulfides, suggesting major differences in the thermal history of the EL and EH chondrites. Two points may be made from the data in Table 1. The EH3 and EL3 chondrites have similar En-CaS equilibration temperatures to those of the higher petrologic types which we suspect reflect pre-metamorphic equilibria. Second, both the cubic sulfides and the phosphides yield metamorphic temperatures for the EH chondrites which are similar to those for ordinary chondrites, while EL chondrites yield very low temperatures. The EL chondrite parent body must have cooled at especially slow rates, perhaps because it was much larger than the EH parent body, or maybe the cooling rate on EL body was governed by the attenuation of the heat source rather than burial depth. Chang Y., Benoit P.H. and Sears D.W.G. (1992) Lunar and Planet. Sci. 23, 217-218. Doan A.S. and Goldstein J.I. (1970) Met. Trans. 1, 1759-1767. El Goresy A. and Ehlers K (1989) Geochim. Cosmochim. Acta 53, 1657-1668. Fogel R.A., Hess P.C. and Rutherford M.C. (1989) Geochim. Cosmochim. Acta 53, 2735-2746. Kissin S.A.(1989) Geochim. Cosmochim. Acta 53, 1649-1655. Larimer J.W. and Buseck P.R. (1974) Geochim. Cosmochim. Acta 38, 471-477. Skinner B.J. and Luce F.D. (1971) Amer. Min. 56, 1269-1296. Figure 1, which in the hard copy appears here, shows isotherm from the Fe-Ni-P phase diagram with data for enstatite chondrites superimposed.

  15. Characterization of porosity in sulfide ore minerals: A USANS/SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, F.; Zhao, J.; Etschmann, B. E.

    Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less

  16. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.

  17. Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS2 nanocomposites.

    PubMed

    Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio

    2008-11-27

    The isothermal crystallization of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) has been studied from a thermal and morphological point of view, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction. All the analyses revealed that the incorporation of the IF-WS2 altered significantly the crystallization behavior of PPS, in a way strongly dependent with the nanocomposite composition. The addition of IF-WS2 in 0.1 wt % proportion retarded the crystallization of PPS by increasing its fold surface free energy in a 10%. However, addition of the nanoparticles in excess of 1 wt % results in a promotion of the crystallization rate with reduction of the fold surface free energy to half the value of pure PPS.

  18. Stable catalyst layers for hydrogen permeable composite membranes

    DOEpatents

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  19. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1984-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4 - MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Ns2MoO4 - MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4 - MoO3 melt.

  20. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    NASA Astrophysics Data System (ADS)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  1. Application of biofiltration to the degradation of hydrogen sulfide in gas effluents.

    PubMed

    Elías, A; Barona, A; Ríos, F J; Arreguy, A; Munguira, M; Peñas, J; Sanz, J L

    2000-01-01

    A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.

  2. Metal sulfide for battery applications

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.

    1988-08-01

    A number of metal sulfides can be used in batteries as a cathode (reducible) material as part of an electrochemical couple to provide energy. There are a number of physical and chemical characteristics that can be evaluated for screening potential candidates for use in batteries. These include: cell potential vs. Li, thermal and chemical stability, electrical conductivity, allotropic form (phase), reaction kinetics during discharge, type of discharge mechanism, and material rechargeability. These are reviewed in general, with emphasis on sulfides of copper, iron, and molybdenum which are currently being used as cathodes in Li and Li-alloy batteries. The presence of impurities can adversely impact performance when naturally occurring sulfide minerals are used for battery applications. Sandia National Laboratories uses natural pyrite (FeS2) for its high-temperature, thermally activated Li(Si)/FeS2 batteries. The purification and processing procedures for the FeS2 involves both chemical and physical methods. Flotation was found to yield comparable results as HF leaching for removal of silica, but without the negative health and environmental concerns associated with this technique.

  3. Solubility of Sulfur in Shergottitic Silicate Melts Up to 0.8 GPA: Implications for S Contents of Shergottites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.M.; Danielson, L.

    2009-01-01

    Shergottites have high S contents (1300 to 4600 ppm; [1]), but it is unclear if they are sulfide saturated or under-saturated. This issue has fundamental implications for determining the long term S budget of the martian surface and atmosphere (from mantle degassing), as well as evolution of the highly siderophile elements (HSE) Au, Pd, Pt, Re, Rh, Ru, Ir, and Os, since concentrations of the latter are controlled by sulfide stability. Resolution of sulfide saturation depends upon temperature, pressure, oxygen fugacity (and FeO), and magma composition [2]. Expressions derived from experimental studies allow prediction of S contents, though so far they are not calibrated for shergottitic liquids [3-5]. We have carried out new experiments designed to test current S saturation models, and then show that existing calibrations are not suitable for high FeO and low Al2O3 compositions characteristic of shergottitic liquids. The new results show that existing models underpredict S contents of sulfide saturated shergottitic liquids by a factor of 2.

  4. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  5. Biomineralization of metal-containing ores and concentrates.

    PubMed

    Rawlings, Douglas E; Dew, David; du Plessis, Chris

    2003-01-01

    Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.

  6. The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization

    NASA Astrophysics Data System (ADS)

    Konnunaho, J. P.; Hanski, E. J.; Bekker, A.; Halkoaho, T. A. A.; Hiebert, R. S.; Wing, B. A.

    2013-12-01

    Archean komatiites host important resources of Ni, Cu, Co, and PGE, particularly in Western Australia and Canada. In Finland, several small, low-grade sulfide deposits have been found in komatiites, including the ca. 2.8 Ga Vaara deposit in the Archean Suomussalmi greenstone belt. It occurs in the central part of the serpentinized olivine cumulate zone of a komatiitic extrusive body and is composed of disseminated interstitial sulfides consisting of pyrite, pentlandite, millerite, violarite, and chalcopyrite accompanied by abundant magnetite. Although currently subeconomic, the mineralization is interesting due to the very high chalcophile element contents of the sulfide fraction (38 wt% Ni, 3.4 wt% Cu, 0.7 wt% Co, 22.4 ppm Pd, and 9.5 ppm Pt). The sulfides occur in relatively Cr-poor olivine cumulates suggesting involvement of a chromite-undersaturated magma. The parental magma was an Al-undepleted komatiite with an estimated MgO content of at least 24 wt%. In contrast to the common komatiite types in the eastern Finland greenstone belts, the Vaara rocks are moderately enriched in LREE relative to MREE, suggesting that crustal contamination played an important role in the genesis of the Vaara deposit. Multiple sulfur isotope data reveal considerable mass-independent sulfur isotope fractionation both in country rock sedimentary sulfides (Δ33S ranges from -0.50 to +2.37 ‰) and in the Vaara mineralization (Δ33S ranges from +0.53 to +0.66 ‰), which provides strong evidence for incorporation of crustal sulfur. Extensive replacement of interstitial sulfides by magnetite and the presence of millerite- and violarite-bearing, pyrrhotite-free sulfide assemblages indicate significant post-magmatic, low-temperature hydrothermal oxidation of the primary magmatic pyrrhotite-pentlandite-chalcopyrite assemblages and associated sulfur loss that led to a significant upgrading of the original metal tenors of the Vaara deposit.

  7. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney

    PubMed Central

    Li, Jiangtao; Cui, Jiamei; Yang, Qunhui; Cui, Guojie; Wei, Bingbing; Wu, Zijun; Wang, Yong; Zhou, Huaiyang

    2017-01-01

    When its hydrothermal supply ceases, hydrothermal sulfide chimneys become inactive and commonly experience oxidative weathering on the seafloor. However, little is known about the oxidative weathering of inactive sulfide chimneys, nor about associated microbial community structures and their succession during this weathering process. In this work, an inactive sulfide chimney and a young chimney in the early sulfate stage of formation were collected from the Main Endeavor Field of the Juan de Fuca Ridge. To assess oxidative weathering, the ultrastructures of secondary alteration products accumulating on the chimney surface were examined and the presence of possible Fe-oxidizing bacteria (FeOB) was investigated. The results of ultrastructure observation revealed that FeOB-associated ultrastructures with indicative morphologies were abundantly present. Iron oxidizers primarily consisted of members closely related to Gallionella spp. and Mariprofundus spp., indicating Fe-oxidizing species likely promote the oxidative weathering of inactive sulfide chimneys. Abiotic accumulation of Fe-rich substances further indicates that oxidative weathering is a complex, dynamic process, alternately controlled by FeOB and by abiotic oxidization. Although hydrothermal fluid flow had ceased, inactive chimneys still accommodate an abundant and diverse microbiome whose microbial composition and metabolic potential dramatically differ from their counterparts at active vents. Bacterial lineages within current inactive chimney are dominated by members of α-, δ-, and γ-Proteobacteria and they are deduced to be closely involved in a diverse set of geochemical processes including iron oxidation, nitrogen fixation, ammonia oxidation and denitrification. At last, by examining microbial communities within hydrothermal chimneys at different formation stages, a general microbial community succession can be deduced from early formation stages of a sulfate chimney to actively mature sulfide structures, and then to the final inactive altered sulfide chimney. Our findings provide valuable insights into the microbe-involved oxidative weathering process and into microbial succession occurring at inactive hydrothermal sulfide chimney after high-temperature hydrothermal fluids have ceased venting. PMID:28785251

  8. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    NASA Astrophysics Data System (ADS)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of elevated sulfide concentrations due to freshwater ingress and enhanced mixing. In all simulations the highest concentrations of total sulfide occur at depths of approximately 150 m, while concentrations at depths greater than 300 m typically remain below 0.03 mmol L-1, comparing well with observational data.

  9. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia

    NASA Astrophysics Data System (ADS)

    Brügmann, G. E.; Naldrett, A. J.; Asif, M.; Lightfoot, P. C.; Gorbachev, N. S.; Fedorenko, V. A.

    1993-05-01

    In this study Cu, Ni, and platinum-group elements (PGE) were determined in a sequence of basaltic and picritic lavas from the Siberian Trap in the Noril'sk area of Russia to constrain genetic relationships between the basalts and the petrogenesis of Ni-Cu-PGE sulfide deposits associated with the Talnakh and Noril'sk intrusions. In the most primitive basalts (8-19 wt% MgO) of the Tuklonsky (Tk) suite, Pt and Pd concentrations range from 4-13 ppb, increasing with decreasing MgO content; whereas Ir contents decrease with MgO from 0.8-0.05 ppb. The contrasting behavior of these elements, which all have very high sulfide-silicate partition coefficients, as well as the primitive mantle-like ratios of Cu/Y and Pd/Y, suggests that these magmas were not sulfide-saturated. The high PGE abundances imply that their parental magmas were also not sulfide saturated during partial melting in the mantle. Due to sulfide segregation, the overlying basalts of the Nadezhdinsky (Nd) series are low in Cu and Ni (52 and 38 ppm, respectively); highly depleted in all PGE; and have very low Cu/Y, Pd/Y, and Pd/Cu ratios. However, in stratigraphically higher levels, Cu, Ni, and PGE concentrations increase systematically through the Morongovsky (Mr) suite to reach a concentration plateau in the uppermost Mokulaevsky (Mk) suite (Pt 8 ppb; Pd: 9 ppb; Ir: 0.12 ppb; Rh: 0.4 ppb). At the same time, ratios such as Cu/Y increase and approach primitive mantle values. However, ratios involving PGE, such as Pd/Y, remain low, suggesting the removal of small amounts of sulfide (0.01-0.03%). The compositional variations in the basalts and the sulfide liquids can be quantitatively described by fractional segregation of a sulfide liquid in an open- or closed-system magma chamber. The latter model suggests that the basalts represent the eruption products of a zoned magma chamber in which light magma, with crustal components contaminated, overlies less contaminated, denser magma. Crustal contamination caused sulfide saturation, and the resulting sulfide liquids settled through a magma column and accumulated at the bottom of the chamber. In this model, the sulfide liquid is not in equilibrium with the whole magma mass, and sulfide segregation is compared with the zone-refining process of metallurgy. The sulfides become more enriched as they move through the magma; and although the magma left behind is depleted in PGE, Cu, and Ni, their concentrations also increase with depth. Eventually, the magma chamber is emptied from the top to the bottom, producing the flood basalt sequence and the associated intrusions and ore deposits. In the open-system model, sulfide saturation was initially caused by assimilation of crustal material by the Tuklonsky magma. Continuous and simultaneous replenishment, assimilation, and crystallization processes formed the lower Nd lavas. The concurrent removal of 0.5-1% sulfide strongly depleted these magmas in chalcophile and siderophile metals. Due to the continuous replenishment of the magma chamber with uncontaminated PGE-rich magma, succeeding lavas (Mr, Mk) show diminishing signs of crustal contamination and become less sulfide-saturated, as indicated by the increasing Ni, Cu, and PGE abundances. During the evolution of the chamber, the magma remained sulfur-saturated, and sulfides accumulated at the base. The composition of the sulfide ores could be regarded as a mixture consisting of low Ni-, Cu-, and PGE-sulfides derived with a low silicate/sulfide ratio (100) from the Tk-Nd magma and high Ni-, Cu-, and PGE-sulfides formed with a high ratio (10,000) from the Mr-Mk magma.

  10. Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Rhew, Robert C.

    2015-01-01

    Carbonyl sulfide (COS) is a reduced sulfur gas that is taken up irreversibly in plant leaves proportionally with CO2, allowing its potential use as a tracer for gross primary production. Recently, wheat field soil at the Southern Great Plains Atmospheric Radiation Measurement site in Lamont, Oklahoma, was found to be a measureable source of COS to the atmosphere. To understand the mechanism of COS production, soil and root samples were collected from the site and incubated in the laboratory over a range of temperatures (15-34°C) and light conditions (light and dark). Samples exhibited mostly COS net uptake from the atmosphere in dark and cool (<22-25°C) trials. COS emission was observed during dark incubations at high temperatures (>25°C), consistent with field observations, and at a lower temperature (19°C) when a full spectrum lamp (max wavelength 600 nm) was applied. Sterilized soil and root samples yielded only COS production that increased with temperature, supporting the hypothesis that (a) COS production in these samples is abiotic, (b) production is directly influenced by temperature and light, and (c) some COS consumption in soil and root samples is biotic.

  11. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  12. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (<120 °C) that permitted microbial activity. The change in temperature regime is locally preserved in individual samples and correlates with the progressive uplift and exposure of mantle rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these systems. Overall, the combined application of in situ and bulk rock multiple sulfur isotope measurements with petrographic observations allows us to resolve the different episodes of sulfur cycling during alteration of the oceanic lithosphere and the temporal changes between abiogenic and biogenic processes that control the sulfur cycling in these systems.

  13. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOEpatents

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  14. NARSTO EPA SS HOUSTON TEXAQS2000 CAMS DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Order:   E arthdata Search Parameters:  Carbon Monoxide Nitrogen Oxides Ozone Surface Winds Air Temperature ... Humidity Solar Irradiance Particulate Matter Sulfur Dioxide Hydrogen Sulfide Order Data:  Earthdata Search:   ...

  15. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  16. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  17. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    NASA Astrophysics Data System (ADS)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  18. THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER

    PubMed Central

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-01-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586

  19. Experimental segregation of iron-nickel metal, iron-sulfide, and olivine in a thermal gradient: Preliminary results

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, J. H.

    1993-01-01

    Speculation about the possible mechanisms for core formation in small asteroids raises more questions than answers. Petrologic evidence from iron meteorites, pallasites, and astronomical observations of M asteroids suggests that many small bodies were capable of core formation. Recent work by Taylor reviews the geochemical evidence and examines the possible physical/mechanical constraints on segregation processes. Taylor's evaluation suggests that extensive silicate partial melting (preferably 50 vol. percent or greater) is required before metal can segregate from the surrounding silicate and form a metal core. The arguments for large degrees of silicate partial melting are two-fold: (1) elemental trends in iron meteorites require that the metal was at is liquidus; and (2) experimental observations of metal/sulfide inclusions in partially molten silicate meteorites show that the metal/sulfide tends to form spherules in the liquid silicate due to surface tension effects. Taylor points out that for these metal spherules to sink through a silicate mush, high degrees of silicate partial melting are required to lower the silicate yield strength. Although some qualitative experimental data exists, little is actually known about the behavior of metals and liquid sulfides dispersed in silicate systems. In addition, we have been impressed with the ability of cumulative olivine to expel trapped liquid when placed in a thermal gradient. Consequently, we undertook to accomplish the following: (1) experimentally evaluate the potential for metal/sulfide/silicate segregation in a thermal gradient; and (2) obtain quantitative data of the wetting parameters of metal-sulfide melts among silicate grains.

  20. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  1. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  2. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  3. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  4. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  5. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  6. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  7. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  8. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  9. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  10. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...

  11. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...

  12. Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Keil, K.

    1983-01-01

    A model is proposed for the petrogenesis of the Abee E4 enstatite chondrite breccia, which consists of clasts, dark inclusions and matrix, and whose dark inclusions are an unusual kind of enstatite chondritic material. When the maximum metamorphic temperature of the breccia parent material was greater than 840 C, euhedral enstatite crystals in metallic Fe, Ni, and sulfide-rich areas grew into pliable metal and sulfide. Breccia parent material was impact-excavated, admixed with dark inclusions, and rapidly cooled. During this cooling, the clast and matrix material acquired thermal remanent magnetization. A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientation of the clasts to be less random. The Abee breccia was later consolidated by shock or by shallow burial and long period, low temperature metamorphism.

  13. Thermal decomposition study of manganese sulfide (MnS) nanoparticles

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.; Deshpande, M. P.

    2018-05-01

    The as-synthesized manganese sulfide (MnS) nanoparticles were used for the thermal study. The nanoparticles were synthesized by simple wet chemical route at ambient temperature. The photoelectron binding energy and chemical composition of MnS nanoparticles was analyzed by X-ray photoelectron spectroscopy (XPS). The thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis (DTA) were carried out on the as-synthesized MnS nanoparticles. The thermocurves were recorded in inert N2 atmosphere in the temperature range of ambient to 1173 K. The heating rates employed were 5, 10, 15 and 20 K/min. The thermodynamic parameters like activation energy (Ea), enthalpy change (ΔH), entropy change (ΔS) and change in Gibbs free energy (ΔG) of as-synthesized MnS nanoparticles were determined using Kissinger method. The obtained XPS and thermal results are discussed.

  14. Reduction of ferrylmyoglobin by hydrogen sulfide. Kinetics in relation to meat greening.

    PubMed

    Libardi, Silvia H; Pindstrup, Helene; Cardoso, Daniel R; Skibsted, Leif H

    2013-03-20

    The hypervalent meat pigment ferrylmyoglobin, MbFe(IV)═O, characteristic for oxidatively stressed meat and known to initiate protein cross-linking, was found to be reduced by hydrogen sulfide to yield sulfmyoglobin. Horse heart myoglobin, void of cysteine, was used to avoid possible interference from protein thiols. For aqueous solution, the reactions were found to be second-order, and an apparent acid catalysis could be quantitatively accounted for in terms of a fast reaction between protonated ferrylmyoglobin, MbFe(IV)═O,H(+), and hydrogen sulfide, H2S (k2 = (2.5 ± 0.1) × 10(6) L mol(-1) s(-1) for 25.0 °C, ionic strengh 0.067, dominating for pH < 4), and a slow reaction between MbFe(IV)═O and HS(-) (k2 = (1.0 ± 0.7) × 10(4) L mol(-1) s(-1) for 25.0 °C, ionic strengh 0.067, dominating for pH > 7). For meat pH, a reaction via the transition state {MbFe(IV)═O···H···HS}([symbol: see text]) contributed significantly, and this reaction appeared almost independent of temperature with an apparent energy of activation of 2.1 ± 0.7 kJ mol(-1) at pH 7.4, as a result of compensation among activation energies and temperature influence on pKa values explaining low temperature greening of meat.

  15. Reactive and non-reactive interactions of thiophene with WS2 fullerene-like nanoparticles: an ultra-high vacuum surface chemistry study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goering, J.; Burghaus, Uwe; Arey, Bruce W.

    The adsorption kinetics of thiophene on WS2 nanoparticles with fullerene-like (onion-like) structure has been studied at ultra-high vacuum conditions by sample temperature ramping techniques. At low temperatures, thiophene adsorbs molecularly. The formation of H2S and alkanes is evident at greater temperatures on fully sulfided as well as reduced and oxidized WS2 nanoparticles.

  16. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system. Temperature at the fan outlet and static pressure inside the barn were measured. Lagoon samples were collected daily and analyzed for sulfide content. Lagoon parameters, temperature and pH; and atmospheric environmental parameters, ambient temperature, relative humidity, wind speed and ambient hydrogen sulfide concentration were concurrently monitored on-site. The highest barn emissions were measured during the winter and appeared to be related to the age and weight of the animals housed inside the barn. (Abstract shortened by UMI.)

  17. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7 ± 0.3‰) when sulfate concentrations rose above 0.5 mM and sulfide concentrations had became negligible.

  18. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE PAGES

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.; ...

    2017-04-06

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  19. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  20. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  1. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1999-02-02

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  2. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1997-12-30

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  3. Phase relations in the CuVS system

    USGS Publications Warehouse

    Wu, D.; Chang, L.L.Y.; Knowles, C.R.

    1986-01-01

    Phase relations in the system Cu-V-S were studied by using a sealedcapsule technique, reflected-light microscopy, X-ray powder diffraction and electron microprobe analysis. In the temperature range between 300 and 900 ??C, six vanadium sulfides exist in the V-S system. These are VS, V7S8, V3S4, V5S8, V3S5 and VS4. In the Cu-V-S system, three Cu-V sulfides are stable. Both Cu3VS4 (sulvanite) and CuV2S4 are cubic with a = 5.391 ?? 0.005 A ?? and a = 9.789 ?? 0.005 A ?? respectively, and the third has a composition Cu0.8V1.1S2. CuV2S4 forms equilibrium assemblages with all vanadium sulfides, which restricts their effects on the phase relations in the system to a small region. ?? 1986.

  4. Partitioning of K, U, and Th between sulfide and silicate liquids - Implications for radioactive heating of planetary cores

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1986-01-01

    Experimental partitioning studies are reported of K, U, and Th between silicate and FeFeS liquids designed to test the proposal that actinide partitioning into sulfide liquids is more important then K partitioning in the radioactive heating of planetary cores. For a basaltic liquid at 1450 C and 1.5 GPa, U partitioning into FeFeS liquids is five times greater than K partitioning. A typical value for the liquid partition coefficient for U from a granitic silicate liquid at one atmosphere at 1150 C and low fO2 is about 0.02; the coefficient for Th is similar. At low fO2 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with U coefficient greater than one. The Th coefficient is less strongly affected.

  5. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  6. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  7. Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario

    USGS Publications Warehouse

    Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.

    1992-01-01

    Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors

  8. [Thermal stability and transformation behaviors of Pb in Yima coal].

    PubMed

    Liu, Rui-qing; Wang, Jun-wei

    2013-05-01

    Occurrence forms of Pb in Yima (YM) coal, their thermal stability and transformation behaviors during coal pyrolysis were investigated. Chemical leaching method was used to characterize the forms of Pb in the raw coal and the chars. It was found that about 33% Pb in YM coal was bound to carbonates, sulfides, sulfates, phosphates and oxides, 29% to aluminosilicates, 27% to disulfide species, and 8% to organic species. It was also found that the organic bound Pb was the most releasable while the aluminosilicates bound Pb was the least releasable. The effect of minerals of different sort on Pb release was also studied. The result showed that carbonates, sulfides, sulfates, phosphates and oxides, aluminosilicates and disulfides in YM coal could restrain Pb release during coal pyrolysis. The transformation of different forms of Pb mainly occurred at above 500 degrees C with other forms of Pb transformed to the aluminosilicates form and volatile phase.

  9. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.

    PubMed

    Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava

    2011-06-01

    Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society

  10. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (lvtESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wustite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850 C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approx. 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.

  11. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.

  12. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  13. Available conditions to form Thio-arsenicals within environment from literature works

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Woo, N. C.; Yoon, H. O.

    2016-12-01

    Thio-arsenicals can be formed in sulfidic or sulfate reducing conditions such as reducing aquifer, sediments, landfill leachates, thermal waters, etc. Characteristics of these chemicals are not clearly identified yet. However, dimethylmonothioarsinic acid (DMMTAV) is known to have higher toxicity than arsenite (iAsIII). Thiolation of arsenic can occur when sulfide is present but the reaction rate and end-products are affected by environmental conditions such as pH, temperature, etc. From previous study, DMA thiolation was determined to a second order reaction; the rate constant was 0.0788 M-1•s-1 at pH 6.0, 20 °. Under highly acidic to neutral condition, half-life time of DMA under excess sulfide condition was within a day. If DMDTAV is exposed to oxidative chemicals, oxidation to highly toxic DMMTAV can occur. Therefore it is necessary that a careful assessment of the possibility forming thioarsenicals. As an example, according to SUDOKWON Landfill Site Management Corp. in Korea, total arsenic concentrations in leachate before treatment were 0.054 mg/L at Site 1 and 0.058 mg/L at Site 2 in 2013. There was no information for sulfide concentration but the leachate contained dissolved iron and manganese indicating reducing condition. In our study, the possibility of thio-arsenicals' occurrence was assessed indirectly using chemical characteristics of landfill leachates and other possible sulfidic condition from the literature works.

  14. Sulfidation of 310 stainless steel at sulfur potentials encountered in coal conversion systems

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Nelson, H. G.

    1976-01-01

    The sulfidation of SAE 310 stainless steel was carried out in gas mixtures of hydrogen and hydrogen sulfide over a range of sulfur potentials anticipated in advanced coal gasification processes. The kinetics, composition, and morphology of sulfide scale formation were studied at a fixed temperature of 1,065 K over a range of sulfur potentials from .00015 Nm to the -2nd power to 900 Nm to the -2nd power. At all sulfur potentials investigated, the sulfide scales were found to be multilayered. The relative thickness of the individual layers as well as the composition was found to depend on the sulfur potential. The reaction was found to obey the parabolic rate law after an initial transient period. Considerably longer transient periods were found to be due to unsteady state conditions resulting from compositional variations in the spinel layer. The sulfur pressure dependence on the parabolic rate constant was found to best fit the equation K sub p equals const. (P sub S2) to the 1/nth power, where n equals 3.7. The growth of the outer layers was found to be primarily due to the diffusion of metal ions, iron being the predominant species. The inner layer growth was due to the dissociation of the primary product at the alloy scale interface and depended on the activity of chromium.

  15. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyphenylene sulfide with peracetic acid such that the finished resins meet the specifications set forth in... glass transition temperature of the polymer is 360±5 °C as determined by the use of differential...

  16. Interfacial chemical reactions between MoS2 lubricants and bearing materials

    NASA Technical Reports Server (NTRS)

    Zabinski, J. S.; Tatarchuk, B. J.

    1989-01-01

    XPS and conversion-electron Moessbauer spectroscopy (CEMS) were used to examine iron that was deposited on the basal plane of MoS2 single crystals and subjected to vacuum annealing, oxidizing, and reducing environments. Iron either intercalated into the MoS2 structure or formed oriented iron sulfides, depending on the level of excess S in the MoS2 structure. CEMS data demonstrated that iron sulfide crystal structures preferentially aligned with respect to the MoS2 basal plane, and that alignment (and potentially adhesion) could be varied by appropriate high-temperature annealing procedures.

  17. Biofiltration of hydrogen sulfide by Sulfolobus metallicus at high temperatures.

    PubMed

    Morales, M; Silva, J; Morales, P; Gentina, J C; Aroca, G

    2012-01-01

    Biofiltration of reduced sulfur compounds such as hydrogen sulfide has been mainly applied to emissions at mild temperatures (25 to 35 °C). However, an important number of industrial gaseous emission containing sulfur compounds, from diverse industrial sectors (petroleum refinery, cellulose production, smelting, rendering plants and food industries) are emitted at temperatures over 50 °C. Most of the studies on thermophilic systems report that a higher elimination capacity can be obtained at elevated temperature, allowing the design of smaller equipment for the same loading rate than that required for removing the same load under mesophilic conditions. A biotrickling filter inoculated with Sulfolobus metallicus, which operates at three different residence times, 60, 80 and 120 s, and two different temperatures (45 and 55 °C) for treating H(2)S is reported. The input loads of H(2)S were progressively increased from 0 to 100 gS/m(3). The aim of this study was to determine the capacity and ability of S. metallicus to oxidize H(2)S at high temperatures. The better removal capacity of H(2)S obtained was 37.1 ± 1.7 gS/m(3) h at 55 °C for a residence time of 120 s. The difference of the removal capacity of H(2)S between the two temperatures was 4 g/m(3) h on average of sulfur removal for the different residence times.

  18. Post-depositional behavior of Cu in a metal-mining polishing pond (East Lake, Canada).

    PubMed

    Martin, Alan J; Jambor, John L; Pedersen, Tom F; Crusius, John

    2003-11-01

    The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactorthat permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 microg L(-1) and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 microg cm(-2) yr(-1)) can account for the elevated levels of dissolved Cu in lake waters (approximately 50 microg L(-1)). Implications for lake recovery are discussed.

  19. Post-Depositional Behavior of Cu in a Metal-Mining Polishing Pond (East Lake, Canada)

    USGS Publications Warehouse

    Martin, A.J.; Jambor, J.L.; Pedersen, Thomas F.; Crusius, John

    2003-01-01

    The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactor that permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 ??g L-1 and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 ??g cm-2 yr-1) can account for the elevated levels of dissolved Cu in lake waters (???50 ??g L-1). Implications for lake recovery are discussed.

  20. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  1. Evidence of refractory organic matter preserved in the mudstones of Yellowknife Bay and the Murray Formations

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Steele, A.; Summons, R. E.; Sutter, B.; McAdam, A.; Franz, H. B.; Mahaffy, P. R.; Conrad, P. G.; Freissinet, C.; Glavin, D. P.; Millan, M.; Ming, D. W.

    2015-12-01

    Volatiles from high-temperature (above 500°C) pyrolysis of drilled and sieved deltaic/lacustrine mudstones at Yellowknife Bay and Pahrump Hills were detected by the Sample Analysis at Mars (SAM) instrument's evolved gas analysis experiment onboard the Curiosity rover in Gale Crater, Mars. Mass fragments detected from the mudstones are consistent with C1-C4 alkyl and single-ring aromatic components that evolve at different temperatures and often in multiple phases. Concurrent release of oxidized sulfur (sulfur dioxide and sulfur trioxide), sulfide gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, dimethylsulfide or thiol, and thiophene) suggest that either these gases are evolving directly from the mudstone or are products of gas phase reactions in the SAM oven, or both. Multiple chlorohydrocarbon releases are also observed in analysis of the Mojave mudstone indicating punctuated organic releases from the sample. The organic signatures observed are unique to specific samples and are not observed in blanks or all samples, nor can the SAM background explain them. These results suggest that geologically refractory organic matter has been preserved in some Hesperian mudstones despite possible acid-sulfate weathering (as suggested by jarosite in Mojave) and exposure to ionizing cosmic rays after exhumation. We will report on ongoing study of these samples.

  2. Microstructure and electroluminescent performance of chemical vapor deposited zinc sulfide doped with manganese films for integration in thin film electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Topol, Anna Wanda

    Zinc sulfide (ZnS) doped with manganese (Mn), ZnS:Mn, is widely recognized as the brightest and most effective electroluminescent (EL) phosphor used in current thin film electroluminescent (TFEL) devices. ZnS acts as a host lattice for the luminescent activator, Mn, leading to a highly efficient yellow-orange EL emission, and resulting in a wide array of applications in monochrome, multi-color and full color displays. Although this wide band dap (3.7 eV) material can be prepared by several deposition techniques, the chemical vapor deposition (CVD) is the most promising for TFEL applications in terms of viable deposition rates, high thickness and composition uniformity, and excellent yield over large area panels. This study describes the development and optimization of a CVD ZnS:Mn process using diethylzinc [(C2H5)2Zn, DEZ], di-pi-cyclopentadienylmanganese [(C5H5)2Mn, CPMn], and hydrogen sulfide [H2S] as the chemical sources for, respectively, Zn, Mn, and S. The effects of key deposition parameters on resulting Film microstructure and performance are discussed, primarily in the context of identifying an optimized process window for best electroluminescence behavior. In particular, substrate temperature was observed to play a key role in the formation of high quality crystalline ZnS:Mn films leading to improved brightness and EL efficiency. Further investigations of the influence of temperature treatment on the structural characteristics and EL performance of the CVD ZnS:Mn film were carried out. In this study, the influence of post-deposition annealing both in-situ and ex-situ annealing processes, on chemical, structural, and electroluminescent characteristics of the phosphor layer are described. The material properties of the employed dielectric are among the key factors determining the performance, stability and reliability of the TFEL display and therefore, the choice of dielectric material for use in ACTFEL displays is crucial. In addition, the luminous efficiency depends on the density of the interface states and their depth at the insulator-phosphor interfaces. Hence, critical integration issues are discussed in terms of the incorporation of ZnS:Mn films in dielectricsemiconductor-dielectric (DSD) structures with silicon nitride (SiNx) and aluminum titanium oxide (ATO) as top and bottom insulators.

  3. High-Temperature Deformation Behavior of MnS in 1215MS Steel

    NASA Astrophysics Data System (ADS)

    Huang, Fei-Ya; Su, Yen-Hao Frank; Kuo, Jui-Chao

    2018-06-01

    The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were ( {\\bar{1}0\\bar{1}} )[ {\\bar{1}01} ],( {10\\bar{1}} )[ {101} ],( {011} )[ {01\\bar{1}} ] , and ( {110} )[ {1\\bar{1}0} ] . Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

  4. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann G.; Pourkaseb, Houshang; Asadi, Sina; Saed, Madineh; Lentz, David R.

    2018-02-01

    The present work attempts to discriminate between the geochemical features of magmatic-hydrothermal systems involved in the early stages of mineralization in high grade versus low grade porphyry copper systems, using chemical compositions of silicate and sulfide minerals (i.e., plagioclase, biotite, pyrite and chalcopyrite). The data indicate that magmatic plagioclase in all of the porphyry copper systems studied here has high An% and Al content with a significant trend of evolution toward AlAl3SiO8 and □Si4O8 endmembers, providing insight into the high melt water contents of the parental magmas. Comparably, excess Al and An% in the high grade deposits appears to be higher than that of selected low grade deposits, representing a direct link between the amounts of exsolving hydrothermal fluids and the potential of metal endowment in porphyry copper deposits (PCDs). Also, higher Al contents accompanied by elevated An% are linked to the increasing intensity of disruptive alteration (phyllic) in feldspars from the high grade deposits. As calculated from biotite compositions, chloride contents are higher in the exsolving hydrothermal fluids that contributed to the early mineralization stages of highly mineralized porphyry systems. However, as evidenced by scattered and elevated log (fH2O)/(fHF) and log (fH2O)/(fHCl) values, chloride contents recorded in biotite could be influenced by post potassic fluids. Geothermometry of biotite associated with the onset of sulfide mineralization indicates that there is a trend of increasing temperature from high grade to low grade porphyry systems. Significantly, this is coupled with a sharp change in copper content of pyrite assemblages precipitated at the early stages of mineralization such that Cu decreased with increasing temperature. Based on EMPA and detailed WDS elemental mapping, trace elements do not exhibit complex compositional zoning or solid solution in the sulfide structure. Nevertheless, significant amounts of Cu and Au are contained in pyrite assemblages as micro- to nano-sized inclusions, especially in the high grade fertile porphyry deposits. However, unexpectedly high concentrations of Te, Se, and Re may be associated with early stage of sulfide mineralization, especially when there is no epithermal lithocap. This may highlight the significance of trace metals partitioning in the sulfides formed at the early stages of mineralization in PCDs.

  5. Seasonality of major redox constituents in a shallow subterranean estuary

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison E.; Krask, Julie L.; Canuel, Elizabeth A.; Beck, Aaron J.

    2018-03-01

    The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (<5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate/sulfur reducing bacteria (SRB) being more active in summer and metal reducers being more active in winter. Throughout the STE, seasonal temperature and DOC variations determined the spatial distribution and geochemical cycling of Fe, Mn, and sulfur.

  6. Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic mantle plumes under the Cathaysia Block

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; O'Reilly, Suzanne Y.; Honda, Masahiko; Matsumoto, Takuya; Griffin, William L.; Pearson, Norman J.; Zhang, Ming

    2010-02-01

    Abundant primary sulfides occur as inclusions in silicates and as discrete grains in mantle-derived spinel lherzolite xenoliths from Miocene intraplate basalts on the Penghu Islands, Taiwan, which is located at the southeastern margin of Cathaysia Block. These sulfides are dominantly mixtures of Fe-rich and Ni-rich monosulfide solid solutions (MSS), with minor pentlandite, millerite and chalcopyrite, and are considered to represent sulfide melts crystallized at high temperatures (>900 °C). Some sulfides from the Tungchiyu (TCY) islet (37 out of 118 grains) have remarkably high Co contents resulting in subchondritic Ni/Co ratios (<21; 5-20, median = 12), distinct from the superchondritic values (Ni/Co = 48-157, median = 83) typical of mantle sulfides worldwide. The Co-rich nature of the TCY sulfides is considered to be a primary characteristic as no secondary processes can be identified to account for the feature. They are similar to Ni-Co-rich sulfides from Lac de Gras, Slave Craton ( Aulbach et al. (2004) Chemical Geology 208, 61-88) interpreted as being derived from the lower mantle. Experimental studies suggest that the sulfide melt/silicate melt partition coefficient of Ni becomes lower than that of Co at pressures greater than 28 GPa, similar to recent estimates of the magma ocean conditions. Os model ages of the TCY Co-rich sulfides reveal four episodes of generation: 2.0, 1.7, 1.4 and 0.8 Ga; this is consistent with the age pattern of all Penghu sulfides, indicating significant lithosperic mantle formation, melt extraction or metasomatic events at these time periods. These events closely correspond to the global 1.9-Ga superplume event related to the assembly of the Nena/Columbia supercontinent, a minor 1.7-Ga superplume event in SW Laurentia prior to breakup of Nena/Columbia, the 1468 Ma Moyie event in the Belt Basin region in western Laurentia and the ˜0.8 Ga breakup of Rodinia, with which the Cathaysia Block was associated at various stages during its Proterozoic evolution ( Li et al. (2008) Precambrian Research 160, 179-210 and references therein). Olivine in a peridotite sample from the TCY locality has distinctly high 3He/ 4He (11 R A), whereas other peridotites from the KP and TCY localities have 3He/ 4He ˜6.7 R A, lower than MORB. The high 3He/ 4He further suggests that materials from the deep mantle have interacted with the host peridotite of Co-rich sulfides. We thus propose that the Co-rich sulfide melts may have been trapped in the lower mantle during core-mantle differentiation and then transported to shallow depths by mantle plumes that entrained lower mantle materials at several different time periods. This study provides the first substantial evidence from the lithosperic mantle beneath the Cathaysia Block to support the activity of mantle plumes related to the breakup of the supercontinents Nena/Columbia and Rodinia in Proterozoic time.

  7. Sulfide Generated by Sulfate Reduction is a Primary Controller of the Occurrence of Wild Rice (Zizania palustris) in Shallow Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Swain, E. B.; Engstrom, D. R.; Coleman Wasik, J.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.; Blaha, G.

    2017-11-01

    Field observations suggest that surface water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment pore water, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.

  8. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    NASA Astrophysics Data System (ADS)

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang

    2016-02-01

    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  9. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems

    USGS Publications Warehouse

    Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.

    2011-01-01

    Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., <4 nmol Hg (mg DOM)−1) by combining solid phase extraction using C18 resin with extended X-ray absorption fine structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg–1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form, and these species need to be considered when addressing mercury biogeochemistry.

  10. Calcium silicate cement sorbent for H/sub 2/S removal and improved gasification processes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.J.; Steinberg, M.

    1983-10-01

    Based on the studies performed on the agglomerated cement sorbent (ACS) pellet for in-situ desulfurization of gases and for improved gasification, in low and medium Btu fluidized bed coal gasifier (FBG) systems, the following conclusions can be drawn: (1) The pelletization method by a drum pelletizer is a good way of agglomerating large sized (>20 US mesh) ACS pellets having high sorbent performance. (2) The ACS pellets have a sulfur capture capacity of about 60% at 950/sup 0/C, are 100% regenerable, and so not lose reactivity during cyclic use. (3) The rate of sulfidation increases linearly with H/sub 2/S concentrationmore » in the feed gas stream up to 1.0%. (4) The rate of sulfidation first increases with temperature in an Arrhenius fashion in the temperature range of 800/sup 0/C to 1000/sup 0/C and then decreases with further increase in temperatures, giving rise to an optimum sulfidation temperature of about 1000/sup 0/C. (5) The gasification of coal or coal char either with CO/sub 2/ gas or by partial oxidation in a 40 mm ID FBG shows that the gasification efficiency of coal (or coal char) is very much enhanced with the ACS pellets and with Greer limestone over the coal (or coal char) alone. There is, however, not much difference between the ACS pellets and Greer limestone in the degree of enhancement. (6) The gasification of coal by partial oxidation with air to low Btu gas in a 1-inch coal-fired FBG unit shows that in the temperature range of 800/sup 0/ to 900/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets.« less

  11. Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation.

    PubMed

    Steenstra, E S; Agmon, N; Berndt, J; Klemme, S; Matveev, S; van Westrenen, W

    2018-05-04

    The depletions of potassium (K) and sodium (Na) in samples from planetary interiors have long been considered as primary evidence for their volatile behavior during planetary formation processes. Here, we use high-pressure experiments combined with laser ablation analyses to measure the sulfide-silicate and metal-silicate partitioning of K and Na at high pressure (P) - temperature (T) and find that their partitioning into metal strongly increases with temperature. Results indicate that the observed Vestan and Martian mantle K and Na depletions can reflect sequestration into their sulfur-rich cores in addition to their volatility during formation of Mars and Vesta. This suggests that alkali depletions are not affected solely by incomplete condensation or partial volatilization during planetary formation and differentiation, but additionally or even primarily reflect the thermal and chemical conditions during core formation. Core sequestration is also significant for the Moon, but lunar mantle depletions of K and Na cannot be reconciled by core formation only. This supports the hypothesis that measured isotopic fractionations of K in lunar samples represent incomplete condensation or extensive volatile loss during the Moon-forming giant impact.

  12. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  13. MESSENGER MASCS/UVVS Observations of Cold Exospheric Calcium

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.

    2018-05-01

    Exospheric calcium is primarily ejected by a high energy process on the dawn hemisphere. UVVS data also show a sporadic cold component at low altitudes. Its temperature is consistent with laboratory measurements of photodesorption of calcium sulfide.

  14. Kinetics of Ni3S2 sulfide dissolution in solutions of sulfuric and hydrochloric acids

    NASA Astrophysics Data System (ADS)

    Palant, A. A.; Bryukvin, V. A.; Vinetskaya, T. N.; Makarenkova, T. A.

    2008-02-01

    The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30 90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids ( E a = 67 92 kJ/mol, or 16 22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60 90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.

  15. High-temperature oxidation/corrosion of iron-based superalloys

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Smeggil, J. G.; Bailey, R. S.; Schuster, J. C.; Nowotny, H.

    1987-01-01

    The oxidation and sulfidation of several novel iron-base superalloys were evaluated in high-temperature cyclic tests. The experimental austenitic alloys examined were modifications of NASAUT-4GA which were developed for Stirling-engine application. The weight gains and resulting surface scales were measured and analyzed. Mixed oxide scales were found to form on all specimens exposed above 871 C. The build-up of these scales led to a depletion of Mn and Cr in a zone adjacent to the oxides. In addition, the initial oxidation of the Fe-rich alloy was inhibited by a thin but tenacious Si layer which formed at the interface between oxides and the parent layer. Sulfidation tests using Na2SO4 coatings resulted in the formation of a protective spinel and alpha-Fe2O3 phases. Preferential attack of the carbide phase by hydrogen was not observed after 350 h at 871 C.

  16. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    PubMed

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  17. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    PubMed

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  18. Phosphorite-hosted zinc and lead mineralization in the Sekarna deposit (Central Tunisia)

    USGS Publications Warehouse

    Garnit, Hechmi; Bouhel, Salah; Barca, Donatella; Johnson, Craig A.; Chtara, Chaker

    2012-01-01

    The Sekarna Zn–Pb deposit is located in Central Tunisia at the northeastern edge of the Cenozoic Rohia graben. Mineralization comprises two major ore types: (1) disseminated Zn–Pb sulfides that occur as lenses in sedimentary phosphorite layers and (2) cavity-filling zinc oxides (calamine-type ores) that crosscut Late Cretaceous and Early Eocene limestone. We studied Zn sulfide mineralization in the Saint Pierre ore body, which is hosted in a 5-m-thick sedimentary phosphorite unit of Early Eocene age. The sulfide mineralization occurs as replacements of carbonate cement in phosphorite. The ores comprise stratiform lenses rich in sphalerite with minor galena, Fe sulfides, and earlier diagenetic barite. Laser ablation–inductively coupled plasma mass spectrometry analyses of sphalerite and galena show a wide range of minor element contents with significant enrichment of cadmium in both sphalerite (6,000–20,000 ppm) and galena (12–189 ppm). The minor element enrichments likely reflect the influence of the immediate organic-rich host rocks. Fluid inclusions in sphalerite give homogenization temperatures of 80–130°C. The final ice melting temperatures range from −22°C to −11°C, which correspond to salinities of 15–24 wt.% NaCl eq. and suggest a basinal brine origin for the fluids. Sulfur isotope analyses show uniformly negative values for sphalerite (−11.2‰ to −9.3‰) and galena (−16‰ to −12.3‰). The δ34S of barite, which averages 25.1‰, is 4‰ higher than the value for Eocene seawater sulfate. The sulfur isotopic compositions are inferred to reflect sulfur derivation through bacterial reduction of contemporaneous seawater sulfate, possibly in restricted basins where organic matter was abundant. The Pb isotopes suggest an upper crustal lead source.

  19. Phosphorite-hosted zinc and lead mineralization in the Sekarna deposit (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Garnit, Hechmi; Bouhlel, Salah; Barca, Donatella; Johnson, Craig A.; Chtara, Chaker

    2012-06-01

    The Sekarna Zn-Pb deposit is located in Central Tunisia at the northeastern edge of the Cenozoic Rohia graben. Mineralization comprises two major ore types: (1) disseminated Zn-Pb sulfides that occur as lenses in sedimentary phosphorite layers and (2) cavity-filling zinc oxides (calamine-type ores) that crosscut Late Cretaceous and Early Eocene limestone. We studied Zn sulfide mineralization in the Saint Pierre ore body, which is hosted in a 5-m-thick sedimentary phosphorite unit of Early Eocene age. The sulfide mineralization occurs as replacements of carbonate cement in phosphorite. The ores comprise stratiform lenses rich in sphalerite with minor galena, Fe sulfides, and earlier diagenetic barite. Laser ablation-inductively coupled plasma mass spectrometry analyses of sphalerite and galena show a wide range of minor element contents with significant enrichment of cadmium in both sphalerite (6,000-20,000 ppm) and galena (12-189 ppm). The minor element enrichments likely reflect the influence of the immediate organic-rich host rocks. Fluid inclusions in sphalerite give homogenization temperatures of 80-130°C. The final ice melting temperatures range from -22°C to -11°C, which correspond to salinities of 15-24 wt.% NaCl eq. and suggest a basinal brine origin for the fluids. Sulfur isotope analyses show uniformly negative values for sphalerite (-11.2‰ to -9.3‰) and galena (-16‰ to -12.3‰). The δ34S of barite, which averages 25.1‰, is 4‰ higher than the value for Eocene seawater sulfate. The sulfur isotopic compositions are inferred to reflect sulfur derivation through bacterial reduction of contemporaneous seawater sulfate, possibly in restricted basins where organic matter was abundant. The Pb isotopes suggest an upper crustal lead source.

  20. Fluid evolution and ore genesis of the Dalingshang deposit, Dahutang W-Cu ore field, northern Jiangxi Province, South China

    NASA Astrophysics Data System (ADS)

    Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui

    2018-02-01

    The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.

  1. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Jackson, Simon E.; Pearson, Norman J.; Graham, Stuart

    2010-07-01

    Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ 65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1 σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ˜-0.4‰ (-0.25 ± 0.36‰, 1 σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1 σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ 65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.

  2. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    NASA Astrophysics Data System (ADS)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  3. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  4. New constraints on the origin of the Skaergaard intrusion Cu-Pd-Au mineralization: Insights from high-resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Rudashevsky, Nikolay S.; Nielsen, Troels F. D.; Barnes, Stephen J.; Rudashevsky, Vladimir N.

    2014-03-01

    This contribution presents the first detailed three-dimensional (3D) in situ analysis of samples from the Platinova Reef using high-resolution X-ray computed tomography (HRXCT) and 3D image processing and quantification coupled with microscopic and mineralogical investigations. Our HRXCT analyses reveal the complex textural relationships between Cu-rich sulfides (bulk composition close to bornite), skaergaardite (PdCu), Au-rich phases, silicates and Fe-Ti oxides and provide unequivocal textural evidences, not observed previously. The association in 3D between Cu-rich sulfide globules, PdCu alloy and ilmenite is inconsistent with a hydrothermal origin of the Cu-Pd mineralization. In contrast, our results combined with phase diagrams strongly support a primary magmatic origin for the Cu-Pd mineralization where Cu and Pd-rich, Fe-poor sulfide liquid represents a cumulus phase that forms by in-situ nucleation. These sulfide droplets and attached skaergaardite grains were trapped during the formation and crystallization of the Fe-Ti oxides. Subsequent, post-cumulus processes led to the partial to total dissolution of the sulfide not entirely enclosed by the Fe-Ti oxides (i.e., not protected from reaction) leading to the observed variability in Cu and Pd composition at the aggregate (sulfide + PdCu) scale and to the occurrence of free PdCu alloys. In contrast to the PdCu alloy, gold-bearing minerals are never observed entirely enclosed within the Fe-Ti oxide. Two hypotheses can be envisaged for the formation of the gold enriched layer in the upper part of the section. Gold may have either precipitated from high-temperature late magmatic Cl-rich fluids. Alternatively, gold may have been enriched during fractional crystallization after sulfide had been suppressed from the liquidus after the Pd layer crystallized and then deposited along redox barriers.

  5. Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; Shearer, C. K.; McCubbin, F. M.; Bell, A. S.; Agee, C. B.

    2016-01-01

    Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature of low fO2 (IW+/-2) element migration and sulfidation reactions.

  6. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, W.Y.; Cox, W.M.

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665{degrees}C (1229{degrees}F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the ``bell-shaped`` curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less

  7. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, W.Y.; Cox, W.M.

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665[degrees]C (1229[degrees]F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the bell-shaped'' curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less

  8. The speciation of antimony in sulfidic solutions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1994-12-01

    To assist in identifying the Sb sulfide species present in alkaline sulfide solutions, we have used ab initio quantum mechanical methods to calculate the structures, stabilities and vibrational spectra of a number of monomeric and oligomeric Sb(III) sulfides. In agreement with the interpretation of WOOD (1989), we assign a prominent feature observed at 369 cm -1 in the Raman spectrum of sulfidic Sb solutions to Sb-S stretching vibrations in a monomeric complex, although our calculations are most consistent with its assignment to the SbS 2(SH) -2 complex, rather than the fully deprotonated complex SbS 3-3. A shoulder observed at 380 cm -1 is best assigned to SbS(SH) 2-. Raman features observed at 314 and 350 cm 3-1 are assigned to Sb-S(H) symmetric stretching vibrations of the dimeric species Sb 2S 2(SH) 2, which is calculated to be thermodynamically stable, with respect to both the monomer Sb(SH) 3 and the trimer Sb 3S 3(SH) 3. The mixed-ligand complex Sb 2S 2(OH) 2 is calculated to become stable compared to Sb 2S 2(SH) 2 at high temperatures, in agreement with experimental solubility data. The Sb sulfide monomers are found to H-bond to water through their -SH or -S groups, but with only small changes in the Sb-S distances and Sb-S stretching frequencies. Accurate gas-phase proton affinities and estimated solution proton affinities are presented for the anionic species in solution and the estimated energetics are consistent with the presence of SbS 2(SH) -2, SbS(SH) 2-1 and Sb 2S 2(SH) 2 suggested by the Raman data.

  9. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (<5m) were drilled using Rockdrill 1 of the British Geological Survey 1 into the heavily sediment-covered deposit recovering 11 m of semi-massive to massive sulfides. Maximum recovery within a single core was 4.8 m of massive sulfides/sulfates with abundant late native sulfur overprint. The deposit is open to all sides and to depth since all drill holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  10. The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Greaney, Allison T.; Rudnick, Roberta L.; Helz, Rosalind T.; Gaschnig, Richard M.; Piccoli, Philip M.; Ash, Richard D.

    2017-08-01

    We quantify the behavior of Cu, Ga, Ge, As, Mo, Ag, Cd, In, Sn, Sb, W, Tl, Pb, and Bi during the differentiation of a picritic magma in the Kilauea Iki lava lake, Hawaii, using whole rock and glass differentiation trends, as well as partition coefficients in Cu-rich sulfide blebs and minerals. Such data allow us to constrain the partitioning behavior of these elements between sulfide and silicate melts, as well as the chalcophile element characteristics of the mantle source of the Kilauea lavas. Nearly all of the elements are generally incompatible on a whole-rock scale, with concentrations increasing exponentially below ∼6 wt% MgO. However, in-situ laser ablation data reveal that Cu, Ag, Bi, Cd, In, Pb, and Sn are chalcophile; As, Ge, Sb, and Tl are weakly chalcophile to lithophile; and Mo, Ga, and W are lithophile. The average Dsulfide/silicate melt values are: DAg = 1252 ± 1201 (2SD), DBi = 663 ± 576, DCd = 380 ± 566, DIn = 40 ± 34, DPb = 34 ± 18, DSn = 5.3 ± 3.6, DAs = 2.4 ± 7.6, DGe = 1.6 ± 1.4, DSb = 1.3 ± 1.5, DTl = 1.1 ± 1.7, DMo = 0.56 ± 0.6, DGa = 0.10 ± 0.3, and DW = 0.11 ± 0.1. These findings are consistent with experimental partitioning studies and observations of Ni-rich sulfide liquid in mid-ocean ridge basalts (MORB), despite the different compositions of the KI sulfides. The KI glasses and whole rocks are enriched in As, Ag, Sb, W, and Bi, relative to elements of similar compatibility (as established by abundances in MORB), mimicking enrichments found in basalts from the Manus back arc basin (Jenner et al., 2012) and the upper continental crust (UCC). These enrichments suggest the presence of terrigenous sediments in the Kilauea mantle source. The KI source is calculated to be a mixture of depleted MORB mantle (DMM) and 10-20% recycled crust composed of MORB and minor terrigenous sediments.

  11. Towards Determining the Upper Temperature Limits to Life on Earth: An In-situ Sulfide-Microbial Incubator

    NASA Astrophysics Data System (ADS)

    Kelley, D.; Baross, J.; Delaney, J.; Girguis, P.; Schrenk, M.

    2004-12-01

    Determining the maximum conditions under which life thrives, survives, and expires is critical to understanding how and where life might have evolved on our planet and for investigation of life in extraterrestrial environments. Submarine black smoker systems are optimal sites to study such questions because thermal gradients are extreme and accessible within the chimney walls under high-pressure conditions. Intact cells containing DNA and ribosomes have been observed even within the most extreme environments of sulfide structure walls bounded by 300\\deg C fluids. Membrane lipids from archaea have been detected in sulfide flanges and chimneys where temperatures are believed to be 200-300\\deg C. However, a balanced inquiry into the limits of life must focus on characterization of the actual conditions in a given system that favor reactions necessary to initiate and/or sustain life. At present, in-situ instrumentation of sulfide deposits is the only effective way to gain direct access to these natural high-temperature environments for documentation and experimentation. With this goal in mind, three prototype microbial incubators were developed with funding from the NSF, University of Washington, and the W.M. Keck Foundation. The incubators were deployed in 2003 in the walls of active black smoker chimneys in the Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge. All instruments were successfully recovered in 2004, and one was redeployed for a short time-series experiment. Each 53-cm-long titanium assembly houses 27 temperature sensors that record temperatures from 0 to 500\\deg C within three discrete incubation chambers. Data are logged in a separate housing and inductively coupled links provide access to the data loggers without removal of the instruments. During the initial deployment, data were collected from 189 to 245 days, with up to ˜478° K temperature measurements completed for an individual instrument. Temperatures within the chimney walls ranged from near ambient conditions to ˜280° C. Distinct thermal gradients were delineated extremely well in each of the three discrete environmental chambers in all instruments. In one instrument numerous perturbations were recorded simultaneously on all 27 probes showing temperature increases of up to ˜30° C. Smaller-scale fluctuations resulting from tidal perturbations were ubiquitous in all instruments. Tidal pumping that mixes oxygenated seawater and reduced, volatile-rich hydrothermal fluids may be critical for development of dense and diverse microbial communities within the outer chimney walls. Preliminary examination of some sterile mineral surfaces emplaced within the chambers shows extensive biofilm development. Culturing experiments are ongoing and DNA has been successfully extracted from many of the chambers for genetic characterization. This experiment is a component of the W.M. Keck Foundation-funded proto-NEPTUNE Observatory and Ridge R2K program at Endeavour.

  12. Cadmium sulfide thin films growth by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  13. Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide.

    PubMed

    Martin, Ronald W; Mihelcic, James R; Crittenden, John C

    2004-07-01

    Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.

  14. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C.

  15. Forisome Based Smart Materials

    DTIC Science & Technology

    2015-03-31

    different temperature and humidity conditions to stimulate crystal formation and we were able to generate crystals (Fig. 3). Staing of crystal...natural forisomes to dope the solution with a nucleation site unfortunately without success. SEO proteins have 11 cysteines that may form sulfide

  16. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    USGS Publications Warehouse

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base- and precious-metal-bearing, silica-Fe-oxide-barite deposit. Such deposits are commonly spatially and temporally associated with volcanogenic massive sulfide (VMS) ores. A plot of data for pathfinder elements shows a large hot spot at the northwestern margin of the field, which may mark a region where moderate to high temperature sulfide deposits are forming at depth; further exploration of the hydrothermal field to the northwest is warranted.

  17. Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Josh R.; Martin, Steve W.; Ballato, John

    Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less

  18. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and alteration by hydrothermal fluids. The second trend consists of pyrites from porphyry Cu and epithermal Au deposits, which are characterised by compositions that preserve the Au/As signature of mineralizing magmatic-hydrothermal fluids, confirming the role of this sulfide in controlling metal ratios in ore systems.

  19. Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system

    DOE PAGES

    Roth, Josh R.; Martin, Steve W.; Ballato, John; ...

    2018-06-01

    Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less

  20. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    NASA Astrophysics Data System (ADS)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  2. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  3. Methods for improving solar cell open circuit voltage

    DOEpatents

    Jordan, John F.; Singh, Vijay P.

    1979-01-01

    A method for producing a solar cell having an increased open circuit voltage. A layer of cadmium sulfide (CdS) produced by a chemical spray technique and having residual chlorides is exposed to a flow of hydrogen sulfide (H.sub.2 S) heated to a temperature of 400.degree.-600.degree. C. The residual chlorides are reduced and any remaining CdCl.sub.2 is converted to CdS. A heterojunction is formed over the CdS and electrodes are formed. Application of chromium as the positive electrode results in a further increase in the open circuit voltage available from the H.sub.2 S-treated solar cell.

  4. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  5. Process for desulfurizing petroleum feedstocks

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  6. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    USGS Publications Warehouse

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at temperatures above 320 °C. This sulfur moiety ratio appears to provide complementary thermal maturity information to geochemical parameters derived from other analyses of extracted source rocks.

  7. Tungsten speciation in sulfidic waters: Stability and lability of thiotungstates

    NASA Astrophysics Data System (ADS)

    Cui, M.; Johannesson, K. H.

    2017-12-01

    Tungsten (W) is an important metal that has been widely used in industries. It normally occurs as the monomeric tungstate oxyanion in circumneutral to alkaline pH natural waters but tends to form polytungstates species at low pH and high W concentrations. A number of studies show that W is strongly correlated with dissolved sulfide in natural waters. Laboratory investigations have presented evidence that, like Mo, W undergoes sulfidation in four steps that conserve tungstate and lead to the formation of tetrathiotungstate. In addition, natural waters may be seasonally anoxic, thus W speciation is likely to be kinetically controlled. Our previous studies showed that the speciation of tungsten is important in controlling its fate and transport in natural waters. Thiotungstate and tungstate are adsorbed differently to the mineral surfaces such as goethite and pyrite. In our present study, we have observed that the sulfidation reactions of W are acid catalyzed. We suggest that in environments such as sediment porewaters, the presence of Brønsted acids, will promote conversion of tungstate to thiotungstates. However, the conversion of the predominant anion from a hard to a soft base alters W's geochemical behavior, increasing its susceptibility to scavenging. Thus, an important product of this research will be an improved understanding of the scavenging pathways of W in euxinic environments.

  8. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  9. High temperature neutron powder diffraction study of the Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemoine, Pierric, E-mail: pierric.lemoine@univ-rennes1.fr; Bourgès, Cédric; Barbier, Tristan

    Ternary copper-containing sulfides Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu{sub 12}Sb{sub 4}S{sub 13} decomposes above ≈792 K into Cu{sub 3}SbS{sub 3}, and (ii) Cu{sub 4}Sn{sub 7}S{sub 16} decomposes above ≈891 K into Sn{sub 2}S{sub 3} and amore » copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu{sub 3}SnS{sub 4} stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu{sub 12}Sb{sub 4}S{sub 13} are in fair agreement with recent published data, the decomposition behavior of Cu{sub 4}Sn{sub 7}S{sub 16} differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu{sub 4}Sn{sub 7}S{sub 16} and tetrahedrite Cu{sub 12}Sb{sub 4}S{sub 13} phases at 300 K, and for the high temperature form of skinnerite Cu{sub 3}SbS{sub 3} at 843 K. - Graphical abstract: In situ neutron powder diffraction data (heating rate of 2.5 K/min) indicates that (i) the ternary Cu{sub 12}Sb{sub 4}S{sub 13} phase is stable up to 792 K and decomposes at higher temperature into Cu{sub 3}SbS{sub 3} and Cu{sub 1.5}Sb{sub 0.5}S{sub 2}, and (ii) the Cu{sub 4}Sn{sub 7}S{sub 16} phase is stable up to 891 K and decomposes at higher temperature into Sn{sub 2}S{sub 3} and a cubic phase of sphalerite ZnS-type structure. Sulfur volatilization likely occurs in order to balance the overall stoichiometry.« less

  10. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all formore » areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).« less

  11. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGES

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; ...

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (L i2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li 2S is synthesized by reacting hydrogen sulfide (H 2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H 2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li 2Smore » nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li 2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li 2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  12. Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period.

    PubMed

    Yilmaz, Tuba; Erdirencelebi, Dilek; Berktay, Ali

    2012-01-01

    This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.

  13. Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.

    2004-12-01

    Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely due to the easier precipitation and greater stability of FeS relative to MnS. As an attempt to reconstruct predominant species and their abundance in the system, aqueous chemical models were applied. The codes EQBRM and SUPCRT92 were run with total concentrations to calculate, concentrations, activity coefficients and thermodynamic properties of aqueous species. Experimental data such as total chloride, total sulfur and measured pH were used in the model. According to the prevailing conditions in the Guaymas Basin, all metals studied form chloride complexes. Iron, lead, and zinc exist mainly as hydroxy complexes, manganese as free ion and copper as CuHS. Speciation results are well supported by the Pearson's hard-soft rule which states that soft metal ion Cu++ bonds with soft bisulfide ligand, likewise, borderline metal ions as Fe2+, Mn2+, Pb2+ and Zn2+ bond with chloride, hydroxyl or water ligands. The results reported here provide a greater insight into the behavior of trace metals in pore waters of hydrothermal sediments.

  14. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values in both eruption and lava lake samples suggest the presence of unevenly distributed, unidentified Pt-rich trace phases in some Kilauea Iki materials. Estimated mineral (olivine + chromite)/melt D values for Os, Ir, Ru and Pt for equilibrium crystallization for samples from ~ 7 to 27??wt.% MgO are 26, 8.2, 19 and 0.55, respectively. These Os, Ir and Ru estimates are somewhat higher than previous estimates for similar systems. If fractional crystallization is instead assumed, D values are much more similar. Results confirm many prior observations in other mafic systems that olivine (together with included phases) has a major effect on absolute and relative abundances of Re and the PGE. The relatively linear correlations between these elements and MgO potentially permit accurate estimation of the concentrations of these elements in the primary melts of comparable systems, especially in instances where the MgO content of the primary melt is well constrained. ?? 2008 Elsevier B.V.

  15. The Presence of the Cyanobacterial Toxin Microcystin in Black Band Disease of Corals

    USDA-ARS?s Scientific Manuscript database

    Black band disease (BBD) of corals consists of a pathogenic consortium of microorganisms of four physiological functional groups: phototrophs, heterotrophs, sulfate reducers, and sulfide oxidizers. Together, using a combination of behavioral and physiological strategies, the members of the BBD con...

  16. Tracing Dietary Mercury Histochemically, with Autometallography, through the Liver to the Ovaries and Spawned Eggs of the Spot, a Temperate Coastal Marine Fish.

    PubMed

    Govoni, John J; Morris, James A; Evans, David W

    2017-09-01

    Exposure to mercury (Hg) results in reproductive abnormalities and deficiencies in female fish. We traced the maternal assimilation and redistribution of dietary inorganic (HgII) and organic (MeHg) forms of Hg in a coastal marine fish, the Spot Leiostomus xanthurus. We conducted a 90-d laboratory experiment in which treatment Spot were fed muscle of Blue Marlin Makaira nigricans with elevated concentrations of Hg mixed with a commercial fish food, while control Spot were fed only commercial food pellets. Gonadal maturation was induced by shortening the photoperiod and increasing the temperature. Spawning was induced by intramuscular injection of human chorionic gonadotropin at 100 IU/kg. Solid-sampling atomic absorption spectrophotometry measured the total Hg (THg), HgII, and MeHg in Blue Marlin muscle. Autometallography located Hg-sulfide granules in the liver, ovaries, and spawned eggs, and densitometry provided comparisons of Hg-sulfide granules in the ovaries of treatment and control Spot. Overall, the intensity and prevalence of Hg-sulfide granules were greater in the liver, ovaries, and eggs from treatment Spot than in those from controls. The tissue and cellular distribution of Hg-sulfide granules differed. Received November 18, 2016; accepted June 18, 2017.

  17. Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.

    PubMed

    Nicolaidou, A E

    1998-01-01

    Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism.

  18. Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm

    PubMed Central

    Meysman, F. J. R.

    2014-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

  19. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.

    PubMed

    Malkin, S Y; Meysman, F J R

    2015-02-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Layered hydrothermal barite-sulfide mound field, East Diamante Caldera, Mariana volcanic arc

    USGS Publications Warehouse

    Hein, James R.; de Ronde, Cornel E. J.; Koski, Randolph A.; Ditchburn, Robert G.; Mizell, Kira; Tamura, Yoshihiko; Stern, Robert J.; Conrad, Tracey; Ishizuka, Osamu; Leybourne, Matthew I.

    2014-01-01

    East Diamante is a submarine volcano in the southern Mariana arc that is host to a complex caldera ~5 × 10 km (elongated ENE-WSW) that is breached along its northern and southwestern sectors. A large field of barite-sulfide mounds was discovered in June 2009 and revisited in July 2010 with the R/V Natsushima, using the ROV Hyper-Dolphin. The mound field occurs on the northeast flank of a cluster of resurgent dacite domes in the central caldera, near an active black smoker vent field. A 40Ar/39Ar age of 20,000 ± 4000 years was obtained from a dacite sample. The mound field is aligned along a series of fractures and extends for more than 180 m east-west and >120 m north-south. Individual mounds are typically 1 to 3 m tall and 0.5 to 2 m wide, with lengths from about 3 to 8 m. The mounds are dominated by barite + sphalerite layers with the margins of each layer composed of barite with disseminated sulfides. Rare, inactive spires and chimneys sit atop some mounds and also occur as clusters away from the mounds. Iron and Mn oxides are currently forming small (<1-m diam, ~0.5-m tall) knolls on the top surface of some of the barite-sulfide mounds and may also drape their flanks. Both diffusely and focused fluids emanate from the small oxide knolls. Radiometric ages of the layered barite-sulfide mounds and chimneys vary from ~3,920 to 3,350 years. One layer, from an outcrop of 10- to 100-cm-thick Cu-rich layers, is notably younger with an age of 2,180 years. The Fe-Mn oxides were <5 years old at the time of collection in 2009.Most mound, chimney, and layered outcrop samples are dominated by barite, silica, and sphalerite; other sulfides, in decreasing order of abundance, are galena, chalcopyrite, and rare pyrite. Anglesite, cerussite, and unidentified Pb oxychloride and Pb phosphate minerals occur as late-stage interstitial phases. The samples contain high Zn (up to 23 wt %), Pb (to 16 wt %), Ag (to 487 ppm), and Au (to 19 ppm) contents. Some layered outcrop samples are dominated by chalcopyrite resulting in ≤4.78 wt % Cu in a bulk sample (28 wt % for a single lens), with a mean of 0.28 wt % for other samples. Other significant metal enrichments are Sb (to 1,320 ppm), Cd (to 1,150 ppm), and Hg (to 55 ppm).The East Diamante mound field has a unique set of characteristics compared to other hydrothermal sites in the Mariana arc and elsewhere. The geochemical differences may predominantly reflect the distribution of fractures and faults and consequently the rock/water ratio, temperature of the fluid in the upper parts of the circulation system, and extensive and prolonged mixing with seawater. The location of mineralization is controlled by fractures. Following resurgent doming within the caldera, mineralization resulted from focused flow along small segments of linear fractures rather than from a point source, typical of hydrothermal chimney fields. Based on the mineral assemblage, the maximum fluid temperatures were ~260°C, near the boiling point for the water depths of the mound field (367–406 m). Lateral fluid flow within the mounds precipitated interstitial sphalerite, silica, and Pb minerals within a network of barite with disseminated sulfides; silica was the final phase to precipitate. The current low-temperature precipitation of Fe and Mn oxides and silica may represent rejuvenation of the system.

  1. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba trough, Southern Gorda Ridge

    USGS Publications Warehouse

    Tormanen, T.O.; Koski, R.A.

    2005-01-01

    High gold contents (to 10.1 ppm, avg 1.4 ppm, n = 34) occur in pyrrhotite-rich massive sulfide samples from the sediment-covered floor of the Escanaba trough, the slow-spreading, southernmost segment of Gorda Ridge. These concentrations reflect the presence of primary gold, formed during high-temperature hydrothermal activity in mounds and chimneys, and secondary gold deposited during sea-floor weathering of massive sulfide. Primary gold occurs as fine-grained (2 ??m) secondary gold grains have a porous, flaky morphology and occur in samples in which pyrrhotite is oxidized and replaced by Fe oxyhydroxides, Fe sulfate, and sulfur. Mounds and chimneys dominated by pyrrhotite and containing lesser amounts of isocubanite, chalcopyrite, and Fe-rich sphalerite were formed by high-temperature (estimated range 325??-275??C), reduced, low-sulfur vent fluids. The mineral and fluid compositions during this main stage of hydrothermal venting reflect subsurface interaction between circulating hydrothermal fluids and turbiditic sediment containing as much as 1.1 percent organic carbon. As the deposition of pyrrhotite, Cu-Fe sulfides, and sphalerite waned, a volumetrically minor suite of sulfarsenide, arsenide, Bi, and Au minerals was deposited from highly reduced, late main-stage fluids diffusing through mounds and chimneys. The low solubility of Au as a bisulfide complex and the absence of fluid mixing during this stage of hydrothermal activity apparently inhibited the precipitation of gold directly from solution. Instead, gold precipitation is thought to be linked to elevated concentrations of Bi in the late main-stage fluids. The textural relationships of Au and Bi minerals in pyrrhotite-rich samples, low melting point of native bismuth (271.4??C), and recent experimental results on Au and Bi in hydrothermal fluids contribute to the hypothesis that gold was effectively scavenged from the Escanaba trough vent fluids by coexisting droplets of liquid bismuth. Additional phase relationships of alloys in the Au-Bi system indicate that deposition of native bismuth and maldonite occurred at temperatures as low as 241??C. Bismuth droplets trapped in void space between main-stage mineral grains scavenged gold from ambient hydrothermal fluid to a greater extent than bismuth enclosed by late-forming pyrrhotite. The limited solid solution of Au in Bi can explain the apparent exsolution texture in which gold blebs are hosted by native bismuth. The electrum, native bismuth (with gold inclusions), and galena represent the last traces of gold mineralization from late main-stage fluids. During sea-floor weathering and the oxidation of pyrrhotite in the mounds and chimneys, secondary gold formed as aggregates of colloidal particles along pH gradients between acidic pore waters and ambient seawater. Gold was mobilized from earlier formed primary gold minerals and transported as aqueous chloride complexes. The reduction of Au(III) by residual Fe2+ in partly altered pyrrhotite and adsorption of colloids by Fe oxyhydroxides may have influenced the location of secondary gold grains within the alteration front. Solubility differences between gold and silver chloride complexes at low temperature account for the low Ag content of secondary gold grains. The high concentrations of Bi, and thus the association of Au and Bi minerals in pyrrhotite-rich massive sulfide, can be ascribed to the extensive interaction of hydrothermal fluids with sediment in the Escanaba trough. In contrast, the absence of the Au-Bi association in massive sulfides at other ridges, including other sediment-covered sites at Middle Valley and the Guaymas basin

  2. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  3. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.

  4. Chalcophile element geochemistry of the Boggy Plain zoned pluton, southeastern Australia: a S-saturated barren compositionally diverse magmatic system

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Ickert, Ryan B.; Allen, Charlotte M.

    2013-02-01

    The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7-7.8 ppb Pd, 0.025-0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu-Au deposits.

  5. Overcoming uncertainty with carbonyl sulfide-based GPP estimates: observing and modeling soil COS fluxes in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Whelan, M.; Hilton, T. W.; Berry, J. A.; Berkelhammer, M. B.; Desai, A. R.; Rastogi, B.; Campbell, J. E.

    2015-12-01

    Significant carbonyl sulfide (COS) exchange by soils limits the applicability of net ecosystem COS flux observations as a proxy for stomatal trace gas exchange. High frequency measurements of COS over urban and natural ecosystems offer a potential window into processes regulating the carbon and water cycle: photosynthetic carbon uptake and stomatal conductance. COS diffuses through plant stomata and is irreversibly consumed by enzymes involved in photosynthesis. In certain environments, the magnitude of soil COS fluxes may constitute one-quarter of COS uptake by plants. Here we present a way of anticipating conditions when anomalously large soil COS fluxes are likely to occur and be taken into account. Previous studies have pointed to either a tendency for soil uptake of COS from the atmosphere with a soil moisture optimum, or exponential COS production coincident with temperature. Data from field and laboratory studies were used to deconvolve the two processes. CO2 and COS fluxes were observed from forest, desert, grassland, and agricultural soils under a range of temperature and soil moisture conditions. We demonstrate how to estimate temperature and soil moisture impacts on COS soil production based on our cross-site incubations. By building a model of soil COS exchange that combines production and consumption terms, we offer a framework for interpreting the two disparate conclusions about soil COS exchange in previous studies. Such a construction should be used in ecosystem and continental scale modeling of COS fluxes to anticipate where the influence of soil COS exchange needs to be accounted for, resulting in greater utility of carbonyl sulfide as a tracer of plant physiological processes.

  6. Stable carbon and sulfur isotopes as records of the early biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1989-01-01

    The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.

  7. Similarities and Differences in the Distributions of Hydrothermal Venting and the Formation of Seafloor Massive Sulfide Deposits at the Tui Malila and Mariner Vent Fields, Valu Fa Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Evans, G. N.; Ferrini, V. L.; Spierer, H.

    2016-12-01

    High-resolution bathymetric mapping and recovery and study of samples from precisely known locations relative to local tectonic and volcanic features provide insight into the formation of seafloor massive sulfide deposits. Additional insight comes from repeat mapping efforts in 2005 and 2016 that provide details of relations and changes that may have occurred over time. Located 21 km apart on the Valu Fa Ridge, the Tui Malila and Mariner vent fields exhibit contrasting vent fluid chemistry, mineral deposit composition, deposit morphology, and seafloor morphology. At the Tui Malila vent field, near-neutral pH fluids with low metal contents vent from Zn- and Ba-rich, but Cu-poor deposits. The highest temperature fluids are found near the intersection of two faults and between volcanic domes. In contrast, acidic, metal-rich hydrothermal fluids at the Mariner vent field vent from Cu-rich, Zn-poor deposits. No discernable faults are present. At both the Tui Malila and Mariner vent fields, intermediate temperature fluids were sampled emanating from barite-rich deposits. At the Tui Malila vent field, intermediate fluids vent from flange-dominated edifices that are located on brecciated lava flow that overlays one of the two faults. Intermediate fluids at the Mariner vent field vent from squat terrace-like edifices located peripheral (10-15 m) to high-temperature chimney edifices, and seafloor morphology is dominated by brecciated lava flows. Thermodynamic models of mixing between high-temperature hydrothermal fluids and seawater that consider subsurface deposition of sulfide minerals and iron oxyhydroxide were used to reproduce the chemistry of intermediate fluids. This study suggests that the porous, brecciated lavas characteristic of these two vent fields provide sites for subsurface mixing and contribute to mineral deposition, with the faults at the Tui Malila vent field providing a pathway for subsurface fluid flow.

  8. Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

    PubMed Central

    Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin

    2010-01-01

    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs. PMID:20333304

  9. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine

    PubMed Central

    Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

    2000-01-01

    Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

  10. Sulfur-, oxygen-, and carbon-isotope studies of Ag-Pb-Zn vein-breccia occurrences, sulfide-bearing concretions, and barite deposits in the north-central Brooks Range, with comparisons to shale-hosted stratiform massive sulfide deposits: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Kelley, Karen D.; Leach, David L.; Johnson, Craig A.

    2000-01-01

    Stratiform shale-hosted massive sulfide deposits, sulfidebearing concretions and vein breccias, and barite deposits are widespread in sedimentary rocks of Late Devonian to Permian age in the northern Brooks Range. All of the sulfide-bearing concretions and vein breccias are hosted in mixed continental-marine clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. The clastic rocks and associated sulfide occurrences underlie chert and shale of Mississippian-Pennsylvanian(?) age that contain large stratiform massive sulfide deposits like that at Red Dog. The relative stratigraphic position of the vein breccias, as well as previously published mineralogical, geochemical, and lead-isotope data, suggest that the vein breccias formed coevally with overlying shale-hosted massive sulfide deposits and that they may represent pathways of oreforming hydrothermal fluids. Barite deposits are hosted either in Mississippian chert and limestone (at essentially the same stratigraphic position as the shale-hosted massive sulfide deposits) or Permian chert and shale. Although most barite deposits have no associated base-metal mineralization, barite occurs with massive sulfide deposits at the Red Dog deposit.Galena and sphalerite from most vein breccias have δ34S values from –7.3 to –0.7‰ (per mil) and –5.1 to 3.6‰, respectively; sphalerite from sulfide-bearing concretions have δ34S values of 0.7 and 4.7‰. This overall range in δ34S values largely overlaps with the range previously determined for galena and sphalerite from shale-hosted massive sulfide deposits at Red Dog and Drenchwater. The Kady vein-breccia occurrence is unusual in having higher δ34S values for sphalerite (12.1 to 12.9‰) and pyrite (11.3‰), consistent with previously published values for the shale-hosted Lik deposit. The correspondence in sulfur isotopic compositions between the stratiform and vein-breccia deposits suggests that they share a common source of reduced sulfur, or derived reduced sulfur by similar geochemical processes. Most likely, the reduced sulfur was derived by biogenic sulfate reduction (BSR) or thermochemical sulfate reduction (TSR) of seawater sulfate during Devonian-Mississippian time.The δ18O values of quartz from the vein breccias are between 16.6 and 19.9‰. Using the sphalerite-galena sulfur isotopic temperature of 188°±25°C, the calulated hydrothermal fluids had δ18O values of 4.2 to 7.5‰. The calculated range of δ18O values of the fluids is similar to that of pore fluids in equilibrium with sedimentary rocks during diagenesis at 100°– 190°C.

  11. Nonlinear optical properties of hybridized CdS/ZnS-PVP sols

    NASA Astrophysics Data System (ADS)

    Kulagina, A. S.; Evstropiev, S. K.; Khrebtov, A. I.

    2017-11-01

    Hybrid composites of CdS-core ZnS-shell nanoparticles embedded in polyvinylpyrrolidone (PVP) matrixes have been prepared and characterized. Cadmium sulfide (CdS) nanocrystals were grown in water-propanol-2 solutions containing high-molecular (Ms=1300000) polyvinylpyrrolidone (PVP) at room temperature using cadmium nitrate and sodium sulfide as the cadmium and sulfur sources, respectively. The CdS/ZnS-PVP suspensions have promising optical properties for nanocomposite films based on. Nonlinear optical properties of diluted CdS/ZnS sols were studied at 532 nm and 5 ns laser pulses by using the Z-scan technique. Dependence of the nonlinear-optical coefficients on the CdS weight has been obtained.

  12. The mineralogical transformation of a polymetallic sulfide ore during partial roasting

    NASA Astrophysics Data System (ADS)

    Evrard, Louis

    2001-12-01

    A partial desulfurization roasting process has been tested on a typical copper-zinc sulfide concentrate in a Nichols Herreshoff monohearth pilot furnace. In this process, the sulfur is partially removed and iron, to a certain degree, is preferentially oxidized. The mineralogical characterizations of the reaction products at different residence times enable the recognition of a sequence of reactions and various textural relationships during the roasting. The testing showed that a controlled desulfurization at a temperature as low as 650°C can lead to the decomposition of chalcopyrite, resulting in the formation of discrete particles of Cu2S having a size ranging from five to 20 micrometers or more.

  13. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.

    PubMed

    Shen, Guozhen; Chen, Di; Chen, Po-Chiang; Zhou, Chongwu

    2009-05-26

    Gallium sulfide (GaS) is a wide direct bandgap semiconductor with uniform layered structure used in photoelectric devices, electrical sensors, and nonlinear optical applications. We report here the controlled synthesis of various high-quality one-dimensional GaS nanostructures (thin nanowires, nanobelts, and zigzag nanobelts) as well as other kinds of GaS products (microbelts, hexagonal microplates, and GaS/Ga(2)O(3) heterostructured nanobelts) via a simple vapor-solid method. The morphology and structures of the products can be easily controlled by substrate temperature and evaporation source. Optical properties of GaS thin nanowires and nanobelts were investigated and both show an emission band centered at 580 nm.

  14. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, S.; Boehm, L.; Volin, K.J.; Delbecq, C.J.

    1982-05-06

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS/sub 2/, B/sub 2/S/sub 2/ and SiS/sub 2/ in mixture with a glass modifier such as Na/sub 2/S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1 - X) Na/sub 2/O:XB/sub 2/S/sub 3/ is disclosed.

  15. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, Sherman; Delbecq, Charles J.; Volin, Kenneth J.; Boehm, Leah

    1984-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  16. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, Sherman; Boehm, Leah; Volin, Kenneth J.; Delbacq, Charles J.

    1985-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  17. Partition of Ni between olivine and sulfide: the effect of temperature, f_{{text{O}}_{text{2}} } and f_{{text{S}}_{text{2}} }

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Macrae, N. D.

    1987-03-01

    The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, f_{{text{O}}_{text{2}} } = 10^{ - 8.87} ,f_{{text{S}}_{text{2}} } = 10^{ - 1.02} , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of f_{{text{O}}_{text{2}} } and f_{{text{S}}_{text{2}} }.

  18. Formation of ammonia from dinitrogen under primordial conditions

    NASA Astrophysics Data System (ADS)

    Weigand, W.; Dörr, M.; Robl, C.; Kreisel, G.; Grunert, R.; Käßbohrer, J.; Brand, W.; Werner, R.; Popp, J.; Tarcea, N.

    2002-11-01

    Ammonia is one of the most largely industrially produced basic compounds, leading to a variety of important secondary products. In the chemical industry, ammonia is produced in large amounts via the HABER-BOSCH-process. In contrast to the industrial process, the nitrogenase enzyme operates in organisms under very mild conditions at atmospheric pressure and ambient temperature. In this article, we describe a method for the synthesis of ammonia from molecular nitrogen using H2S and freshly precipitated iron sulfide as a mediator thus serving as a primordial inorganic substitute for the enzyme nitrogenase. The reductand, as well as the reaction conditions (atmospheric nitrogen pressure and temperatures on the order of 70 - 80°C) are rather mild and therefore comparable to the biological processes. The driving force of the overall reaction is believed to be the oxidation of iron sulfide to iron disulfide, and the formation of hydrogen from H2S. The reactions reported in this article may support the theory of an archaic nitrogen-fixing Fe-S cluster.

  19. Trace elements in magnetite as petrogenetic indicators

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges; Méric, Julien; Boutroy, Emilie; Potvin-Doucet, Christophe

    2014-10-01

    We have characterized the distribution of 25 trace elements in magnetite (Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Sn, Hf, Ta, W, and Pb), using laser ablation ICP-MS and electron microprobe, from a variety of magmatic and hydrothermal ore-forming environments and compared them with data from the literature. We propose a new multielement diagram, normalized to bulk continental crust, designed to emphasize the partitioning behavior of trace elements between magnetite, the melt/fluid, and co-crystallizing phases. The normalized pattern of magnetite reflects the composition of the melt/fluid, which in both magmatic and hydrothermal systems varies with temperature. Thus, it is possible to distinguish magnetite formed at different degrees of crystal fractionation in both silicate and sulfide melts. The crystallization of ilmenite or sulfide before magnetite is recorded as a marked depletion in Ti or Cu, respectively. The chemical signature of hydrothermal magnetite is distinct being depleted in elements that are relatively immobile during alteration and commonly enriched in elements that are highly incompatible into magnetite (e.g., Si and Ca). Magnetite formed from low-temperature fluids has the lowest overall abundance of trace elements due to their lower solubility. Chemical zonation of magnetite is rare but occurs in some hydrothermal deposits where laser mapping reveals oscillatory zoning, which records the changing conditions and composition of the fluid during magnetite growth. This new way of plotting all 25 trace elements on 1 diagram, normalized to bulk continental crust and elements in order of compatibility into magnetite, provides a tool to help understand the processes that control partitioning of a full suit of trace elements in magnetite and aid discrimination of magnetite formed in different environments. It has applications in both petrogenetic and provenance studies, such as in the exploration of ore deposits and in sedimentology.

  20. Fractionation of rhenium from osmium during noble metal alloy formation in association with sulfides: Implications for the interpretation of model ages in alloy-bearing magmatic rocks

    NASA Astrophysics Data System (ADS)

    Fonseca, Raúl O. C.; Brückel, Karoline; Bragagni, Alessandro; Leitzke, Felipe P.; Speelmanns, Iris M.; Wainwright, Ashlea N.

    2017-11-01

    Although Earth's continental crust is thought to derive from melting of the Earth's mantle, how the crust has formed and the timing of its formation are not well understood. The main difficulty in understanding how the crust was extracted from the Earth's mantle is that most isotope systems recorded in mantle rocks have been disturbed by crustal recycling, metasomatic activity and dilution of the signal by mantle convection. In this regard, important age constraints can be obtained from Re-Os model ages in platinum group minerals (PGM), as Re-poor and Os-rich PGM show evidence of melting events up to 4.1 Ga. To constrain the origin of the Re-Os fractionation and Os isotope systematics of natural PGM, we have investigated the linkage between sulfide and PGM grains of variable composition via a series of high-temperature experiments carried out at 1 bar. We show that with the exception of laurite, all experimentally-produced PGM, in particular Pt3Fe (isoferroplatinum) and Pt-Ir metal grains, are systematically richer in Re than their sulfide precursors and will develop radiogenic 187Os /188Os signatures over time relative to their host base metal sulfides. Cooling of an PGM-saturated sulfide assemblage shows a tendency to amplify the extent of Re-Os fractionation between PGM and the different sulfide phases present during cooling. Conversely, laurite grains (RuS2) are shown to accept little to no Re in them and their Os isotope composition changes little over time as a result. Laurite is therefore the PGM that provides the most robust Re-depletion ages in mantle lithologies. Our results are broadly consistent with observations made on natural PGM, where laurites are systematically less radiogenic than Pt-rich PGM. These experimental results highlight the need for the acquisition of large datasets for both mantle materials and ophiolite-derived detrital grains that include measurements of the Os isotope composition of minerals rich in highly siderophile elements at the grain scale (i.e. PGM and base metal sulfides). Only with such datasets is it possible to identify past episodes of mantle melting.

Top